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Topic of the M.Sc. Thesis 

Investigations on improving classification of land cover based on Convolutional 

Neural Networks 

Classification of land cover is a standard task in remote sensing, in which each image 

pixel is assigned a class label indicating the physical material of the object surface (e.g. 

grass, asphalt). This task is challenging due to the heterogeneous appearance and high 

intra-class variance of objects. Recent work trying to solve this task has focused on 

convolutional neural networks (CNN), delivering considerably better results than 

traditional classifiers such as Random Forests, whereas such classifiers use hand-

crafted features as input, CNN provide a framework in which these features (and, thus, 

a representation of the image) can be learned from training data, which explains much 

of the success of CNN in classification. Originally, CNN were designed to predict a 

single class label per image. In the meantime, they have also been expanded to the task 

of land cover classification, where a class label is to be predicted for each pixel. This is 

achieved by an encoder-decoder structure, where in the encoder part, the resolution is 

continuously reduced (as in common CNN), whereas the encoder part upsamples the 

resultant class scores to obtain per-pixel predictions. Existing methods mainly suffer 

from a poor representation of object boundaries due to the reduction of resolution in 

the encoder part of the CNN.  

The goal of this master thesis is to investigate methods for improving the classification 

of land cover by an existing CNN encoder-decoder architecture. Generally speaking, 

there are two investigation variants. The first one is hard-negative mining. Mr. Zhang 

has to find out which pixels are hard to be classified. It can be done by setting a 

threshold of probabilistic score, the pixels whose correct class scores are above the 

threshold are considered as easy ones, otherwise are hard ones. Then investigations on 

how to improve the classification of them have to be conducted. It could be 1) retaining 

only the hard pixels in the same CNN model, by setting a mask in the groundtruth labels; 

2) using a patch-based CNN model which requires patches as input, where the patches 

are extracted out by centering the hard pixels. For these both methods, data 

augmentation should be applied if needed. Meanwhile, Mr. Zhang needs to investigate 

the relationship of threshold and the overall performance. The second one is adding 

more prior knowledge to the actual CNN model. In this case, the prior object boundary 

information needs to be firstly extracted out from the groundtruth labels. Afterwards, 

Mr. Zhang needs to incorporate this knowledge into the model by modifying the 

structure. For this variant, an investigation of the width of boundary should be taken, 

in order to find out the relationship between performance and the boundary. 

This master thesis is a cooperation of the Institute of Information processing (TNT) and 



 

the Institute of Photogrammetry and GeoInformation (IPI). The required methods shall 

be implemented in Python using the Tensorflow development environment for CNN. 

In this context, Mr. Zhang should use an existing encoder-decoder architecture for 

which both the source code and a pre-trained model are available at IPI. The developed 

methods shall be evaluated using test datasets for which a reference is available. Mr. 

Zhang shall use the Vaihingen benchmark dataset from the ISPRS semantic labelling 

challenge.  
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1. Introduction 

Land cover is the description of the physical material on the earth’s surface. For 

instance, land covers can be divided into grass, asphalt, trees, bare ground, etc. There 

are two most commonly used approaches to collect geoinformation for land cover: field 

survey and analysis of remote sensing data. 

Classification of land cover is a standard task in remote sensing, in which each image 

pixel is assigned a class label indicating the physical material of the object surface (e.g. 

grass, asphalt) (Yang et al., 2018). This task is called land cover classification in 

photogrammetry and remote sensing and also termed as semantic segmentation in 

computer vision, which is implemented to recognize the objects and also find out the 

locations in the image. 

Land cover classification is challenging due to the heterogeneous appearance and high 

intra-class variance of objects (Paisitkriangkrai et al., 2016), where the heterogeneous 

appearance describes the diverseness of object appearances in land cover. The intra-

class variance can be also termed as within class variance, which describes the degree 

of dispersion in a segment, and in land cover classification it is reflected as how far a 

set of pixels values are spread out from their average value. 

  

Figure 1-1 An example of land cover classification. On the left side is a color infrared photo and on the right is 

its land cover classification with six classes. 

Recent work trying to solve this task has focused on convolutional neural networks, 

delivering considerably better results than traditional classifiers such as Random 

Forests, whereas such classifiers use hand-crafted features as input. Convolutional 

neural networks provide a framework in which these features (the representation of the 



 

5 

image) can be learned from training data, which explains much of the success of 

convolutional neural network in classification.  

 

Figure 1-2 An example of encoder-decoder structure 

Originally, convolutional neural networks were designed to predict a single class label 

per image (Krizhevsky et al., 2012). In the meantime, they have also been expanded to 

the task of land cover classification, where a class label is to be predicted for each pixel 

(Audebert et al., 2016). This can be achieved by an encoder-decoder structure, where 

in the encoder part, the spatial resolution is continuously reduced (as in common 

convolutional neural networks), whereas the decoder part upsamples the resultant 

feature maps to obtain per-pixel predictions (Yang et al., 2018), as shown in Figure 1-2, 

or a patch-based model structure. A patch-based model achieves per-pixel classification 

by packing a pixel and its surrounding pixels together and using the predicted label of 

this local “image” as its center pixel label. For instance, an image is cropped into many 

small parts, i.e. patches. The label of the center pixel of a patch is used as the class of 

this patch and the convolutional neural network converts the context information, which 

is provided by the rest pixels in this patch, into a feature vector. By using a sliding 

window approach, each pixel can be made as the center of such a patch (Längkvist et 

al., 2016). However, this implementation produces unnecessary computations due to 

patches overlapping. In order to reduce the impact of overlapping, bilinear interpolation 

is also used in patch-based model, which predicts every nth pixel in the image, to convert 

sparse predictions to dense predictions (Paisitkriangkrai et al., 2016). 

1.1 Motivation 

With the development of photogrammetry and remote sensing, deep learning, 

especially convolutional neural network plays a more and more important role in land 

cover classification. Convolutional neural network is very suitable for land cover 

classification tasks due to the following reasons. Firstly, due to the rapid growth of the 

performance of graphics processing unit (GPU), the training and testing efficiency of 

the convolutional neural network has been greatly improved and not only that, its 
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accuracy has also achieved a significant progress. Secondly, considering the size of 

aerial and satellite imagery is generally very large, the convolutional neural network 

can extract features automatically from the input data, while the traditional methods 

applied in land cover classification use hand-crafted features, which can be time-

consuming, and the requirements vary from task to task. Thirdly, different from ground 

photogrammetry, aerial and satellite imagery can be captured in any azimuth. This 

means that the methods applied in land cover classification must be robust against 

rotation (Paisitkriangkrai et al., 2016). By applying augmentation of training dataset 

with different angles and mirroring, convolutional neural network can effectively 

manage to resist rotation issue. 

An encoder-decoder structure was implemented to achieve land cover classification, i.e. 

semantic segmentation. Although the implemented structure made a great progress, 

there are still some challenges and imperfections, which need to be concerned and 

overcome. Existing methods mainly suffer from a poor representation of object 

boundaries due to the reduction of resolution in the encoder part of the convolutional 

neural network, as well as heterogeneous appearance and high intra-class variance of 

objects, as shown in Figure 1-3. 

 

Figure 1-3 (a) is an example of Land cover classification task; (b) is the reference with boundary; (c) is the 

corresponding labels predicted by the model and the boundary generated from reference. Vaihingen Dataset 

of Benchmark Test of ISPRS. 

One of the most conspicuous mistakes is the building at lower left corner (marked with 

red rectangle), colored as blue in (b), which indicates its class is Building, is classified 

incorrectly as Impervious Surface, as shown in (c). This mistake is caused by the 

combined impact of low inter-class variance and high intra-class variance of objects. 
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Compared to other buildings in the dataset, the features of this building are closer to 

the features of impervious surface. One method to solve this problem is to combine the 

existing model with another convolutional neural network architecture, in order to make 

the intra-class features more obvious. This purpose is achieved by merging the 

extracted features of two different models to obtain a stronger generalization. Another 

problem is the classification at boundaries. The reduction of resolution in the encoder 

parts is not beneficial for segmentation where boundary delineation is vital 

(Badrinarayanan et al., 2017). As shown in Figure 1-4, the mistakes at boundaries are 

not to be neglected. The model may achieve better performance at boundaries, when 

the boundary information is captured and stored before subsampling. 

  

Figure 1-4 One local area of predicted labels with reference boundary, where the black line represents the 

boundary of objects 

1.2 Goal of this thesis 

The goal of this master thesis is to investigate methods for improving the classification 

of land cover based on an existing convolutional neural network encoder-decoder 

architecture. Generally speaking, there are two investigation variants. The first one is 

hard-negative mining. Pixels that are hard to be classified, need to be found out. It can 

be done by setting a threshold of probabilistic score, the pixels whose correct class 

scores are above the threshold are considered as easy ones, otherwise are hard ones. 

Then investigations on how to improve the classification of them have to be conducted. 

It could be: 

 Retraining only the hard pixels in the same convolutional neural network model 

 Using a patch-based convolutional neural network model which requires patches 

as input, where the patches are extracted out by centering the hard pixels 

For these both methods, data augmentation should be applied if needed. The second 

one is adding more prior knowledge to the actual convolutional neural network model. 
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In this case, the prior object boundary information needs to be firstly extracted out from 

the reference. Afterwards, this knowledge needs to be incorporated into the model by 

modifying the structure, whereas a research on modification must be taken. Besides, an 

investigation of the width of boundary should be taken, in order to find out the 

relationship between performance and the boundary. 

The required methods shall be implemented in Python using the TensorFlow 

development environment (Abadi et al., 2016) for convolutional neural network. 

1.3 Structure of this thesis 

The structure of this thesis is as follows: 

 In Chapter 2, the related work involving land cover classification based on 

traditional methods and convolutional neural networks will be discussed. 

 In Chapter 3, the theoretical background about the convolutional neural network 

will be introduced to help understand our currently framework. 

 In Chapter 4, the proposed methodology will be introduced. 

 In Chapter 5, the training procedure of different models will be introduced as well 

as the results will be analyzed. 

 In Chapter 6, we will conclude this thesis and state our prospects for the future. 
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2. Related work 

In the long history of human development, knowing the geoinformations surround us 

is always very essential. How to identify the surface elements on earth (Land cover) is 

a highly concerned problem in geoinformation analyzing.  

2.1 Traditional Methods 

Land cover refers to description of the physical material on the earth’s surface. It is 

undoubtedly a high value information supporting various environmental science and 

land management applications at global, regional and local scales (Foley et al., 2005; 

Sharma et al., 2018). Considering the significance of land cover, e.g. ecosystem 

services, agricultural monitoring and etc. (Hietel et al., 2004; Burkhard et al., 2012; 

Guidici & Clark, 2017), the remote sensing technology has been used for generating 

accurate land cover datasets at various scales (Bartholome & Belward, 2005; Gong et 

al., 2013; Jin et al., 2013). The remote sensing data has ideal spectral, spatial, 

radiometric and temporal characteristics (Sharma et al., 2018), but the land cover 

classification depends on not only the imagery appropriateness, but also the choice of 

classification methods (Lu & Weng, 2017).  

Many classification methods have been proposed using remote sensing data, such as 

unsupervised algorithms, e.g. K-means, parametric supervised algorithms, e.g. 

maximum likelihood, and machine learning algorithms, e.g. random forest and neural 

networks (Li et al., 2014; Zhu et al., 2017). The unsupervised algorithms could achieve 

very potential performance but require extra knowledge to the task-specific study area, 

whereas supervised algorithms could produce high classification accuracies with 

sufficient training and proper settings (Li et al., 2014). Including context into the 

classification process by using context features (Hermosilla et al., 2012) and Markov 

or Conditional Random Fields (Albert et al., 2017) has improved the accuracy of land 

cover classification, but the contextual models requires a large amount of training data 

and the choice of optimizer is a challenge (Albert et al., 2017). The machine learning 

algorithms have been mostly applied in terrain classification, i.e. predicting a label for 

an overhead image (Paisitkriangkrai et al., 2016) due to limitations of computational 

efficiency. In last decades, the development of hardware made it possible to process a 

great number of high-resolution aerial imagery. Recent advances in image classification 

is attributed to the convolutional neural network, where it outperforms traditional 

classifiers using hand-crafted features in many areas (Krizhevsky et al., 2012; Girshick 

et al., 2014; Razavian et al., 2014) This improvement is also adapted in land cover 

classification. 
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2.2 Classification of Land Cover Based on Convolutional 

Neural Networks 

The convolutional neural network is inspired by the nature of the mammalian visual 

cortex and showed a great success in vision applications. It can learn visual patterns 

directly from raw image pixels. The convolutional neural network uses a combination 

of a convolutional layer, a non-linear mapping and a pooling layer down-sampling and 

abstracting signals (LeCun et al., 1998) so that the spatial correlation present in the 

natural images is well exploited (Paisitkriangkrai et al., 2016). High-level features are 

extracted and learned from the training data. The deep convolutional neural network 

consists of a series of these combinations and is followed by several fully connected 

layers, which are used for integrating local features to global features (Krizhevsky et 

al., 2012). 

Originally, the convolutional neural network is designed to predict a single class label 

per image (Krizhevsky et al., 2012). The convolutional layer and the pooling layer 

would reduce the dimension of the input and the elements of the output cannot one-to-

one correspond to the pixels in the image. In addition, the fully connected layer would 

output the vectors with a fixed size. 

2.2.1 Patch-based Land Cover Classification 

Land cover classification is a pixel-level classification, which also called semantic 

segmentation in computer vision. To implement semantic segmentation in the 

convolutional neural network, one convenient method is the patch-based convolutional 

neural network (Paisitkriangkrai et al., 2016), where each pixel was separately 

classified into classes using a patch of image around it, which is labeled with its central 

pixel. In inference, the convolutional neural network naturally predicts a label for the 

patch, but this label is only assigned to the central pixel and the surrounding pixels are 

regarded as unpredicted. Längkvist et al. (2016) apply this procedure in a sliding 

window approach, making each pixel in the centre of such a patch. However, using the 

patch-based classification needs to generate a patch for each pixel and leads to two 

problems: computing consuming and insufficient use of information, i.e. only adjacent 

information of the pixel is considered. Computation consuming is due to overlapping 

of the patches. To overcome the problem of time consuming, Paisitkriangkrai et al. 

(2016) implement the simple linear interpolation in the patch-based classification. This 

method significantly alleviates the problem of time-consuming during evaluation, but 

has properties of the low pass filter, which can damage high frequency components, so 

it may blur the object boundaries to some extent. 



 

11 

2.2.2 Fully Convolutional Networks and Encoder-decoder 

architecture 

Another structure for semantic segmentation is called fully convolutional networks 

(Long et al., 2015). This model transforms convolved feature maps into classes of each 

pixel. The network can accept input images of any size and produce output of the same 

size, one-to-one correspondence between the input image and the output. This network 

supports end-to-end, pixel-to-pixel training. To obtain dense predictions, Long et al. 

(2015) researched three methods: shift-and stitch, filter rarefaction and deconvolution. 

Using deconvolution to upsample is recommended. 

 

Figure 2-1 A simple fully convolutional network (Long et al., 2015), where the idea of solving the problem of 

image resolution reduction caused by convolution and pooling is upsampling 

Noh et al. (2015) proposed the deconvolutional neural network where the encoder-

decoder architecture is implemented. The encoder consists of series of building blocks 

of convolutional layers, pooling layers and ReLU layers like traditional convolutional 

neural networks, and the spatial dimension decreases gradually because of pooling 

layers, whereas the decoder needs to restore the spatial dimension and details from low-

resolution signal. The decoder has symmetrical structure of the encoder, while the 

upsampling layer is used as the beginning of each block to increase the spatial 

dimension. Normally the shortcut connections between encoder and decoder are 

implemented to help decoder restore the losing location information. 

SegNet (Badrinarayanan et al., 2015) is also based on the encoder-decoder architecture 

but the decoder uses pooling indices computed in the max-pooling step of the 

corresponding encoder to perform non-linear upsampling. This eliminates the need for 

learning to upsample. 

These architectures for semantic segmentation are also implemented in land cover 

classification, achieving promising results. Marmanis et al. (2018) proposed a fully 

connected convolutional neural network for land cover classification with different 
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resolution inputs.A fully convolutional network without pooling is proposed to deal 

with the dimension reduction (Sherrah, 2016) and achieved an increase of 2% in 

accuracy in the ISPRS labelling challenge. However, this method requires high 

computation ability. Yang et al. (2018) proposed an encoder-decoder structure based on 

SegNet and combine ensembles of classifiers with different input data, whereas the 

boundaries between objects are not very precise. 
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3. Theoretical background 

In recent years, with the development of computing hardware and remote sensing 

technologies, convolutional neural networks work as a more and more important part 

in land cover classification. Traditional classifiers such as Random Forrest use hand-

crafted features as input, which requires a lot of labor costs and different tasks require 

different features, especially involving with processing high-resolution aerial imagery. 

Compared to traditional methods, convolutional neural networks deliver better results 

and provide a framework in which high-level features can be learned from training data, 

whereas these high-level features contain useful spatial correlation among pixels. 

Generally speaking, convolutional neural network is a hierarchical model, whose input 

is raw data, e.g. RGB image. Convolutional neural network, which is composed of 

different building blocks such as convolutional layer, pooling layer and non-linear 

activation function, abstracts the high-level semantic information layer by layer from 

the raw data. This process is called forward propagation. 

When raw data is abstracted and propagated to the last layer, convolutional neural 

network fulfill the task such as classification with the help of objective function, also 

called loss function or cost function. The parameters of every layer are updated in the 

help of error back-propagation algorithm, where the error between predictions and true 

labels is backward propagated from the last layer. 

Originally, convolutional neural networks were designed to predict a single class label 

per image (Krizhevsky et al., 2012). In the meantime, they have also been expanded to 

semantic segmentation, where a class label is to be predicted for each pixel (Long et al., 

2015). 

3.1 Convolutional Neural Networks 

Convolutional neural network is a feedforward neural network, which means 

parameters propagate unidirectionally from input layer to the output layer. Its artificial 

neurons can respond to part of units in the surrounding area and have excellent 

performance for large image processing. A convolutional neural network consists of 

one or more convolutional layers and fully connected layers (classical structure of 

neural network), also includes normalization layers and pooling layers. This 

configuration enables the convolutional neural network to take advantage of the two-

dimensional structure of the input data. Compared to other classification algorithms, 

such as k nearest neighbor algorithm and support vector machine, convolutional neural 

network achieves very attractive performance in terms of image recognition and 

computation speed. In other respects, convolutional neural network requires fewer 
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parameters to be considered due to weight sharing (LeCun et al., 1998), making it an 

attractive deep learning structure. Weight sharing indicates that when each 

convolutional kernel is replicated across the entire image, these replicated kernels share 

the same parameterization (weights vector and bias) and output a feature map. This 

means that each kernel extracts a specific kind of feature from the entire image. This 

method dramatically reduces the number of parameters that needs to be trained, 

therefore it is to accelerate the training speed and reduce computational overhead. 

Convolutional neural network is combined with a stack of building blocks that 

transforms the input data into an output prediction (e.g. probabilities and class scores). 

The commonly used layers are further discussed below. 

3.1.1 Convolutional Layer 

Convolutional layer is the fundamental unit of convolutional neural network. This layer 

is actually a series of filters, or be called convolution kernels, which have a limited 

perceptual field, but slide among the input data. Because of feedforward architecture, 

every kernel slides across the width and height of the input data to calculate the dot 

products of local inputs and kernels, and the feature map of this kernel is produced, as 

the input for the next layer operation.  

If input data is the 5 × 5 matrix as shown in Figure 3-1 on the right side, and the 

corresponding convolution kernel is a 3 × 3 matrix on the left side. At the same time, 

we specify that each time a convolution operation is performed, the convolution kernel 

moves by one-pixel position, i.e. the stride is 1.  

[

1 0 1

0 1 0

1 0 1

]                    

[
 
 
 
 
 
 
1 2 3 4 5

6 7 8 9 0

9 8 7 6 5

4 3 2 1 0

1 2 3 4 5]
 
 
 
 
 
 

  

Figure 3-1 Two-dimensional scenario: convolution kernel and input data 

The kernel multiplies the input data from left to right and from top to bottom with given 

stride and at last we obtain a 3 × 3 feature map as the input of next layer. 

[

27 28 29

28 27 16

23 22 21

]  

Figure 3-2 Two-dimensional scenario: feature map of the first convolution operation 
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Similarly, suppose in the three-dimensional situation, the input tensor of a 

convolutional layer 𝑙  is 𝒙𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
  and the convolutional kernel is 𝒇 ∈

ℝℎ×𝑤×𝐷𝑙
, where height, width and depth of the input and the kernel are respectively 

𝐻𝑙,𝑊𝑙 , 𝐷𝑙 and ℎ,𝑤, 𝐷𝑙  (It must be specified that the depth of kernels must be 

consistent with inputs). The three-dimensional convolution operation actually extends 

2D operation to all channels, i.e. 𝐷𝑙 channels, at the corresponding position. The sum 

of ℎ × 𝑤 × 𝐷𝑙 elements, each of which is the multiplication result of the kernel and 

input at corresponding position, is the result of one convolution operation. 

Furthermore, if there are 𝐷𝑙+1 independent kernels 𝑭 = (𝒇0, 𝒇1, … , 𝒇𝐷𝑙+1−1) similar 

to 𝒇 ∈ ℝℎ×𝑤×𝐷𝑙
,  then the output is 𝒙𝑙+1 ∈ ℝ𝐻𝑙+1×𝑊𝑙+1×𝐷𝑙+1

 while the input is 𝒙𝑙 ∈

ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
 and one convolution operation can be described as below: 

𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑𝑙+1
𝑙+1 = ∑∑ ∑ 𝑓

𝑖,𝑗,𝑑𝑙
𝑑𝑙+1

∙ 𝑥
𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙
𝑙

𝐷𝑙

𝑑𝑙=0

𝑤

𝑗=0

ℎ

𝑖=0

, (3.1) 

where 𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑𝑙+1
𝑙+1 ∈ 𝒙𝑙+1, 𝑓

𝑖,𝑗,𝑑𝑙
𝑑𝑙+1

∈ 𝒇𝑑𝑙+1
, 𝑥

𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙
𝑙 ∈ 𝒙𝑙, and 

(𝑖𝑙+1, 𝑗𝑙+1, 𝑑𝑙+1) is the position vector of the convolution result, which satisfies: 

0 ≤ 𝑖𝑙+1 < 𝐻𝑙 − 𝐻 + 1 = 𝐻𝑙+1. (3.2) 

0 ≤ 𝑗𝑙+1 < 𝑊𝑙 − 𝑊 + 1 = 𝑊𝑙+1. (3.3) 

0 ≤ 𝑑𝑙+1 < 𝐷𝑙+1. (3.4) 

It should be pointed out that 𝑓
𝑖,𝑗,𝑑𝑙
𝑑𝑙+1

 in (3.1) can be regarded as learned weights and it 

can be found that weights are the same for a specific input in different positions. This 

is the weight sharing of convolutional layer. In addition, there are two important 

hyperparameters of convolutional layer: kernel size and stride. The settings of 

hyperparameters will affect the final result of convolutional neural networks. 

In fact, parameters of kernels are learned through training and it can conclude numerous 

different patterns, e.g. boundary, shape and texture. By combining these filters and as 

the network proceeds to subsequent operations, the basic and general patterns are 

gradually abstracted into “conceptual” representations with high-level semantics, 

which can be applied into specific classification tasks. 
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3.1.2 Pooling Layer 

Pooling is another important concept in convolutional neural networks. It is actually a 

form of non-linear down-sampling. There are two kinds of pooling operations that are 

commonly applied: average-pooling and max-pooling. It should be pointed out that 

different from convolutional layer, pooling layer does not contain parameters that need 

to be learned. It only needs to specify the hyperparameters, i.e. pooling strategy, pooling 

kernel size and pooling stride. 

Same as the convolutional layer section, the pooling layer 𝑙 can be described as 𝒑𝑙 ∈

ℝℎ×𝑤 (Normally the depth of the input and output of the pooling operation does not 

change). Suppose the input is 𝒙𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷 and the output is 𝒙𝑙+1 ∈ ℝ𝐻𝑙+1×𝑊𝑙+1×𝐷. 

At each average-pooling (max-pooling) operation, the average (maximum) of all values 

in the coverage area of pooling kernel is used as the result. If the pooling stride is 

(𝑆ℎ, 𝑆𝑤)  where 𝑆ℎ  and 𝑆𝑤  are the strides in the direction of height and width 

respectively, one pooling operation result is: 

Average − pooling:  𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑
𝑙+1 =

1

ℎ𝑤
∑∑𝑥

𝑖𝑙+1∙𝑆ℎ+𝑖,𝑗𝑙+1∙𝑆𝑤+𝑗,𝑑
𝑙

𝑤

𝑗=0

ℎ

𝑖=0

. (3.5) 

Max − pooling:  𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑
𝑙+1 = max

0≤𝑖<ℎ,0≤𝑗<𝑤
𝑥

𝑖𝑙+1∙𝑆ℎ+𝑖,𝑗𝑙+1∙𝑆𝑤+𝑗,𝑑
𝑙 , (3.6) 

where  𝑥
𝑖𝑙+1,𝑗𝑙+1,𝑑
𝑙+1   and 𝑥

𝑖𝑙+1∙𝑆ℎ+𝑖,𝑗𝑙+1∙𝑆𝑤+𝑗,𝑑
𝑙   are an element of 𝒙𝑙+1  and 𝒙𝑙 

respectively. 

 

Figure 3-3 The most common used pooling strategy is max-pooling. Here is an example of max-pooling with 

kernel size 2x2 and stride 2, where the max is taken over 4 numbers. 

Pooling layer is implemented for down-sampling and abstraction of input. In the past 
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work of convolutional neural networks, researchers generally verify that the pooling 

layer has the following two effects: 

1. Translation invariant. The pooling operation makes the model more concerned with 

the presence of certain features rather than the specific location of features and it 

makes that feature learning contain a degree of freedom that can tolerate some 

minor displacements. For example, as shown below, if the position of numbers is 

disrupted within the kernel size, the result does not change. 

2. Dimension reduction. Due to the down-sampling of pooling layer, one element in 

the pooling result corresponds to a sub-region of the input data, so pooling 

operations are equivalent to implement spatially dimension reduction. 

 

Figure 3-4 Feature invariant within pooling kernel size. 

3.1.3 Activation Function 

Activation function is also called non-linearity mapping. The purpose of activation 

function is to increase the non-linearity of the network, otherwise the stacking of several 

linear layers can only function as a linear mapping and cannot form complex functions. 

There are two activation functions that are commonly used: Sigmoid function and 

ReLU function.  

Intuitively, the activation function simulates the characteristics of biological neurons: 

accept input signals and produce outputs. In neuroscience, biological neurons usually 

have a threshold. When the cumulative effect of the input signals obtained by the neuron 

exceeds the threshold, the neuron is activated, otherwise suppressed. In artificial neural 

network, the sigmoid function can simulate this biological process, which has a very 

important position in the development of neural network. 

Sigmoid function is also known as Logistic function: 

𝜎(𝑥) =
1

1 + exp(−𝑥)
. (3.7) 
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As shown in Figure 3-5, the range of the output is compressed between [0,1] after 

processing by sigmoid function. But it must be pointed out at both ends of sigmoid 

function that the value bigger than 5 (or smaller than -5) will be compressed to 1 (or 0) 

no matter how big (or small) it is. This brings a serious problem, which is the vanishing 

effect of the gradient. As shown in Figure 3-5, the gradient of the part that is bigger 

than 5 (or smaller than -5) is very close to 0. The error is difficult or even impossible 

transferred to front layer during loss back propagation, which the entire network cannot 

be trained as a result (network parameters would have no updating if gradient equals 

zero). 

    

Figure 3-5 Sigmoid function and its gradient function 

In order to avoid gradient vanishing, Nair and Hinton introduced Rectified Linear Unit 

(ReLU) into neural network in 2010 (Nair & Hinton, 2010). ReLU is currently one of 

the most commonly used activation functions in deep convolutional neural networks. 

ReLU is actually a piecewise function: 

rectifier(𝑥) = max{0, 𝑥} = {
  𝑥    𝑖𝑓 𝑥 ≥ 0 

0    𝑖𝑓 𝑥 < 0
. (3.8) 

The gradient of ReLU is 1 when 𝑥 ≥ 0, otherwise is 0. For 𝑥 ≥ 0, ReLU completely 

eliminates the gradient vanishing effect. In addition, ReLU contributes to the 

convergence of the stochastic gradient descent (SGD) method, and the convergence 

speed is about six times faster than another activation function, i.e. the hyperbolic 

tangent function, when both kinds of units applied in equivalent networks (Krizhevsky 

et al., 2012). Because of these high-quality characteristics, ReLU has become the first 

choice for convolutional neural network and other deep learning model, e.g. RNN. 

3.1.4 Fully Connected Layer 

Fully connected layer integrates the local features into global features. The operations 

we discussed above is to map the original data to the implicit feature space, while the 
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fully connected layer connects the learned features to high-level inference. In actual 

use, the fully connected layer can be implemented by convolution operations: if the 

previous layer is a fully connected layer, the kernel size of current layer is set to 1 × 1; 

if the previous layer is not a fully connected layer, the kernel size is set to 𝐻 × 𝑊 × 𝐷, 

where 𝐻, 𝑊 and 𝐷 are respectively the height, width and depth of previous layer 

output. 

Taking VGG-16 (Simonyan et al., 2015) as an example, the output of the last 

convolutional layer after pooling and activation function is a tensor of 7 × 7 × 512, 

whereas the input is an image of 224 × 224 × 3. If the next layer is fully connected 

layer and has 4096  neurons, there should be 4096  convolutional kernels and the 

kernel size should be set to 7 × 7 × 512. After convolution an output of 1 × 1 × 4096 

is obtained. 

3.1.5 Loss Function 

The loss function is used to estimate the deviation between predictions and true labels. 

Various loss functions are implemented in convolutional neural network for different 

tasks and cross-entropy loss function (also named softmax loss function) is mostly used 

for classification problem. 

There are two concepts that need to be specified: softmax and cross-entropy. Generally 

speaking, softmax normalizes the classification output (class scores) to a probabilistic 

class scores and cross-entropy characterizes the similarity between predictions and 

reference. 

Softmax maps the outputs of multiple neurons to the interval (0,1) and that can be 

regarded as probability. If there is a vector 𝒁 and 𝑍𝑖 represents the ith elements in the 

vector, then the softmax value of this element is: 

𝑆𝑍𝑖
=

𝑒𝑍𝑖

∑ 𝑒𝑍𝑗
𝑗

. (3.9) 

The following figure shows the reason why softmax outputs probabilities more vividly: 
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Figure 3-6 Softmax architecture with three input nodes 

The original inputs are mapped to the value inside (0,1) and the sum of these values is 

1, so the converted values can be regarded as probability. The predictions are made by 

choosing the class with the highest probabilistic class score. 

Suppose a classification task has a total of 𝑁  training samples. The input of the 

softmax layer, e.g. class scores, is 𝒁𝑛 = (𝑍𝑛
1, 𝑍𝑛

2, … , 𝑍𝑛
𝐶)T, the corresponding true label 

is 𝑦𝑛 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶} and the output of softmax is �̂�𝑛 = (�̂�𝑛
1, �̂�𝑛

2, … , �̂�𝑛
𝐶)T, i.e. the 

predicted probabilities of sample 𝑛, where 𝐶 is the number of class and �̂�𝑛
𝑐 is the 

probability for class 𝑦𝑐. Now the loss of model can be calculated by similarity between 

predictions and reference and the cross-entropy is the instrument to achieve that. 

The posterior probability 𝑃𝑛(𝑦𝑐|𝑥)，i.e. �̂�𝑛
𝑐 , for sample 𝑛  to take class label 𝑦𝑐 

given the input data 𝑥: 

�̂�𝑛
𝑐 = 𝑃𝑛(𝑦𝑐|𝑥) = softmax(𝒁𝑛, 𝑦𝑐) =

𝑒𝑥𝑝(𝑍𝑛
𝑐)

∑ 𝑒𝑥𝑝(𝑍𝑛
𝑗
)𝐶

𝑗=1

. (3.10) 

Therefore cross-entropy loss function can be described as below: 

𝐿 = −
1

𝑁
∑ ∑𝛿(𝑦𝑛, 𝑦𝑐) ∙ 𝑙𝑜𝑔(�̂�𝑛

𝑐)

𝐶

𝑐=1

𝑁

𝑛=1

. (3.11) 

where 𝛿(𝑦𝑛, 𝑦𝑐) is Kronecker delta, of which the result is 1 if the variables are equal, 

and 0 otherwise. 
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3.1.6 Batch Normalization 

Training deeper neural networks has always been the important method to improve the 

performance of models in deep learning (Szegedy et al., 2014; Simonyan & Zisserman, 

2014). Batch normalization (Ioffe & Szegedy, 2015) proposed by Google in 2015 

dramatically accelerates deep network training, thereby making it easier and more 

stable to train deep network models. In addition, the batch normalization is not only 

suitable for deep network, but for shallow neural network, it can also improve the 

generalization. At present, batch normalization has been essential for almost all 

convolutional neural networks. 

As shown below is the batch normalization transform, where there are 𝑚 values of a 

mini-batch. We normalize each activation by using mini-batches in stochastic gradient 

training, to make it have the mean of zero and the variance of 1. 

𝐈𝐧𝐩𝐮𝐭: Values of 𝑥 over a mini − batch: 𝔅 = {𝑥1…𝑚}; 

Parameters to be learned: 𝛾, 𝛽 

𝐎𝐮𝐭𝐩𝐮𝐭: {𝑦𝑖 = BN𝛾,𝛽(𝑥𝑖)} 

mini − batch mean: 𝜇𝔅 ←
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

 

mini − batch variance: 𝜎𝔅
2 ←

1

𝑚
∑(𝑥𝑖 − 𝜇𝔅)2

𝑚

𝑖=1

 

normalize: �̂�𝑖 ←
𝑥𝑖 − 𝜇𝔅

√𝜎𝔅
2 − 𝜖

 

scale and shift: 𝑦𝑖 ← 𝛾�̂�𝑖 + 𝛽 ≡ BN𝛾,𝛽(𝑥𝑖) 

There are four steps in batch normalization. The first two steps calculate the mean and 

the variance of the mini-batch separately. The third step normalizes the mini-batch 

based on the calculated mean and variance. The last step scale and shift allows the batch 

normalization transform to represent identity (Ioffe & Szegedy, 2015), i.e. restore the 

distribution of data that is learned in the previous layer. 

Batch normalization helps to properly initialize the neural networks by transforming 

the data fed to activation functions into a unit gaussian distribution at the beginning of 

the training. Except for that, it can be regarded as doing preprocessing at every layer of 

the network to help to accelerate the training. Batch normalization is added generally 

before the nonlinearity, e.g. ReLU.  
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3.2 Stochastic Gradient Descent 

In deep learning, the loss function is minimized by using an optimization algorithm. 

The loss function also can be named as objective function. Gradient descent is a 

commonly used optimization method. Although gradient descent is rarely used directly 

in deep learning, the mechanism of gradient descent is the foundation of stochastic 

gradient descent. 

3.2.1 Gradient Descent 

By taking a simple one-dimensional gradient descent as an example, the reason why 

the gradient descent algorithm may reduce the value of the objective function is 

explained. Assume that the input and output of the continuously derivable function 

𝑓:ℝ → ℝ are both scalars. Given a sufficiently small absolute value 𝜖, according to 

the Taylor expansion formula, the following approximation can be acquired: 

𝑓(𝑥 + 𝜖) ≈ 𝑓(𝑥) + 𝜖𝑓′(𝑥), (3.12) 

where 𝑓′(𝑥) is the gradient of function 𝑓 at 𝑥. The gradient of a one-dimensional 

function is a scalar, also known as the derivative. 

Suppose there is a constant 𝜂 > 0 , and also |𝜂𝑓′(𝑥)|  is sufficiently small. Then 𝜖 

can be replaced by −𝜂𝑓′(𝑥): 

𝑓(𝑥 − 𝜂𝑓′(𝑥)) ≈ 𝑓(𝑥) − 𝜂𝑓′(𝑥)2. (3.13) 

If 𝑓′(𝑥) ≠ 0, then 𝜂𝑓′(𝑥)2 > 0: 

𝑓(𝑥 − 𝜂𝑓′(𝑥)) ≲ 𝑓(𝑥). (3.14) 

If 𝑥  is Iteratively replaced by 𝑥 − 𝜂𝑓′(𝑥) , the value of the function  𝑓(𝑥)  can 

decrease. Thus, in gradient descent firstly an initial value 𝑥 and a constant 𝜂 > 0 is 

picked and 𝑥  is iterated continuously by 𝑥 − 𝜂𝑓′(𝑥)  until the stop condition is 

triggered, e.g. 𝑓′(𝑥)2 is sufficiently small or the number of iterations has reached a 

certain value. 

The constant 𝜂 > 0  is often called the learning rate in machine learning. This is a 

hypermeter that need to be specified manually. If a too small learning rate is 

implemented, it will cause 𝑥 updates slowly and requires more iterations to achieve a 

optimal result. If a learning rate is excessive, |𝜂𝑓′(𝑥)| may be too large to make the 

mentioned Taylor expansion formula (3.9) no longer valid. 

After understanding the one-dimensional gradient descent, a more general case needs 
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to be considered: the input of objective function is vector and output is scalar, i.e. 

𝑓:ℝ𝑑 → ℝ, where input vector 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑑]T is d-dimensional. The gradient of 

the objective function 𝑓(𝒙) about 𝒙 is a vector of d elements: 

∇𝑥𝑓(𝒙) = [
𝜕𝑓(𝒙)

𝜕𝑥1
,
𝜕𝑓(𝒙)

𝜕𝑥2
, … ,

𝜕𝑓(𝒙)

𝜕𝑥𝑑
]

T

. (3.15) 

Every partial derivative element 𝜕𝑓(𝒙) 𝜕𝑥𝑖⁄   represents the rate of change of the 

objective function 𝑓(𝒙)  about 𝑥𝑖 . In order to measure the rate of change of 𝑓(𝒙) 

along unit vector 𝒖 (‖𝒖‖ = 1), the directional derivative is defined as: 

D𝑢𝑓(𝒙) = lim
ℎ→0

𝑓(𝒙 + ℎ𝒖) − 𝑓(𝒙)

ℎ
. (3.16) 

According to the nature of the directional derivative, the above directional derivative 

can be rewritten as: 

D𝑢𝑓(𝒙) = 𝛻𝑥𝑓(𝒙) ∙ 𝒖. (3.17) 

Directional derivative gives the rate of change of 𝑓(𝒙) along every possible direction. 

In order to minimize 𝑓(𝒙), the hopeful way is to find the direction, along which the 

𝑓(𝒙) decreases the fastest. The directional derivative D𝑢𝑓(𝒙) is minimized with the 

help of unit vector 𝒖. 

Since D𝑢𝑓(𝒙) = ‖𝛻𝑥𝑓(𝒙)‖ ∙ ‖𝒖‖ ∙ cos(𝜃) = ‖𝛻𝑥𝑓(𝒙)‖ ∙ cos(𝜃) , where 𝜃  is the 

included angle between the gradient 𝛻𝑥𝑓(𝒙)  and the unit vector 𝒖 , and cos(𝜃) 

reaches minimum value −1  when 𝜃 = 𝜋 , the directional derivative D𝑢𝑓(𝒙)  is 

minimized when the unit vector 𝒖 is in the opposite direction of the gradient 𝛻𝑥𝑓(𝒙). 

Therefore, the value of the objective function 𝑓  can decrease iteratively by using 

gradient descent algorithm: 

𝑥 ← 𝑥 − 𝜂∇𝑥𝑓(𝒙), (3.18) 

where 𝜂 > 0 is the learning rate. 

3.2.2 Stochastic Gradient Descent 

Gradient descent algorithm needs to calculate the gradient of every training sample, 

when it optimizes the objective function in each iteration. If the training set is big 

(especially in deep learning), the efficiency of gradient descent will be very low. Also 

due to limitations of hardware resources (GPU memory, etc.), this method is basically 

unrealistic in practical applications. Thus, the stochastic gradient descent is commonly 

used to replace gradient descent in deep learning. 
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Suppose the objective function is defined as below: 

𝑓(𝒙) =
1

𝑛
∑𝑓𝑖(𝒙)

𝑛

𝑖=1

, (3.19) 

where there are 𝑛 training samples and 𝒙 is the parameter vector of the model. 

Then the gradient of the objective function is: 

∇𝑓(𝒙) =
1

𝑛
∑∇𝑓𝑖(𝒙)

𝑛

𝑖=1

, (3.20) 

If gradient descent is implemented, the computational overhead of every iteration is 

𝒪(𝑛) and it grows linearly with number of training samples 𝑛. Therefore, when the 

number of training samples is large, each iteration computational overhead of the 

gradient descent is high. 

Stochastic gradient descent computes one training sample every iteration to update 

model parameters, i.e. ∇𝑓𝑖(𝒙). Obviously, the computational overhead drops to 𝒪(1) 

from 𝒪(𝑛) in every iteration. 

Although the efficiency is raised, considering only one sample every time in stochastic 

gradient descent makes that the optimization may be not the overall optimization of the 

model. Thus, it is important to traverse the whole training samples. Every traversal of 

the entire input dataset is named as epoch. In deep learning, a simple change is 

implemented in stochastic gradient descent by using not a single training sample, but a 

batch of samples. With the gradient information of the sample batch, the parameters of 

the model are updated. This is called mini-batch based stochastic gradient descent. Due 

to that one batch consists of a quantity of samples, this strategy gains more robust 

gradient information compared to the standard stochastic gradient descent. 

3.3 Regularization 

Generalization ability describes the performance of the trained learning algorithm on 

test dataset. If one learning algorithm performs well on both training and test dataset, it 

has strong generalization ability. Otherwise if it performs well only on training dataset 

but does not achieve an ideal result on test dataset, its generalization is not acceptable. 

This situation is also called overfitting. In this case regularization is implemented to 

prevent overfitting. 
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3.3.1 Weight Decay 

Although increase the training dataset may reduce overfitting, more training samples 

may not be available in every situation. The weight decay is the common method for 

dealing with overfitting problem, and also is named as L2 regularization. L2 

regularization is to add a regularization in the loss function: 

𝐿 = 𝐿0 +
𝜆

2
∑𝑤2

𝑤

, (3.21) 

where L0 is the original loss function, 𝑛  is the number of training samples, 𝑤 

represents the elements in the weights vector, 
𝜆

2
∑ 𝑤𝟐

𝒘  is the L2 regularization and 𝜆 

is the coefficient of the regularization, which weighs the proportion of the regularization 

and the original loss L0. When 𝜆 > 0, the elements in weights vector will not grow too 

large. The mechanism is explained below. 

First is the derivative: 

𝜕𝐿

𝜕𝑤
=

𝜕𝐿0

𝜕𝑤
+ 𝜆𝑤. (3.22) 

The stochastic gradient descent updates look as follows: 

𝑤 ← 𝑤 − 𝜂
𝜕𝐿0

𝜕𝑤
− 𝜂𝜆𝑤 = (1 − 𝜂𝜆)𝑤 − 𝜂

𝜕𝐿0

𝜕𝑤
. (3.23) 

𝑤 is becoming smaller because 𝜂 and 𝜆 are positive and this is also the origin of the 

name weight decay. Weight decay adds constraints to the model to control the absolute 

value of the parameters and reduces therefore the complexity of the network. It can help 

avoid overfitting to constraint the parameters that they are not too large. 

3.3.2 Dropout 

Weight Decay prevents overfitting by adjusting loss functions, whereas dropout 

modifies the structure of network to achieve the goal. Its mechanism is very simple: 

several neurons, random picked with probability 𝑝 , will be temporarily ignored in 

training and all neurons are activated in testing. Its process is shown below: 
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Figure 3-7 An example of dropout. Assume the network in (a) need to be trained. At the beginning of training, 

40% neurons in hidden layer are randomly picked out and temporarily ignored, shown in (b). The other 

neurons update its weights. This is the process in one iteration. In next iteration, another 40% neurons are 

randomly picked out. 

The training process that uses dropout is equivalent to training a lot of “mini-network” 

(combinations of different neurons in hidden layer). Every “mini-network” can present 

predictions and as the training progresses, most “mini-network” can give correct 

classification results. 

3.4 Forward propagation and backpropagation 

The neural network contains several neurons in every layer and the layers are connected 

with weights matrixes. The process, the information passed from the previous layer to 

the next layer, is called forward propagation. Backpropagation algorithm is actually the 

short of the backward propagation of errors. It is one of the most successful learning 

algorithms in neural networks. 

3.4.1 Forward Propagation 

Forward propagation is also mentioned as feedforward process. It refers to the variables 

(including outputs) of the model that are sequentially calculated and stored in the order 

of the input layer to the output layer. The figure below is more intuitive: 
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Figure 3-8 Forward propagation of a simplified 𝑀 layer neural network, where 𝑾 is the weights vector, 𝜙 is 

the activation function, 𝒙0 ∈ ℝ𝑑 is the input, 𝒙𝑀 ∈ ℝ𝐶 is the output and 𝑑 and 𝐶 is the dimension of the 

input and the number of classes respectively. 

3.4.2 Backpropagation 

Suppose the loss function of the abovementioned network is ℓ: 

𝐿 = ℓ(𝒙𝑀, 𝑦), (3.24) 

where 𝑦 is the class label. Backpropagation is an iterative learning algorithm, where 

arbitrary parameter is updated like follow: 

𝑤 ← 𝑤 − 𝜂∇𝑤, (3.25) 

where 𝜂 > 0 is the learning rate of the network. Backpropagation algorithm is based 

on gradient descent strategy, which adjusts the parameters and variables in the opposite 

direction of their gradients. Taking the last layer of the network above as an example: 

∇𝒘𝑀 =
𝜕𝐿

𝜕𝒘𝑀
. (3.26) 

According to the chain rule in calculus: 

𝜕𝐿

𝜕𝒘𝑀
=

𝜕𝐿

𝜕𝒙𝑀
∙
𝜕𝒙𝑀

𝜕𝒘𝑀
, (3.27) 

In forward propagation, 𝒙𝑀 = 𝒘𝑀𝒙𝑀−1 , 𝒙𝑀−1 = 𝜙(𝒂𝑀−1)  and 𝒂𝑀−1 =

𝒘𝑀−1𝒙𝑀−2. Thus, the update of 𝒘𝑀 is: 

∇𝒘𝑀 =
𝜕𝐿

𝜕𝒘𝑀
=

𝜕𝐿

𝜕𝒙𝑀
∙ 𝒙𝑀−1T

. (3.28) 

where 
𝜕𝐿

𝜕𝒙𝑀  is available according to (3.21). To further simplify the calculations, 

Sigmoid function is used as the activation function due to its character 𝜙′(𝒂) =

𝜙(𝒂)(1 − 𝜙(𝒂)). Along the order of the output layer to hidden layers, the gradient of 

variables in the hidden layer can be calculated: 
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𝜕𝐿

𝜕𝒙𝑀−1
=

𝜕𝐿

𝜕𝒙𝑀
∙

𝜕𝒙𝑀

𝜕𝒙𝑀−1
=

𝜕𝐿

𝜕𝒙𝑀
∙ 𝒘𝑀T

. (3.29) 

𝜕𝐿

𝜕𝒂𝑀−1
=

𝜕𝐿

𝜕𝒙𝑀−1
∙
𝜕𝒙𝑀−1

𝜕𝒂𝑀−1

=
𝜕𝐿

𝜕𝒙𝑀−1
∙ 𝜙′(𝒂𝑀−1)

=
𝜕𝐿

𝜕𝒙𝑀−1
∙ 𝜙(𝒂𝑀−1) ∙ (1 − 𝜙(𝒂𝑀−1))

=
𝜕𝐿

𝜕𝒙𝑀−1
∙ 𝒙𝑀−1 ∙ (1 − 𝒙𝑀−1). (3.30)

 

Then the update of 𝒘𝑀−1 is: 

∇𝒘𝑀−1 =
𝜕𝐿

𝜕𝒘𝑀−1
=

𝜕𝐿

𝜕𝒂𝑀−1
∙
𝜕𝒂𝑀−1

𝜕𝒘𝑀−1
=

𝜕𝐿

𝜕𝒂𝑀−1
∙ 𝒙𝑀−2T

. (3.31) 

Follow this procedure until the weights vector 𝒘1 is updated. Then one iteration is 

finished. When the deep learning model is trained, forward propagation and 

backpropagation are both very essential. First the model needs to be fed with input data 

and forward propagate the data till the result is obtained; then the error is calculated 

and back propagated to hidden layers to adjust the parameters. Since the variables of 

forward propagation are used in back-propagation, then the reuse of the variables 

causes that the memory cannot be released immediately after the forward propagation. 

3.5 Cost-sensitive Learning 

In the classical hypothesis of machine learning, it is often assumed that different class 

samples are balanced, that is, the number of samples is the same or almost the same, 

but the actual tasks in our realistic scenarios often do not meet this assumption. In 

general, an imbalanced training sample distribution will result in a trained model that 

focuses on classes with a larger number of samples, while ignoring classes that has 

fewer samples, so that the generalization of the model is affected. An extreme example 

is that for a binary classification problem, there are 99 positive samples and only one 

negative sample in the training set. Without considering the imbalanced class 

distribution, the learning algorithm will cause the classifier to abandon the negative 

prediction, because it can obtain a very high accuracy that all samples are classified as 

positive in the training phase. But imagine that if the test set has 99 negative samples 

and only one positive sample, then the classifier only has a very low accuracy and 

completely failed on the test set. In fact, in addition to common classification and 

regression problems, pixel-level tasks such as image semantic segmentation (Long et 

al., 2015) and depth estimation (Liu et al., 2015) also have phenomena of the 

imbalanced class distribution. In order to further improve the generalization of the 
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model and reduce the impact of the imbalanced class distribution, cost-sensitive 

learning is appended to the loss function. 

3.5.1 Cost-sensitive Vector 

One of the commonly used cost-sensitive methods is the cost-sensitive vectors. 

Suppose a cost-sensitive vector 𝝎 = (𝜔1, 𝜔2, … , 𝜔𝐶) and 𝝎 ∈ ℝ+
𝐶 , where 𝐶 is the 

number of classes. The elements of 𝜔𝑐  indicates the penalty that the sample is 

misclassified into cth class. The new loss function updated from (3.11) is shown below: 

𝐿 = −
1

𝑁
∑ ∑𝜔𝑐 ∙ 𝛿(𝑦𝑛, 𝑦𝑐) ∙ 𝑙𝑜𝑔(�̂�𝑛

𝑐)

𝐶

𝑐=1

𝑁

𝑛=1

. (3.32) 

3.5.2 Specify the Weights 

According to (Eigen et al., 2015) and (Xie & Tu, 2015), the weights in cost-sensitive 

vector are specified in two ways. The first specification formula is described below: 

𝜔𝑐 =
𝑚𝑒𝑑𝑖𝑎𝑛𝑓𝑟𝑒𝑞

𝑓𝑟𝑒𝑞(𝑐)
, (3.33) 

where 𝑓𝑟𝑒𝑞(𝑐)  is the number of pixels of class 𝑐  divided by the total number of 

pixels in images where 𝑐  is present, and 𝑚𝑒𝑑𝑖𝑎𝑛𝑓𝑟𝑒𝑞  is the median of these 

frequencies (Eigen et al., 2015). 

For binary classification, Xie & Tu (2015) proposed another formula: 

𝜔𝑐 = 1 − 𝑓𝑟𝑒𝑞(𝑐). (3.34) 
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4. Methodology 

An attractive methodology based on convolutional neural network for land cover 

classification has been proposed and achieved a great success (Yang et al., 2018). 

However, there are still some misclassifications and the accuracy at boundaries is 

obviously lower than overall accuracy. Deeper network structures and architectures are 

investigated to pay more attention on a precise delineation of the object boundaries. 

Generally speaking, there are two investigation variants. The first one is hard-negative 

mining. Pixels that are hard to be classified, need to be found out. It can be done by 

setting a threshold of probabilistic score, the pixels whose correct class scores are above 

the threshold are considered as easy ones, otherwise are hard ones. Then investigations 

on how to improve the classification of them have to be conducted. The second one is 

adding more prior knowledge to the existing convolutional neural network model. In 

this case, the prior object boundary information needs to be firstly extracted out from 

the reference. Afterwards, this knowledge needs to be incorporated into the model by 

modifying the structure, whereas a research on modification must be taken. Besides, an 

investigation of the width of boundary should be taken, in order to find out the 

relationship between performance and the boundary. 

All networks are implemented based on tensorflow framework (Abadi et al., 2016). 

4.1 SkipNet: A Deep Convolutional Neural Network 

Yang et al. have proposed a new approach to determine land cover based on 

convolutional neural network. The input data are high-resolution digital aerial images. 

The proposed convolutional neural network architecture is based on SegNet 

architecture (Badrinarayanan et al., 2017), while the new model SkipNet is deeper but 

requires fewer parameters. SkipNet is a deep fully encoder-decoder convolutional 

neural network architecture for semantic segmentation, where semantic segmentation 

indicates that each pixel in the image is predicted with a label. The encoder part is 

similar to a standard convolutional neural network, whereas the decoder part is to 

restore low-resolution feature maps, the result of the encoder network, to full-scale 

feature maps as input for per-pixel classification.  

4.1.1 Architecture 

SkipNet applies a symmetric encoder-decoder structure to perform semantic 

segmentation. The encoder part of the model has four blocking units, where every 

blocking unit is composed of three convolution blocks and one max-pooling layer. A 

convolution block contains one convolutional layer, followed by batch normalization 
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(Ioffe & Szegedy, 2015) and a rectified linear unit (ReLU) adding non-linearity. The 

decoder part is symmetric to the encoder and has four blocking units, but each blocking 

unit is started with upsample layer, continued with three convolution blocks, of which 

the inside order does not change, i.e. the convolutional layer, batch normalization and 

a rectified linear unit. The upsample layer is realized with bilinear interpolation. At last, 

there is a skip connection at the end of each blocking unit of the decoder.  

 

Figure 4-1 Architecture of SkipNet. 

The skip connection is the mechanism to combine the features. The sub-sample, e.g. 

max-pooling, is not beneficial for boundary delineation, because the image becomes 

increasingly lossy (Badrinarayanan et al., 2017). Due to this reason, the feature maps 

before max-pooling in the encoder are concatenated with the feature maps in the 

decoder at corresponding positions. Trainable 1 × 1 convolutions are used to reduce 

the dimension of the combined feature maps. The implementation of the skip 

connection tries to restore the boundary information in the encoder before max-pooling, 

because the boundary information is preserved better in the encoder. The mechanism is 

illustrated below: 

 

Figure 4-2 Structure of a skip connection; color code: cf. Figure 4-1. 
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Each convolutional layer has the kernel size of 3 × 3 and a stride of 1 pixel. At each 

convolutional layer zero-padding is used to keep the spatial dimension of the feature 

maps. In the encoder part, the convolutional layers in the first convolution block have 

64 convolutional kernels, whereas the convolutional layers in the second convolution 

block have 96 kernels. The convolutional layers in third and fourth convolution block 

have 128 convolutional kernels. In the decoder part, it is the mirror of the encoder part. 

Max-pooling has a pooling window size of 2 × 2 and its stride is 2 pixels.  

At the end of the decoder, the softmax classifier is applied to convert the feature maps 

to the probabilities of every class. This is implemented by a 1 × 1 convolutional layer 

that outputs a tensor of dimension 𝐶 × 𝐻 × 𝑊, where 𝐻 and 𝑊 is the respectively 

the height and width of the input image and 𝐶 is the number of classes.  

Suppose the vector 𝒁𝑖 = (𝑍𝑖
1, 𝑍𝑖

2, … , 𝑍𝑖
𝐶)

T
 represents the class scores of the pixel 𝑖 in 

the input image, where 𝐶  is the number of classes, 𝑦𝑖 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶}  is the 

corresponding true label and the output of softmax is �̂�𝑖 = (�̂�𝑖
1, �̂�𝑖

2, … , �̂�𝑖
𝐶)

T
, i.e. the 

predicted probabilities of pixel 𝑖 and �̂�𝑖
𝑐 is the probability for class 𝑦𝑐: 

�̂�𝑖
𝑐 = 𝑃𝑖(𝑦

𝑐|𝑥) = softmax(𝒁𝑖, 𝑦
𝑐) =

𝑒𝑥𝑝(𝑍𝑖
𝑐)

∑ 𝑒𝑥𝑝(𝑍𝑖
𝑗
)𝐶

𝑗=1

, (4.1) 

where 𝑃𝑖(𝑦
𝑐|𝑥) is the posterior probability for pixel 𝑖 to take class label 𝑦𝑐 given 

the image data 𝑥. 

In training, all the parameters are determined, and the batch size must be set to 1 due to 

the limit of the GPU. The parameters in the model are trained with the stochastic 

gradient descent and the backpropagation algorithm to optimize the objective function, 

where cross-entropy loss function is implemented and described below: 

𝐿 = −
1

𝐻 ∙ 𝑊
∑ ∑𝜔𝑐 ∙ 𝛿(𝑦𝑖, 𝑦

𝑐) ∙ 𝑙𝑜𝑔(�̂�𝑖
𝑐)

𝐶

𝑐=1

𝐻∙𝑊

𝑖=1

, (4.2) 

where 𝜔𝑐 ∈ 𝝎 = {𝜔1, 𝜔2, … , 𝜔𝐶} is a class weight computed according to (3.33) to 

compensate for an imbalanced class distribution in training data (Yang et al., 2018) and 

𝛿(𝑦𝑖, 𝑦
𝑐) is Kronecker delta, of which the result is 1 if the variables are equal, and 0 

otherwise. 

4.1.2 Implementation and Training 

For training SkipNet we employed a stochastic gradient descent optimizer with weight 
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decay 0.0005. The input size is 256 × 256 pixels. Due to the limitations of our GPU, 

the mini-batch size is set to 1. The base learning rate is set to 0.01 and decreased to 

0.001 after 15 epochs in a total of 30 epochs training. 

4.2 Investigations on Improving the Classification of Land 

Cover Based on SkipNet 

Generally speaking, there are two investigation variants. The first one is hard-negative 

mining. Pixels that are hard to be classified, need to be found out. It can be done by 

setting a threshold of probabilistic score, the pixels whose correct class scores are above 

the threshold are considered as easy ones, otherwise are hard ones. Then investigations 

on how to improve the classification of them have to be conducted. It could be: 

 Retraining only the hard pixels in the same convolutional neural network model 

 Using a patch-based convolutional neural network model which requires patches 

as input, where the patches are extracted out by centering the hard pixels 

The second one is adding more prior knowledge to the actual convolutional neural 

network model. In this case, the prior object boundary information needs to be firstly 

extracted out from the reference. Afterwards, this knowledge needs to be incorporated 

into the model by modifying the structure, whereas a research on modification must be 

taken. Besides, an investigation of the width of boundary should be taken, in order to 

find out the relationship between performance and the boundary. 

 

Figure 4-3 Class boundaries generated by reference with different width. Black and white represent 

respectively boundaries and others. 
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4.2.1 Hard-Negative Mining 

Hard-negative mining is a method, which uses pre-trained models to make inference on 

the training dataset, and then collect the misclassified examples, i.e. negative samples, 

to build a hard-negative dataset. With this new dataset, a new model is trained, or the 

old model is fine-tuned (Felzenszwalb et al., 2010). 

 

Figure 4-4 Illustration of hard-negative mining. 

Our hard-negative dataset is built with an offline method, which tests the initial dataset 

to obtain probabilities with the pre-trained SkipNet model. After testing, the pixels in 

initial training dataset are summarized into three categories by setting a mining 

threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 . Suppose the true label is 𝑦𝑖 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶} , where 𝐶  is the 

number of classes, �̂�𝑖
𝑐  is the highest probability of �̂�𝑖 = (�̂�𝑖

1, �̂�𝑖
2, … , �̂�𝑖

𝐶)
𝑇
  and 

represents class 𝑦𝑐 for pixel 𝑖: 

 If 𝑦𝑖 = 𝑦𝑐  and �̂�𝑖
𝑐 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 , i.e. the pixel 𝑖  is correctly classified and the 

probability is higher than the threshold, then the pixel 𝑖 belongs to the group of 

strongly and correctly classified pixels. 

 If 𝑦𝑖 = 𝑦𝑐 but �̂�𝑖
𝑐 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 , i.e. the pixel 𝑖  is correctly classified, but the 

probability is lower than the threshold, then the pixel 𝑖 belongs to the group of 

weakly and correctly classified pixels. 



 

35 

 If 𝑦𝑖 ≠ 𝑦𝑐, then the pixel 𝑖 belongs to the group of misclassified pixels 

The last two kinds of pixels are used to build new training dataset.  

4.2.2 Fine-tuning the SkipNet with Hard-Negative Mining 

Fine-tuning the pre-trained SkipNet model is to use the target task data to continue the 

training process on the original pre-trained model. Although the SkipNet has already 

showed a great generalization ability, we hope to enhance its performance by 

preprocessing the dataset or modifying the model to pay more attention on the 

misclassified pixels.  

Architecture 

 

Figure 4-5 Procedure of fine-tuning the pre-trained SkipNet model with hard-negative mining 

Two different standards to build hard-negative dataset are implemented by setting 

different mining thresholds 𝑇ℎ𝑟𝑒𝑠ℎ𝑀. We investigate the impact of different mining 

thresholds to the model. In fine-tuning, a mask has been implemented on the initial 

training dataset to exclude the strongly and correctly classified pixels out of training. 

The mask is generated according to hard-negative mining. Furthermore, we also 

investigate a fine-tuning method, where the weights vectors of the encoder are frozen, 

i.e. the encoder cannot be trained. In testing, the overall accuracy of the fine-tuned 

model may decrease compared to the pre-trained SkipNet model, because the features 

of hard examples may not very representative for their classes. The predictions of the 

pre-trained SkipNet model are ensembled with the predictions of the fine-tuned model, 

which combines the results of the fine-tuned model and the pre-trained SkipNet model 

by multiplying the probabilistic class scores. 

Fine-tuning 

For fine-tuning the pre-trained SkipNet model, we employed a stochastic gradient 

descent optimizer with weight decay 0.0005. Due to the limitations of our GPU, the 



 

36 

mini-batch size is set to 1 and the learning rate is set to 0.001 for 15 epochs. 

4.2.3 Patch-based Classification: LiteNet 

Patch classification is a deep learning method applied to semantic segmentation, where 

an image is divided into many patches, which are fed to the deep model as input. A 

patch takes the label of its central pixel as its label. In addition, context information is 

provided by the rest pixels in a patch and is converted into a feature map by 

convolutional neural network. In summary, a patch-based convolutional neural network 

converts the pixel values in an image patch to a one-dimensional class scores, and a 

softmax classifier is implemented to compute the class probabilities (Paisitkriangkrai 

et al., 2016). Pooling operation and activation function contain no trainable parameters 

because they perform a fixed operation, whereas the convolutional and fully connected 

layers extract and integrate features with neuron weights, which are trained with 

optimization algorithms so that the class of the highest class score is conformed to 

match the label in training dataset. 

Architecture 

Our patch-based convolutional neural network is composed with the strategy of 

(Krizhevsky et al., 2012), where it constructs a building unit with a convolutional layer, 

an activation function (ReLU) and a max-pooling layer. The convolutional layer 

computes the feature map with its convolutional kernel, whereas the activation function 

(ReLU) adds the non-linearity of the network and the max-pooling layer reduce the 

spatial resolution of the feature map. These two no parameter operations improve the 

robustness of the network to distortions and small translations (Paisitkriangkrai et al., 

2016). Our network is constructed with four successive building units, continued with 

two fully connected layers, which integrates the local features into global features, and 

ended with a softmax classifier to convert the output of the last fully connected layer to 

the probabilities. The structure is illustrated below: 
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Figure 4-6 Patch-based convolutional neural network architecture according to (Paisitkriangkrai et al., 2016), 

where the difference of model is the softmax output, which has six output channels. 

The inputs of this network are patches of size 64 × 64 . The pooling layer is 

implemented with max-pooling technique and its kernel size is 3 × 3, where the stride 

is 2 pixels. All the convolutional layers in this network works with a stride of 1 pixel 

and zero padding. The first convolutional layer, whose input is the image with three 

channels, consists of 32 kernels, where its size is 5 × 5 × 3. The second convolutional 

layer has 64 kernels of size 5 × 5 × 32. The third convolutional layer is composed of 

96 kernels, of which the size is 5 × 5 × 64 . The last convolutional layer has 128 

kernels with size of 3 × 3 × 96 . Both fully connected layers have 128 neurons, 

followed by a 50% dropout. The last fully connected layer converts the feature vectors 

into a vector of class scores 𝒁𝑖 = (𝑍𝑖
1, 𝑍𝑖

2, … , 𝑍𝑖
𝐶)

T
, where 𝐶 is the number of classes. 

For each patch 𝑖 to be classified, its true label is𝑦𝑖 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶}. The output of 

softmax is �̂�𝑖 = (�̂�𝑖
1, �̂�𝑖

2, … , �̂�𝑖
𝐶)

T
, i.e. the predicted probabilities of pixel 𝑖 and �̂�𝑖

𝑐 is 

the probability for class 𝑦𝑐 . The softmax layer normalizes the class scores into 

posterior probability 𝑃𝑖(𝑦𝑖|𝑥𝑖) for patch 𝑖, given the image data 𝑥𝑖: 

�̂�𝑖
𝑐 = 𝑃𝑖(𝑦

𝑐|𝑥𝑖) = softmax(𝒁𝑖, 𝑦
𝑐) =

𝑒𝑥𝑝(𝑍𝑖
𝑐)

∑ 𝑒𝑥𝑝(𝑍𝑖
𝑗
)𝐶

𝑗=1

. (4.3) 

Training uses mini-batch stochastic gradient descent and back-propagation algorithm 

optimize the cross-entropy loss function, which is: 

𝐿 = −
1

𝑁
∑∑𝛿(𝑦𝑖, 𝑦

𝑐) ∙ 𝑙𝑜𝑔(�̂�𝑖
𝑐)

𝐶

𝑐=1

𝑁

𝑖=1

. (4.4) 

where 𝛿(𝑦𝑖, 𝑦
𝑐) is Kronecker delta, of which the result is 1 if the variables are equal, 
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and 0 otherwise, and 𝑁 is the number of patches in a mini-batch. 

Training and Inference 

The purpose our test is to improve the performance of the existing convolutional neural 

network model, so the model is trained with the help of hard-negative mining. For 

training the LiteNet, we employed a stochastic gradient descent optimizer with weight 

decay 0.0005 and a step learning policy. The mini-batch size is set to 16, while the base 

learning rate is set to 0.01 and decreased to 0.001 after 15 epochs in a total of 30 epochs 

training. 

In testing, the inputs of this network are several complete images, which are divided 

into patches by a sliding window approach. Although the sliding window approach can 

be implemented effectively in the model, it can be very time-consuming due to 

overlapping. In order to reduce the unnecessary calculations caused by overlapping in 

testing, bilinear interpolation is added in the model. First, the sliding window is 

specified with a step size of 4 pixels to evaluate the entire test image, however, the 

result is not a pixel-level classification as shown below. 

[
 
 
 
 
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ 𝑃𝑥1𝑦1
𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑃𝑥1𝑦2

⋯ 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝

⋯ 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝

⋯ 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑛𝑝

⋯ 𝑃𝑥2𝑦1
𝑛𝑝 𝑛𝑝 𝑛𝑝 𝑃𝑥2𝑦2]

 
 
 
 
 
 
 
 

 

Figure 4-7 A simple example of the result processed by the patch-based model, which contains a sliding 

window with a step size of 4 pixels. “np” represents “not predicted” and “𝑃𝑥𝑦” represents the probabilities. 

Secondly, in order to acquire a pixel-level classification, bilinear interpolation of 

probabilities is implemented to obtain dense predictions, which can be described as 

below: 

𝑃(𝑥, 𝑦) =
1

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)
[𝑥2 − 𝑥 𝑥 − 𝑥1] [

𝑃𝑥1𝑦1
𝑃𝑥1𝑦2

𝑃𝑥2𝑦1
𝑃𝑥2𝑦2

] [
𝑦2 − 𝑦

𝑦 − 𝑦1

] . (4.5) 

This method significantly alleviates the problem of time-consuming during evaluation, 

but bilinear interpolation algorithm has properties of the low pass filter, which can 

damage high frequency components, so it may blur the object boundaries to some extent. 

With the dense predictions, which is focused on hard-negative examples, we may 
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combine the results of the pre-trained SkipNet model and the patch-based convolutional 

neural network by applying ensemble method, where the probabilistic vectors of the 

pre-trained SkipNet are multiplied with the corresponding probabilistic vectors of the 

LiteNet model. 

4.2.4 Adding Prior-Knowledge of Boundary in SkipNet 

The result of the pre-trained SkipNet model has been carefully analyzed, and one 

special misclassification has drawn our attention. The boundaries between objects, e.g. 

between Building and Impervious Surfaces, are not very precise. 

 

Figure 4-8 Misclassifications of boundaries. (a) is the reference, whereas (b) is the predicted labels. 

The third investigation is adding more prior knowledge to the SkipNet. In this case, the 

prior object boundary information needs to be firstly extracted out from the reference. 

Afterwards, this knowledge needs to be incorporated into the model by modifying the 

structure, whereas a research on modification must be taken. Besides, an investigation 

of the width of boundary should be taken, in order to find out the relationship between 

performance and the boundary. 

Architecture 

After the boundaries have been extracted, the model structure needs to be modified to 

incorporate the knowledge. The SkipNet is a single task classifier, where it only predicts 
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the label of each pixel. Now a new task is implemented with the purpose of the 

classification of the class boundaries. To achieve this goal, a new softmax layer is 

parallelly added into the model. The new structure is shown below: 

 

Figure 4-9 Illustration of the dual task model. The dual task model has two classifiers connected to the last 

layer of decoder, of which (a) classifier still performs the multiclass classification and (b) classifier performs 

binary classification of boundaries. The input of both classifiers is the dense feature map from the last layer of 

the decoder part. 

In training, the network is fed with the original training dataset, whereas the reference 

of the class boundaries is automatically generated with the new implemented algorithm. 

For multiclass classification, suppose the vector 𝒁𝑖 = (𝑍𝑖
1, 𝑍𝑖

2, … , 𝑍𝑖
𝐶)

T
 represents the 

class scores of the pixel 𝑖, where 𝐶 is the number of classes, 𝑦𝑖 ∈ {𝑦1, 𝑦2, … , 𝑦𝐶} is 

the corresponding true label and 𝑍𝑖
𝑐  is the class score for class 𝑦𝑐 . For boundary 

classification, the vector 𝓩𝑖 = (𝓩𝑖
1, 𝓩𝑖

2)T  represents the class scores of the pixel 𝑖 . 

𝒴𝑖 ∈ {𝒴1, 𝒴2} is the true label, and 𝓩𝑖
𝑐 is the class score for class 𝒴𝑐. 

The new loss function is the combination of two classifiers, shown as below: 

𝐿𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 = −
1

𝐻 ∙ 𝑊
∑ ∑𝜔𝑐 ∙ 𝛿(𝑦𝑖, 𝑦

𝑐) ∙ 𝑙𝑜𝑔 (
𝑒𝑥𝑝(𝑍𝑖

𝑐)

∑ 𝑒𝑥𝑝(𝑍𝑖
𝑗
)𝐶

𝑗=1

)

𝐶

𝑐=1

𝐻∙𝑊

𝑖=1

. (4.6) 

𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = −
1

𝐻 ∙ 𝑊
∑ ∑𝛾𝑐 ∙ 𝛿(𝒴𝑖, 𝒴

𝑐) ∙ 𝑙𝑜𝑔 (
𝑒𝑥𝑝(𝓩𝑖

𝑐)

∑ 𝑒𝑥𝑝(𝓩𝑖
𝑗
)2

𝑗=1

)

2

𝑐=1

𝐻∙𝑊

𝑖=1

. (4.7) 
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𝐿 = 𝛼 ∙ 𝐿𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 + 𝛽 ∙ 𝐿𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, (4.8) 

where 𝛼 and 𝛽 are the new hypermeters to modify the ratio of two loss functions, 𝐻 

and 𝑊  is respectively the height and width of the input image, and 𝜔𝑐 ∈ 𝝎 =

{𝜔1, 𝜔2, … , 𝜔𝐶}  is a class weight computed according to (3.33). 𝛿(𝑦𝑖, 𝑦
𝑐)  and 

𝛿(𝒴𝑖, 𝒴
𝑐) are Kronecker delta, of which the result is 1 if the variables are equal, and 0 

otherwise. 𝛾𝑐 is a class weights for binary classification (3.34). 

Training and Inference 

For training this network, we load the parameters of the encoder, decoder and multiclass 

classifier from the pre-trained SkipNet and initialize the parameters of boundary 

classifier normally. We employed a stochastic gradient descent optimizer with weight 

decay 0.0005. The input size is 256 × 256 pixels. Due to the limitations of our GPU, 

the mini-batch size is set to 1. The learning rate is 0.001 for 15 epochs. In testing, the 

classifier (b) does not output predictions.  
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5. Experiments 

In this chapter, we will test our three architectures using Vaihingen Dataset of the ISPRS 

2D Semantic Labeling Challenge (Wegner et al., 2017). First, a brief introduction of 

the dataset is presented. Then we will share our investigation experiments in two 

aspects, i.e. hard-negative mining and adding prior knowledge of the boundary. The 

results of each architecture will be evaluated. Our architectures are implemented based 

on TensorFlow framework (Abadi et al., 2016). We use a GPU (Nvidia GTX 1060, 3GB) 

to accelerate the training and inference. 

The pre-trained SkipNet model is provided by Institute of Photogrammetry and 

GeoInformation, where the model is implemented based on TensorFlow framework 

(Abadi et al., 2016). All results will be compared with the pre-trained SkipNet model 

and for the sake of brevity, we call it SkipNet-B (B refers to baseline). 

5.1 Dataset 

The proposed investigations were applied to Vaihingen Dataset of the ISPRS 2D 

Semantic Labeling Challenge (Wegner et al., 2017), which is an open benchmark 

dataset provided online. Overall there are over 168 million pixels in 33 images. 16 of 

33 are provided with labeled reference for training and validation and the others are 

withheld for testing. The pixel-based reference was generated by manual labelling and 

has 6 labels: Impervious Surfaces (Imper.), Building (Build.), Low Vegetation (Low 

Veg.), Tree, Car, and Clutter/Background. We take 4 images (image numbers 5, 7, 23, 

30) to build our validation datasets and the rest 12 images to build our training datasets 

for the investigations. 

The evaluation is based on overall accuracy (OA), i.e. the percentage of pixels that are 

assigned the correct class label by the classification process, and the average F1 score, 

i.e. the average of the harmonic means of the completeness and the correctness per class. 

In the evaluation of F1 scores, class Clutter/Background will be ignored due to that 

there are very few pixels of class Clutter/Background in the validation datasets. 

5.1.1 Setup for Fine-tuning the SkipNet-B 

The 12 images for building training datasets are divided into tiles of size 256 × 256 

with overlapping of 50%, which corresponds to input size required by our SkipNet 

variants. These tiles are used for training, whereas the other 4 images are for testing. 

The tiles in the training dataset are flipped in horizontal and vertical directions and also 

rotated to 90°, 180° and 270° . There 3,328 tiles before data augmentation and 
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19,968 tiles afterwards. 

According to the probabilistic scores predicted by the SkipNet-B, we separate the pixels 

of the tiles in the training dataset by the mining threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑀, cf. 4.2.1, to obtain 

the hard-negative examples. There are two different mining thresholds 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 ∈

{0.85,0.95}   in our fine-tuning experiment. We fine-tune the SkipNet-B in two 

different ways: directly fine-tuning and encoder-frozen fine-tuning. Directly fine-

tuning means we fine-tune the weights of the encoder and the decoder, whereas the 

encoder-frozen fine-tuning indicates that we make the weights of the encoder remain 

unchanged and the weights of the decoder fine-tuned.  

In our evaluation, SkipNet-D𝑇ℎ𝑟𝑒𝑠ℎ𝑀
 represents the model is directly fine-tuned with 

different 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 . SkipNet-E𝑇ℎ𝑟𝑒𝑠ℎ𝑀
  refers to the model is encoder-frozen fine-

tuned with different 𝑇ℎ𝑟𝑒𝑠ℎ𝑀. We compared different ensembles, where we drop the 

term SkipNet to denote the classifiers that we combined. For instance, EN (B, 

D𝑇ℎ𝑟𝑒𝑠ℎ𝑀
) refers to an ensemble that combines the chosen output of SkipNet-B and 

SkipNet-D𝑇ℎ𝑟𝑒𝑠ℎ𝑀
. 

5.1.2 Setup for Training the LiteNet 

Our LiteNet is based on the architecture according to Paisitkriangkrai et al., 2016. In 

order to enhance the performance of SkipNet-B, our LiteNet model is arranged to pay 

more attention to the hard-negative examples. This focus has been reflected in the 

design of the training datasets. 

With the probabilistic scores of 12 training images predicted by SkipNet-B, we 

classified the pixels with 𝑇ℎ𝑟𝑒𝑠ℎ𝑀 = 0.95  to build different training datasets, cf. 

4.2.1. The original training dataset of SkipNet-B, cf. 5.1.1, contains low percentage of 

hard-negative examples, which has been modified at different levels in our new training 

datasets. The training samples of LiteNet are patches, whose central pixel is selected 

according to the hard-negative mining as shown below. A patch is generated with the 

central pixel and its surrounding pixels and its size is 64 × 64, which corresponds to 

input size required by LiteNet. There are five new training datasets. The patches in 

training datasets are flipped in horizontal and vertical directions and also rotated to 

90°, 180° and 270° for data augmentation. 
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Table 1 Five training datasets for LiteNet. The category of pixels is cf. 4.2.1. 

In our evaluation, LiteNet-V, W, X, Y, Z represent the network variants trained with 

datasets V, W, X, Y, Z respectively. We compared different ensembles, where we drop 

the term LiteNet to denote the classifiers that we combined. For instance, EN(B, V) 

refers to an ensemble that combines the output of SkipNet-B and LiteNet-V. We 

implement the ensemble of not only probabilistic scores of all pixels, but also a certain 

Due to that of pixels, whose highest probabilistic score is smaller than a given threshold. 

This can be regarded as a hard-negative mining for post-processing in predictions in 

order to find out the probabilistic outputs that need to be combined. 

5.1.3 Setup for the Boundary-aware SkipNet 

The accuracy inside boundaries of SkipNet-B varies from the width of the boundaries 

but is significantly lower than the overall accuracy as shown below. The overall 

accuracy of SkipNet-B is 86.29% 

 

Table 2 Evaluation of accuracies inside or outside the boundaries with different boundary widths based on 

SkipNet-B. Inside or outside refers to the area inside or outside the boundary. 

The 12 large images with reference data of Vaihingen dataset are divided in the same 

way, cf. 5.1.1. The training dataset is the same as the fine-tuning experiments, whereas 

the boundary reference is generated according to the reference of the Vaihingen dataset. 

In this experiment we trained six boundary-aware SkipNet with different classifier 

weights, i.e. (𝛼, 𝛽) ∈ {(1,1), (1,0.1) }, (𝛼, 𝛽) cf. 4.2.4. 

In our evaluation, we use SkipNetB- Width(𝛼,𝛽)  to indicate our network variants. 

SkipNetB refers to boundary-aware SkipNet, Width refers to the boundary width and 

Classifier weight refers to (𝛼, 𝛽). We compared different ensembles, where we drop 

the term SkipNet and SkipNetB to denote the classifiers that we combined. For instance, 
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EN(B, 10(1,1)) refers to an ensemble that combines the chosen output of SkipNet-B and 

SkipNetB-10(1,1). 

5.2 Evaluation of Hard-Negative Mining 

In the investigation of hard-negative mining, there are two architectures that will be 

evaluated, i.e. SkipNet and LiteNet. These two architectures are trained with different 

training datasets and parameter settings.  

5.2.1 Evaluation of Fine-tuning the SkipNet-B 

Table 3 presents the land cover classification results for all variants except for 

ensembles of networks described in section 5.1.1. SkipNet-D has achieved a better 

performance than SkipNet-E both in F1 scores and OA regardless of the mining 

thresholds. This may be caused by that not all parameters are trainable in the SkipNet-

E. In addition, compared to SkipNet-B, SkipNet-E0.95 shows a decrease of 0.24% and 

0.30% in average F1 scores and OA respectively, and SkipNet-E0.85 shows a decrease 

of 7.15% and 1.83% in average F1 score and OA respectively. Although the OA of 

SkipNet-D0.95 and SkipNet-D0.85 decreased 0.11% and 0.15% respectively, the average 

F1 scores show a little improvement (0.05% and 0.07% respectively). For SkipNet-

D0.95, two classes, i.e. Impervious Surfaces and Building are better classified by a 

margin of F1 scores (0.68% and 0.56% respectively), compared to SkipNet-B. The 

reason why F1 scores of these two classes are improved is that the fine-tuning with 

hard-negative examples increases the ability to distinguish the samples, where the 

samples of these two classes may be similar as shown in Chapter 1.1. While F1 scores 

of SkipNet-D0.95 are improved for two classes, SkipNet-D0.85 achieves a better average 

F1 score and F1 score of class car with 83.35% and 78.49% respectively. After fine-

tuning with hard-negative mining, the F1 scores of class car, which has fewer training 

samples (covering 1.40% of the test area), have been improved due to that the 

percentage of training samples of class car has increased. 

 

Table 3 Results of land cover classification. Network variant: cf. Section 5.1.1. F1: F1 score, OA: overall 

accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font. 

Table 4 presents the land cover classification results for ensemble variants described in 

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

SkipNet-D0.95 87.76 92.92 71.77 85.76 78.43 83.33 86.18

SkipNet-D0.85 87.64 92.76 72.05 85.78 78.49 83.35 86.14

SkipNet-E0.95 87.51 92.67 71.71 85.64 77.69 83.04 85.99

SkipNet-E0.85 85.66 91.81 70.58 84.84 47.77 76.13 84.46

F1 [%]
Network variant avg. F1 [%] OA [%]
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section 5.1.1. We choose network variant SkipNet-D to implement ensemble due to that 

directly fine-tuning outperformed the other way according to Table 1. It is notably that 

the F1 of class Low Vegetation and class Tree is higher, compared to other network 

variants. OA and average F1 score of EN(B, D0.95, D0.85) outperformed the other 

network variants with 86.40% and 83.66% respectively. 

 

Table 4 Results of land cover classification. Network variant: cf. Section 5.1.1. F1: F1 score, OA: overall 

accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font. 

5.2.2 Evaluation of LiteNet 

According to Table 5, our baseline SkipNet has achieved best performance among these 

network variants. It is in our expectations due to the design of training datasets, because 

our datasets except dataset V contain much higher percentage of samples, of which 

features can be hardly summarized. LiteNet-V has the best performance in our LiteNet 

variants due to that the dataset contains only the samples, of which the features can be 

easily extracted. However, due to this design, the generalization ability of LiteNet-V is 

not as good as SkipNet-B. 

 

Table 5 Results of Results of land cover classification. Network variant: cf. Section 5.1.2. F1: F1 score, OA: 

overall accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font. 

Table 6 presents the ensembles of LiteNet variants and SkipNet-B. EN(B, Y) shows a 

little increase (0.04%) in OA, whereas SkipNet-B still has the better average F1 score 

of 83.28%. In addition, EN(B, Y) outperformed other network variants in F1 scores of 

class Impervious Surfaces and class Building with 87.09% and 92.53% respectively, 

whereas the F1 score of class Low Vegetation of EN(B, V) is higher than others with 

74.94%. It is remarkably that OA of EN(B, Z) achieves 85.87%, whereas OA of 

LiteNet-Z is only 51.38%. 

Imper. Build. Low Veg. Tree Car

EN(B,D0.95) 87.45 92.61 74.01 86.29 77.66 83.60 86.39

EN(B,D0.85) 87.41 92.57 73.95 86.26 77.50 83.54 86.35

EN(B,D0.95,D0.85) 87.60 92.72 73.55 86.17 78.24 83.66 86.40

Network variant
F1 [%]

avg. F1 [%] OA [%]

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

LiteNet-V 79.26 87.29 68.22 80.90 46.66 72.47 79.42

LiteNet-W 77.81 86.74 66.45 80.43 42.45 70.78 78.24

LiteNet-X 78.26 86.86 67.73 81.21 46.78 72.17 79.02

LiteNet-Y 75.42 85.35 60.14 80.77 47.22 69.78 77.23

LiteNet-Z 11.92 66.04 0.00 71.95 36.63 37.31 51.35

Network variant
F1 [%]

avg. F1 [%] OA [%]
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Table 6 Result of land cover classification. Network variant: cf. Section 5.1.2. F1: F1 score, OA: overall accuracy, 

both evaluated on the basis of pixels. Best scores are printed in bold font. 

We want to investigate the relationship between OA and the threshold for ensembles, 

which is used similar to the mining threshold. We implement the EN(SkipNet-B, 

LiteNet) under a certain condition. If the highest probabilistic score of a pixel predicted 

by SkipNet-B is under the threshold, then we multiply the probabilistic vectors of 

SkipNet-B and LiteNet. The results are shown below: 

 

Figure 5-1 Overall accuracies of land cover classification. Network variant: cf. Section 5.1.2. 

If the threshold reaches 1.0, all pixels are implemented with ensemble, where OA is the 

same as Table 5. If the threshold is under 0.47, then no pixels are implemented with 

ensemble method. According to Figure 5-1, when threshold equals 0.94, OA achieves 

its peak with 86.44%. Training datasets with high percentage of strongly and correctly 

classified pixels would achieve a good performance. Training with datasets of high 

percentage of the hard-negative examples would damage the generalization of the 

models. 

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

EN(B,V) 86.94 92.47 74.94 86.38 74.79 83.10 86.29

EN(B,W) 86.70 92.26 74.77 86.35 74.71 82.96 86.12

EN(B,X) 86.69 92.15 74.92 86.40 74.51 82.93 86.12

EN(B,Y) 87.09 92.53 74.42 86.40 75.06 83.10 86.33

EN(B,Z) 86.47 91.96 73.13 86.39 75.03 82.60 85.86

Network variant
F1 [%]

avg. F1 [%] OA [%]
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5.3 Evaluation of the Boundary-aware SkipNet 

Table 7 presents the land cover classification results for all variants except for 

ensembles of networks described in section 5.1.3. SkipNet-B still has better F1 scores 

of class Low Vegetation and class Tree than other network variants. SkipNetB-10(1,1) 

has a better average F1 score and OA of 82.93% and 85.48% respectively than other 

boundary-aware network variants. SkipNetB-5(1,1) outperformed SkipNet-B in the F1 

scores of class Impervious Surfaces and class Building with a little improvement (0.14% 

and 0.09% respectively). It is notably that the F1 score of class car of SkipNetB-15(1,0.1) 

has increased with 2.48% compared to SkipNet-B. 

 

Table 7 Results of Results of land cover classification. Network variant: cf. Section 5.1.3. F1: F1 score, OA: 

overall accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font. 

According to Table 8, we implement ensembles as shown below. The average F1 score 

and OA of EN(B,10(1,1)) has achieved a little increase of 0.45% and 0.14% respectively, 

where the F1 scores of class Low Vegetation, class Tree, and class Car are also higher 

than other network variants. EN(B,5(1,1)) outperformed other network variants in F1 

scores of class Impervious Surfaces and class Building with 87.44% and 92.65% 

respectively.  

 

Table 8 Results of Results of land cover classification. Network variant: cf. Section 5.1.3. F1: F1 score, OA: 

overall accuracy, both evaluated on the basis of pixels. Best scores are printed in bold font. 

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

SkipNetB-5(1,1) 87.22 92.45 72.10 85.11 75.77 82.53 85.47

SkipNetB-5(1,0.1) 86.67 91.45 72.24 85.89 77.61 82.77 85.34

SkipNetB-10(1,1) 86.67 91.44 72.97 85.97 77.62 82.93 85.48

SkipNetB-10(1,0.1) 85.41 91.01 70.59 85.97 77.71 82.14 84.75

SkipNetB-15(1,1) 86.10 91.19 68.23 85.30 77.55 81.67 84.60

SkipNetB-15(1,0.1) 86.28 91.44 68.00 85.10 78.29 81.82 84.67

Network variant
F1 [%]

avg. F1 [%] OA [%]

Imper. Build. Low Veg. Tree Car

SkipNet-B 87.08 92.36 74.71 86.42 75.81 83.28 86.29

EN(B,5(1,1)) 87.44 92.65 74.61 86.29 76.44 83.49 86.39

EN(B,10(1,1)) 87.39 92.45 74.72 86.52 77.57 83.73 86.43

EN(B,15(1,0.1)) 87.27 92.46 72.89 86.27 77.42 83.26 86.15

EN(B,5(1,1),10(1,1),15(1,0.1)) 87.29 92.39 73.45 86.23 77.56 83.38 86.13

Network variant
F1 [%]

avg. F1 [%] OA [%]
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6 Conclusion and outlook 

In our experiments, we have investigated three methods based on SkipNet for the pixel-

wise classification of land cover based on aerial images. We compared different variants 

of the SkipNet, LiteNet and boundary-aware SkipNet architecture. Our experiments 

have shown that an emsemble of SkipNet and LiteNet achieves the best performance 

with an overall accuracy of 86.44% for five land cover classes. The other two 

investigations have also improved overall accuracy of the basis SkipNet architecture 

with an increase of 0.11% and 0.15% respectively, whereas the overall accuracy of the 

basis SkipNet architecture is 86.29%. 

We have investigated the impact of fine-tuning our basis SkipNet with hard-negative 

mining and also the mining threshold is set to different levels, meanwhile the SkipNet 

is fine-tuned in two different ways: directly fine-tuning and encoder-frozen fine-tuning. 

The results show that directly fine-tuning outperformed encoder-frozen fine-tuning 

regardless of the mining thresholds. We also investigated an ensemble of SkipNet and 

LiteNet, where LiteNet is trained with different datasets. These datasets are designed 

with different percentage of hard-negative examples. In this investigation, we also try 

to find out the impact of post-processing with hard-negative mining to overall accuracy. 

In the last experiment, we modified the SkipNet architecture for adding prior 

knowledge of boundary to it, in order to improve accuracy inside boundaries. The 

relationship of boundary width and performance has also been investigated. 

These three investigations have all improved the performance of the basis SkipNet, but 

there are still some insufficient. For instance, SkipNet has better performance of class 

Low Vegetation and class Tree the most time, except for an ensemble of SkipNet and 

LiteNet and an ensemble of SkipNet and boundary-aware SkipNet. The improvement 

of these investigations is not by much. In future work, we may test more mining 

thresholds to find out the relationship between mining threshold and performance of 

the architectures using hard-negative mining. In addition, we have the same work for 

boundary width and performance. In our second experiments, the post-processing with 

hard-negative mining shows a promising result. This relationship will be further 

discussed. Besides, we have improved different accuracies of different classes in 

different network variants. We will further investigate the reasons of the impact and 

combine the advantage of different network variants. 
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