
GOTTFRIED WILHELM LEIBNIZ UNIVERSITÄT HANNOVER

INSTITUT FÜR INFORMATIONSVERARBEITUNG

INSTITUT FÜR PHOTOGRAMMETRIE UND GEOINFORMATION

Master Thesis

Investigations on Improving the Classification of

Land Cover Based on Convolutional Neural

Networks

Deyu Zhang

1st Supervisors (TNT):

Prof. Dr.-Ing. J. Ostermann, M.Sc. Felix Kuhnke

2nd Supervisors (IPI):

apl. Prof. Dr. Techn. F. Rottensteiner, M.Sc. Chun Yang

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt und keine

anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Ich stimme der

Verwertung meiner Arbeit durch das Institut in den folgenden Punkten zu:

 Aufnahme der gedruckten und der elektronischen Fassung der Arbeit in die

Institutsbibliothek,

 Vervielfältigung der gesamten Arbeit oder von Auszügen für Lehrzwecke und

 Wiedergabe der Arbeit durch Bild- und Tonträger

Hannover, den 22.01.19

Topic of the M.Sc. Thesis

Investigations on improving classification of land cover based on Convolutional

Neural Networks

Classification of land cover is a standard task in remote sensing, in which each image

pixel is assigned a class label indicating the physical material of the object surface (e.g.

grass, asphalt). This task is challenging due to the heterogeneous appearance and high

intra-class variance of objects. Recent work trying to solve this task has focused on

convolutional neural networks (CNN), delivering considerably better results than

traditional classifiers such as Random Forests, whereas such classifiers use hand-

crafted features as input, CNN provide a framework in which these features (and, thus,

a representation of the image) can be learned from training data, which explains much

of the success of CNN in classification. Originally, CNN were designed to predict a

single class label per image. In the meantime, they have also been expanded to the task

of land cover classification, where a class label is to be predicted for each pixel. This is

achieved by an encoder-decoder structure, where in the encoder part, the resolution is

continuously reduced (as in common CNN), whereas the encoder part upsamples the

resultant class scores to obtain per-pixel predictions. Existing methods mainly suffer

from a poor representation of object boundaries due to the reduction of resolution in

the encoder part of the CNN.

The goal of this master thesis is to investigate methods for improving the classification

of land cover by an existing CNN encoder-decoder architecture. Generally speaking,

there are two investigation variants. The first one is hard-negative mining. Mr. Zhang

has to find out which pixels are hard to be classified. It can be done by setting a

threshold of probabilistic score, the pixels whose correct class scores are above the

threshold are considered as easy ones, otherwise are hard ones. Then investigations on

how to improve the classification of them have to be conducted. It could be 1) retaining

only the hard pixels in the same CNN model, by setting a mask in the groundtruth labels;

2) using a patch-based CNN model which requires patches as input, where the patches

are extracted out by centering the hard pixels. For these both methods, data

augmentation should be applied if needed. Meanwhile, Mr. Zhang needs to investigate

the relationship of threshold and the overall performance. The second one is adding

more prior knowledge to the actual CNN model. In this case, the prior object boundary

information needs to be firstly extracted out from the groundtruth labels. Afterwards,

Mr. Zhang needs to incorporate this knowledge into the model by modifying the

structure. For this variant, an investigation of the width of boundary should be taken,

in order to find out the relationship between performance and the boundary.

This master thesis is a cooperation of the Institute of Information processing (TNT) and

the Institute of Photogrammetry and GeoInformation (IPI). The required methods shall

be implemented in Python using the Tensorflow development environment for CNN.

In this context, Mr. Zhang should use an existing encoder-decoder architecture for

which both the source code and a pre-trained model are available at IPI. The developed

methods shall be evaluated using test datasets for which a reference is available. Mr.

Zhang shall use the Vaihingen benchmark dataset from the ISPRS semantic labelling

challenge.

1

Contents

TOPIC OF THE M.SC. THESIS

CONTENTS .. 1

1. INTRODUCTION .. 4

1.1 MOTIVATION ... 5

1.2 GOAL OF THIS THESIS .. 7

1.3 STRUCTURE OF THIS THESIS .. 8

2. RELATED WORK ... 9

2.1 TRADITIONAL METHODS .. 9

2.2 CLASSIFICATION OF LAND COVER BASED ON CONVOLUTIONAL NEURAL NETWORKS 10

2.2.1 Patch-based Land Cover Classification .. 10

2.2.2 Fully Convolutional Networks and Encoder-decoder architecture 11

3. THEORETICAL BACKGROUND .. 13

3.1 CONVOLUTIONAL NEURAL NETWORKS .. 13

3.1.1 Convolutional Layer .. 14

3.1.2 Pooling Layer .. 16

3.1.3 Activation Function ... 17

3.1.4 Fully Connected Layer .. 18

3.1.5 Loss Function .. 19

3.1.6 Batch Normalization .. 21

3.2 STOCHASTIC GRADIENT DESCENT .. 22

3.2.1 Gradient Descent ... 22

3.2.2 Stochastic Gradient Descent.. 23

3.3 REGULARIZATION ... 24

2

3.3.1 Weight Decay ... 25

3.3.2 Dropout .. 25

3.4 FORWARD PROPAGATION AND BACKPROPAGATION .. 26

3.4.1 Forward propagation... 26

3.4.2 Backpropagation.. 27

3.5 COST-SENSITIVE LEARNING .. 28

3.5.1 Cost-sensitive Vector .. 29

3.5.2 Specify the Weights .. 29

4. METHODOLOGY ... 30

4.1 SKIPNET: A DEEP CONVOLUTIONAL NEURAL NETWORK ... 30

4.1.1 Architecture ... 30

4.1.2 Implementation and Training .. 32

4.2 INVESTIGATIONS ON IMPROVING THE CLASSIFICATION OF LAND COVER BASED ON SKIPNET 33

4.2.1 Hard-Negative Mining ... 34

4.2.2 Fine-tuning the SkipNet with Hard-Negative Mining .. 35

4.2.3 Patch-based Classification: LiteNet .. 36

4.2.4 Adding Prior-Knowledge of Boundary in SkipNet ... 39

5. EXPERIMENTS .. 42

5.1 DATASET ... 42

5.1.1 Setup for Fine-tuning the SkipNet-B .. 42

5.1.2 Setup for Training the LiteNet ... 43

5.1.3 Setup for the Boundary-aware SkipNet ... 44

5.2 EVALUATION OF HARD-NEGATIVE MINING ... 45

5.2.1 Evaluation of Fine-tuning the SkipNet-B ... 45

5.2.2 Evaluation of LiteNet ... 46

3

5.3 EVALUATION OF THE BOUNDARY-AWARE SKIPNET ... 48

6 CONCLUSION AND OUTLOOK .. 49

7 REFERENCES ... 50

LIST OF FIGURES .. 54

LIST OF TABLES .. 56

4

1. Introduction

Land cover is the description of the physical material on the earth’s surface. For

instance, land covers can be divided into grass, asphalt, trees, bare ground, etc. There

are two most commonly used approaches to collect geoinformation for land cover: field

survey and analysis of remote sensing data.

Classification of land cover is a standard task in remote sensing, in which each image

pixel is assigned a class label indicating the physical material of the object surface (e.g.

grass, asphalt) (Yang et al., 2018). This task is called land cover classification in

photogrammetry and remote sensing and also termed as semantic segmentation in

computer vision, which is implemented to recognize the objects and also find out the

locations in the image.

Land cover classification is challenging due to the heterogeneous appearance and high

intra-class variance of objects (Paisitkriangkrai et al., 2016), where the heterogeneous

appearance describes the diverseness of object appearances in land cover. The intra-

class variance can be also termed as within class variance, which describes the degree

of dispersion in a segment, and in land cover classification it is reflected as how far a

set of pixels values are spread out from their average value.

Figure 1-1 An example of land cover classification. On the left side is a color infrared photo and on the right is

its land cover classification with six classes.

Recent work trying to solve this task has focused on convolutional neural networks,

delivering considerably better results than traditional classifiers such as Random

Forests, whereas such classifiers use hand-crafted features as input. Convolutional

neural networks provide a framework in which these features (the representation of the

5

image) can be learned from training data, which explains much of the success of

convolutional neural network in classification.

Figure 1-2 An example of encoder-decoder structure

Originally, convolutional neural networks were designed to predict a single class label

per image (Krizhevsky et al., 2012). In the meantime, they have also been expanded to

the task of land cover classification, where a class label is to be predicted for each pixel

(Audebert et al., 2016). This can be achieved by an encoder-decoder structure, where

in the encoder part, the spatial resolution is continuously reduced (as in common

convolutional neural networks), whereas the decoder part upsamples the resultant

feature maps to obtain per-pixel predictions (Yang et al., 2018), as shown in Figure 1-2,

or a patch-based model structure. A patch-based model achieves per-pixel classification

by packing a pixel and its surrounding pixels together and using the predicted label of

this local “image” as its center pixel label. For instance, an image is cropped into many

small parts, i.e. patches. The label of the center pixel of a patch is used as the class of

this patch and the convolutional neural network converts the context information, which

is provided by the rest pixels in this patch, into a feature vector. By using a sliding

window approach, each pixel can be made as the center of such a patch (Längkvist et

al., 2016). However, this implementation produces unnecessary computations due to

patches overlapping. In order to reduce the impact of overlapping, bilinear interpolation

is also used in patch-based model, which predicts every nth pixel in the image, to convert

sparse predictions to dense predictions (Paisitkriangkrai et al., 2016).

1.1 Motivation

With the development of photogrammetry and remote sensing, deep learning,

especially convolutional neural network plays a more and more important role in land

cover classification. Convolutional neural network is very suitable for land cover

classification tasks due to the following reasons. Firstly, due to the rapid growth of the

performance of graphics processing unit (GPU), the training and testing efficiency of

the convolutional neural network has been greatly improved and not only that, its

6

accuracy has also achieved a significant progress. Secondly, considering the size of

aerial and satellite imagery is generally very large, the convolutional neural network

can extract features automatically from the input data, while the traditional methods

applied in land cover classification use hand-crafted features, which can be time-

consuming, and the requirements vary from task to task. Thirdly, different from ground

photogrammetry, aerial and satellite imagery can be captured in any azimuth. This

means that the methods applied in land cover classification must be robust against

rotation (Paisitkriangkrai et al., 2016). By applying augmentation of training dataset

with different angles and mirroring, convolutional neural network can effectively

manage to resist rotation issue.

An encoder-decoder structure was implemented to achieve land cover classification, i.e.

semantic segmentation. Although the implemented structure made a great progress,

there are still some challenges and imperfections, which need to be concerned and

overcome. Existing methods mainly suffer from a poor representation of object

boundaries due to the reduction of resolution in the encoder part of the convolutional

neural network, as well as heterogeneous appearance and high intra-class variance of

objects, as shown in Figure 1-3.

Figure 1-3 (a) is an example of Land cover classification task; (b) is the reference with boundary; (c) is the

corresponding labels predicted by the model and the boundary generated from reference. Vaihingen Dataset

of Benchmark Test of ISPRS.

One of the most conspicuous mistakes is the building at lower left corner (marked with

red rectangle), colored as blue in (b), which indicates its class is Building, is classified

incorrectly as Impervious Surface, as shown in (c). This mistake is caused by the

combined impact of low inter-class variance and high intra-class variance of objects.

7

Compared to other buildings in the dataset, the features of this building are closer to

the features of impervious surface. One method to solve this problem is to combine the

existing model with another convolutional neural network architecture, in order to make

the intra-class features more obvious. This purpose is achieved by merging the

extracted features of two different models to obtain a stronger generalization. Another

problem is the classification at boundaries. The reduction of resolution in the encoder

parts is not beneficial for segmentation where boundary delineation is vital

(Badrinarayanan et al., 2017). As shown in Figure 1-4, the mistakes at boundaries are

not to be neglected. The model may achieve better performance at boundaries, when

the boundary information is captured and stored before subsampling.

Figure 1-4 One local area of predicted labels with reference boundary, where the black line represents the

boundary of objects

1.2 Goal of this thesis

The goal of this master thesis is to investigate methods for improving the classification

of land cover based on an existing convolutional neural network encoder-decoder

architecture. Generally speaking, there are two investigation variants. The first one is

hard-negative mining. Pixels that are hard to be classified, need to be found out. It can

be done by setting a threshold of probabilistic score, the pixels whose correct class

scores are above the threshold are considered as easy ones, otherwise are hard ones.

Then investigations on how to improve the classification of them have to be conducted.

It could be:

 Retraining only the hard pixels in the same convolutional neural network model

 Using a patch-based convolutional neural network model which requires patches

as input, where the patches are extracted out by centering the hard pixels

For these both methods, data augmentation should be applied if needed. The second

one is adding more prior knowledge to the actual convolutional neural network model.

8

In this case, the prior object boundary information needs to be firstly extracted out from

the reference. Afterwards, this knowledge needs to be incorporated into the model by

modifying the structure, whereas a research on modification must be taken. Besides, an

investigation of the width of boundary should be taken, in order to find out the

relationship between performance and the boundary.

The required methods shall be implemented in Python using the TensorFlow

development environment (Abadi et al., 2016) for convolutional neural network.

1.3 Structure of this thesis

The structure of this thesis is as follows:

 In Chapter 2, the related work involving land cover classification based on

traditional methods and convolutional neural networks will be discussed.

 In Chapter 3, the theoretical background about the convolutional neural network

will be introduced to help understand our currently framework.

 In Chapter 4, the proposed methodology will be introduced.

 In Chapter 5, the training procedure of different models will be introduced as well

as the results will be analyzed.

 In Chapter 6, we will conclude this thesis and state our prospects for the future.

9

2. Related work

In the long history of human development, knowing the geoinformations surround us

is always very essential. How to identify the surface elements on earth (Land cover) is

a highly concerned problem in geoinformation analyzing.

2.1 Traditional Methods

Land cover refers to description of the physical material on the earth’s surface. It is

undoubtedly a high value information supporting various environmental science and

land management applications at global, regional and local scales (Foley et al., 2005;

Sharma et al., 2018). Considering the significance of land cover, e.g. ecosystem

services, agricultural monitoring and etc. (Hietel et al., 2004; Burkhard et al., 2012;

Guidici & Clark, 2017), the remote sensing technology has been used for generating

accurate land cover datasets at various scales (Bartholome & Belward, 2005; Gong et

al., 2013; Jin et al., 2013). The remote sensing data has ideal spectral, spatial,

radiometric and temporal characteristics (Sharma et al., 2018), but the land cover

classification depends on not only the imagery appropriateness, but also the choice of

classification methods (Lu & Weng, 2017).

Many classification methods have been proposed using remote sensing data, such as

unsupervised algorithms, e.g. K-means, parametric supervised algorithms, e.g.

maximum likelihood, and machine learning algorithms, e.g. random forest and neural

networks (Li et al., 2014; Zhu et al., 2017). The unsupervised algorithms could achieve

very potential performance but require extra knowledge to the task-specific study area,

whereas supervised algorithms could produce high classification accuracies with

sufficient training and proper settings (Li et al., 2014). Including context into the

classification process by using context features (Hermosilla et al., 2012) and Markov

or Conditional Random Fields (Albert et al., 2017) has improved the accuracy of land

cover classification, but the contextual models requires a large amount of training data

and the choice of optimizer is a challenge (Albert et al., 2017). The machine learning

algorithms have been mostly applied in terrain classification, i.e. predicting a label for

an overhead image (Paisitkriangkrai et al., 2016) due to limitations of computational

efficiency. In last decades, the development of hardware made it possible to process a

great number of high-resolution aerial imagery. Recent advances in image classification

is attributed to the convolutional neural network, where it outperforms traditional

classifiers using hand-crafted features in many areas (Krizhevsky et al., 2012; Girshick

et al., 2014; Razavian et al., 2014) This improvement is also adapted in land cover

classification.

10

2.2 Classification of Land Cover Based on Convolutional

Neural Networks

The convolutional neural network is inspired by the nature of the mammalian visual

cortex and showed a great success in vision applications. It can learn visual patterns

directly from raw image pixels. The convolutional neural network uses a combination

of a convolutional layer, a non-linear mapping and a pooling layer down-sampling and

abstracting signals (LeCun et al., 1998) so that the spatial correlation present in the

natural images is well exploited (Paisitkriangkrai et al., 2016). High-level features are

extracted and learned from the training data. The deep convolutional neural network

consists of a series of these combinations and is followed by several fully connected

layers, which are used for integrating local features to global features (Krizhevsky et

al., 2012).

Originally, the convolutional neural network is designed to predict a single class label

per image (Krizhevsky et al., 2012). The convolutional layer and the pooling layer

would reduce the dimension of the input and the elements of the output cannot one-to-

one correspond to the pixels in the image. In addition, the fully connected layer would

output the vectors with a fixed size.

2.2.1 Patch-based Land Cover Classification

Land cover classification is a pixel-level classification, which also called semantic

segmentation in computer vision. To implement semantic segmentation in the

convolutional neural network, one convenient method is the patch-based convolutional

neural network (Paisitkriangkrai et al., 2016), where each pixel was separately

classified into classes using a patch of image around it, which is labeled with its central

pixel. In inference, the convolutional neural network naturally predicts a label for the

patch, but this label is only assigned to the central pixel and the surrounding pixels are

regarded as unpredicted. Längkvist et al. (2016) apply this procedure in a sliding

window approach, making each pixel in the centre of such a patch. However, using the

patch-based classification needs to generate a patch for each pixel and leads to two

problems: computing consuming and insufficient use of information, i.e. only adjacent

information of the pixel is considered. Computation consuming is due to overlapping

of the patches. To overcome the problem of time consuming, Paisitkriangkrai et al.

(2016) implement the simple linear interpolation in the patch-based classification. This

method significantly alleviates the problem of time-consuming during evaluation, but

has properties of the low pass filter, which can damage high frequency components, so

it may blur the object boundaries to some extent.

11

2.2.2 Fully Convolutional Networks and Encoder-decoder

architecture

Another structure for semantic segmentation is called fully convolutional networks

(Long et al., 2015). This model transforms convolved feature maps into classes of each

pixel. The network can accept input images of any size and produce output of the same

size, one-to-one correspondence between the input image and the output. This network

supports end-to-end, pixel-to-pixel training. To obtain dense predictions, Long et al.

(2015) researched three methods: shift-and stitch, filter rarefaction and deconvolution.

Using deconvolution to upsample is recommended.

Figure 2-1 A simple fully convolutional network (Long et al., 2015), where the idea of solving the problem of

image resolution reduction caused by convolution and pooling is upsampling

Noh et al. (2015) proposed the deconvolutional neural network where the encoder-

decoder architecture is implemented. The encoder consists of series of building blocks

of convolutional layers, pooling layers and ReLU layers like traditional convolutional

neural networks, and the spatial dimension decreases gradually because of pooling

layers, whereas the decoder needs to restore the spatial dimension and details from low-

resolution signal. The decoder has symmetrical structure of the encoder, while the

upsampling layer is used as the beginning of each block to increase the spatial

dimension. Normally the shortcut connections between encoder and decoder are

implemented to help decoder restore the losing location information.

SegNet (Badrinarayanan et al., 2015) is also based on the encoder-decoder architecture

but the decoder uses pooling indices computed in the max-pooling step of the

corresponding encoder to perform non-linear upsampling. This eliminates the need for

learning to upsample.

These architectures for semantic segmentation are also implemented in land cover

classification, achieving promising results. Marmanis et al. (2018) proposed a fully

connected convolutional neural network for land cover classification with different

12

resolution inputs.A fully convolutional network without pooling is proposed to deal

with the dimension reduction (Sherrah, 2016) and achieved an increase of 2% in

accuracy in the ISPRS labelling challenge. However, this method requires high

computation ability. Yang et al. (2018) proposed an encoder-decoder structure based on

SegNet and combine ensembles of classifiers with different input data, whereas the

boundaries between objects are not very precise.

13

3. Theoretical background

In recent years, with the development of computing hardware and remote sensing

technologies, convolutional neural networks work as a more and more important part

in land cover classification. Traditional classifiers such as Random Forrest use hand-

crafted features as input, which requires a lot of labor costs and different tasks require

different features, especially involving with processing high-resolution aerial imagery.

Compared to traditional methods, convolutional neural networks deliver better results

and provide a framework in which high-level features can be learned from training data,

whereas these high-level features contain useful spatial correlation among pixels.

Generally speaking, convolutional neural network is a hierarchical model, whose input

is raw data, e.g. RGB image. Convolutional neural network, which is composed of

different building blocks such as convolutional layer, pooling layer and non-linear

activation function, abstracts the high-level semantic information layer by layer from

the raw data. This process is called forward propagation.

When raw data is abstracted and propagated to the last layer, convolutional neural

network fulfill the task such as classification with the help of objective function, also

called loss function or cost function. The parameters of every layer are updated in the

help of error back-propagation algorithm, where the error between predictions and true

labels is backward propagated from the last layer.

Originally, convolutional neural networks were designed to predict a single class label

per image (Krizhevsky et al., 2012). In the meantime, they have also been expanded to

semantic segmentation, where a class label is to be predicted for each pixel (Long et al.,

2015).

3.1 Convolutional Neural Networks

Convolutional neural network is a feedforward neural network, which means

parameters propagate unidirectionally from input layer to the output layer. Its artificial

neurons can respond to part of units in the surrounding area and have excellent

performance for large image processing. A convolutional neural network consists of

one or more convolutional layers and fully connected layers (classical structure of

neural network), also includes normalization layers and pooling layers. This

configuration enables the convolutional neural network to take advantage of the two-

dimensional structure of the input data. Compared to other classification algorithms,

such as k nearest neighbor algorithm and support vector machine, convolutional neural

network achieves very attractive performance in terms of image recognition and

computation speed. In other respects, convolutional neural network requires fewer

14

parameters to be considered due to weight sharing (LeCun et al., 1998), making it an

attractive deep learning structure. Weight sharing indicates that when each

convolutional kernel is replicated across the entire image, these replicated kernels share

the same parameterization (weights vector and bias) and output a feature map. This

means that each kernel extracts a specific kind of feature from the entire image. This

method dramatically reduces the number of parameters that needs to be trained,

therefore it is to accelerate the training speed and reduce computational overhead.

Convolutional neural network is combined with a stack of building blocks that

transforms the input data into an output prediction (e.g. probabilities and class scores).

The commonly used layers are further discussed below.

3.1.1 Convolutional Layer

Convolutional layer is the fundamental unit of convolutional neural network. This layer

is actually a series of filters, or be called convolution kernels, which have a limited

perceptual field, but slide among the input data. Because of feedforward architecture,

every kernel slides across the width and height of the input data to calculate the dot

products of local inputs and kernels, and the feature map of this kernel is produced, as

the input for the next layer operation.

If input data is the 5 × 5 matrix as shown in Figure 3-1 on the right side, and the

corresponding convolution kernel is a 3 × 3 matrix on the left side. At the same time,

we specify that each time a convolution operation is performed, the convolution kernel

moves by one-pixel position, i.e. the stride is 1.

[

1 0 1

0 1 0

1 0 1

]

[

1 2 3 4 5

6 7 8 9 0

9 8 7 6 5

4 3 2 1 0

1 2 3 4 5]

Figure 3-1 Two-dimensional scenario: convolution kernel and input data

The kernel multiplies the input data from left to right and from top to bottom with given

stride and at last we obtain a 3 × 3 feature map as the input of next layer.

[

27 28 29

28 27 16

23 22 21

]

Figure 3-2 Two-dimensional scenario: feature map of the first convolution operation

15

Similarly, suppose in the three-dimensional situation, the input tensor of a

convolutional layer 𝑙 is 𝒙𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
 and the convolutional kernel is 𝒇 ∈

ℝℎ×𝑤×𝐷𝑙
, where height, width and depth of the input and the kernel are respectively

𝐻𝑙,𝑊𝑙 , 𝐷𝑙 and ℎ,𝑤, 𝐷𝑙 (It must be specified that the depth of kernels must be

consistent with inputs). The three-dimensional convolution operation actually extends

2D operation to all channels, i.e. 𝐷𝑙 channels, at the corresponding position. The sum

of ℎ × 𝑤 × 𝐷𝑙 elements, each of which is the multiplication result of the kernel and

input at corresponding position, is the result of one convolution operation.

Furthermore, if there are 𝐷𝑙+1 independent kernels 𝑭 = (𝒇0, 𝒇1, … , 𝒇𝐷𝑙+1−1) similar

to 𝒇 ∈ ℝℎ×𝑤×𝐷𝑙
, then the output is 𝒙𝑙+1 ∈ ℝ𝐻𝑙+1×𝑊𝑙+1×𝐷𝑙+1

 while the input is 𝒙𝑙 ∈

ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
 and one convolution operation can be described as below:

𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑𝑙+1
𝑙+1 = ∑∑ ∑ 𝑓

𝑖,𝑗,𝑑𝑙
𝑑𝑙+1

∙ 𝑥
𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙
𝑙

𝐷𝑙

𝑑𝑙=0

𝑤

𝑗=0

ℎ

𝑖=0

, (3.1)

where 𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑𝑙+1
𝑙+1 ∈ 𝒙𝑙+1, 𝑓

𝑖,𝑗,𝑑𝑙
𝑑𝑙+1

∈ 𝒇𝑑𝑙+1
, 𝑥

𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙
𝑙 ∈ 𝒙𝑙, and

(𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1) is the position vector of the convolution result, which satisfies:

0 ≤ 𝑖𝑙+1 < 𝐻𝑙 − 𝐻 + 1 = 𝐻𝑙+1. (3.2)

0 ≤ 𝑗𝑙+1 < 𝑊𝑙 − 𝑊 + 1 = 𝑊𝑙+1. (3.3)

0 ≤ 𝑑𝑙+1 < 𝐷𝑙+1. (3.4)

It should be pointed out that 𝑓
𝑖,𝑗,𝑑𝑙
𝑑𝑙+1

 in (3.1) can be regarded as learned weights and it

can be found that weights are the same for a specific input in different positions. This

is the weight sharing of convolutional layer. In addition, there are two important

hyperparameters of convolutional layer: kernel size and stride. The settings of

hyperparameters will affect the final result of convolutional neural networks.

In fact, parameters of kernels are learned through training and it can conclude numerous

different patterns, e.g. boundary, shape and texture. By combining these filters and as

the network proceeds to subsequent operations, the basic and general patterns are

gradually abstracted into “conceptual” representations with high-level semantics,

which can be applied into specific classification tasks.

16

3.1.2 Pooling Layer

Pooling is another important concept in convolutional neural networks. It is actually a

form of non-linear down-sampling. There are two kinds of pooling operations that are

commonly applied: average-pooling and max-pooling. It should be pointed out that

different from convolutional layer, pooling layer does not contain parameters that need

to be learned. It only needs to specify the hyperparameters, i.e. pooling strategy, pooling

kernel size and pooling stride.

Same as the convolutional layer section, the pooling layer 𝑙 can be described as 𝒑𝑙 ∈

ℝℎ×𝑤 (Normally the depth of the input and output of the pooling operation does not

change). Suppose the input is 𝒙𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷 and the output is 𝒙𝑙+1 ∈ ℝ𝐻𝑙+1×𝑊𝑙+1×𝐷.

At each average-pooling (max-pooling) operation, the average (maximum) of all values

in the coverage area of pooling kernel is used as the result. If the pooling stride is

(𝑆ℎ, 𝑆𝑤) where 𝑆ℎ and 𝑆𝑤 are the strides in the direction of height and width

respectively, one pooling operation result is:

Average − pooling: 𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑
𝑙+1 =

1

ℎ𝑤
∑∑𝑥

𝑖𝑙+1∙𝑆ℎ+𝑖,𝑗𝑙+1∙𝑆𝑤+𝑗,𝑑
𝑙

𝑤

𝑗=0

ℎ

𝑖=0

. (3.5)

Max − pooling: 𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑
𝑙+1 = max

0≤𝑖<ℎ,0≤𝑗<𝑤
𝑥

𝑖𝑙+1∙𝑆ℎ+𝑖,𝑗𝑙+1∙𝑆𝑤+𝑗,𝑑
𝑙 , (3.6)

where 𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑
𝑙+1 and 𝑥

𝑖𝑙+1∙𝑆ℎ+𝑖,𝑗𝑙+1∙𝑆𝑤+𝑗,𝑑
𝑙 are an element of 𝒙𝑙+1 and 𝒙𝑙

respectively.

Figure 3-3 The most common used pooling strategy is max-pooling. Here is an example of max-pooling with

kernel size 2x2 and stride 2, where the max is taken over 4 numbers.

Pooling layer is implemented for down-sampling and abstraction of input. In the past

17

work of convolutional neural networks, researchers generally verify that the pooling

layer has the following two effects:

1. Translation invariant. The pooling operation makes the model more concerned with

the presence of certain features rather than the specific location of features and it

makes that feature learning contain a degree of freedom that can tolerate some

minor displacements. For example, as shown below, if the position of numbers is

disrupted within the kernel size, the result does not change.

2. Dimension reduction. Due to the down-sampling of pooling layer, one element in

the pooling result corresponds to a sub-region of the input data, so pooling

operations are equivalent to implement spatially dimension reduction.

Figure 3-4 Feature invariant within pooling kernel size.

3.1.3 Activation Function

Activation function is also called non-linearity mapping. The purpose of activation

function is to increase the non-linearity of the network, otherwise the stacking of several

linear layers can only function as a linear mapping and cannot form complex functions.

There are two activation functions that are commonly used: Sigmoid function and

ReLU function.

Intuitively, the activation function simulates the characteristics of biological neurons:

accept input signals and produce outputs. In neuroscience, biological neurons usually

have a threshold. When the cumulative effect of the input signals obtained by the neuron

exceeds the threshold, the neuron is activated, otherwise suppressed. In artificial neural

network, the sigmoid function can simulate this biological process, which has a very

important position in the development of neural network.

Sigmoid function is also known as Logistic function:

𝜎(𝑥) =
1

1 + exp(−𝑥)
. (3.7)

18

As shown in Figure 3-5, the range of the output is compressed between [0,1] after

processing by sigmoid function. But it must be pointed out at both ends of sigmoid

function that the value bigger than 5 (or smaller than -5) will be compressed to 1 (or 0)

no matter how big (or small) it is. This brings a serious problem, which is the vanishing

effect of the gradient. As shown in Figure 3-5, the gradient of the part that is bigger

than 5 (or smaller than -5) is very close to 0. The error is difficult or even impossible

transferred to front layer during loss back propagation, which the entire network cannot

be trained as a result (network parameters would have no updating if gradient equals

zero).

Figure 3-5 Sigmoid function and its gradient function

In order to avoid gradient vanishing, Nair and Hinton introduced Rectified Linear Unit

(ReLU) into neural network in 2010 (Nair & Hinton, 2010). ReLU is currently one of

the most commonly used activation functions in deep convolutional neural networks.

ReLU is actually a piecewise function:

rectifier(𝑥) = max{0, 𝑥} = {
 𝑥 𝑖𝑓 𝑥 ≥ 0

0 𝑖𝑓 𝑥 < 0
. (3.8)

The gradient of ReLU is 1 when 𝑥 ≥ 0, otherwise is 0. For 𝑥 ≥ 0, ReLU completely

eliminates the gradient vanishing effect. In addition, ReLU contributes to the

convergence of the stochastic gradient descent (SGD) method, and the convergence

speed is about six times faster than another activation function, i.e. the hyperbolic

tangent function, when both kinds of units applied in equivalent networks (Krizhevsky

et al., 2012). Because of these high-quality characteristics, ReLU has become the first

choice for convolutional neural network and other deep learning model, e.g. RNN.

3.1.4 Fully Connected Layer

Fully connected layer integrates the local features into global features. The operations

we discussed above is to map the original data to the implicit feature space, while the

19

fully connected layer connects the learned features to high-level inference. In actual

use, the fully connected layer can be implemented by convolution operations: if the

previous layer is a fully connected layer, the kernel size of current layer is set to 1 × 1;

if the previous layer is not a fully connected layer, the kernel size is set to 𝐻 × 𝑊 × 𝐷,

where 𝐻, 𝑊 and 𝐷 are respectively the height, width and depth of previous layer

output.

Taking VGG-16 (Simonyan et al., 2015) as an example, the output of the last

convolutional layer after pooling and activation function is a tensor of 7 × 7 × 512,

whereas the input is an image of 224 × 224 × 3. If the next layer is fully connected

layer and has 4096 neurons, there should be 4096 convolutional kernels and the

kernel size should be set to 7 × 7 × 512. After convolution an output of 1 × 1 × 4096

is obtained.

3.1.5 Loss Function

The loss function is used to estimate the deviation between predictions and true labels.

Various loss functions are implemented in convolutional neural network for different

tasks and cross-entropy loss function (also named softmax loss function) is mostly used

for classification problem.

There are two concepts that need to be specified: softmax and cross-entropy. Generally

speaking, softmax normalizes the classification output (class scores) to a probabilistic

class scores and cross-entropy characterizes the similarity between predictions and

reference.

Softmax maps the outputs of multiple neurons to the interval (0,1) and that can be

regarded as probability. If there is a vector 𝒁 and 𝑍𝑖 represents the ith elements in the

vector, then the softmax value of this element is:

𝑆𝑍𝑖
=

𝑒𝑍𝑖

∑ 𝑒𝑍𝑗
𝑗

. (3.9)

The following figure shows the reason why softmax outputs probabilities more vividly:

20

Figure 3-6 Softmax architecture with three input nodes

The original inputs are mapped to the value inside (0,1) and the sum of these values is

1, so the converted values can be regarded as probability. The predictions are made by

choosing the class with the highest probabilistic class score.

Suppose a classification task has a total of 𝑁 training samples. The input of the

softmax layer, e.g. class scores, is 𝒁𝑛 = (𝑍𝑛
1, 𝑍𝑛

2, … , 𝑍𝑛
𝐶)T, the corresponding true label

is 𝑦𝑛 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶} and the output of softmax is �̂�𝑛 = (�̂�𝑛
1, �̂�𝑛

2, … , �̂�𝑛
𝐶)T, i.e. the

predicted probabilities of sample 𝑛, where 𝐶 is the number of class and �̂�𝑛
𝑐 is the

probability for class 𝑦𝑐. Now the loss of model can be calculated by similarity between

predictions and reference and the cross-entropy is the instrument to achieve that.

The posterior probability 𝑃𝑛(𝑦𝑐|𝑥)，i.e. �̂�𝑛
𝑐 , for sample 𝑛 to take class label 𝑦𝑐

given the input data 𝑥:

�̂�𝑛
𝑐 = 𝑃𝑛(𝑦𝑐|𝑥) = softmax(𝒁𝑛, 𝑦𝑐) =

𝑒𝑥𝑝(𝑍𝑛
𝑐)

∑ 𝑒𝑥𝑝(𝑍𝑛
𝑗
)𝐶

𝑗=1

. (3.10)

Therefore cross-entropy loss function can be described as below:

𝐿 = −
1

𝑁
∑ ∑𝛿(𝑦𝑛, 𝑦𝑐) ∙ 𝑙𝑜𝑔(�̂�𝑛

𝑐)

𝐶

𝑐=1

𝑁

𝑛=1

. (3.11)

where 𝛿(𝑦𝑛, 𝑦𝑐) is Kronecker delta, of which the result is 1 if the variables are equal,

and 0 otherwise.

21

3.1.6 Batch Normalization

Training deeper neural networks has always been the important method to improve the

performance of models in deep learning (Szegedy et al., 2014; Simonyan & Zisserman,

2014). Batch normalization (Ioffe & Szegedy, 2015) proposed by Google in 2015

dramatically accelerates deep network training, thereby making it easier and more

stable to train deep network models. In addition, the batch normalization is not only

suitable for deep network, but for shallow neural network, it can also improve the

generalization. At present, batch normalization has been essential for almost all

convolutional neural networks.

As shown below is the batch normalization transform, where there are 𝑚 values of a

mini-batch. We normalize each activation by using mini-batches in stochastic gradient

training, to make it have the mean of zero and the variance of 1.

𝐈𝐧𝐩𝐮𝐭: Values of 𝑥 over a mini − batch: 𝔅 = {𝑥1…𝑚};

Parameters to be learned: 𝛾, 𝛽

𝐎𝐮𝐭𝐩𝐮𝐭: {𝑦𝑖 = BN𝛾,𝛽(𝑥𝑖)}

mini − batch mean: 𝜇𝔅 ←
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

mini − batch variance: 𝜎𝔅
2 ←

1

𝑚
∑(𝑥𝑖 − 𝜇𝔅)2

𝑚

𝑖=1

normalize: �̂�𝑖 ←
𝑥𝑖 − 𝜇𝔅

√𝜎𝔅
2 − 𝜖

scale and shift: 𝑦𝑖 ← 𝛾�̂�𝑖 + 𝛽 ≡ BN𝛾,𝛽(𝑥𝑖)

There are four steps in batch normalization. The first two steps calculate the mean and

the variance of the mini-batch separately. The third step normalizes the mini-batch

based on the calculated mean and variance. The last step scale and shift allows the batch

normalization transform to represent identity (Ioffe & Szegedy, 2015), i.e. restore the

distribution of data that is learned in the previous layer.

Batch normalization helps to properly initialize the neural networks by transforming

the data fed to activation functions into a unit gaussian distribution at the beginning of

the training. Except for that, it can be regarded as doing preprocessing at every layer of

the network to help to accelerate the training. Batch normalization is added generally

before the nonlinearity, e.g. ReLU.

22

3.2 Stochastic Gradient Descent

In deep learning, the loss function is minimized by using an optimization algorithm.

The loss function also can be named as objective function. Gradient descent is a

commonly used optimization method. Although gradient descent is rarely used directly

in deep learning, the mechanism of gradient descent is the foundation of stochastic

gradient descent.

3.2.1 Gradient Descent

By taking a simple one-dimensional gradient descent as an example, the reason why

the gradient descent algorithm may reduce the value of the objective function is

explained. Assume that the input and output of the continuously derivable function

𝑓:ℝ → ℝ are both scalars. Given a sufficiently small absolute value 𝜖, according to

the Taylor expansion formula, the following approximation can be acquired:

𝑓(𝑥 + 𝜖) ≈ 𝑓(𝑥) + 𝜖𝑓′(𝑥), (3.12)

where 𝑓′(𝑥) is the gradient of function 𝑓 at 𝑥. The gradient of a one-dimensional

function is a scalar, also known as the derivative.

Suppose there is a constant 𝜂 > 0 , and also |𝜂𝑓′(𝑥)| is sufficiently small. Then 𝜖

can be replaced by −𝜂𝑓′(𝑥):

𝑓(𝑥 − 𝜂𝑓′(𝑥)) ≈ 𝑓(𝑥) − 𝜂𝑓′(𝑥)2. (3.13)

If 𝑓′(𝑥) ≠ 0, then 𝜂𝑓′(𝑥)2 > 0:

𝑓(𝑥 − 𝜂𝑓′(𝑥)) ≲ 𝑓(𝑥). (3.14)

If 𝑥 is Iteratively replaced by 𝑥 − 𝜂𝑓′(𝑥) , the value of the function 𝑓(𝑥) can

decrease. Thus, in gradient descent firstly an initial value 𝑥 and a constant 𝜂 > 0 is

picked and 𝑥 is iterated continuously by 𝑥 − 𝜂𝑓′(𝑥) until the stop condition is

triggered, e.g. 𝑓′(𝑥)2 is sufficiently small or the number of iterations has reached a

certain value.

The constant 𝜂 > 0 is often called the learning rate in machine learning. This is a

hypermeter that need to be specified manually. If a too small learning rate is

implemented, it will cause 𝑥 updates slowly and requires more iterations to achieve a

optimal result. If a learning rate is excessive, |𝜂𝑓′(𝑥)| may be too large to make the

mentioned Taylor expansion formula (3.9) no longer valid.

After understanding the one-dimensional gradient descent, a more general case needs

23

to be considered: the input of objective function is vector and output is scalar, i.e.

𝑓:ℝ𝑑 → ℝ, where input vector 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑑]T is d-dimensional. The gradient of

the objective function 𝑓(𝒙) about 𝒙 is a vector of d elements:

∇𝑥𝑓(𝒙) = [
𝜕𝑓(𝒙)

𝜕𝑥1
,
𝜕𝑓(𝒙)

𝜕𝑥2
, … ,

𝜕𝑓(𝒙)

𝜕𝑥𝑑
]

T

. (3.15)

Every partial derivative element 𝜕𝑓(𝒙) 𝜕𝑥𝑖⁄ represents the rate of change of the

objective function 𝑓(𝒙) about 𝑥𝑖 . In order to measure the rate of change of 𝑓(𝒙)

along unit vector 𝒖 (‖𝒖‖ = 1), the directional derivative is defined as:

D𝑢𝑓(𝒙) = lim
ℎ→0

𝑓(𝒙 + ℎ𝒖) − 𝑓(𝒙)

ℎ
. (3.16)

According to the nature of the directional derivative, the above directional derivative

can be rewritten as:

D𝑢𝑓(𝒙) = 𝛻𝑥𝑓(𝒙) ∙ 𝒖. (3.17)

Directional derivative gives the rate of change of 𝑓(𝒙) along every possible direction.

In order to minimize 𝑓(𝒙), the hopeful way is to find the direction, along which the

𝑓(𝒙) decreases the fastest. The directional derivative D𝑢𝑓(𝒙) is minimized with the

help of unit vector 𝒖.

Since D𝑢𝑓(𝒙) = ‖𝛻𝑥𝑓(𝒙)‖ ∙ ‖𝒖‖ ∙ cos(𝜃) = ‖𝛻𝑥𝑓(𝒙)‖ ∙ cos(𝜃) , where 𝜃 is the

included angle between the gradient 𝛻𝑥𝑓(𝒙) and the unit vector 𝒖 , and cos(𝜃)

reaches minimum value −1 when 𝜃 = 𝜋 , the directional derivative D𝑢𝑓(𝒙) is

minimized when the unit vector 𝒖 is in the opposite direction of the gradient 𝛻𝑥𝑓(𝒙).

Therefore, the value of the objective function 𝑓 can decrease iteratively by using

gradient descent algorithm:

𝑥 ← 𝑥 − 𝜂∇𝑥𝑓(𝒙), (3.18)

where 𝜂 > 0 is the learning rate.

3.2.2 Stochastic Gradient Descent

Gradient descent algorithm needs to calculate the gradient of every training sample,

when it optimizes the objective function in each iteration. If the training set is big

(especially in deep learning), the efficiency of gradient descent will be very low. Also

due to limitations of hardware resources (GPU memory, etc.), this method is basically

unrealistic in practical applications. Thus, the stochastic gradient descent is commonly

used to replace gradient descent in deep learning.

24

Suppose the objective function is defined as below:

𝑓(𝒙) =
1

𝑛
∑𝑓𝑖(𝒙)

𝑛

𝑖=1

, (3.19)

where there are 𝑛 training samples and 𝒙 is the parameter vector of the model.

Then the gradient of the objective function is:

∇𝑓(𝒙) =
1

𝑛
∑∇𝑓𝑖(𝒙)

𝑛

𝑖=1

, (3.20)

If gradient descent is implemented, the computational overhead of every iteration is

𝒪(𝑛) and it grows linearly with number of training samples 𝑛. Therefore, when the

number of training samples is large, each iteration computational overhead of the

gradient descent is high.

Stochastic gradient descent computes one training sample every iteration to update

model parameters, i.e. ∇𝑓𝑖(𝒙). Obviously, the computational overhead drops to 𝒪(1)

from 𝒪(𝑛) in every iteration.

Although the efficiency is raised, considering only one sample every time in stochastic

gradient descent makes that the optimization may be not the overall optimization of the

model. Thus, it is important to traverse the whole training samples. Every traversal of

the entire input dataset is named as epoch. In deep learning, a simple change is

implemented in stochastic gradient descent by using not a single training sample, but a

batch of samples. With the gradient information of the sample batch, the parameters of

the model are updated. This is called mini-batch based stochastic gradient descent. Due

to that one batch consists of a quantity of samples, this strategy gains more robust

gradient information compared to the standard stochastic gradient descent.

3.3 Regularization

Generalization ability describes the performance of the trained learning algorithm on

test dataset. If one learning algorithm performs well on both training and test dataset, it

has strong generalization ability. Otherwise if it performs well only on training dataset

but does not achieve an ideal result on test dataset, its generalization is not acceptable.

This situation is also called overfitting. In this case regularization is implemented to

prevent overfitting.

25

3.3.1 Weight Decay

Although increase the training dataset may reduce overfitting, more training samples

may not be available in every situation. The weight decay is the common method for

dealing with overfitting problem, and also is named as L2 regularization. L2

regularization is to add a regularization in the loss function:

𝐿 = 𝐿0 +
𝜆

2
∑𝑤2

𝑤

, (3.21)

where L0 is the original loss function, 𝑛 is the number of training samples, 𝑤

represents the elements in the weights vector,
𝜆

2
∑ 𝑤𝟐

𝒘 is the L2 regularization and 𝜆

is the coefficient of the regularization, which weighs the proportion of the regularization

and the original loss L0. When 𝜆 > 0, the elements in weights vector will not grow too

large. The mechanism is explained below.

First is the derivative:

𝜕𝐿

𝜕𝑤
=

𝜕𝐿0

𝜕𝑤
+ 𝜆𝑤. (3.22)

The stochastic gradient descent updates look as follows:

𝑤 ← 𝑤 − 𝜂
𝜕𝐿0

𝜕𝑤
− 𝜂𝜆𝑤 = (1 − 𝜂𝜆)𝑤 − 𝜂

𝜕𝐿0

𝜕𝑤
. (3.23)

𝑤 is becoming smaller because 𝜂 and 𝜆 are positive and this is also the origin of the

name weight decay. Weight decay adds constraints to the model to control the absolute

value of the parameters and reduces therefore the complexity of the network. It can help

avoid overfitting to constraint the parameters that they are not too large.

3.3.2 Dropout

Weight Decay prevents overfitting by adjusting loss functions, whereas dropout

modifies the structure of network to achieve the goal. Its mechanism is very simple:

several neurons, random picked with probability 𝑝 , will be temporarily ignored in

training and all neurons are activated in testing. Its process is shown below:

26

Figure 3-7 An example of dropout. Assume the network in (a) need to be trained. At the beginning of training,

40% neurons in hidden layer are randomly picked out and temporarily ignored, shown in (b). The other

neurons update its weights. This is the process in one iteration. In next iteration, another 40% neurons are

randomly picked out.

The training process that uses dropout is equivalent to training a lot of “mini-network”

(combinations of different neurons in hidden layer). Every “mini-network” can present

predictions and as the training progresses, most “mini-network” can give correct

classification results.

3.4 Forward propagation and backpropagation

The neural network contains several neurons in every layer and the layers are connected

with weights matrixes. The process, the information passed from the previous layer to

the next layer, is called forward propagation. Backpropagation algorithm is actually the

short of the backward propagation of errors. It is one of the most successful learning

algorithms in neural networks.

3.4.1 Forward Propagation

Forward propagation is also mentioned as feedforward process. It refers to the variables

(including outputs) of the model that are sequentially calculated and stored in the order

of the input layer to the output layer. The figure below is more intuitive:

27

Figure 3-8 Forward propagation of a simplified 𝑀 layer neural network, where 𝑾 is the weights vector, 𝜙 is

the activation function, 𝒙0 ∈ ℝ𝑑 is the input, 𝒙𝑀 ∈ ℝ𝐶 is the output and 𝑑 and 𝐶 is the dimension of the

input and the number of classes respectively.

3.4.2 Backpropagation

Suppose the loss function of the abovementioned network is ℓ:

𝐿 = ℓ(𝒙𝑀, 𝑦), (3.24)

where 𝑦 is the class label. Backpropagation is an iterative learning algorithm, where

arbitrary parameter is updated like follow:

𝑤 ← 𝑤 − 𝜂∇𝑤, (3.25)

where 𝜂 > 0 is the learning rate of the network. Backpropagation algorithm is based

on gradient descent strategy, which adjusts the parameters and variables in the opposite

direction of their gradients. Taking the last layer of the network above as an example:

∇𝒘𝑀 =
𝜕𝐿

𝜕𝒘𝑀
. (3.26)

According to the chain rule in calculus:

𝜕𝐿

𝜕𝒘𝑀
=

𝜕𝐿

𝜕𝒙𝑀
∙
𝜕𝒙𝑀

𝜕𝒘𝑀
, (3.27)

In forward propagation, 𝒙𝑀 = 𝒘𝑀𝒙𝑀−1 , 𝒙𝑀−1 = 𝜙(𝒂𝑀−1) and 𝒂𝑀−1 =

𝒘𝑀−1𝒙𝑀−2. Thus, the update of 𝒘𝑀 is:

∇𝒘𝑀 =
𝜕𝐿

𝜕𝒘𝑀
=

𝜕𝐿

𝜕𝒙𝑀
∙ 𝒙𝑀−1T

. (3.28)

where
𝜕𝐿

𝜕𝒙𝑀 is available according to (3.21). To further simplify the calculations,

Sigmoid function is used as the activation function due to its character 𝜙′(𝒂) =

𝜙(𝒂)(1 − 𝜙(𝒂)). Along the order of the output layer to hidden layers, the gradient of

variables in the hidden layer can be calculated:

28

𝜕𝐿

𝜕𝒙𝑀−1
=

𝜕𝐿

𝜕𝒙𝑀
∙

𝜕𝒙𝑀

𝜕𝒙𝑀−1
=

𝜕𝐿

𝜕𝒙𝑀
∙ 𝒘𝑀T

. (3.29)

𝜕𝐿

𝜕𝒂𝑀−1
=

𝜕𝐿

𝜕𝒙𝑀−1
∙
𝜕𝒙𝑀−1

𝜕𝒂𝑀−1

=
𝜕𝐿

𝜕𝒙𝑀−1
∙ 𝜙′(𝒂𝑀−1)

=
𝜕𝐿

𝜕𝒙𝑀−1
∙ 𝜙(𝒂𝑀−1) ∙ (1 − 𝜙(𝒂𝑀−1))

=
𝜕𝐿

𝜕𝒙𝑀−1
∙ 𝒙𝑀−1 ∙ (1 − 𝒙𝑀−1). (3.30)

Then the update of 𝒘𝑀−1 is:

∇𝒘𝑀−1 =
𝜕𝐿

𝜕𝒘𝑀−1
=

𝜕𝐿

𝜕𝒂𝑀−1
∙
𝜕𝒂𝑀−1

𝜕𝒘𝑀−1
=

𝜕𝐿

𝜕𝒂𝑀−1
∙ 𝒙𝑀−2T

. (3.31)

Follow this procedure until the weights vector 𝒘1 is updated. Then one iteration is

finished. When the deep learning model is trained, forward propagation and

backpropagation are both very essential. First the model needs to be fed with input data

and forward propagate the data till the result is obtained; then the error is calculated

and back propagated to hidden layers to adjust the parameters. Since the variables of

forward propagation are used in back-propagation, then the reuse of the variables

causes that the memory cannot be released immediately after the forward propagation.

3.5 Cost-sensitive Learning

In the classical hypothesis of machine learning, it is often assumed that different class

samples are balanced, that is, the number of samples is the same or almost the same,

but the actual tasks in our realistic scenarios often do not meet this assumption. In

general, an imbalanced training sample distribution will result in a trained model that

focuses on classes with a larger number of samples, while ignoring classes that has

fewer samples, so that the generalization of the model is affected. An extreme example

is that for a binary classification problem, there are 99 positive samples and only one

negative sample in the training set. Without considering the imbalanced class

distribution, the learning algorithm will cause the classifier to abandon the negative

prediction, because it can obtain a very high accuracy that all samples are classified as

positive in the training phase. But imagine that if the test set has 99 negative samples

and only one positive sample, then the classifier only has a very low accuracy and

completely failed on the test set. In fact, in addition to common classification and

regression problems, pixel-level tasks such as image semantic segmentation (Long et

al., 2015) and depth estimation (Liu et al., 2015) also have phenomena of the

imbalanced class distribution. In order to further improve the generalization of the

29

model and reduce the impact of the imbalanced class distribution, cost-sensitive

learning is appended to the loss function.

3.5.1 Cost-sensitive Vector

One of the commonly used cost-sensitive methods is the cost-sensitive vectors.

Suppose a cost-sensitive vector 𝝎 = (𝜔1, 𝜔2, … , 𝜔𝐶) and 𝝎 ∈ ℝ+
𝐶 , where 𝐶 is the

number of classes. The elements of 𝜔𝑐 indicates the penalty that the sample is

misclassified into cth class. The new loss function updated from (3.11) is shown below:

𝐿 = −
1

𝑁
∑ ∑𝜔𝑐 ∙ 𝛿(𝑦𝑛, 𝑦𝑐) ∙ 𝑙𝑜𝑔(�̂�𝑛

𝑐)

𝐶

𝑐=1

𝑁

𝑛=1

. (3.32)

3.5.2 Specify the Weights

According to (Eigen et al., 2015) and (Xie & Tu, 2015), the weights in cost-sensitive

vector are specified in two ways. The first specification formula is described below:

𝜔𝑐 =
𝑚𝑒𝑑𝑖𝑎𝑛𝑓𝑟𝑒𝑞

𝑓𝑟𝑒𝑞(𝑐)
, (3.33)

where 𝑓𝑟𝑒𝑞(𝑐) is the number of pixels of class 𝑐 divided by the total number of

pixels in images where 𝑐 is present, and 𝑚𝑒𝑑𝑖𝑎𝑛𝑓𝑟𝑒𝑞 is the median of these

frequencies (Eigen et al., 2015).

For binary classification, Xie & Tu (2015) proposed another formula:

𝜔𝑐 = 1 − 𝑓𝑟𝑒𝑞(𝑐). (3.34)

30

4. Methodology

An attractive methodology based on convolutional neural network for land cover

classification has been proposed and achieved a great success (Yang et al., 2018).

However, there are still some misclassifications and the accuracy at boundaries is

obviously lower than overall accuracy. Deeper network structures and architectures are

investigated to pay more attention on a precise delineation of the object boundaries.

Generally speaking, there are two investigation variants. The first one is hard-negative

mining. Pixels that are hard to be classified, need to be found out. It can be done by

setting a threshold of probabilistic score, the pixels whose correct class scores are above

the threshold are considered as easy ones, otherwise are hard ones. Then investigations

on how to improve the classification of them have to be conducted. The second one is

adding more prior knowledge to the existing convolutional neural network model. In

this case, the prior object boundary information needs to be firstly extracted out from

the reference. Afterwards, this knowledge needs to be incorporated into the model by

modifying the structure, whereas a research on modification must be taken. Besides, an

investigation of the width of boundary should be taken, in order to find out the

relationship between performance and the boundary.

All networks are implemented based on tensorflow framework (Abadi et al., 2016).

4.1 SkipNet: A Deep Convolutional Neural Network

Yang et al. have proposed a new approach to determine land cover based on

convolutional neural network. The input data are high-resolution digital aerial images.

The proposed convolutional neural network architecture is based on SegNet

architecture (Badrinarayanan et al., 2017), while the new model SkipNet is deeper but

requires fewer parameters. SkipNet is a deep fully encoder-decoder convolutional

neural network architecture for semantic segmentation, where semantic segmentation

indicates that each pixel in the image is predicted with a label. The encoder part is

similar to a standard convolutional neural network, whereas the decoder part is to

restore low-resolution feature maps, the result of the encoder network, to full-scale

feature maps as input for per-pixel classification.

4.1.1 Architecture

SkipNet applies a symmetric encoder-decoder structure to perform semantic

segmentation. The encoder part of the model has four blocking units, where every

blocking unit is composed of three convolution blocks and one max-pooling layer. A

convolution block contains one convolutional layer, followed by batch normalization

31

(Ioffe & Szegedy, 2015) and a rectified linear unit (ReLU) adding non-linearity. The

decoder part is symmetric to the encoder and has four blocking units, but each blocking

unit is started with upsample layer, continued with three convolution blocks, of which

the inside order does not change, i.e. the convolutional layer, batch normalization and

a rectified linear unit. The upsample layer is realized with bilinear interpolation. At last,

there is a skip connection at the end of each blocking unit of the decoder.

Figure 4-1 Architecture of SkipNet.

The skip connection is the mechanism to combine the features. The sub-sample, e.g.

max-pooling, is not beneficial for boundary delineation, because the image becomes

increasingly lossy (Badrinarayanan et al., 2017). Due to this reason, the feature maps

before max-pooling in the encoder are concatenated with the feature maps in the

decoder at corresponding positions. Trainable 1 × 1 convolutions are used to reduce

the dimension of the combined feature maps. The implementation of the skip

connection tries to restore the boundary information in the encoder before max-pooling,

because the boundary information is preserved better in the encoder. The mechanism is

illustrated below:

Figure 4-2 Structure of a skip connection; color code: cf. Figure 4-1.

32

Each convolutional layer has the kernel size of 3 × 3 and a stride of 1 pixel. At each

convolutional layer zero-padding is used to keep the spatial dimension of the feature

maps. In the encoder part, the convolutional layers in the first convolution block have

64 convolutional kernels, whereas the convolutional layers in the second convolution

block have 96 kernels. The convolutional layers in third and fourth convolution block

have 128 convolutional kernels. In the decoder part, it is the mirror of the encoder part.

Max-pooling has a pooling window size of 2 × 2 and its stride is 2 pixels.

At the end of the decoder, the softmax classifier is applied to convert the feature maps

to the probabilities of every class. This is implemented by a 1 × 1 convolutional layer

that outputs a tensor of dimension 𝐶 × 𝐻 × 𝑊, where 𝐻 and 𝑊 is the respectively

the height and width of the input image and 𝐶 is the number of classes.

Suppose the vector 𝒁𝑖 = (𝑍𝑖
1, 𝑍𝑖

2, … , 𝑍𝑖
𝐶)

T
 represents the class scores of the pixel 𝑖 in

the input image, where 𝐶 is the number of classes, 𝑦𝑖 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶} is the

corresponding true label and the output of softmax is �̂�𝑖 = (�̂�𝑖
1, �̂�𝑖

2, … , �̂�𝑖
𝐶)

T
, i.e. the

predicted probabilities of pixel 𝑖 and �̂�𝑖
𝑐 is the probability for class 𝑦𝑐:

�̂�𝑖
𝑐 = 𝑃𝑖(𝑦

𝑐|𝑥) = softmax(𝒁𝑖, 𝑦
𝑐) =

𝑒𝑥𝑝(𝑍𝑖
𝑐)

∑ 𝑒𝑥𝑝(𝑍𝑖
𝑗
)𝐶

𝑗=1

, (4.1)

where 𝑃𝑖(𝑦
𝑐|𝑥) is the posterior probability for pixel 𝑖 to take class label 𝑦𝑐 given

the image data 𝑥.

In training, all the parameters are determined, and the batch size must be set to 1 due to

the limit of the GPU. The parameters in the model are trained with the stochastic

gradient descent and the backpropagation algorithm to optimize the objective function,

where cross-entropy loss function is implemented and described below:

𝐿 = −
1

𝐻 ∙ 𝑊
∑ ∑𝜔𝑐 ∙ 𝛿(𝑦𝑖, 𝑦

𝑐) ∙ 𝑙𝑜𝑔(�̂�𝑖
𝑐)

𝐶

𝑐=1

𝐻∙𝑊

𝑖=1

, (4.2)

where 𝜔𝑐 ∈ 𝝎 = {𝜔1, 𝜔2, … , 𝜔𝐶} is a class weight computed according to (3.33) to

compensate for an imbalanced class distribution in training data (Yang et al., 2018) and

𝛿(𝑦𝑖, 𝑦
𝑐) is Kronecker delta, of which the result is 1 if the variables are equal, and 0

otherwise.

4.1.2 Implementation and Training

For training SkipNet we employed a stochastic gradient descent optimizer with weight

33

decay 0.0005. The input size is 256 × 256 pixels. Due to the limitations of our GPU,

the mini-batch size is set to 1. The base learning rate is set to 0.01 and decreased to

0.001 after 15 epochs in a total of 30 epochs training.

4.2 Investigations on Improving the Classification of Land

Cover Based on SkipNet

Generally speaking, there are two investigation variants. The first one is hard-negative

mining. Pixels that are hard to be classified, need to be found out. It can be done by

setting a threshold of probabilistic score, the pixels whose correct class scores are above

the threshold are considered as easy ones, otherwise are hard ones. Then investigations

on how to improve the classification of them have to be conducted. It could be:

 Retraining only the hard pixels in the same convolutional neural network model

 Using a patch-based convolutional neural network model which requires patches

as input, where the patches are extracted out by centering the hard pixels

The second one is adding more prior knowledge to the actual convolutional neural

network model. In this case, the prior object boundary information needs to be firstly

extracted out from the reference. Afterwards, this knowledge needs to be incorporated

into the model by modifying the structure, whereas a research on modification must be

taken. Besides, an investigation of the width of boundary should be taken, in order to

find out the relationship between performance and the boundary.

Figure 4-3 Class boundaries generated by reference with different width. Black and white represent

respectively boundaries and others.

34

4.2.1 Hard-Negative Mining

Hard-negative mining is a method, which uses pre-trained models to make inference on

the training dataset, and then collect the misclassified examples, i.e. negative samples,

to build a hard-negative dataset. With this new dataset, a new model is trained, or the

old model is fine-tuned (Felzenszwalb et al., 2010).

Figure 4-4 Illustration of hard-negative mining.

Our hard-negative dataset is built with an offline method, which tests the initial dataset

to obtain probabilities with the pre-trained SkipNet model. After testing, the pixels in

initial training dataset are summarized into three categories by setting a mining

threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 . Suppose the true label is 𝑦𝑖 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶} , where 𝐶 is the

number of classes, �̂�𝑖
𝑐 is the highest probability of �̂�𝑖 = (�̂�𝑖

1, �̂�𝑖
2, … , �̂�𝑖

𝐶)
𝑇
 and

represents class 𝑦𝑐 for pixel 𝑖:

 If 𝑦𝑖 = 𝑦𝑐 and �̂�𝑖
𝑐 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 , i.e. the pixel 𝑖 is correctly classified and the

probability is higher than the threshold, then the pixel 𝑖 belongs to the group of

strongly and correctly classified pixels.

 If 𝑦𝑖 = 𝑦𝑐 but �̂�𝑖
𝑐 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 , i.e. the pixel 𝑖 is correctly classified, but the

probability is lower than the threshold, then the pixel 𝑖 belongs to the group of

weakly and correctly classified pixels.

35

 If 𝑦𝑖 ≠ 𝑦𝑐, then the pixel 𝑖 belongs to the group of misclassified pixels

The last two kinds of pixels are used to build new training dataset.

4.2.2 Fine-tuning the SkipNet with Hard-Negative Mining

Fine-tuning the pre-trained SkipNet model is to use the target task data to continue the

training process on the original pre-trained model. Although the SkipNet has already

showed a great generalization ability, we hope to enhance its performance by

preprocessing the dataset or modifying the model to pay more attention on the

misclassified pixels.

Architecture

Figure 4-5 Procedure of fine-tuning the pre-trained SkipNet model with hard-negative mining

Two different standards to build hard-negative dataset are implemented by setting

different mining thresholds 𝑇ℎ𝑟𝑒𝑠ℎ𝑀. We investigate the impact of different mining

thresholds to the model. In fine-tuning, a mask has been implemented on the initial

training dataset to exclude the strongly and correctly classified pixels out of training.

The mask is generated according to hard-negative mining. Furthermore, we also

investigate a fine-tuning method, where the weights vectors of the encoder are frozen,

i.e. the encoder cannot be trained. In testing, the overall accuracy of the fine-tuned

model may decrease compared to the pre-trained SkipNet model, because the features

of hard examples may not very representative for their classes. The predictions of the

pre-trained SkipNet model are ensembled with the predictions of the fine-tuned model,

which combines the results of the fine-tuned model and the pre-trained SkipNet model

by multiplying the probabilistic class scores.

Fine-tuning

For fine-tuning the pre-trained SkipNet model, we employed a stochastic gradient

descent optimizer with weight decay 0.0005. Due to the limitations of our GPU, the

36

mini-batch size is set to 1 and the learning rate is set to 0.001 for 15 epochs.

4.2.3 Patch-based Classification: LiteNet

Patch classification is a deep learning method applied to semantic segmentation, where

an image is divided into many patches, which are fed to the deep model as input. A

patch takes the label of its central pixel as its label. In addition, context information is

provided by the rest pixels in a patch and is converted into a feature map by

convolutional neural network. In summary, a patch-based convolutional neural network

converts the pixel values in an image patch to a one-dimensional class scores, and a

softmax classifier is implemented to compute the class probabilities (Paisitkriangkrai

et al., 2016). Pooling operation and activation function contain no trainable parameters

because they perform a fixed operation, whereas the convolutional and fully connected

layers extract and integrate features with neuron weights, which are trained with

optimization algorithms so that the class of the highest class score is conformed to

match the label in training dataset.

Architecture

Our patch-based convolutional neural network is composed with the strategy of

(Krizhevsky et al., 2012), where it constructs a building unit with a convolutional layer,

an activation function (ReLU) and a max-pooling layer. The convolutional layer

computes the feature map with its convolutional kernel, whereas the activation function

(ReLU) adds the non-linearity of the network and the max-pooling layer reduce the

spatial resolution of the feature map. These two no parameter operations improve the

robustness of the network to distortions and small translations (Paisitkriangkrai et al.,

2016). Our network is constructed with four successive building units, continued with

two fully connected layers, which integrates the local features into global features, and

ended with a softmax classifier to convert the output of the last fully connected layer to

the probabilities. The structure is illustrated below:

37

Figure 4-6 Patch-based convolutional neural network architecture according to (Paisitkriangkrai et al., 2016),

where the difference of model is the softmax output, which has six output channels.

The inputs of this network are patches of size 64 × 64 . The pooling layer is

implemented with max-pooling technique and its kernel size is 3 × 3, where the stride

is 2 pixels. All the convolutional layers in this network works with a stride of 1 pixel

and zero padding. The first convolutional layer, whose input is the image with three

channels, consists of 32 kernels, where its size is 5 × 5 × 3. The second convolutional

layer has 64 kernels of size 5 × 5 × 32. The third convolutional layer is composed of

96 kernels, of which the size is 5 × 5 × 64 . The last convolutional layer has 128

kernels with size of 3 × 3 × 96 . Both fully connected layers have 128 neurons,

followed by a 50% dropout. The last fully connected layer converts the feature vectors

into a vector of class scores 𝒁𝑖 = (𝑍𝑖
1, 𝑍𝑖

2, … , 𝑍𝑖
𝐶)

T
, where 𝐶 is the number of classes.

For each patch 𝑖 to be classified, its true label is𝑦𝑖 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶}. The output of

softmax is �̂�𝑖 = (�̂�𝑖
1, �̂�𝑖

2, … , �̂�𝑖
𝐶)

T
, i.e. the predicted probabilities of pixel 𝑖 and �̂�𝑖

𝑐 is

the probability for class 𝑦𝑐 . The softmax layer normalizes the class scores into

posterior probability 𝑃𝑖(𝑦𝑖|𝑥𝑖) for patch 𝑖, given the image data 𝑥𝑖:

�̂�𝑖
𝑐 = 𝑃𝑖(𝑦

𝑐|𝑥𝑖) = softmax(𝒁𝑖, 𝑦
𝑐) =

𝑒𝑥𝑝(𝑍𝑖
𝑐)

∑ 𝑒𝑥𝑝(𝑍𝑖
𝑗
)𝐶

𝑗=1

. (4.3)

Training uses mini-batch stochastic gradient descent and back-propagation algorithm

optimize the cross-entropy loss function, which is:

𝐿 = −
1

𝑁
∑∑𝛿(𝑦𝑖, 𝑦

𝑐) ∙ 𝑙𝑜𝑔(�̂�𝑖
𝑐)

𝐶

𝑐=1

𝑁

𝑖=1

. (4.4)

where 𝛿(𝑦𝑖, 𝑦
𝑐) is Kronecker delta, of which the result is 1 if the variables are equal,

38

and 0 otherwise, and 𝑁 is the number of patches in a mini-batch.

Training and Inference

The purpose our test is to improve the performance of the existing convolutional neural

network model, so the model is trained with the help of hard-negative mining. For

training the LiteNet, we employed a stochastic gradient descent optimizer with weight

decay 0.0005 and a step learning policy. The mini-batch size is set to 16, while the base

learning rate is set to 0.01 and decreased to 0.001 after 15 epochs in a total of 30 epochs

training.

In testing, the inputs of this network are several complete images, which are divided

into patches by a sliding window approach. Although the sliding window approach can

be implemented effectively in the model, it can be very time-consuming due to

overlapping. In order to reduce the unnecessary calculations caused by overlapping in

testing, bilinear interpolation is added in the model. First, the sliding window is

specified with a step size of 4 pixels to evaluate the entire test image, however, the

result is not a pixel-level classification as shown below.

[

⋱ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ 𝑃𝑥1𝑦1
𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑃𝑥1𝑦2

⋯ 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝

⋯ 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝

⋯ 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝

⋯ 𝑃𝑥2𝑦1
𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑃𝑥2𝑦2]

Figure 4-7 A simple example of the result processed by the patch-based model, which contains a sliding

window with a step size of 4 pixels. “np” represents “not predicted” and “𝑃𝑥𝑦” represents the probabilities.

Secondly, in order to acquire a pixel-level classification, bilinear interpolation of

probabilities is implemented to obtain dense predictions, which can be described as

below:

𝑃(𝑥, 𝑦) =
1

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)
[𝑥2 − 𝑥 𝑥 − 𝑥1] [

𝑃𝑥1𝑦1
𝑃𝑥1𝑦2

𝑃𝑥2𝑦1
𝑃𝑥2𝑦2

] [
𝑦2 − 𝑦

𝑦 − 𝑦1

] . (4.5)

This method significantly alleviates the problem of time-consuming during evaluation,

but bilinear interpolation algorithm has properties of the low pass filter, which can

damage high frequency components, so it may blur the object boundaries to some extent.

With the dense predictions, which is focused on hard-negative examples, we may

39

combine the results of the pre-trained SkipNet model and the patch-based convolutional

neural network by applying ensemble method, where the probabilistic vectors of the

pre-trained SkipNet are multiplied with the corresponding probabilistic vectors of the

LiteNet model.

4.2.4 Adding Prior-Knowledge of Boundary in SkipNet

The result of the pre-trained SkipNet model has been carefully analyzed, and one

special misclassification has drawn our attention. The boundaries between objects, e.g.

between Building and Impervious Surfaces, are not very precise.

Figure 4-8 Misclassifications of boundaries. (a) is the reference, whereas (b) is the predicted labels.

The third investigation is adding more prior knowledge to the SkipNet. In this case, the

prior object boundary information needs to be firstly extracted out from the reference.

Afterwards, this knowledge needs to be incorporated into the model by modifying the

structure, whereas a research on modification must be taken. Besides, an investigation

of the width of boundary should be taken, in order to find out the relationship between

performance and the boundary.

Architecture

After the boundaries have been extracted, the model structure needs to be modified to

incorporate the knowledge. The SkipNet is a single task classifier, where it only predicts

40

the label of each pixel. Now a new task is implemented with the purpose of the

classification of the class boundaries. To achieve this goal, a new softmax layer is

parallelly added into the model. The new structure is shown below:

Figure 4-9 Illustration of the dual task model. The dual task model has two classifiers connected to the last

layer of decoder, of which (a) classifier still performs the multiclass classification and (b) classifier performs

binary classification of boundaries. The input of both classifiers is the dense feature map from the last layer of

the decoder part.

In training, the network is fed with the original training dataset, whereas the reference

of the class boundaries is automatically generated with the new implemented algorithm.

For multiclass classification, suppose the vector 𝒁𝑖 = (𝑍𝑖
1, 𝑍𝑖

2, … , 𝑍𝑖
𝐶)

T
 represents the

class scores of the pixel 𝑖, where 𝐶 is the number of classes, 𝑦𝑖 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶} is

the corresponding true label and 𝑍𝑖
𝑐 is the class score for class 𝑦𝑐 . For boundary

classification, the vector 𝓩𝑖 = (𝓩𝑖
1, 𝓩𝑖

2)T represents the class scores of the pixel 𝑖 .

𝒴𝑖 ∈ {𝒴1, 𝒴2} is the true label, and 𝓩𝑖
𝑐 is the class score for class 𝒴𝑐.

The new loss function is the combination of two classifiers, shown as below:

𝐿𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 = −
1

𝐻 ∙ 𝑊
∑ ∑𝜔𝑐 ∙ 𝛿(𝑦𝑖, 𝑦

𝑐) ∙ 𝑙𝑜𝑔 (
𝑒𝑥𝑝(𝑍𝑖

𝑐)

∑ 𝑒𝑥𝑝(𝑍𝑖
𝑗
)𝐶

𝑗=1

)

𝐶

𝑐=1

𝐻∙𝑊

𝑖=1

. (4.6)

𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = −
1

𝐻 ∙ 𝑊
∑ ∑𝛾𝑐 ∙ 𝛿(𝒴𝑖, 𝒴

𝑐) ∙ 𝑙𝑜𝑔 (
𝑒𝑥𝑝(𝓩𝑖

𝑐)

∑ 𝑒𝑥𝑝(𝓩𝑖
𝑗
)2

𝑗=1

)

2

𝑐=1

𝐻∙𝑊

𝑖=1

. (4.7)

41

𝐿 = 𝛼 ∙ 𝐿𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 + 𝛽 ∙ 𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, (4.8)

where 𝛼 and 𝛽 are the new hypermeters to modify the ratio of two loss functions, 𝐻

and 𝑊 is respectively the height and width of the input image, and 𝜔𝑐 ∈ 𝝎 =

{𝜔1, 𝜔2, … , 𝜔𝐶} is a class weight computed according to (3.33). 𝛿(𝑦𝑖, 𝑦
𝑐) and

𝛿(𝒴𝑖, 𝒴
𝑐) are Kronecker delta, of which the result is 1 if the variables are equal, and 0

otherwise. 𝛾𝑐 is a class weights for binary classification (3.34).

Training and Inference

For training this network, we load the parameters of the encoder, decoder and multiclass

classifier from the pre-trained SkipNet and initialize the parameters of boundary

classifier normally. We employed a stochastic gradient descent optimizer with weight

decay 0.0005. The input size is 256 × 256 pixels. Due to the limitations of our GPU,

the mini-batch size is set to 1. The learning rate is 0.001 for 15 epochs. In testing, the

classifier (b) does not output predictions.

42

5. Experiments

In this chapter, we will test our three architectures using Vaihingen Dataset of the ISPRS

2D Semantic Labeling Challenge (Wegner et al., 2017). First, a brief introduction of

the dataset is presented. Then we will share our investigation experiments in two

aspects, i.e. hard-negative mining and adding prior knowledge of the boundary. The

results of each architecture will be evaluated. Our architectures are implemented based

on TensorFlow framework (Abadi et al., 2016). We use a GPU (Nvidia GTX 1060, 3GB)

to accelerate the training and inference.

The pre-trained SkipNet model is provided by Institute of Photogrammetry and

GeoInformation, where the model is implemented based on TensorFlow framework

(Abadi et al., 2016). All results will be compared with the pre-trained SkipNet model

and for the sake of brevity, we call it SkipNet-B (B refers to baseline).

5.1 Dataset

The proposed investigations were applied to Vaihingen Dataset of the ISPRS 2D

Semantic Labeling Challenge (Wegner et al., 2017), which is an open benchmark

dataset provided online. Overall there are over 168 million pixels in 33 images. 16 of

33 are provided with labeled reference for training and validation and the others are

withheld for testing. The pixel-based reference was generated by manual labelling and

has 6 labels: Impervious Surfaces (Imper.), Building (Build.), Low Vegetation (Low

Veg.), Tree, Car, and Clutter/Background. We take 4 images (image numbers 5, 7, 23,

30) to build our validation datasets and the rest 12 images to build our training datasets

for the investigations.

The evaluation is based on overall accuracy (OA), i.e. the percentage of pixels that are

assigned the correct class label by the classification process, and the average F1 score,

i.e. the average of the harmonic means of the completeness and the correctness per class.

In the evaluation of F1 scores, class Clutter/Background will be ignored due to that

there are very few pixels of class Clutter/Background in the validation datasets.

5.1.1 Setup for Fine-tuning the SkipNet-B

The 12 images for building training datasets are divided into tiles of size 256 × 256

with overlapping of 50%, which corresponds to input size required by our SkipNet

variants. These tiles are used for training, whereas the other 4 images are for testing.

The tiles in the training dataset are flipped in horizontal and vertical directions and also

rotated to 90°, 180° and 270° . There 3,328 tiles before data augmentation and

43

19,968 tiles afterwards.

According to the probabilistic scores predicted by the SkipNet-B, we separate the pixels

of the tiles in the training dataset by the mining threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑀, cf. 4.2.1, to obtain

the hard-negative examples. There are two different mining thresholds 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 ∈

{0.85,0.95} in our fine-tuning experiment. We fine-tune the SkipNet-B in two

different ways: directly fine-tuning and encoder-frozen fine-tuning. Directly fine-

tuning means we fine-tune the weights of the encoder and the decoder, whereas the

encoder-frozen fine-tuning indicates that we make the weights of the encoder remain

unchanged and the weights of the decoder fine-tuned.

In our evaluation, SkipNet-D𝑇ℎ𝑟𝑒𝑠ℎ𝑀
 represents the model is directly fine-tuned with

different 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 . SkipNet-E𝑇ℎ𝑟𝑒𝑠ℎ𝑀
 refers to the model is encoder-frozen fine-

tuned with different 𝑇ℎ𝑟𝑒𝑠ℎ𝑀. We compared different ensembles, where we drop the

term SkipNet to denote the classifiers that we combined. For instance, EN (B,

D𝑇ℎ𝑟𝑒𝑠ℎ𝑀
) refers to an ensemble that combines the chosen output of SkipNet-B and

SkipNet-D𝑇ℎ𝑟𝑒𝑠ℎ𝑀
.

5.1.2 Setup for Training the LiteNet

Our LiteNet is based on the architecture according to Paisitkriangkrai et al., 2016. In

order to enhance the performance of SkipNet-B, our LiteNet model is arranged to pay

more attention to the hard-negative examples. This focus has been reflected in the

design of the training datasets.

With the probabilistic scores of 12 training images predicted by SkipNet-B, we

classified the pixels with 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 = 0.95 to build different training datasets, cf.

4.2.1. The original training dataset of SkipNet-B, cf. 5.1.1, contains low percentage of

hard-negative examples, which has been modified at different levels in our new training

datasets. The training samples of LiteNet are patches, whose central pixel is selected

according to the hard-negative mining as shown below. A patch is generated with the

central pixel and its surrounding pixels and its size is 64 × 64, which corresponds to

input size required by LiteNet. There are five new training datasets. The patches in

training datasets are flipped in horizontal and vertical directions and also rotated to

90°, 180° and 270° for data augmentation.

44

Table 1 Five training datasets for LiteNet. The category of pixels is cf. 4.2.1.

In our evaluation, LiteNet-V, W, X, Y, Z represent the network variants trained with

datasets V, W, X, Y, Z respectively. We compared different ensembles, where we drop

the term LiteNet to denote the classifiers that we combined. For instance, EN(B, V)

refers to an ensemble that combines the output of SkipNet-B and LiteNet-V. We

implement the ensemble of not only probabilistic scores of all pixels, but also a certain

Due to that of pixels, whose highest probabilistic score is smaller than a given threshold.

This can be regarded as a hard-negative mining for post-processing in predictions in

order to find out the probabilistic outputs that need to be combined.

5.1.3 Setup for the Boundary-aware SkipNet

The accuracy inside boundaries of SkipNet-B varies from the width of the boundaries

but is significantly lower than the overall accuracy as shown below. The overall

accuracy of SkipNet-B is 86.29%

Table 2 Evaluation of accuracies inside or outside the boundaries with different boundary widths based on

SkipNet-B. Inside or outside refers to the area inside or outside the boundary.

The 12 large images with reference data of Vaihingen dataset are divided in the same

way, cf. 5.1.1. The training dataset is the same as the fine-tuning experiments, whereas

the boundary reference is generated according to the reference of the Vaihingen dataset.

In this experiment we trained six boundary-aware SkipNet with different classifier

weights, i.e. (𝛼, 𝛽) ∈ {(1,1), (1,0.1) }, (𝛼, 𝛽) cf. 4.2.4.

In our evaluation, we use SkipNetB- Width(𝛼,𝛽) to indicate our network variants.

SkipNetB refers to boundary-aware SkipNet, Width refers to the boundary width and

Classifier weight refers to (𝛼, 𝛽). We compared different ensembles, where we drop

the term SkipNet and SkipNetB to denote the classifiers that we combined. For instance,

45

EN(B, 10(1,1)) refers to an ensemble that combines the chosen output of SkipNet-B and

SkipNetB-10(1,1).

5.2 Evaluation of Hard-Negative Mining

In the investigation of hard-negative mining, there are two architectures that will be

evaluated, i.e. SkipNet and LiteNet. These two architectures are trained with different

training datasets and parameter settings.

5.2.1 Evaluation of Fine-tuning the SkipNet-B

Table 3 presents the land cover classification results for all variants except for

ensembles of networks described in section 5.1.1. SkipNet-D has achieved a better

performance than SkipNet-E both in F1 scores and OA regardless of the mining

thresholds. This may be caused by that not all parameters are trainable in the SkipNet-

E. In addition, compared to SkipNet-B, SkipNet-E0.95 shows a decrease of 0.24% and

0.30% in average F1 scores and OA respectively, and SkipNet-E0.85 shows a decrease

of 7.15% and 1.83% in average F1 score and OA respectively. Although the OA of

SkipNet-D0.95 and SkipNet-D0.85 decreased 0.11% and 0.15% respectively, the average

F1 scores show a little improvement (0.05% and 0.07% respectively). For SkipNet-

D0.95, two classes, i.e. Impervious Surfaces and Building are better classified by a

margin of F1 scores (0.68% and 0.56% respectively), compared to SkipNet-B. The

reason why F1 scores of these two classes are improved is that the fine-tuning with

hard-negative examples increases the ability to distinguish the samples, where the

samples of these two classes may be similar as shown in Chapter 1.1. While F1 scores

of SkipNet-D0.95 are improved for two classes, SkipNet-D0.85 achieves a better average

F1 score and F1 score of class car with 83.35% and 78.49% respectively. After fine-

tuning with hard-negative mining, the F1 scores of class car, which has fewer training

samples (covering 1.40% of the test area), have been improved due to that the

percentage of training samples of class car has increased.

Table 3 Results of land cover classification. Network variant: cf. Section 5.1.1. F1: F1 score, OA: overall

accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font.

Table 4 presents the land cover classification results for ensemble variants described in

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

SkipNet-D0.95 87.76 92.92 71.77 85.76 78.43 83.33 86.18

SkipNet-D0.85 87.64 92.76 72.05 85.78 78.49 83.35 86.14

SkipNet-E0.95 87.51 92.67 71.71 85.64 77.69 83.04 85.99

SkipNet-E0.85 85.66 91.81 70.58 84.84 47.77 76.13 84.46

F1 [%]
Network variant avg. F1 [%] OA [%]

46

section 5.1.1. We choose network variant SkipNet-D to implement ensemble due to that

directly fine-tuning outperformed the other way according to Table 1. It is notably that

the F1 of class Low Vegetation and class Tree is higher, compared to other network

variants. OA and average F1 score of EN(B, D0.95, D0.85) outperformed the other

network variants with 86.40% and 83.66% respectively.

Table 4 Results of land cover classification. Network variant: cf. Section 5.1.1. F1: F1 score, OA: overall

accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font.

5.2.2 Evaluation of LiteNet

According to Table 5, our baseline SkipNet has achieved best performance among these

network variants. It is in our expectations due to the design of training datasets, because

our datasets except dataset V contain much higher percentage of samples, of which

features can be hardly summarized. LiteNet-V has the best performance in our LiteNet

variants due to that the dataset contains only the samples, of which the features can be

easily extracted. However, due to this design, the generalization ability of LiteNet-V is

not as good as SkipNet-B.

Table 5 Results of Results of land cover classification. Network variant: cf. Section 5.1.2. F1: F1 score, OA:

overall accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font.

Table 6 presents the ensembles of LiteNet variants and SkipNet-B. EN(B, Y) shows a

little increase (0.04%) in OA, whereas SkipNet-B still has the better average F1 score

of 83.28%. In addition, EN(B, Y) outperformed other network variants in F1 scores of

class Impervious Surfaces and class Building with 87.09% and 92.53% respectively,

whereas the F1 score of class Low Vegetation of EN(B, V) is higher than others with

74.94%. It is remarkably that OA of EN(B, Z) achieves 85.87%, whereas OA of

LiteNet-Z is only 51.38%.

Imper. Build. Low Veg. Tree Car

EN(B,D0.95) 87.45 92.61 74.01 86.29 77.66 83.60 86.39

EN(B,D0.85) 87.41 92.57 73.95 86.26 77.50 83.54 86.35

EN(B,D0.95,D0.85) 87.60 92.72 73.55 86.17 78.24 83.66 86.40

Network variant
F1 [%]

avg. F1 [%] OA [%]

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

LiteNet-V 79.26 87.29 68.22 80.90 46.66 72.47 79.42

LiteNet-W 77.81 86.74 66.45 80.43 42.45 70.78 78.24

LiteNet-X 78.26 86.86 67.73 81.21 46.78 72.17 79.02

LiteNet-Y 75.42 85.35 60.14 80.77 47.22 69.78 77.23

LiteNet-Z 11.92 66.04 0.00 71.95 36.63 37.31 51.35

Network variant
F1 [%]

avg. F1 [%] OA [%]

47

Table 6 Result of land cover classification. Network variant: cf. Section 5.1.2. F1: F1 score, OA: overall accuracy,

both evaluated on the basis of pixels. Best scores are printed in bold font.

We want to investigate the relationship between OA and the threshold for ensembles,

which is used similar to the mining threshold. We implement the EN(SkipNet-B,

LiteNet) under a certain condition. If the highest probabilistic score of a pixel predicted

by SkipNet-B is under the threshold, then we multiply the probabilistic vectors of

SkipNet-B and LiteNet. The results are shown below:

Figure 5-1 Overall accuracies of land cover classification. Network variant: cf. Section 5.1.2.

If the threshold reaches 1.0, all pixels are implemented with ensemble, where OA is the

same as Table 5. If the threshold is under 0.47, then no pixels are implemented with

ensemble method. According to Figure 5-1, when threshold equals 0.94, OA achieves

its peak with 86.44%. Training datasets with high percentage of strongly and correctly

classified pixels would achieve a good performance. Training with datasets of high

percentage of the hard-negative examples would damage the generalization of the

models.

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

EN(B,V) 86.94 92.47 74.94 86.38 74.79 83.10 86.29

EN(B,W) 86.70 92.26 74.77 86.35 74.71 82.96 86.12

EN(B,X) 86.69 92.15 74.92 86.40 74.51 82.93 86.12

EN(B,Y) 87.09 92.53 74.42 86.40 75.06 83.10 86.33

EN(B,Z) 86.47 91.96 73.13 86.39 75.03 82.60 85.86

Network variant
F1 [%]

avg. F1 [%] OA [%]

48

5.3 Evaluation of the Boundary-aware SkipNet

Table 7 presents the land cover classification results for all variants except for

ensembles of networks described in section 5.1.3. SkipNet-B still has better F1 scores

of class Low Vegetation and class Tree than other network variants. SkipNetB-10(1,1)

has a better average F1 score and OA of 82.93% and 85.48% respectively than other

boundary-aware network variants. SkipNetB-5(1,1) outperformed SkipNet-B in the F1

scores of class Impervious Surfaces and class Building with a little improvement (0.14%

and 0.09% respectively). It is notably that the F1 score of class car of SkipNetB-15(1,0.1)

has increased with 2.48% compared to SkipNet-B.

Table 7 Results of Results of land cover classification. Network variant: cf. Section 5.1.3. F1: F1 score, OA:

overall accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font.

According to Table 8, we implement ensembles as shown below. The average F1 score

and OA of EN(B,10(1,1)) has achieved a little increase of 0.45% and 0.14% respectively,

where the F1 scores of class Low Vegetation, class Tree, and class Car are also higher

than other network variants. EN(B,5(1,1)) outperformed other network variants in F1

scores of class Impervious Surfaces and class Building with 87.44% and 92.65%

respectively.

Table 8 Results of Results of land cover classification. Network variant: cf. Section 5.1.3. F1: F1 score, OA:

overall accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font.

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

SkipNetB-5(1,1) 87.22 92.45 72.10 85.11 75.77 82.53 85.47

SkipNetB-5(1,0.1) 86.67 91.45 72.24 85.89 77.61 82.77 85.34

SkipNetB-10(1,1) 86.67 91.44 72.97 85.97 77.62 82.93 85.48

SkipNetB-10(1,0.1) 85.41 91.01 70.59 85.97 77.71 82.14 84.75

SkipNetB-15(1,1) 86.10 91.19 68.23 85.30 77.55 81.67 84.60

SkipNetB-15(1,0.1) 86.28 91.44 68.00 85.10 78.29 81.82 84.67

Network variant
F1 [%]

avg. F1 [%] OA [%]

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

EN(B,5(1,1)) 87.44 92.65 74.61 86.29 76.44 83.49 86.39

EN(B,10(1,1)) 87.39 92.45 74.72 86.52 77.57 83.73 86.43

EN(B,15(1,0.1)) 87.27 92.46 72.89 86.27 77.42 83.26 86.15

EN(B,5(1,1),10(1,1),15(1,0.1)) 87.29 92.39 73.45 86.23 77.56 83.38 86.13

Network variant
F1 [%]

avg. F1 [%] OA [%]

49

6 Conclusion and outlook

In our experiments, we have investigated three methods based on SkipNet for the pixel-

wise classification of land cover based on aerial images. We compared different variants

of the SkipNet, LiteNet and boundary-aware SkipNet architecture. Our experiments

have shown that an emsemble of SkipNet and LiteNet achieves the best performance

with an overall accuracy of 86.44% for five land cover classes. The other two

investigations have also improved overall accuracy of the basis SkipNet architecture

with an increase of 0.11% and 0.15% respectively, whereas the overall accuracy of the

basis SkipNet architecture is 86.29%.

We have investigated the impact of fine-tuning our basis SkipNet with hard-negative

mining and also the mining threshold is set to different levels, meanwhile the SkipNet

is fine-tuned in two different ways: directly fine-tuning and encoder-frozen fine-tuning.

The results show that directly fine-tuning outperformed encoder-frozen fine-tuning

regardless of the mining thresholds. We also investigated an ensemble of SkipNet and

LiteNet, where LiteNet is trained with different datasets. These datasets are designed

with different percentage of hard-negative examples. In this investigation, we also try

to find out the impact of post-processing with hard-negative mining to overall accuracy.

In the last experiment, we modified the SkipNet architecture for adding prior

knowledge of boundary to it, in order to improve accuracy inside boundaries. The

relationship of boundary width and performance has also been investigated.

These three investigations have all improved the performance of the basis SkipNet, but

there are still some insufficient. For instance, SkipNet has better performance of class

Low Vegetation and class Tree the most time, except for an ensemble of SkipNet and

LiteNet and an ensemble of SkipNet and boundary-aware SkipNet. The improvement

of these investigations is not by much. In future work, we may test more mining

thresholds to find out the relationship between mining threshold and performance of

the architectures using hard-negative mining. In addition, we have the same work for

boundary width and performance. In our second experiments, the post-processing with

hard-negative mining shows a promising result. This relationship will be further

discussed. Besides, we have improved different accuracies of different classes in

different network variants. We will further investigate the reasons of the impact and

combine the advantage of different network variants.

50

7 References

Albert, L., Rottensteiner, F. and Heipke, C., 2017. A higher order conditional random

field model for simultaneous classification of land cover and land use. ISPRS Journal

of Photogrammetry and Remote Sensing, 130, pp. 63-80.

Bartholome, E. and Belward, A.S., 2005. GLC2000: a new approach to global land

cover mapping from Earth observation data. International Journal of Remote Sensing,

26(9), pp.1959-1977.

Badrinarayanan, V., Kendall, A. and Cipolla, R., 2015. Segnet: A deep convolutional

encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 39(12), pp. 2481-2495.

Burkhard, B., Kroll, F., Nedkov, S. and Müller, F., 2012. Mapping ecosystem service

supply, demand and budgets. Ecological Indicators, 21, pp. 17-29.

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin,

F.S., Coe, M.T., Daily, G.C., Gibbs, H.K. and Helkowski, J.H., 2005. Global

consequences of land use. Science, 309(5734), pp. 570-574.

Girshick, R., Donahue, J., Darrell, T. and Malik, J., 2014. Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 580-587.

Glorot, X. and Bengio, Y., 2010, March. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth international conference

on artificial intelligence and statistics, PMLR 9, pp. 249-256.

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H.,

Liu, S. and Li, C., 2013. Finer resolution observation and monitoring of global land

cover: First mapping results with Landsat TM and ETM+ data. International Journal of

Remote Sensing, 34(7), pp. 2607-2654.

He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770-778.

Hermosilla, T., Ruiz, L.A., Recio, J.A. and Cambra-López, M., 2012. Assessing

contextual descriptive features for plot-based classification of urban areas. Landscape

and Urban Planning, 106(1), pp.124-137.

Hietel, E., Waldhardt R., Otte, A., 2004. Analysing land-cover changes in relation to

environmental variables in Hesse, Germany. Landscape Ecology, 19, pp. 473–489.

51

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R.,

2012. Improving neural networks by preventing co-adaptation of feature detectors.

arXiv preprint arXiv:1207.0580.

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems,

25(1), pp. 1097-1105.

Längkvist, M., Kiselev, A., Alirezaie, M. and Loutfi, A., 2016. Classification and

segmentation of satellite orthoimagery using convolutional neural networks. Remote

Sensing, 8(4), pp. 329-350.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), pp. 2278-2324.

Li, C., Wang, J., Wang, L., Hu, L. and Gong, P., 2014. Comparison of classification

algorithms and training sample sizes in urban land classification with Landsat thematic

mapper imagery. Remote Sensing, 6(2), pp. 964-983.

Liu, F., Shen, C. and Lin, G., 2015. Deep convolutional neural fields for depth

estimation from a single image. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 5162-5170.

Long, J., Shelhamer, E. and Darrell, T., 2015. Fully convolutional networks for

semantic segmentation. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 3431-3440.

Lu, D. and Weng, Q., 2007. A survey of image classification methods and techniques

for improving classification performance. International journal of Remote sensing,

28(5), pp.823-870.

Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J. and Xian, G., 2013. A comprehensive

change detection method for updating the National Land Cover Database to circa 2011.

Remote Sensing of Environment, 132, pp. 159-175.

Marmanis, D., Schindler, K., Wegner, J.D., Galliani, S., Datcu, M. and Stilla, U., 2018.

Classification with an edge: Improving semantic image segmentation with boundary

detection. ISPRS Journal of Photogrammetry and Remote Sensing, 135, pp.158-172.

Meyer, W., Turner, B, 1994. Changes in land use and land cover: a global perspective,

volume 4.

Noh, H., Hong, S. and Han, B., 2015. Learning deconvolution network for semantic

segmentation. In Proceedings of the IEEE international conference on computer vision,

pp. 1520-1528.

52

Paisitkriangkrai, S., Sherrah, J., Janney, P. and van den Hengel, A., 2016. Semantic

labeling of aerial and satellite imagery. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 9(7), pp.2868-2881.

Rowley, H.A., Baluja, S. and Kanade, T., 1998. Neural network-based face

detection. IEEE Transactions on pattern analysis and machine intelligence, 20(1),

pp.23-38.

Rowley, H., Baluja, S. and Kanade, T., 1998, June. Rotation invariant neural network-

based face detection. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, p. 38.

Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-

resolution aerial imagery. ArXiv:1606.02585.

Sermanet, P., Chintala, S. and LeCun, Y., 2012, November. Convolutional neural

networks applied to house numbers digit classification. Pattern Recognition (ICPR),

2012 21st International Conference, pp. 3288-3291.

Sharif Razavian, A., Azizpour, H., Sullivan, J. and Carlsson, S., 2014. CNN features

off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition workshops, pp. 806-813.

Sharma, A., Liu, X. and Yang, X., 2018. Land cover classification from multi-temporal,

multi-spectral remotely sensed imagery using patch-based recurrent neural networks.

Neural Networks.

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale

image recognition. In: International Conference for Learning Representations.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V. and Rabinovich, A., 2015. Going deeper with convolutions. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-

9.

Xie, S. and Tu, Z., 2015. Holistically-nested edge detection. In Proceedings of the IEEE

international conference on computer vision, pp. 1395-1403.

Wegner, J.D., Rottensteiner, F., Gerke, M., Sohn, Gunho, 2017. The ISPRS labeling

challenge. Available in the WWW:

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html (accessed

11/01/2019).

Yang, C., Rottensteiner, F. and Heipke, C., 2018. Classification of land cover and land

use based on convolutional neural networks. ISPRS Annals of the Photogrammetry,

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

53

Remote Sensing and Spatial Information Sciences 4 (2018), 4(3), pp. 251-258.

54

List of Figures

Figure 1-1 An example of land cover classification. On the left side is a color

infrared photo and on the right is its land cover classification with six classes.

.. 4

Figure 1-2 An example of encoder-decoder structure .. 5

Figure 1-3 (a) is an example of Land cover classification task; (b) is the reference

with boundary; (c) is the corresponding labels predicted by the model and the

boundary generated from reference. Vaihingen Dataset of Benchmark Test of

ISPRS. .. 6

Figure 1-4 One local area of predicted labels with reference boundary, where the

black line represents the boundary of objects .. 7

Figure 2-1 A simple fully convolutional network (Long et al., 2015), where the

idea of solving the problem of image resolution reduction caused by

convolution and pooling is upsampling ... 11

Figure 3-1 Two-dimensional scenario: convolution kernel and input data 14

Figure 3-2 Two-dimensional scenario: feature map of the first convolution

operation .. 14

Figure 3-3 The most common used pooling strategy is max-pooling. Here is an

example of max-pooling with kernel size 2x2 and stride 2, where the max is

taken over 4 numbers. .. 16

Figure 3-4 Feature invariant within pooling kernel size. 17

Figure 3-5 Sigmoid function and its gradient function .. 18

Figure 3-6 Softmax architecture with three input nodes 20

Figure 3-7 An example of dropout. Assume the network in (a) need to be trained.

At the beginning of training, 40% neurons in hidden layer are randomly

picked out and temporarily ignored, shown in (b). The other neurons update

its weights. This is the process in one iteration. In next iteration, another 40%

neurons are randomly picked out. .. 26

Figure 3-8 Forward propagation of a simplified 𝑀 layer neural network, where

𝑾 is the weights vector, 𝜙 is the activation function, 𝒙0 ∈ ℝ𝑑 is the input,

𝒙𝑀 ∈ ℝ𝐶 is the output and 𝑑 and 𝐶 is the dimension of the input and the

55

number of classes respectively. .. 27

Figure 4-1 Architecture of SkipNet.. 31

Figure 4-2 Structure of a skip connection; color code: cf. Figure 4-1. 31

Figure 4-3 Class boundaries generated by reference with different width. Black

and white represent respectively boundaries and others. 33

Figure 4-4 Illustration of hard-negative mining... 34

Figure 4-5 Procedure of fine-tuning the pre-trained SkipNet model with hard-

negative mining .. 35

Figure 4-6 Patch-based convolutional neural network architecture according to

(Paisitkriangkrai et al., 2016), where the difference of model is the softmax

output, which has six output channels. .. 37

Figure 4-7 A simple example of the result processed by the patch-based model,

which contains a sliding window with a step size of 4 pixels. “np” represents

“not predicted” and “𝑃𝑥𝑦” represents the probabilities. 38

Figure 4-8 Misclassifications of boundaries. (a) is the reference, whereas (b) is the

predicted labels. ... 39

Figure 4-9 Illustration of the dual task model. The dual task model has two

classifiers connected to the last layer of decoder, of which (a) classifier still

performs the multiclass classification and (b) classifier performs binary

classification of boundaries. The input of both classifiers is the dense feature

map from the last layer of the decoder part. .. 40

Figure 5-1 Overall accuracies of land cover classification. Network variant: cf.

Section 5.1.2... 47

56

List of Tables

Table 1 Five training datasets for LiteNet. The category of pixels is cf. 4.2.1. ... 44

Table 2 Evaluation of accuracies inside or outside the boundaries with different

boundary widths based on SkipNet-B. Inside or outside refers to the area

inside or outside the boundary. .. 44

Table 3 Results of land cover classification. Network variant: cf. Section 5.1.1. F1:

F1 score, OA: overall accuracy, both evaluated on the basis of pixels. Best

scores are printed in bold font. ... 45

Table 4 Results of land cover classification. Network variant: cf. Section 5.1.1. F1:

F1 score, OA: overall accuracy, both evaluated on the basis of pixels. Best

scores are printed in bold font. ... 46

Table 5 Results of Results of land cover classification. Network variant: cf. Section

5.1.2. F1: F1 score, OA: overall accuracy, both evaluated on the basis of

pixels. Best scores are printed in bold font. ... 46

Table 6 Result of land cover classification. Network variant: cf. Section 5.1.2. F1:

F1 score, OA: overall accuracy, both evaluated on the basis of pixels. Best

scores are printed in bold font. ... 47

Table 7 Results of Results of land cover classification. Network variant: cf. Section

5.1.3. F1: F1 score, OA: overall accuracy, both evaluated on the basis of

pixels. Best scores are printed in bold font. ... 48

Table 8 Results of Results of land cover classification. Network variant: cf. Section

5.1.3. F1: F1 score, OA: overall accuracy, both evaluated on the basis of

pixels. Best scores are printed in bold font. ... 48

