Discrete Optimization for Optical Flow (2015)

Team:  M. Menze
Jahr:  2015
Laufzeit:  01/2015 to 06/2015
Ist abgeschlossen:  ja
Weitere Informationen www.cvlibs.net/projects/discrete_flow

We propose to look at large-displacement optical flow from a discrete point of view. Motivated by the observation that sub-pixel accuracy is easily obtained given pixel-accurate optical flow, we conjecture that computing the integral part is the hardest piece of the problem. Consequently, we formulate optical flow estimation as a discrete inference problem in a conditional random field, followed by sub-pixel refinement. Naive discretization of the 2D flow space, however, is intractable due to the resulting size of the label set. In this project, we therefore investigate three different strategies, each able to reduce computation and memory demands by several orders of magnitude. Their combination allows us to estimate large-displacement optical flow both accurately and efficiently and demonstrates the potential of discrete optimization for optical flow. We obtain state-of-the-art performance on MPI Sintel and KITTI.

Grafik 1