
Institute of Photogrammetry and Geoinformation
Leibniz Universität Hannover

Center for Analysis and Design of Intelligent Agents
Reykjavik University

Masterarbeit

Task-environments for evaluating learning and

autonomy in AI architectures

Leonard M. Eberding

Hannover, 10. März 2020

Erstpüfer: Prof. Dr.-Ing. habil. Christian Heipke
Zweitprüfer Prof. Dr. Kristinn R. Thórisson

Declaration of Authorship

I hereby declare that I am the sole author of this master thesis and I certify that, to
the best of my knowledge, I have not used any sources other than those listed in the
bibliography and identified as references. I further declare that I have not submitted
this thesis at any other institution in order to obtain a degree.

Leonard M. Eberding

I

Abstract

Since the field of artificial intelligence (AI) was first given that name in 1956, dif-
ferent methodological research approaches have resulted in a split into two branches,
”narrow” artificial intelligence (AI) and artificial general intelligence (AGI). Different
approaches with different definitions of the same terms has lead to further divergence
over the past decades. One of the problems persisting is the unavailability of meth-
ods for measuring generality of narrow AI systems. While many researchers have
claimed that their reinforcement learning algorithm shows generality, most of these
claims lack any measure of or support. Some have argued that a task-theory which
describes the complexity and difficulty of tasks might give an insight into the sys-
tems generality. Before such a task-theory exists, however, a better insights into the
chosen methodologies and evaluation of its strengths and weaknesses is key to assess
the progress of both, narrow and AGI research. The work presented here proposes
a novel evaluation platform SAGE (Simulator for Autonomy & Generality Evalua-
tion) which has two main goals. First, with this platform the gap between general
and narrow machine intelligence (GMI and NMI, respectively) can be bridged by
providing a single platform on which both, NMI and GMI aspiring systems, can be
evaluated. Second, by providing full adjustability of most of the complexity dimen-
sions of task-environments proposed in the literature, different levels of generality can
be tested and evaluated, assessing the progress towards ”thinking machines” (Turing,
2009). In this work the requirements of a general evaluation platform have been iden-
tified, an insight is given into the implementation strategy of SAGE and how these
requirements were met, and first results of evaluating two different deep reinforce-
ment learners are being presented. The importance of parameter isolation is further
discussed and the possibilities of SAGE for future application for a broad range of AI
systems is presented.

II

Kurzfassung

Seitdem das Feld der knstlichen Intelligenz (engl. artificial intelligence, AI) das er-
ste mal 1956 so bezeichnet wurde haben unterschiedliche Herangehensweisen in der
Forschung in eine Aufspaltung in zwei Zweige gefhrt. ”Eingeschrnkte” knstliche In-
telligenz (AI) und generelle knstliche Intelligenz (AGI). Unterschiedliche Ansätze mit
unterschiedlichen Definitionen der gleichen oder ähnlicher Begriffe führten in den let-
zten Jahren zu einer Verstärkung dieser Kluft zwischen den Forschungsfeldern. Ein
bestehendes Problem ist, dass die Generalität eines Systems bis heute nicht messbar
ist. In der Literatur der letzten Jahre wurde mehrfach behauptet, dass ein neu en-
twickelter Reinforcement-Learning-Algorithmus Generalität aufweist, allerdings kon-
nte diese Behauptung kaum oder gar nicht mit gezielten Evaluationen belegt werden.
Von vielen Wissenschaftlern und Wissenschaftlerinnen wurde argumentiert, dass eine
”Task-Theory” (dt. Aufgaben-Theorie) notwendig ist um die Komplexität und die
Schwierigkeit von verschiedenen Aufgaben bestimmen zu können und somit einen Ein-
blick in die Generalität des Systems, welches diese Aufgaben bewältigt, zu erhalten.
Da solch eine Theorie bisher nicht beschrieben ist muss vorerst eine andere Möglichkeit
für einen Einblick in die Vorteile und Nachteile verschiedener Methodologien entwick-
elt werden. Solch ein Einblick in die AI Architekturen spielt eine Schlüsselrolle in der
Beurteilung des Fortschritts beider Zweige, AI, und AGI, im Bezug auf die Generalität
von Systemen. Im Rahmen dieser Arbeit wird eine neuartige Evaluierungsplattform
SAGE (Simulator for Autonomy & Generality Evaluation) vorgestellt deren zwei
Hauptziele sind zum einen die Kluft zwischen den beiden Zweigen des Forschungs-
felds zu überbrücken, indem eine einzige Plattform bereitgestellt wird, welche sowohl
AI, als auch AGI Systeme evaluieren kann und zum anderen durch die hohe An-
passbarkeit fast aller bis heute beschriebenen Komplexitätsdimensionen von Task-
Environments (dt. Aufgabenumgebungen) eine Evaluierung des Levels der Gener-
alität möglich zu machen. Durch diese beiden Möglichkeiten kann der Fortschritt in
Richtung ”denkender Maschinen” (Turing, 2009) ermittelt werden. In dieser Arbeit
werden die Anforderungen an eine generelle Evaluierungsplattform identifiziert und
ein Einblick in die Implementierungsstrategie von SAGE gegeben. Hierbei wird die
Art und Weise, wie die Anforderungen erfüllt wurden beschrieben. Zudem werden er-
ste Evaluierungsergebnisse zweier Deep-Reinforcement-Learner vorgestellt. Anhand
dieser Ergebnissen wird die Bedeutung der Parameterisolierung für die Anpassung
von Komplexitätdimensionen weiter diskutiert und die Möglichkeiten, welche SAGE
sowohl für das Feld von AI, als auch AGI bietet, vorgestellt.

III

Acknowledgement

I would like to show my gratitude to my two supervisors, Prof. Kristinn R. Thórisson
for the ongoing support during my thesis, the constant help whenever needed, and the
inclusion into his team from the very beginning, and Prof. Christian Heipke, without
whom neither my stay at the CADIA institute at the Reykjavik University, nor this
thesis could have been done. I want to thank both of them for going out of their way
to help me follow this research path and helping me to smooth the path towards this
thesis.
I further want to thank Arash Sheikhlar and Hjrleifur Henriksson Rrbeck for the
constant exchange of ideas and the ongoing discussions we had about the importance
of the research done and the research possibilities that opened up during my time at
the CADIA institute.
Not to forget both, Árni Dagur, and Kaashika Prajaapat with whom I was able
to discuss and investigate new ideas in the field of task-theory and AI evaluation,
whenever we met.
This project has been made possible in part by a grant from the Cisco University
Research Program Fund, an advised fund of Silicon Valley Community Foundation.
The work was further supported in part by the Icelandic Institute for Intelligent
Machines.

IV

Contents

1 Introduction 1

2 Related Work 5
2.1 Artificial Intelligence . 5

2.1.1 ”Narrow” AI . 6
2.1.2 General AI . 7

2.2 Task Theory, Environments, and Agents 8
2.2.1 Tasks and Environments . 9
2.2.2 Agents . 11

2.3 Reinforcement Learning . 11
2.3.1 The Reinforcement-Learning Problem 13
2.3.2 Markov-Decision-Processes . 14
2.3.3 Actor-Critic . 15
2.3.4 Double-Deep-Q . 16

2.4 AI Evaluation . 17

3 SAGE – Simulator for Autonomy & Generality Evaluation 20
3.1 Assumptions . 20
3.2 Requirements . 21
3.3 Task-Environment Properties . 22
3.4 MVC-A Approach . 23

4 Evaluation Methodology – Proof of Concept 27
4.1 Inverted Pendulum Task . 27
4.2 Tests . 29

5 Evaluation Results 30
5.1 Stochasticity . 31

5.1.1 Observations . 31
5.1.2 Dynamics . 32
5.1.3 Actions . 34

5.2 Hidden variable . 35
5.3 Task Inversion . 36

6 Conclusions & Future Work 39

Bibliography 42

V

1. Introduction

1 Introduction

In order to assess the progress of any research field an evaluation of novel develop-
ments is necessary. Further, in the field of AI, good evaluation methods that allow
comparisons between systems and research teams are necessary to guide the research
community in evaluating advantages and flaws of different algorithms and method-
ologies in a variety of scenarios, thus making an informed decision on the usability
of different architectures possible. Further more, proper evaluation methods can (a)
gauge research progress by measuring the difference in performance of different ver-
sions of the same architecture, giving insight into the limitations and the potential
of the chosen architecture and additions, modifications, and/ or extensions; (b) lead
to better understanding of the chosen methodology in comparison with other AI
methodologies by testing different AI architectures on the same task; and (c) give the
expert an overview of the possible applications of the AI architecture by testing it on
different tasks and in different environments. More good reasons for AI evaluation
are described in the literature (e.g. Bieger et al. (2016)) and often focus on evaluating
the generality or ”intelligence” of a system. To date, many evaluation methods for
general intelligence aim towards testing either exclusively human intelligence, like the
IQ test, or at least human-level intelligence, like the Winograd’s Schema Challenge
(Levesque et al., 2012), the Lovelace Test 2.0 (Riedl, 2014), or the Toy Box Problem
(Johnston, 2010). The purpose of general intelligence evaluation, however, is not only
to evaluate if the system shows a general intelligence, but also at which level it does
so. Other evaluation strategies are often very domain specific, like the general game
playing evaluation (Świechowski et al., 2015) which focuses only on video games, or
tests like the Wozniak Coffee Test or the Turing Test (Oppy and Dowe, 2019) which
primarily focus on human social conventions, skills, and experiences. While artificial
general intelligence (AGI) aims towards an intelligence comparable to the of humans,
the term intelligence by itself does not include human-like knowledge, experience,
skills, or social conventions. For an evaluation of general intelligence a definition of
generality and intelligence is therefore needed in order to do proper evaluation of the
level of generality of a system.

To define a concept like ”intelligence” has proven to be a difficult task by itself.
More than 70 different definitions exist at to date and are strongly debated (Legg
et al., 2007; Wang, 2007). This debate about general intelligence might have its
source in the different understanding of ”generality” between fields and traditions of
research. Whilst in mathematics something ”more general” can be applied to more,
different, problems, in physics a ”more general” model means one which describes
the observed entity better or more broadly than a less general model. When talking
about general machine intelligence (GMI) in comparison to narrow machine intelli-

1

1. Introduction

gence (NMI) the focus should be put on the second, physical, description of generality.
Therefore the more general an agent is, the better it can generalise its knowledge in
order to describe the task and environment in a way which represents causal rela-
tions, which in turn allow it to act more intelligently in the world. Additionally, the
autonomy of the agent is of crucial interest. Intelligence can emerge, if the system
can use the identified causal relations to achieve the goal (or multiple goals) of a task
(or multiple tasks). Therefore, important aspects of a system’s intelligence can be
seen as the autonomy and the generality of the agent, or differently put: The sys-
tem’s capability to identify causal relations (generality) and exploit them in order to
achieve a goal (autonomy). Additionally, Pei Wang’s definition of intelligence Wang
(2019) emphasizes an assumption of insufficient knowledge and resources that any
intelligence must take into account.

To evaluate specific internal workings of different AI architectures calls for novel
evaluation platforms. Current AI evaluation approaches test for performance scores of
single tasks without changes in the task or environment during runtime or a multitude
of tasks with similar constraints, like different video games. Further, most evalua-
tion platforms do not include stochasticity of environment or task variables which
can lead to wrong conclusions about the necessary sophistication or intelligence of AI
architectures in order to solve the task (see e.g. Bellemare et al. (2015) for necessity
of stochasticity control). Lastly, it has been shown that evaluation strategies like the
ALE (Bellemare et al., 2013) do not necessarily give an insight about the progress
of AI, but rather only make a comparison of architectures (Hernández-Orallo et al.,
2017) without informing about their level of generality, intelligence potential, or learn-
ing abilities. To evaluate a system on generality, intelligence, and learning abilities,
an adaptable evaluation platform is called for which makes isolation of single com-
plexity changes, like stochasticity or task changes, possible.

To date, many evaluation methods evaluate a system’s capabilities using a sin-
gle performance measure, where a series of (relative) measurements would be better
suited to separate between GMI and NMI. With the ”Simulator for Autonomy & Gen-
erality Evaluation” (SAGE) a new platform for AI evaluation is introduced, which
aims towards bridging the gap between NMI and GMI research. Further, with a plat-
form like SAGE learning methods and knowledge generalisation of AI systems can be
evaluated showing flaws and advantages of different approaches of AI methodologies.
SAGE is a simulation tool for task environments based on the idea to break the tasks
and the environment into variables and transition functions. Variables include observ-
ables, unobservables (hidden), manipulatables, and non-manipulatables. Transition
functions represent the change of those variables over time and/ or by interaction of
the system with the environment (Thórisson et al., 2015, 2016). Task-environments

2

1. Introduction

can be constructed with different, independent characteristics and levels of complex-
ity. This includes causal relations, statistical relations, determinism or stochastic
behaviours, hidden variables and observable variables, distracting variables, noise
models, dynamic or static environments, task changes and much more. This way, by
increasing the levels of complexity on different dimensions, it is possible to bridge the
gap between NMI and GMI. While NMIs might start at the lower end of complexity
levels they can be increased and/ or changed periodically in order to find the systems
moment of failure or situations in which the system shows unwanted behaviour. From
this conclusions can be drawn about the lacking abilities which would be necessary
in order to solve such tasks with higher complexity.

The design of SAGE is based on a model-view-controller-agent (MVC-A) paradigm.
The MVC (model-view-controller) paradigm is well known in computer science for
creating simulation systems, including those that connect with the physical world in
realtime. For evaluating GMI systems it is important to have flexible control over how
time progresses. This model is extended for the purpose of evaluating a broad range
of AI systems with an additional conceptual component for the AI agent(s) (”A”
for ”agent”) that interact with a task-environment. By dividing these parts into
sub-processes it is possible to adjust parameters in the controller, model, and agent
independent of the others making isolated complexity changes possible. The con-
troller simulates the environment and transitions it between time-frames in response
to the agents actions or the environments internal dynamics, making adjustments
in the internal workings of the task-environment possible. The model provides ad-
justability options for observable data, actions, or the hiding (exposing) of data from
(to) the agent. The agent can be any machine learning algorithm which is capable
of processing the observable data provided by the model. Besides making indepen-
dent adjustments of complexity dimensions possible the division into own processes
makes physical division of model, controller, and agent possible and therefore gives
the opportunity to evaluate the resource management of the agent without interfer-
ence from the evaluation platform. This is especially important in the concept of
GMI (insufficient resources).

In this thesis the focus is not on the methodologies of AI architectures or their
specific advantages, but rather on the possibilities the SAGE platform offers for the
research community in order to test their methodologies and use evaluation results
to assess their progress towards GMI. For this the requirements and possibilities of a
NMI-GMI bridging evaluation platform are introduced and an implementation with
first results of NMI evaluation presented. An actor-critic and a double-deep-Q-learner
are used to demonstrate some of the features of the SAGE platform and to validate
its design. At the time of writing of this thesis a paper was submitted to the AGI

3

1. Introduction

Conference 2020 with the same topic (Eberding et al., 2020), based on the work
described here. This thesis presents more in-depth research research results and de-
scribes SAGE in more detail.

The thesis is structured as follows: In section two a brief overview of the term ”ar-
tificial intelligence” and the differences between ”narrow” and ”general” AI is shown
before introducing the importance of a task-theory for AI evaluation and continuing
to a short description of current methodologies of reinforcement learning algorithms
(RL). Then a description of current approaches of AI/ RL evaluation is given and the
necessity for a new evaluation methodology provided. In section three the require-
ments for such a novel evaluation strategy are introduced. Further an implementation
strategy is formed to realise an evaluation platform which is able to bridge the gap
between NMI and GMI by making an evaluation of both possible and assessing the
progress towards GMI. In section four SAGE’s implementation is introduced going
into detail of implementation of the requirement profile introduced in section three.
Section five shows first results, as a proof of concept, of evaluating current RL algo-
rithms before concluding the work in section six, discussing the first results and their
importance for the AI research community, and giving an outlook on future work on
and with SAGE.

4

2.1. Artificial Intelligence

2 Related Work

2.1 Artificial Intelligence

There exists no clear definition of intelligence to this date even though intelligence
and its definition has been subject of debates for decades (Wang, 2007). There exist
at least 71 different working definitions on intelligence at the moment of writing, 18
of those alone in the field of AI research (Legg et al., 2007). Even looking back at the
founders of the modern AI different opinions about what the essence of intelligence
and therefore artificial intelligence is and how it should be defined can be found
(McCarthy, 1988; Minsky, 1988; Newell and Simon, 1976; Wang, 2019). This leads
to confusion amongst AI researchers resulting in different approaches towards AI,
all under the same term: ”intelligence”. By the systems behaviour and their main
focus it is possible to divide those approaches into three main categories. Systems
which behave like the human mind, Systems which can solve problems previously only
solvable by the human mind, and Systems which show the same or similar functions
to those of the human mind (Wang et al., 2018).

Systems which behave like the human mind are sought to have a similar structure
as the human brain. The research in this approach of artificial intelligence assumes
that any intelligence has a foundation in the biological neural network of the brain.
This approach is closely related to neuroscience and rises and falls with the progress
of neuroscience itself (Wang, 2019).
The second category only focuses on the problem solving capabilities of the AI archi-
tecture. Neuroscience does not play a role in this branch of AI research, neither does
psychology or cognitive science. This is the currently most common approach to cre-
ate artificial intelligence and includes neural networks, deep learning, game playing,
and most current publications in AI (Wang et al., 2018) (See as examples (LeCun
et al., 2015; Luger, 2005; Russell and Norvig, 2016)).

Researchers aiming towards the third category on the other hand neither build
their research in neuroscience, but rather in the study of behaviour of intelligent
biological agents, nor do they only aim towards problem solving capabilities in AI
architectures. This includes for example the well known Turing test (Oppy and Dowe,
2019), the ”Wozniak coffee test” suggested by the Apple co-founder Steve Wozniak
in which the system needs to go into an unknown house and make coffee, or the
”graduation test” proposed by Goertzel et al. (2012) in which the system has to
graduate (virtual-world or robotic) preschool. None of these tests include a necessity
to model the human brain or base the assumptions on biological foundations but
rather see the behaviour of the system as a measurement of intelligence.
Another way to categorise AI architectures is by the similarity to the human mind.
It is similar to the behavioural categorisation but gives a better insight into how

5

2.1. Artificial Intelligence

intelligence is thought to emerge from a system. The similarity categories include
structure, performance, capacity, function, and principle (Wang, 2007).

In recent years this differentiation between the opinions of what a intelligent sys-
tem needs in order to be seen as ”human-like” has lead to the introduction of a new
term, ”AGI” (Pennachin and Goertzel, 2007; Wang et al., 2018). Differentiating be-
tween ”narrow” or ”weak” AI and ”general” or ”strong” AI divides the field of AI
research between the second and third categories. A general intelligence must not
only solve problems, but rather show a human-like behaviour and most importantly
is not constructed to solve a single problem, but rather autonomously solve a vari-
ety of different tasks in a variety of different environments (Pennachin and Goertzel,
2007). The category of an artificial intelligence founded in the biological properties
of the human mind would be part of the ”general” intelligence research (Wang et al.,
2018) and is therefore not further differentiated. From this division of the term ”in-
telligence” follows a further division amongst the AI research community. In order
to accelerate progress in the field of AI this gap should be bridged. This would allow
researchers from both communities to compare their architectures and isolate flaws
and advantages of both approaches and use strategies from both fields in order to
achieve the goal of this research as described in the early days of AI (cf. McCarthy
et al. (2006); Turing (2009)).

2.1.1 ”Narrow” AI

”Narrow” AI has been subject of many studies in the past years. It achieved impres-
sive results in the past decades (Wang et al., 2018) including Deep Blue beating the
chess world champion in 1996 (Campbell et al., 2002), AlphaGo (Silver et al., 2016)
or the general advance in deep neural networks (LeCun et al., 2015). With the intro-
duction of neural networks in RL it was possible to develop learners for continuous
state spaces. RL algorithms were soon available which could play Atari 2600 games
with a super-human performance (Mnih et al., 2015). This lead to the belief that
deep neural networks are a first step towards a general intelligence, as can be seen by
the title of the Atari 2600 evaluation platform ”The Arcade Learning Environment:
An Evaluation Platform for General Agents” (Bellemare et al., 2013). However these
learners are built on the assumptions, that intelligence is the capability of a system
to solve problems, rather than to create general models of the environment. Thus
they are mainly focusing on the strength of the architecture in its designated tasks.
The current approach to create ”stronger” weak AI systems does not necessarily lead
towards a general intelligence since generality does not only include the strength in
one particular field/ task, but rather the breath of applicability of the system in a
variety of tasks and domains without human interference (Goertzel et al., 2012; Wang
et al., 2018). ”Narrow” AI can be seen as a part of computer science without many

6

2.1. Artificial Intelligence

connections to cognitive science, psychology or neurobiology.

2.1.2 General AI

”General” AI has been the origin of research in artificial intelligence. A general AI is
what Turing had in mind, when he wrote his paper on ”thinking machines” (Turing,
2009), or McCarthy’s research proposal in 1955 (McCarthy et al., 2006). Those
attempts, however, turned out to be fruitless leading the majority of AI researchers
into a more promising direction with limitation on single problems or single cognitive
functions. This lead towards an understanding of intelligence as a single competency
rather than a collection of of related capabilities (Wang et al., 2018). In contrast to
this exists the field of AGI, aiming towards a human-like intelligence which is able
to solve a variety of tasks in a variety of environments and domains (Adams et al.,
2012; Goertzel et al., 2012).

Another main difference between general and narrow AI systems is their relation-
ship to other sciences. While narrow AI can be mainly seen as a part of computer
science, AGI leans towards cognitive science, neurobiology and psychology to bet-
ter understand the human mind (cf. Goertzel (2009); Goertzel et al. (2012); Wang
(2007)).

To identify what needs to be achieved in artificial general intelligence the un-
derlying structures of the human mind have been analysed. Cognitive science has
discovered different structures and dynamics describing those underlying principles
(Goertzel et al., 2012). By designing architecture diagrams of human intelligence
many researchers in the field of cognitive science have helped to create a better un-
derstanding of the human mind (cf. Baars and Franklin (2009); Sloman (2001)).
These architecture diagrams of the human mind give the AGI researchers a frame-
work and context with which their architecture can be compared. Thus cognitive
architecture requirements could be described for an AGI system which need to be
fulfilled in order to claim generality (Goertzel et al., 2012).

The abilities of AGI architectures in comparison of narrow AI architectures are
fundamentally different as well. Due to the nature of narrow AI as a problem solv-
ing system the architecture can be designed to solve this problem without respect
to different environments or tasks. Therefore the design is constructed by humans
and tuned to behave in a certain way in expected situation. They mainly rely on
integration of single competencies until the task can be reliably solved by the system
itself (Thórisson, 2012). AGI architectures on the other hand aim towards a goal of
autonomous, cumulative, life-long learners which can adapt to their surrounding as
necessary and achieve not only selected goals but rather any solvable task it is pre-
sented with (Goertzel et al., 2012; Thórisson et al., 2019). Any AGI system always
underlies the assumption of insufficient knowledge and resources, meaning, that the

7

2.2. Task Theory, Environments, and Agents

systems always works under restrictions. Those restrictions include finitness of its
information processing capabilities, real-time and incompleteness of their knowledge
(Wang, 2007).

Cumulative learning is a central aspect of any autonomous AGI system. Due
to the assumption of insufficient knowledge and resources and the necessity of an
AGI system to constantly adapt to its surrounding it is possible to define different
aspects or dimensions of cumulative learning to measure a systems performance as
a cumulative learner. These include the systems memory management, temporal
capacity and granularity and generality of the learning/ generalisation of knowledge
(Thórisson et al., 2019).

Transfer learning General intelligent systems must be able to deal with novel
situations during their lifetime. This novelty is in relation to the learner’s knowledge
of the task-environment it was deployed in before. A possibility to handle novelty can
be to use previously acquired experience that seem familiar as described by Sheikhlar
et al. (2020). This is well described in psychology by the canonical concept of transfer
of learning (Kaptelinin and Nardi, 2006). Transfer learning is described in various
machine learning theories to date. The main goal is to increase the systems learning
rate by simultaneously increasing its flexibility. In deep neural networks for example
a scheme was implemented, in which a human programmer selects certain layers of
a trained network and reuses them in order to train another network in a related
domain. Transfer learning in reinforcement learning was used in order to train the
system on one task and repurposing it in a similar one (Taylor and Stone, 2009; Xie
et al., 2016; Yosinski et al., 2014). This however needs human interaction for choosing
the tasks and making analogies, In GMI an autonomous form of transfer learning is
necessary in order to deal with the complexity of task-environments that can emerge
over the life-time of a learner (Sheikhlar et al., 2020).

2.2 Task Theory, Environments, and Agents

An AGI system must be able to cope with a variety of tasks in a variety of envi-
ronments (Goertzel et al., 2012). While for example P. Wang’s theory of intelligence
(Wang, 2019) takes a stance in isolating key properties of intelligence, and attempts
to explain it in all aspects, such a definition is still a work in progress for tasks and
environments. This makes any claim, that any AI architecture can cope with a vari-
ety of tasks dependent on the mainly ad-hoc and case specific tasks and environment
selection of the expert (Thórisson et al., 2016). To assess the progress towards au-
tonomous generality a description of tasks, environments, and their interconnection,
task-environments, is needed, as well as of their complexity and similarity. This could

8

2.2. Task Theory, Environments, and Agents

be done in a similar fashion, as the definition of intelligence, by isolating key properties
of tasks and environments in order to describe tasks in all aspects. Thórisson et al.
(2015) proposes such a description by dividing task-environments into complexity di-
mensions. By Sheikhlar et al. (2020) something similar was done for the description
of task-environment similarity. However, both the description of task complexity, as
well as a description of the similarity of tasks still needs to be confirmed. Without
such theories and definitions crucial aspects of general intelligence (e.g. cumulative
learning, life-long learning, or transfer of learning) cannot be assessed, making a val-
idation of the progress dependent on experts opinions instead of objective evaluation
methodologies (Bieger et al., 2016; Thórisson et al., 2015, 2016). A confirmation of
the descriptions of Sheikhlar et al. (2020) and Thórisson et al. (2015) could for ex-
ample be done by integrating their key properties into an evaluation platform and
making them adjustable by the examiner.

2.2.1 Tasks and Environments

Tasks describe the transformation of the environments state into a defined goal state
while avoiding (defined) failure states. This transition towards (un-)desired states can
be achieved by an agent interacting continuously or intermittent with the environ-
ment. Any instance of a task includes the environment which is to be transformed by
the agent towards the described goal state. Therefore the term ”task-environment”
is used to describe any instance of a task in an environment (Thórisson et al., 2015,
2016). Task-environments have certain properties which define their complexity and
describe their similarity to other tasks (Thórisson et al., 2015). Those properties are
essential to define test and evaluation environments to evaluate any agent on different
difficulties of tasks, as well as their ability to transfer learning and accumulate knowl-
edge over time when certain task similarities can be exploited. Due to the different
approaches of AI research tasks and their environments are of high importance in
order to evaluate the generality and autonomy of any AI system. As argued by many
(Adams et al., 2012; Hernández-Orallo et al., 2017; Thórisson et al., 2015) a more
flexible tool is needed, which allows construction of appropriate task-environments.
Thórisson et al. (2015) list 11 dimensions that ideally should be controllable by a cre-
ator of a task-environment for measuring intelligent behaviour; Russell and Norvig
(2016) present a comparable subset of seven dimensions. The environment can be
categorised along different dimensions, namely determinism (cf. Bellemare et al.
(2015) regarding the importance of noise control), staticism, observability, agency,
knowledge, episodicity, and discreteness. TE properties include next to the seven
environment properties ergodicity, asynchronicity, controllability, number of parallel
causal chains, and periodicity (Russell and Norvig, 2016; Thórisson et al., 2015).

These properties should be adjustable by the evaluator in order to test a systems

9

2.2. Task Theory, Environments, and Agents

capabilities of solving more complex tasks. Reflexively these evaluations of agents can
provide a better insight into difficulty and similarity of seemingly unrelated tasks. In
order to examine tasks, environments, or agents it is necessary to isolate the aspect
under inspection from the other two. By for example changing the task independent of
the environment and the agent its impact on the agents performance can be measured
and therefore might lead to conclusions regarding the theory of tasks.

Tasks Some effort has been made to describe the difficulty of tasks in Levi’s Search,
but they only use computational complexity for the description of tasks (Hernández-
Orallo, 2015). However, to describe tasks in a way to use in the evaluation of generality
more than computational complexity is necessary. By introducing transfer of learning
for example, previously gathered knowledge and its applicability must be included in
the task description.

Any ”narrow” intelligence is by definition designed to address only the tasks it
has been designed for, enabling the examiner to evaluate the system’s performance on
these specified tasks. This assumption does not hold for any ”general” intelligence.
Without having information about the tasks the AGI architecture has been tested
on, the examiner can neither make any statements about the generality of the system
nor is any prediction of success in unknown tasks possible. To evaluate a general
intelligence a task theory is necessary which describes not only the difficulty of tasks
but rather their complexity in different, task-environment related, dimensions. Such
a task theory does not exist at the moment, however the for AGI evaluation necessary
parameters can be described (Bieger et al., 2016; Thórisson et al., 2015, 2016). Until
such a task-theory exists the evaluation should target most or all task-environments
properties. This in return might provide an insight into task-environments and their
descriptive parameters for better understanding of complexities and difficulties of
different task-environments.

Environment The environment creates boundaries for the task. Only by defining
states in the environment a task becomes (un-)solvable. For a description of the
environment a discrimination between controller, agent, body and environment is
done. The agent is divided into the controller and the body. The controller includes
the AI architecture while the body represents the embodiment in which the controller
is placed in order to perform actions on the environment. The body is therefore the
intersection of environment and agent (Poole and Mackworth, 2010). There exist
different arguments in favour of including the body into the environment. When
for example the body of an agent is moved in its environment the environments
state of ”position of robot” is changed accordingly (Russell and Norvig, 2016). The
body includes the sensors of the system and passes them to the agent in the form of
percepts. The same with actuators which are used in order to act on the environment

10

2.3. Reinforcement Learning

and commands telling the actuators how to move (Poole and Mackworth, 2010).
This point of view is in accordance with psychology and therefore chosen in order to
describe the parameters of the embodiment as part of the environment (Pomerantz,
2006).

2.2.2 Agents

As described by Poole and Mackworth (2010) agents are systems, which act in an
environment. Agents can have different forms, designs, and architectures. Examples
for agents in general are persons, robots, animals, computer programs or even corpo-
rations. An agent consists of the body and the controller. If the body is a physical
body it is called the embodiment of the agent (e.g. robots) Poole and Mackworth
(2010). Agents can receive measurements of the environment through sensors which
are part of the body of the robot. Such stimuli are forwarded to the controller as
percepts. On the other hand, agents can act on the environment with actuators (or
effectors). The actuators are part of the body and the controller can interact with
them using commands. Both stimuli and actions underlie environment properties like
noise, unreliability, and speed. Percepts and commands on the other hand are part
of the agents internal controller and therefore underlie the controllers capabilities like
memory, energy consumption, and calculation speed (Poole and Mackworth, 2010).
For example the stimuli for an agent equipped with a camera is the light hitting
the cameras sensor. This light is converted into pixel information of an image, this
image is an example for a percept passed to the controller. Percepts can consist of
higher-level features like lines, edges, clusters etc (Poole and Mackworth, 2010). An
example for an action is the acceleration of a robot. The action is created by passing
a command to a motor controller which in turn adjusts the voltage for the motor.
This voltage adjustment and the final acceleration can be noisy or include slippage of
the wheel, while the command itself does not. When talking about NMI or GMI sys-
tems the controller of the agent is the main focus of attention (Poole and Mackworth,
2010).

2.3 Reinforcement Learning

Current approaches to create an AI system which can autonomously solve tasks in
arbitrary environments focus strongly on reinforcement learning (RL) strategies. A
significant achievement in this field came with the introduction of deep neural net-
works in reinforcement learning, making it a successful branch of AI-research (Mnih
et al., 2015). RL is a branch of AI which aims towards the development of goal-driven
learning and decision-making. This approach is well described in literature, for exam-
ple by Sutton and Barto (2018) from which the following chapter is derived. The idea

11

2.3. Reinforcement Learning

of reinforcement learning is based on the assumption, that any intelligent system can
learn by interacting with its environment. It is distinguished from other AI branches
like supervised or unsupervised learning by (a) the goal-driven nature of RL algo-
rithms which lead to a long term interaction with the environment, (b) the absence
of an expert telling the agent about the desirability of states, and (c) the absence of
complete models of the environment. The AI system generates a map of state-action
combinations by applying reinforcement learning strategies to task-solving problems.
With any interaction with the environment a reward signal is sent to the agent giving
it information about the desirability of the newly reached state. This way a policy
can be derived by the learning system by assigning values to state-action pairs. As
described in Sutton and Barto (2018), reinforcement learning algorithms can be di-
vided into four sub-elements: policy, reward, value function and optionally a model
of the environment:

Policy The policy is the core of a reinforcement learner. It is the mapping of the
current state to the best next action. The policy can be any mapping function, from
simple look-up tables to sophisticated search algorithms or other expensive calcu-
lations. In deep reinforcement learning the policy can be learned by deep neural
networks (DNN) which map the current state to the best action in regards of the
highest achievable reward (Sutton and Barto, 2018).

Reward The reward signal is the information about the desirability of a state. In
each new state the agent receives such a reward signal as a single number which gives
the agent information about whether the newly achieved state is good or bad. The
agents sole goal is to maximise the amount of gathered reward over a complete (long)
run. Rewards are the main reason for changes of policy. If after following the policy a
better (worse) state is reached the policy of choosing the same action in the previous
state the next time it is reached may be supported (opposed). Thus the chance of
choosing this action is increased (decreased) (Sutton and Barto, 2018).

Value Function While rewards show immediate results, the value function includes
information about the long run. It includes the accumulated reward possible to
achieve following the current (or next) state. Therefore the value function is the agents
possibility to overcome local reward maxima and aim for global reward maximisation
(Sutton and Barto, 2018). In order to achieve the global maximum it must first be
discovered to include it into the value function. This leads to the well described
exploration-exploitation dilemma (cf. Ishii et al. (2002); Thrun (1992)).

Model The model makes inferences of the environment possible by representing the
environment transitions. It is used for planning by considering future states without

12

2.3. Reinforcement Learning

having to experience them first and therefore help maximising the reward over time.
RL methods which include a model are called model-based methods, other, simpler,
RL methods which rely on trial-and-error approaches are called model-free methods
(Sutton and Barto, 2018).

2.3.1 The Reinforcement-Learning Problem

Sutton and Barto (2018) describe the reinforcement-learning problem as the interac-
tion of the agent with the environment. In each time-step t = t1, t2, t3, ... the agent
receives information about the environment’s (including the agent’s) current state
st ∈ S where S is the set of all possible states, chooses an action at ∈ A(st) with
A(st) being the set of possible actions in state st and thereby transitions the environ-
ment into a new state st+1. With the transition to the new state the agent receives
a reward signal rt ∈ R ⊂ R. From this reward and transition the agent can create a
mapping of the desirability of newly encountered states to previously chosen actions.
This policy is denoted as πt = πt(a|s) and describes the probability to choose action
a when state s is the current state. RL methods define the change of the policy in
accordance to experienced rewards in new states.
In order to maximise the rewards over the full run, rather than just a single state,
the expected return G is defined for example as

Gt = Rt+1 +Rt+2 + ...+Rt+n. (1)

However, to include both finite and infinite/ continuing tasks (open ended) a dis-
counted return is introduced:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γk ·Rt+k+1 (2)

γ is the discount factor 0 < γ < 1 and defines the importance of later rewards for
current actions. A low γ corresponds to maximisation of immediate rewards, a high
γ results in a stronger representation of future rewards in the accumulated return.
Additionally, by introducing this discount factor the return is upper bounded, as long
as γ < 1 and the rewards sequence {Rk} is bounded (Sutton and Barto, 2018).
To maximise this accumulated/ discounted return is the main objective of any rein-
forcement learner. The decisions leading to this maximal return is represented by the
policy of the agent. Since the policy represents a mapping of states to actions certain
assumptions must be made about the kind of states received by the agent in order
to make such a policy generation possible. One of them is the assumption of states
having the Markov-Property and therefore the whole task being a Markov-Decision-
Process.

13

2.3. Reinforcement Learning

2.3.2 Markov-Decision-Processes

As Sutton and Barto (2018) describe in the book ”Reinforcement Learning: An Intro-
duction” a Markov-Decision-Process (MDP) is a (reinforcement learning) task, which
satisfies the Markov-Property. The Markov property is a property of the state signal
passed to the agent and informally can be defined as the property, that any given
state st of a task includes all relevant information of the history of all states lead-
ing to the current state which are necessary in order to make a new decision. This
does not mean, that all past states are combined within the current state signal, but
rather, that all relevant information from the past states is available (Sutton and
Barto, 2018). For example in physics a ball’s position, velocity and acceleration (sk)
describe the future path of the ball perfectly without including information about
where it came from. Therefore the past states (position, velocity, and acceleration
at time t0...k−1) are not included in the state signal, but all relevant information for
predicting future states is included. The same holds for any moment in a chess play.
While the previous moves cannot be reconstructed from the current board all neces-
sary information for future moves is included in the current state of the board. This
Markov-Property can be mathematically defined. When looking at the most general
case, in which the environment at t + 1 is dependent on all previous states, actions,
and rewards the probability of achieving a rewards rt+1 and transitioning the state of
the environment into st+1 is

Pr(rt+1 = r, st+1 = s|s0, a0, r1, s1, a1, r2, ..., st−1, at−1, rt, st, at). (3)

When the reinforcement task is a Markov-Decision-Process, however, the Markov-
Property defines, that

Pr(rt+1 = r, st+1 = s|st, at). (4)

From this it follows, that a process is a Markov-Decision-Process, if for all states S
(3) equals (4) (Sutton and Barto, 2018).

Value Function in MDPs As described previously, the policy of an agent π is the
mapping from a state s and an action a to the probability π(a|s) of choosing action
a, when in state s. The value vπ(s) is the expected return when in a state s and
following the policy π (Sutton and Barto, 2018). It can be described as:

vπ(s) = E[Gt|st = s] = Eπ[
∞∑
k=0

γk · rt+k+1|st = s] (5)

The action-value function q is similar to the value function, but does not only depend
on the state s, but also on the chosen action a:

qπ(s, a) = E[Gt|st = s, at = a] = Eπ[
∞∑
k=0

γk · rt+k+1|st = s, at = a] (6)

14

2.3. Reinforcement Learning

From the value function the Bellman equation for vπ can be derived:

vπ(s) = E[Gt|st = s] =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + vπ(s′)] (7)

This Bellman equation can be learned/ solved by experience by adjusting the
(action-)value function of a past state s when the reward and new state r, s′ is ob-
served by the agent.

When talking about the maximisation of the expected result the main objective
is the maximisation of the value function. This leads to the optimal value-function
and action-value function v∗(s) and q∗(s, a), respectively.

v∗(s) = max
π

vπ(s), q∗(s, a) = max
π

qπ(s, a) (8)

These optimal value-function(s) must not be a single function, but can be multiple
functions, however, all optimal policies are meant to be included in v∗(s). All v∗ share
the same optimal action-value function q∗ (Sutton and Barto, 2018).

q∗(s, a) = E[rt+1 + γv∗(st+1)|st = s, at = a] (9)

From this follows for the Bellamn equation of v∗(s):

v∗(s) = max
a∈A(s)

qπ∗(s, a) = max
a∈A(s)

∑
s′,r

p(s′, r|s, a) [r + γv∗(s
′)] (10)

The Bellman equation for the optimal value-function is finite for finite MDPs and can
be solved in a variety of ways. If the optimal (action-)value-function is known the
optimal policy can be derived by a one step search. The action leading to the best
expected return of v∗ is the best possible action in state s (Sutton and Barto, 2018).
In high space dimensional continuous tasks the calculation of every state action pair is
unfeasible. This problem was overcome by introducing deep neural networks (DNNs)
to reinforcement learning Li (2017). The actor-critc and the double-deep-q learner
are two examples of such deep reinforcement learners using DNNs in order to estimate
the optimal policy or optimal aciton-value function, respectively.

2.3.3 Actor-Critic

Two RL algorithms are introduced which were used to test the newly developed
evaluation platform SAGE. The actor-critic deep reinforcement learning algorithm
(AC) (Konda and Tsitsiklis, 2000) is an On-Policy learner, which uses DNNs to
maximise the return of a task. Its advantage in low-variance optimal policy search

15

2.3. Reinforcement Learning

has been a reason for it to be used in many real life applications (Grondman et al.,
2012).
The AC consists of two parts, the actor, and the critic. The actor represents the
policy and the critic the value function. The critic is called critic, because it criticises
the actor’s action and adjusts the value function to the reward and new state, whereas
the actor uses information of the current state and its policy in order to decide on
a new action. After each action the critic evaluates, if the action lead to better or
worse results than expected resulting in the temporal difference (TD) error δt

δt = rt+1 + γvt(st+1 − v(st)). (11)

A positive δt means a more successful return, a negative δt a worse than expected
return. This can be used accordingly to adjust the actors policy increasing or reduc-
ing probabilities of the chosen action. The TD error is further used to update the
critic’s value function. Therefore the TD error δt drives all learning of the actor-critic
reinforcement learner (Grondman et al., 2012).

2.3.4 Double-Deep-Q

In deep-Q-learning the action-value function is directly approximated, rather than
searching for the best policy. The policy is derived over the Q-function and evaluated
using TD methods.

Q(s, a) = Q(s, a) + α[rt + γ ·max
a′

Q(s′, a′)−Q(s, a)] (12)

with the learning rate α, the reward rt, and the discount factor γ. The derived policy
corresponds to choosing the action with the highest Q-value in a state s. The Q-values
are arbitrarily (e.g. zeros) initialised and converge via sampling of the environment
by interaction.
Due to taking the maximum Q-value of the future state it can lead to systematic
overestimation and therefore it can introduce a maximisation bias in learning. To
avoid this a second neural network, the target network, is introduced as a q-value
evaluator leading to a double-deep-q learner (Van Hasselt et al., 2016). The first
network is responsible for choosing the action and the second for action evaluation.
The target network is updated with a update-factor τ (rate of averaging) periodically
by the computed networks weights of the source network. This is done by copying
the weights multiplied by the update-factor of the source model to the target model
(Van Hasselt et al., 2016). The double-deep-Q-learner is an Off-Policy learner by
directly approximating the action-value function and choosing its policy by the Q-
value of actions.

16

2.4. AI Evaluation

2.4 AI Evaluation

Evaluation of AI systems is key to better understand the strengths and weaknesses
of different AI architectures. A progress towards an AGI architecture can only be
assessed by evaluating the performance and cognitive abilities of different AI systems
(Thórisson et al., 2015). Evaluation methodologies to evaluate ”narrow” AI systems
are well described. Most commonly performance and abilities are described by a
single value. While this makes comparison between different architectures easy, a
single value cannot provide information about the cognitive abilities of the system.
For example important aspects of intelligence, like life-long, cumulative learning or
transfer of learning cannot be assessed using such a simple performance measurement
(Thórisson et al., 2015). Another possibility of AI evaluation are well described tests,
like the ”Turing-Test” (Oppy and Dowe, 2019), the ”Wozniak-Coffee-Test” (Goertzel
et al., 2014), or other anthropological centred tests (cf. Goertzel et al. (2014)). These
test have some main disadvantages. First, any test designed by humans to evaluate
human-like intelligence is by definition anthropomorphic, meaning that for example
the Turing-Test might rather test humanness, than intelligence (Legg et al., 2005).
Secondly, these sort of tests all require the agent to be equipped with certain sensors
and actuators. They might therefore test the usage of sensor-actuator combinations,
but fail to describe the cognitive abilities of the system (Pennachin and Goertzel,
2007). Thirdly any of these tests show the same problems, which follows AI research
since decades. Rather than testing for intelligence they test for problem solving of a
single task and therefore can be described and implemented by the designer of the
system. Any evaluation which aims towards evaluating autonomous generality must
therefore test the agents abilities on different tasks and environments, rather than
the same task, like making coffee.

There exist many different evaluation platforms for AI architectures and reinforce-
ment learners. Evaluation platforms generally provide a task-environment in which
the agent is placed. The evaluation platform exposes the agent to its current state
by providing observations and rewards for the agent to process and accepts actions
from the agent in return. Different approaches can be seen to generate such task-
environments (cf. Hernández-Orallo et al. (2017)). Among others:

OpenAI Gym provides different task environments for evaluating AI systems. The
available task environments include classic control problems, like the inverse pendu-
lum, toy texts, 2D computer games (similar to Atari games), and 3D robot sim-
ulations, among others. Due to its open-source interface more task-environments
have been implemented, like a Gazebo simulation of physical robots (Zamora et al.,
2016). OpenAI Gym mainly aims to evaluate learning performance of reinforcement

17

2.4. AI Evaluation

learners on (Partially-Observable-)Markov-Decision-Processes (Brockman et al., 2016;
Hernández-Orallo et al., 2017).

The Malmo project by Microsoft uses video game emulation for AI evaluation.
The evaluator can generate different tasks in a Minecraft world for the AI system to
solve. Those tasks include navigation, survival, collaboration and problem solving.
The Malmo platform can support research in robotics, computer vision, reinforcement
learning, planning, multi-agent systems, and related areas (Johnson et al., 2016).

The arcade learning environment (ALE) uses Atari 2600 games for evaluation of
reinforcement learners. Systems can have access to the screen and/ or the memory
of the Atari emulator. According to the developers of this evaluation platform it is
possible to evaluate not only the problem solving capabilities, but also model learn-
ing, model-based learning, transfer learning and imitation learning. The evaluation
platform consists of 55 different Atari 2600 games. The observation space is 160 times
210 pixels for the screen and 128 byte for the RAM. Additionally 18 different actions
are available for the agent to choose. A limitation of the ALE is the number of games,
as well as the deterministic environment of all games, leading to overspecialisation
(Bellemare et al., 2013; Hernández-Orallo et al., 2017). The authors of the original
paper showed in 2015, that a rather simple tree learning algorithm called ”Brute”
can solve some of the arcade games better than state-of-the-art machine learning al-
gorithms, showing the importance of stochasticity in task-environments (Bellemare
et al., 2015). They therefore later introduced so called ”sticky-actions” to break the
deterministic property of the ALE (Machado et al., 2018).

Another approach using game playing is the DeepMind Lab. 3D games with first
person perspective are chosen to emulate the task-environment. The research sur-
rounding DeepMind Lab is aimed at 3D reconstruction of raw pixel data, fine motor
dexterity, planning, navigation, strategy, and autonomous learning on what task to
perform by exploring the task-environments (Beattie et al., 2016).

Other evaluation platforms include ViZDoom (Kempka et al., 2016), Facebooks
Torch-Craft (Synnaeve et al., 2016), Facebooks CommAI-env (Mikolov et al., 2016),
OpenAI Universe1, and AI2-THOR (Kolve et al., 2017).

Many evaluation methods have focused on (general) game playing using the abil-
ity to play games as an indicator for the systems sophistication. Using psychometric
evaluation like item response theory (IRT) it was shown that the difference of per-

1https://github.com/openai/universe last visited 7th of March 2020

18

2.4. AI Evaluation

formance score between different ML techniques does not necessarily correlate with
the systems level of abilities. Thus a simple performance rating like achieved game
score cannot describe the progress of AI by itself (Hernández-Orallo et al., 2017). By
evaluating the ability to handle TE property changes over different learners a conclu-
sion can be drawn on the abilities of the learner in regards to autonomous generality.
Such conclusions should be accompanied by evaluation strategies like IRT to show the
significance of the progress. By isolating and adjusting single parameters of the TE
and testing on different learners it is furthermore possible to describe task difficulties
in relation to the properties of the TE.

In accordance with many working definitions of A(G)I, an evaluation platform
should provide the possibility to introduce novelty at any moment of the evaluation
process. Such novelties could include for example unknown states, unknown transi-
tion functions, or unknown mechanics influencing the outcome of known state-action
combinations. Without these novelties a proper evaluation of the learning – and
thus a systems autonomous generality – cannot be performed (Bieger et al., 2016).
Such changes in the task-environment can provide evidence of a systems pragmatic
understanding of the causal relations between factors in the environment, arguably
an important aspect of any GMI (cf. Thórisson et al. (2016)). This should be ac-
companied by a proper task theory, that enables the comparison of a variety of tasks
and environments in order to draw conclusions on the systems performance on a wide
range of tasks and environments, one of the prerequisites of AGI. While some of the
presented evaluation platforms provide different sorts of novelty, like changing the
played game or introducing changes in the environment in the Minecraft world, none
of them gives the examiner the ability to change any complexity dimension during
runtime. For example hiding variables, stochasticity, or dynamics changes cannot be
done without changing the source code of the evaluation platform.

19

3.1. Assumptions

3 SAGE – Simulator for Autonomy & Generality

Evaluation

The evaluation platform SAGE (Simulator for Autonomy & Generality Evaluation)
is developed in order to provide flexible task-environments with different levels of
complexity to evaluate artificial intelligence systems on autonomy and generality.
One of the key properties of SAGE is that it can evaluate NMIs and GMI-aspiring
systems, providing a bridge for the communities surrounding narrow and general
artificial intelligence research. It follows a path laid out previously by Bieger et al.
(2016); Thorarensen (2016), and Thórisson et al. (2015) for evaluation of GMI. The
approach of SAGE enables the evaluator to test a systems capabilities of addressing
novel things. This can be done by introducing new variables, hide existing observables,
change the task, and/or introduce randomness into existing tasks. These changes
can possibly have unknown transition functions, and/or unknown relations to other
variables. Either of these can show similar or novel behaviour in regards to the
previously learned variables. The response of a system to such changes in the task-
environment can lead to conclusions about the agents generality and/or autonomy.

3.1 Assumptions

In order to create an evaluation platform which evaluates NMIs and GMIs for their
generality and/ or autonomy assumptions about the nature of generality and au-
tonomy are necessary. Wang (2019) defines intelligence as the ability to adapt to
novel situations under the assumption of insufficient knowledge and resources. This,
however, does not clarify the term ”adaptation”, ”autonomy”, or ”generality”. Adap-
tation can be seen as general autonomy (or autonomous generality). This lead to the
introduction of two working definitions which can be used in order to describe an
agents adaptivity.

Generality of Agents When evaluating generality of an agent a working defini-
tion of what is meant by generality must be proposed. Generality can have different
meanings depending on the background of the researchers. While in mathematics gen-
erality is seen as ”applicable to as many problems as possible” in physics a general
model describes the world better, than a less general one. Because of this differen-
tiation is important to clarify that the generality evaluation of SAGE aims towards
generality in the latter sense. A system which can show a pragmatic understanding
of its surroundings and extract causal relations from the environment is seen as more
general, than one which simply maps states to actions. In essence the description of
generality is an agents capability to identify cause-effect-chains in its surroundings in
connection with its own actions.

20

3.2. Requirements

Autonomy of Agents Secondly autonomy of an agent must be investigated. The
autonomy of an agent corresponds to its ability to use (exploit) cause-effect-chains in
order to achieve a goal. These chains might be implemented by a designer (e.g. human
programmer) or might come from identifying causal relations due to the generality of
the learner.

3.2 Requirements

To evaluate an agent on its generality and autonomy, as well as bridging the gap
between NMI and GMI research certain requirements must be met. The following
requirements have been integrated into the SAGE platform:

1. Evaluation of NMI and GMI-aspiring systems and make them comparable.

2. Flexible, easy, and fast generation of task-environments for evaluation.

3. Inclusion and adjustability of complexity dimensions (cf. Thórisson et al. (2015))
before and during training.

4. Simulation of a physical 3D world for high tasks with highest complexities,
including sensor systems, embodiment of the agent, and noise models.

5. Additional for GMI aspiring systems: physical division of evaluation platform
and learner for evaluation of resource management to fulfil the assumption of
insufficient knowledge and resources.

These aspects are necessary in order to speak of an evidence of generality of an agent.
If the system can cope with them a further increase of complexity can be done by
introducing the following:

6. Observability - By changing the observability of variables (even during run time)
the systems ability to adapt to different, novel observations can be evaluated.
This includes hiding previously observable variables from the agent or make
previously hidden variables observable.

7. Episodicness - By introducing complex causal chains a sequential environment
can be generated to evaluate the systems capabilities to extract causal relation-
ships between past actions and current states.

8. Number of causal chains - Not only the episodicness is of interest, but also the
degree of complexity in sequential environments. Parallel causal chains test for
the ability to differentiate between correlation and causation.

21

3.3. Task-Environment Properties

9. Agency - Lastly by introducing a number of agents to the same task-environment
the ability to interact with other agents and developing a goal oriented strategy
for multi-agent systems can be evaluated. Other agents introduce the highest
degree of unknown environments by changing their own strategies constantly
while learning a task and its environment.

3.3 Task-Environment Properties

The by Thórisson et al. (2015) described eleven complexity dimensions of tasks envi-
ronment are mostly covered in SAGEs architecture to evaluate the agents generality,
as well as its capability to cope with different complexity dimensions. Determin-
ism, staticism, observability, knowledge, episodicity, and discreteness can be changed
before or during learning/ evaluation. Reproucibility is provided by randomisation
seeds in noise control and sensor models.

Determinism The stochasticity of the task-environment can be adjusted in the
observables, the actions, and in the environment dynamics. This enables the evaluator
to evaluate the systems capabilities to cope with sensor noise or imprecise actuators
independent of the environment itself. It also helps the evaluator to understand
better, how noisy dynamics of the environment influence learning of the agent.

Staticism By making environmental variables (like for example gravity or dynamics
parameters) changeable during run time static environments can be changed into
dynamic ones on-the-fly or the dynamism of an environment can be increased or
decreased by the evaluator at any given time.

Observability Any variable can be made observable or hidden at any time of the
learning/ evaluation process. This can test the agents capability to cope with novel
observations if made observable or for example sensor failure if made hidden. This
also helps to analyse the crucial variables of a task. If a learner can do as good with
a variable observed, as without, assumptions can be made about the importance of
this variable, supporting task theory.

Knowledge The knowledge of the learner can be changed in two different ways.
Either by providing knowledge to the learner by design or by training it on a different
task in advance. The second gives the possibility to evaluate the capabilities of a
learner to do for example transfer learning.

22

3.4. MVC-A Approach

Episodicity The task-environments can be changed in order to provide either asyn-
chronicity between the agent and the environment or a ”game-like” step by step train-
ing in which the environment only changes after an agent has decided on an action.
This is important in order to evaluate a systems learning rate (how much data is
needed in order to perform the task) or, if asynchronous, a GMI aspiring system un-
der the assumption of insufficient time, under which the time taken in order to choose
an action can have large influences on the outcome of the action.

Discreteness The continuity of the task-environment can be changed by adjusting
the resolution of observations, simulating sensor accuracy. Changing the continuity
of time can simulate different sensor frequencies.

3.4 MVC-A Approach

SAGEs task-environment simulation is done using a Model-View-Controller-Agent
(MVC-A) approach (See figure 1). The different parts of this architecture (model,
view, controller, and agent) are implemented as ROS22 (Quigley et al., 2009; Stanford
Artificial Intelligence Laboratory et al., 2018) nodes using ROS2 as a middle-ware for
inter-process communication. By using ROS2 as a middleware the process commu-
nication is done using network connections (UDP and TCP) and therefore makes
a division of task-environment and learner to two different machines possible, ful-
filling one of the requirements set for the SAGE platform. Further it provides an
interface to the Gazebo (Koenig and Howard, 2004) simulation environment making
3D simulation of robots in complex worlds including different sensor models possi-
ble. Thereby a second requirement is met. The different task-environment properties
and the remaining requirements are introduced in the different parts of the MVC-A
architecture.

Model The ROS2 model node is used to store the current state of the environ-
ment (observables, non-observables, mainpulables, time (and energy)) and provides
interfaces to the agent and the controller. In order to support reinforcement learning
algorithms it also includes the reward calculations dependent on the current state of
the environment. It passes this information to the agent by broadcasting its current
state and, depending on the episodicness of the environment, passes the state to the
controller either asynchronously (immediatley after receiving the new state from the
controller) or only after it received action information from the agent.
Further it provides the possibility to change the stochasticity and the discreteness of

2Version: Eloquent Elusor, documentation: https://index.ros.org/doc/ros2/ (last accessed 7th
of March 2020)

23

3.4. MVC-A Approach

Figure 1: Flowchart for illustration of the different components and their interactions.
The controller provides the simulation of the task-environment either itself or by
connecting to a Gazebo (Koenig and Howard, 2004) world. The model node provides
the system with a data storage and an environment independent noise system. It
passes the actions from the agent to the controller and the current state from the
controller to the agent. The agent is the learner to be tested and the interface gives
the possibility to easily connect existing learners by providing a similar interface as
OpenAI Gym (Brockman et al., 2016).

the stored data. Noise and discreteness models of observations are only added when
broadcasting to the agent. If the models are applied to the environment it only ap-
plies them when broadcasting to the controller. This makes independent evaluation
of different noise models possible.
In the model is further stored which variables are observable. Only those are passed

24

3.4. MVC-A Approach

to the agent and can be changed between any two episodes of a task including during
evaluation.
Theoretically it is possible to attach any number of agents to the provided interface,
this has, however, not been tested, yet.

Controller The controller provides the core calculation of any tasks done or, if
Gazebo is used, provides the connection to the simulated 3D environment. It is
designed to be a ROS2 node which communicates with the model node to receive
the current state of the environment, agent, and chosen actions in order to calculate
the transitions accordingly. The transition calculations are triggered by incoming
messages from the model and therefore run asynchronous or synchronous to the agents
decision making.
Tasks can be easily added and switched between any two epochs of the environment
using parameter files in order to specify which task should happen when. This, in
theory, makes complex task chains possible in which the agent must reach the goal of
the first task before continuing onto the next. This is, however, not yet implemented,
but the necessary interfaces are provided.
If Gazebo is used for simulation of the environment the controller connects to the
Gazebo-ROS interface and passes information from the model, and therefore agent, on
to the simulation. Validation checks of actions can however be done in the controller
making for example simulation of actuator failure possible by prohibiting certain
actions. This also can be changed during evaluation the same way, as changing tasks
(actuator failure and data prohibition would be a different task than with a fully
functioning body).

Agent The agent consists of two parts (if evaluating current RL algorithms), the
agent itself and an interface to the model. The interface receives ROS2 messages
broadcast by the model and processes them in order to pass to the learner. It also
stores the history of agents actions, as well as model messages in order to save them
regularly for later analysis. It further resets the learner if evaluation of a novel task
without previous knowledge is wanted and lets the agent know, when a task is done
(either failed or goal reached). The agent itself can be any RL algorithm able to
deal with the provided data. It has been tested on two different deep reinforce-
ment learners, an actor-critic-learner, and a double-deep-q-network learner. If other
learners (including GMI-aspiring ones) are attached the evaluator has the choice of
either using the interface provided or to attach directly to the ROS2 communication,
implementing their own message to data processing.

View The view currently implemented is either the 3D simulation of Gazebo, or
the ROS2 built in rqt plot. Rqt plot provides an easy to use monitoring of published

25

3.4. MVC-A Approach

observables by attaching to the ROS2 communication network. This way it allows
remote monitoring of the agents current progress of the task and therefore a better
understanding of the decision making of the agent. When using Gazebo for simula-
tion it provides a 3D environment by itself which can be used to monitor the agents
progress.

Using this approach of ROS2 communication between the different parts of the
MVC-A architecture brings main advantages. (a) The previously described evaluation
possibility of resource management; (b) The real-time processing and asynchronous
calculations if necessary; (c) The possibility to attach any number of agents to the
task-environment simulation; (d) The possibility to run multiple SAGE platforms at
the same time by using ROS internal namespacing, speeding up the generation of
statistically relevant data; and (e) the independence of model-to-agent and model-to-
controller communication making changes to both easier.

26

4.1. Inverted Pendulum Task

4 Evaluation Methodology – Proof of Concept

In order to show the capabilities of SAGE a proof of concept evaluation of two different
learners was done. An actor-critc deep reinforcement learner (AC)3 (Konda and
Tsitsiklis, 2000) and a double-deep-Q-network learner (DDQ)4 (Van Hasselt et al.,
2016) were used for this proof of concept. For this they were evaluated on the inverted
pendulum task derived from the OpenAI gym’s (Brockman et al., 2016) cart-pole-v-0
task5. In order to reduce outlying performances all tests have been done 40 times per
learner and the median of those results was calculated and is presented in the result
section.

4.1 Inverted Pendulum Task

In the inverted pendulum task the agent has the goal to balance a pole on a cart
upright over as many iterations as possible (See figure 2). The settings that were
used in the SAGE platform are similar to the ones used in OpenAI gym. The mass
of the cart is M = 1.0 kg, the mass of the tip of the pole is m = 0.1 kg, the
length of the pole is l = 0.5 m, and the gravity-constant used is g = 9.81m

s2
. The

learner gets a reward signal of r = +1 if the pole’s angle difference to the upright
position is in Θ ∈ [−12◦, 12◦] and the position difference of the cart is in the interval
x ∈ [−2.4m, 2.4m]. Otherwise the reward signal is r = −1 and the episode is failed,
restarting a new episode from the upright position.
The differential equations of the transition of the environment (so → sn is calculated
iteratively with δt = 0.001s, the model is updated in t = 0.02s steps and passes the
data to the agent. The new state sn is calculated by the following set of equations:

Θ̈n =
((M +m) · g · sin(Θo)− (cos(Θo) · (F +m · l · Θ̇2

o · sin(Θo)
4
3
· (M +m) · l −m · l · cos2(Θo)

(13)

ẍn =
(F +m · l · (Θ̇o · sin(Θo)− Θ̈n

M +m
(14)

ẋn = ẋo + ẍn · δt (15)

xn = xo + ẋn · δt (16)

Θ̇n = Θ̇o + Θ̈n · δt (17)

3Adapted from https://github.com/gearsuccess/Reinforcement-learning-1 (last visited 7th of
March 2020) and (Kostrikov, 2018)

4Adapted from https://github.com/jbocinsky/Big Data Project/blob/master/ (last visited 7th
of March 2020)

5https://gym.openai.com/envs/CartPole-v0/ (last visited 7th of March 2020)

27

4.1. Inverted Pendulum Task

Figure 2: Illustration of the cart-pole/ inverted pendulum task as implemented in
SAGE derived from Brockman et al. (2016). F0 = −10N , F1 = 10N possible actions
the agent can apply; x position of the cart; Θ angle of the pole; M = 1.0kg mass of
the cart; m = 0.1kg mass at the tip of the pole; and l = 0.5m the length of the pole.
The whole task underlies gravity g = 9.81m

s2
. The goal space is constraint by Θmin

and Θmax for the angle of the pole and xmin, xmax for the position of the cart. While
the pole and cart is kept in the goal space a reward of r = +1 is sent to the agent,
otherwise r = −1 and the task is reset to Θ = 0.0◦, x = 0.0m.

Θn = Θo + Θ̇n · δt (18)

The default settings of task’s complexity with which the different changes in com-
plexity are compared are as follows:

• Observation space: The agent can observe x, ẋ, Θ, Θ̇.

• Action space: The agent has two different action options: F ∈ {−10N,+10N}
for moving the cart sideways.

28

4.2. Tests

• Stochasticity: Observations, actions, and environment dynamics are completely
deterministic.

Further a random policy agent was tested to generate a comparable minimum
performance. This agent chooses actions in every time-step completely at random.

4.2 Tests

In order to test the agents generality a set of different evaluations was run on the
inverted pendulum tasks with the two learners:

1. The noise on all observations was increased. This was done between evaluation
tests, giving the learner the ability to learn the noisy data from beginning. This
was done in order to examine the learners capability to cope with sensor noise
without changing the determinism of the environment.

2. The noise on all actions was increased, again between evaluation tests. This
was done to better understand the influences of actuator imprecision on task
performance, as well as to analyse the agent’s policy’s dependencies on action
values in this particular task.

3. The noise on the observable variables, but in the environment dynamics, was
increased between evaluation tests. This makes an evaluation on how uncon-
trollable noises influence the performance possible.

4. Only a single observable was randomised by the maximum noise applied in
1.. This can give insight in the importance of variables and their accuracy to
achieve a high performance on the task.

5. One observable was randomised with extremely high noises (standard deviation
of 10 times the commonly observed maximum value of the variable) during a
full training/ evaluation cycle.

6. One observable was hidden during a full training/ evaluation cycle. This in
combination with 5 can give insight on the generality of the agent. Strongly
randomised variables should have a similar impact on the learner’s performance,
as if it were hidden, if a generalisation takes place.

7. The forces applied by the agent were inverted after training and re-inverted to
normal later. This test can give insights in the agent’s capability to extract
cause-effect relations and its ability of autonomously transfer knowledge of a
similar task.

29

5.1. Stochasticity

5 Evaluation Results

The results of evaluating a DDQ learner and an AC learner on the tests described
in 4.2 show the differences of these two learners and their capabilities to cope with
different complexity levels and dimensions. The two learners hyper-parameters and
network properties were as follows:

AC

The AC algorithm used to solve the inverted pendulum task had the following prop-
erties:

• Two networks, each with dense layers. The actor network with the number
of observables as input dimension, one hidden layer with 256 neurons and the
number of actions available as output dimension. The critic with the same
input, 256 neurons on the hidden layer, but only one output.

• As optimiser the Adam optimiser was used (Kingma and Ba, 2014).

• A learning rate of 7.5 · 10−4 was chosen and

• a discount factor of γ = 0.99.

DDQ

The DDQ algorithm used to solve the inverted pendulum task had the following
properties:

• Two networks, each with dense layers. Both networks had the number of ob-
servables as inputs, a hidden layer with 64 neurons and an output-dimension of
the number of available actions.

• As optimiser the Adam optimiser was used (Kingma and Ba, 2014).

• A learning rate of 0.001 was chosen,

• a discount factor γ = 0.99,

• a start exploration rate of 1.0 with a decay of 0.99 and a minimal exploration
rate of 0.01.

• to update the target network an update factor of τ = 0.125 was chosen.

These parameter settings are not necessarily optimal for this task, but since the
evaluation was done in order to proof the concept of the SAGE platform, and not to
create single performance measures, the properties have not been optimised in a time
consuming matter.

30

5.1. Stochasticity

5.1 Stochasticity

An evaluation of the DDQ and the AC learner show that different kinds of noise have
different impacts on the learners possibilities of (a) learning the task and (b) achieve
a high performance score.

5.1.1 Observations

Stochastic observations lead to worse performance of both the DDQ learner and the
AC learner. While low noise levels seem to influence the learning rate of the learner,
high noise levels show decreased learning rate and performance loss in both evaluated
learners.

Full Observation Noise In this scenario the noise applied to the observations was
applied on all observable variables by adding randomly drawn values from a normal
distribution with µ = 0.00 and σ = x% to the variables value. The percentage
represents the percentage of a variables commonly occurring maximal magnitude of
values when the task is failed.

xmax = 2.4m; ẋmax = 2.4
m

s
; Θmax = 0.21rad; Θ̇max = 0.4

rad

s
(19)

The standard deviation was increased in 10 % steps from 0-100 % to evaluate if
any learning still takes place. The resulting performance was compared to a random
policy agent which chose a random action in every time-step. Figure 3 shows the
results of the evaluation of both learners. The results show, that for the AC, noise
levels between 0-40 % have only little influence on the learners performance, but
change the learning rate of the task. Observation noise has higher impact on the
performance of the DDQ learner. This might, however, be a problem of DDQ learner’s
late convergence on policies in comparison to the AC. Both learners, however, show
drastic performance loss when the noise level is increased to more than 60 %. But
even when noise levels of 100 % of the goal state are applied both learners still show
better performance, than a random policy. Therefore relevant information could still
be extracted and used in order to increase performance. Therefore it can be stated,
that stochastic observations, while having an influence on the learning rate, do not
lead to wrong policies and critical failure like misinterpreting observed data.

Single Variable Noise In order to test the importance of variables to complete
the task two different variables were chosen which were randomised by the previously
described 100 % level of noise. The two chosen variables are the angle of the pole Θ
and the velocity of the cart v = ẋ. The results show, that the randomisation of Θ has
less influence, than the randomisation of ẋ. This is in contradiction to the expected

31

5.1. Stochasticity

Figure 3: Evaluation of a DDQ and a AC learner on their capabilities to cope with
noise on observed data. Noise applied on all observables in percentage of the goal
state of the inverted pendulum task (or commonly occurring maximum values in case
of goal independent variables θ̇ and ẋ. Random policy for comparison. Tests were
done 40 times and median of each episode is plotted. Data was smoothed with a
running mean with window width 10 for better visualisation. Top: DDQ learner;
Middle: AC learner; Bottom: Comparison of the median of different noise levels of
the performance after training (median of last 100 episodes from DDQ/ AC learner).

result. Since Θ is part of the goal constraints, other than ẋ it was assumed, that
its randomisation has a higher impact on the performance. For both Θ, and ẋ the
conclusion can therefore be drawn, that their accuracy by itself has little influence of
the learner’s final performance. The other variables seem to include enough relevant
information to achieve high performance scores on the task. The results of this test
can be seen in figure 4. In this test only the AC was evaluated and therefore no
comparison between the DDQ and the AC learner is available.

5.1.2 Dynamics

Noise on the environments dynamics have a stronger impact on the performance, than
noise on the observations. The same noise percentage definition as with the observa-

32

5.1. Stochasticity

Figure 4: Evaluation results of the AC with a single stochastic variable. Comparison
of learning speed and final performance with randomisation of v = ẋ and Θ. Ran-
domisation by normal distribution with µ = ẋ and σ = 2.4m for ẋ, and µ = Θ and
σ = 12◦ for Θ, respectively. Learning speed with randomised ẋ is slower, than with
randomised Θ. All other observables are true values from the environment simulation.
Tests were done 40 times and the median of each episode is displayed. For better
visualisation a running mean with window width 10 was applied.

tion noise test has been used. Results show, that 1-10 % of noise on the environments
dynamics have a similar impact, as 10-100 % of noise on the observations. This can
have an agent independent explanation: Noise on the dynamics can result in a fail of
the task independent of the agent’s chosen action. However this must not make up
for a factor of 10 in the noise percentage before performance drops drastically. An-
other influencing factor can be the noise propagation when applying noise to ẋ and
Θ̇. Lastly the environment noise might have an influence on the Markov-Decision-
Process, by removing the constraint, that any future state is only dependent on the
current state. By applying state independent noise to the dynamics this assumtion
might fail. This, however, must be tested by further evaluations.
This observation of impact of noise in the dynamics of the environment agrees with
the by Bellemare et al. (2015) identified problems with the ALE evaluation platform.
Randomness in the environment is necessary in order to evaluate a learners gener-
ality. The results of this test show similarity to the results of applying noise to the
observations. The AC learner copes better with low noises in regards of the final
performance, the DDQ learner, however, shows close to no deterioration of learning
speed when low noise levels are introduced unlike the AC. With more than 3 % noise
both AC and DDQ learner show similar final performance with faster learning speed
of the DDQ learner. While the DDQ learner still can extract relevant information
at 10 % noise levels, the AC learner degrades to almost the same performance, as a
random policy agent. Therefore the conclusion can be drawn, that, while noise on
the environment impacts learning stringer, than noise on the observations this still
does not lead to wrong policies of the learner. This is also a conclusion that can be
used in real world applications. A noise reduced environment (if possible) is more
important for high performance scores, than high accuracy sensors.

33

5.1. Stochasticity

Figure 5: Evaluation of a DDQ and a AC learner on their capabilities to cope with
noise on the environments dynamics. Noise applied on all observables in percentage of
the goal state of the inverted pendulum task (or commonly occuring maximum values
in case of goal independent variables θ̇ and ẋ. Random policy for comparison. Tests
were done 40 times and median of each episode is plotted. Data was smoothed with
a running mean with window width 10 for better visualisation. Top: DDQ learner;
Middle: AC learner; Bottom: Comparison of the median of different noise levels of
the performance after training (median of last 100 episodes from DDQ/ AC learner).

5.1.3 Actions

Applying noise on the action’s values applied by the agent to the environment has no
significant impact on the learners performance. Figure 6 shows, how increasing the
noise leads to almost identical results in both the AC, and the DQN learner. This
can be due to the simplicity of the task. Since the policy does not change no matter
which force is applied, as long, as they are not inverted, noise on the action has no
impact on the learning of the agent. In more complex tasks this can be different. The
policy of the inverted pendulum task, however, is simple enough to always follow the
policy ”Apply force to the opposite direction of the direction of the pole”. This is
always true and always leads to the best results, no matter how strong the applied
action is, as long as it is not negative. The impact of force inversion can be seen in

34

5.2. Hidden variable

section 5.3.

Figure 6: Evaluation of the DDQ and AC in regards of their capabilities to cope with
actuator imprecision. Noise applied as previously described. Top: DDQ; Middle:
AC; Bottom: Median of achieved performance of the last 100 episodes after training.

5.2 Hidden variable

In order to evaluate the importance of accuracy and stochasticity further, than ran-
domising a single observable variable by 100 % noise a test was created in which a
single variable (ẋ) was randomised with 1000 % noise. For comparison of the learner’s
performance a second test was done in which the observable was hidden instead of
randomised. With this the generalisation of knowledge can be evaluated. A general
learner should be able to identify the randomness of the variable and therefore the
lack of relevant information and treat the observation as if the variable does not ex-
ist. The results from the evaluation of the DDQ learner plotted in figure 7 show,
however, that this is not the case. Random variables have an impact on the learner’s
performance, making it worse, than with a hidden variable. This test was only done
on ẋ and might be different on other variables. However the conclusion that can be
drawn is that the DDQ learner does not create an importance ranking of variables by
which random variables could be neglected in decision making. Therefore the usage of
the RL algorithms must be supervised by a human designer, who identifies irrelevant

35

5.3. Task Inversion

variables and hide them from the learner. This might be one of the reasons, why bias
in AI exists. Making it necessary to have a human developer identifying relevant data
also includes the human’s bias of ”what is necessary data and why”. The test results
only include the DDQ learner due to the problem, that too high noise levels resulted
in negative probabilities in the AC’s networks leading to total failure of the learner.

Figure 7: Test of the DDQ algorithm to cope with a hidden variable vs. the same
variable randomised (in observation). The variable v = ẋ was chosen to be hidden or
randomised.

5.3 Task Inversion

This test shows an agents capability to extract causal relations and use them in or-
der to increase learning speed. By inverting the task’s actions after training on the
original action-set the time needed to re-learn the novel task is an indicator for the
learners generalisation capabilities, as well as its capabilities of transfer learning (TL).
The first phase of training on the original task can be seen as the source task in a
TL task description, the second phase, after inverting the actions, can be seen as the
target task. Sheikhlar et al. (2020) describes the necessary similarity calculation of
variables, states, causes, effects and transitions in order to exploit them to increase
the learning rate of the agent. By inverting the forces the similarities in state and
variables stay the same in both source and target task, but the effects and therefore
transitions of the task differ drastically. A learner capable of TL can use this infor-
mation and find the similarity of effect of the previously learned other action in order
to map the new task to the old one. A learner which simply produces state-action
mappings, however, can be fooled into choosing the wrong action repeatedly.

The AC learner’s results displayed in figure 8 show long relearning periods before
reaching previous performance after inversion. This shows, that the causal relation
between an action and the impact of it in the environment was probably not extracted
and that the level of TL is low in the learning algorithm. The quadrupled time before
reaching previous performance also shows, that the source task has a strong negative
influence on the target task. Further by re-inverting to the original task after learn-

36

5.3. Task Inversion

Figure 8: Inversion of forces of the inverted-pendulum task after training of the AC/
DDQ learner. Mean and median of each episode plotted. Running mean applied
to the figure for better visualisation with window width 10. Top: AC leaner, forces
inverted after 500 episodes of training and re-inverted to the original version after
another 2000 episodes. Bottom: DDQ learner, forces inverted after 2000 episodes of
training and re-inverted after another 4000 episodes. Longer learning periods for the
DDQ were chosen to test, if longer periods have an impact on the performance after
inversion.

ing the target task the AC has to relearn the source task. This means, that critical
forgetting of the source task happened when learning the target task.

Additionally the inspection of the mean, rather than the median, of the 40 trials,
shows, that the previously learned knowledge was not fully forgotten. In figure 8 it
can be seen, that after re-inverting the task to the original training set high perfor-
mance scores were achieved in some runs. The conclusion drawn from this is, that
those phases of sudden high-performance episodes can be seen when the learner en-
counters a state which was not discovered during re-learning of the target task. The
agent can therefore use its policy from the first learning phase and thereby achieve
high performance scores. Therefore after learning a similar task in addition to the
source task the examiner can make no predictions on the outcome of an episode with-
out knowledge about which states were discovered during re-learning. This makes
an argument for the unusability of an AC after re-training on a novel task with high
state similarities. Further tests must be done to confirm this theory and argument.

The DDQ learner, on the other hand, shows promising results in generalisation
and TL. After inverting the forces the DDQ learner takes only a few episodes (50-100)

37

5.3. Task Inversion

before reaching the previous performance. This shows, that the previously learned
source task has no negative effects on the learner (other than on the AC) but rather
increases learning speed. The same happens after re-inverting the actions to the
original setup. This might have two reasons: (a) the DDQ learner is a transfer
learner and uses causal relations and similarity of effect states in order to adjust the
policy; or (b) the task shows to little complexity for a DDQ learner, leading to a
ceiling effect.

38

6. Conclusions & Future Work

6 Conclusions & Future Work

The results presented in section 5 show some of the possibilities the SAGE evaluation
platform provides for in depth evaluation of RL methodologies. With results like
those presented in section 5.3 or 5.2 a conclusion on the generality of an agent can
be drawn and its capabilities to do TL can be assessed. Both are clear indicators for
generality of an agent. In order to support these findings further tests are necessary
and a comparison table of different learners should be created. As a first proof of
concept these results show the possibilities a platform like SAGE gives to the research
community.

Further not only information about the systems advantages and flaws can be
extracted from the evaluation results, but also the variables’ influences for the task-
environment itself. The application of noise on the action for example shows, that
the policy of the task seems to be independent of the force applied to the cart. This
is in line with the expectation, since the task has such low complexity it can be de-
scribed by only a few words: ”Push in the opposite direction of the falling pole.”.
This would be in line with independent action value and policy. When it comes to
the randomisation of a single variable, however, such an intuitive description seems
to fail. Apparently the noise on the observation of the angle of the pole has less
impact on the performance, or learning rate, than the randomisation of the velocity.
Therefore the velocity seems to play a more important role for learning, than the
angle, even though the velocity is not constraint by the goal space. This information
about the importance of variables could be used for the development of a task-theory,
as described in section 2.2.1.

Investigating the performance of random variables vs. hidden variables gave a
better insight in the importance of the human designer for current AI architectures.
An agent which is not capable of identifying random variables and removing them
from the decision process cannot be expected to process large amounts of data with
distracting variables. Currently a human designer seems to be necessary in order
to remove distractions. This however puts the human bias of identifying distracting
variables into the system which leads rather to the support of expected results, than
new correlations or causal relations which might be discovered in data unchanged by
human designers. This is a strong argument for why current approaches of AI still
show only little generality.

The conclusion that can be drawn from the evaluation of the actor-critic (AC),
and the double-deep-Q (DDQ) learner is, that the DDQ learner shows more general-
ity, than the AC. The DDQ learner showed no critical failure in any of the conducted

39

6. Conclusions & Future Work

tests, while the AC failed at highly random variables leading to fatal errors. This
shows the strong influence such high noise levels have on the learning. Further the
AC was not able to compensate the inversion of the task’s forces leading to very
long relearning phases which lead to the conclusion, that no knowledge generalisation
took place. This in comparison with the DDQ learner, which only took a short time
to compensate the force inversion shows the higher level of generality of the DDQ
learner. Lastly a conclusion can be made from the relevant information extracted
from variables with strong noises both in the environments dynamics, and in the ob-
servations. The DDQ learner was able to extract more information on the same noise
levels, than the AC resulting in a better performance. This is an indicator, that the
information extraction, and therefore the learning of a task, is better in the DDQ
learner.

Summarised it can be said, that SAGE offers a platform to continuously monitor
the progress of AI research towards GMI by offering full adjustability on any task-
environment dimensions required to test for generality. SAGE further includes the
possibility to change action and observation space during evaluation. This however
could not be tested, since all current AI architectures, that could be implemented,
did not support a change of either observation or action space size during run-time.
This leads to a strong argument against the autonomy of the agent. Without hu-
man interference changes like for example sensor failures or actuator failures cannot
be compensated by the system alone. A GMI, however, should be able to not only
adjust its observation space to novel methods of observing the environment, but also
adjust its action space in order to use causal chains previously unknown to achieve a
goal. This can be summarised under the lack of action grouping. Without changing
the action space every decision must be converted into at the initialisation defined
actions, rather than creating bundles which could be presented as single action out-
puts.

In the future more tests with more different RL algorithms should be done in order
to support the claims made in this thesis. GMI apsiring architectures could not be
evaluated, yet, due to two problems: (a) only few GMI aspiring systems exist to date;
and (b) the setting up of the learner so that it can attach to the SAGE platform is
non-trivial and time consuming. However the amount of adjustabilities provided by
SAGE should make the evaluation of GMI aspiring systems possible. It is planned to
test this on two GMI aspiring systems, AERA (Nivel et al., 2013) and NARS (Wang,
2006) in order to confirm the GMI evaluation possibilities of SAGE and to compare
those GMI aspiring system’s generality with current RL strategies.

A range of performance data of both NMI and GMI systems is planned for the

40

6. Conclusions & Future Work

future. This might make the identification of important aspects for GMI architectures
possible and give the AI research community an insight into the complexity dimen-
sions of tasks making conclusions about the difficulty possible. This in combination
with for example psychometric evaluation like IRT can make the identification of new
milestones for AI research possible leading to further progress in this field.

41

Bibliography

Bibliography

Adams, S., Arel, I., Bach, J., Coop, R., Furlan, R., Goertzel, B., Hall, J. S., Sam-
sonovich, A., Scheutz, M., Schlesinger, M., et al. (2012). Mapping the landscape of
human-level artificial general intelligence. AI magazine, 33(1):25–42.

Baars, B. J. and Franklin, S. (2009). Consciousness is computational: The lida
model of global workspace theory. International Journal of Machine Consciousness,
1(01):23–32.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H.,
Lefrancq, A., Green, S., Valdés, V., Sadik, A., Schrittwieser, J., Anderson, K.,
York, S., Cant, M., Cain, A., Bolton, A., Gaffney, S., King, H., Hassabis, D., Legg,
S., and Petersen, S. (2016). Deepmind lab. arXiv preprint arXiv:1612.03801.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learn-
ing environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2015). The arcade learnin-
genvironment: An evaluation platform for general agents(extended abstract). In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
page 41484152.

Bieger, J., Thórisson, K. R., Steunebrink, B. R., Thorarensen, T., and Sigurardóttir,
J. S. (2016). Evaluation of general-purpose artificial intelligence: why, what & how.
Evaluating General-Purpose AI.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep blue. Artificial intelli-
gence, 134(1-2):57–83.

Eberding, L. M., Sheikhlar, A., and Thórisson, K. R. (submitted in 2020). Sage: Task-
environment platform for autonomy and generality evaluation. In International
Conference on Artificial General Intelligence. Springer.

Goertzel, B. (2009). Cognitive synergy: A universal principle for feasible general in-
telligence. Proceedings of the 2009 8th IEEE International Conference on Cognitive
Informatics, ICCI 2009, pages 464–468.

42

Bibliography

Goertzel, B., Iklé, M., and Wigmore, J. (2012). The architecture of human-like
general intelligence. In Theoretical Foundations of Artificial General Intelligence,
pages 123–144. Springer.

Goertzel, B., Pennachin, C., and Geisweiller, N. (2014). A preschool-based roadmap to
advanced agi. In Engineering General Intelligence, Part 1, pages 355–364. Springer.

Grondman, I., Busoniu, L., Lopes, G. A., and Babuska, R. (2012). A survey of
actor-critic reinforcement learning: Standard and natural policy gradients. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views), 42(6):1291–1307.

Hernández-Orallo, J. (2015). Stochastic tasks: Difficulty and levin search. In Inter-
national Conference on Artificial General Intelligence, pages 90–100. Springer.

Hernández-Orallo, J., Baroni, M., Bieger, J., Chmait, N., Dowe, D. L., Hofmann,
K., Mart́ınez-Plumed, F., Stranneg̊ard, C., and Thórisson, K. R. (2017). A new ai
evaluation cosmos: Ready to play the game? AI Magazine, 38(3):66–69.

Ishii, S., Yoshida, W., and Yoshimoto, J. (2002). Control of exploitation–exploration
meta-parameter in reinforcement learning. Neural networks, 15(4-6):665–687.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. (2016). The malmo platform
for artificial intelligence experimentation. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 4246–4247.

Johnston, B. (2010). The toy box problem (and a preliminary solution). In Conference
on Artificial General Intelligence. Atlantis Press.

Kaptelinin, V. and Nardi, B. A. (2006). Acting with technology: Activity theory and
interaction design. MIT press.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaśkowski, W. (2016). Viz-
doom: A doom-based ai research platform for visual reinforcement learning. In
2016 IEEE Conference on Computational Intelligence and Games (CIG), pages
1–8. IEEE.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-
source multi-robot simulator. In 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages
2149–2154. IEEE.

43

Bibliography

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Gordon,
D., Zhu, Y., Gupta, A., and Farhadi, A. (2017). Ai2-thor: An interactive 3d
environment for visual ai. arXiv preprint arXiv:1712.05474.

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in
neural information processing systems, pages 1008–1014.

Kostrikov, I. (2018). Pytorch implementations of asynchronous advantage actor critic.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–
444.

Legg, S., Hutter, M., et al. (2005). A universal measure of intelligence for artificial
agents. In International Joint Conference on Artificial Intelligence, volume 19,
page 1509. Lawrence Erlbaum Associates Ltd.

Legg, S., Hutter, M., et al. (2007). A collection of definitions of intelligence. Frontiers
in Artificial Intelligence and applications, 157:17.

Levesque, H., Davis, E., and Morgenstern, L. (2012). The winograd schema challenge.
In Thirteenth International Conference on the Principles of Knowledge Represen-
tation and Reasoning.

Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274.

Luger, G. F. (2005). Artificial intelligence: structures and strategies for complex
problem solving. Pearson education.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and
Bowling, M. (2018). Revisiting the arcade learning environment: Evaluation pro-
tocols and open problems for general agents. Journal of Artificial Intelligence
Research, 61:523–562.

McCarthy, J. (1988). Mathematical logic in artificial intelligence. Daedalus, pages
297–311.

McCarthy, J., Minsky, M. L., Rochester, N., and Shannon, C. E. (2006). A proposal
for the dartmouth summer research project on artificial intelligence, august 31,
1955. AI magazine, 27(4):12.

Mikolov, T., Joulin, A., and Baroni, M. (2016). A roadmap towards machine intel-
ligence. In International Conference on Intelligent Text Processing and Computa-
tional Linguistics, pages 29–61. Springer.

44

Bibliography

Minsky, M. (1988). Society of mind. Simon and Schuster.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015). Human-level control through deep reinforcement learning.
nature, 518(7540):529–533.

Newell, A. and Simon, H. A. (1976). Computer science as empirical inquiry: Symbols
and search. Communications of the ACM, 19(3):113–126.

Nivel, E., Thórisson, K. R., Steunebrink, B. R., Dindo, H., Pezzulo, G., Rodriguez,
M., Hernandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., et al. (2013). Bounded
recursive self-improvement. arXiv preprint arXiv:1312.6764.

Oppy, G. and Dowe, D. (2019). The turing test. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring
2019 edition.

Pennachin, C. and Goertzel, B. (2007). Contemporary approaches to artificial general
intelligence. In Artificial general intelligence, pages 1–30. Springer.

Pomerantz, J. R. (2006). Perception: overview. Encyclopedia of cognitive science.

Poole, D. L. and Mackworth, A. K. (2010). Artificial Intelligence: foundations of
computational agents. Cambridge University Press.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and
Ng, A. Y. (2009). Ros: an open-source robot operating system. In ICRA workshop
on open source software, volume 3, page 5. Kobe, Japan.

Riedl, M. O. (2014). The lovelace 2.0 test of artificial creativity and intelligence.
arXiv preprint arXiv:1410.6142.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,.

Sheikhlar, A., Thórisson, K. R., and Eberding, L. M. (submitted in 2020). Au-
tonomous cumulative transfer learning. In International Conference on Artificial
General Intelligence. Springer.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484.

45

Bibliography

Sloman, A. (2001). Varieties of affect and the cogaff architecture schema. In Pro-
ceedings of the AISB01 symposium on emotions, cognition, and affective computing.
The Society for the Study of Artificial Intelligence and the Simulation of Behaviour,
volume 58.

Stanford Artificial Intelligence Laboratory et al. (2018). Robotic operating system.
available at https://www.ros.org.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

Świechowski, M., Park, H., Mańdziuk, J., and Kim, K.-J. (2015). Recent advances in
general game playing. The Scientific World Journal, 2015.

Synnaeve, G., Nardelli, N., Auvolat, A., Chintala, S., Lacroix, T., Lin, Z., Richoux,
F., and Usunier, N. (2016). Torchcraft: a library for machine learning research on
real-time strategy games. arXiv preprint arXiv:1611.00625.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10(Jul):1633–1685.

Thorarensen, T. (2016). FraMoTEC: A Framework for Modular Task-Environment
Construction for Evaluating Adaptive Control Systems. PhD thesis.

Thórisson, K. R. (2012). A new constructivist ai: from manual methods to self-
constructive systems. In Theoretical Foundations of Artificial General Intelligence,
pages 145–171. Springer.

Thórisson, K. R., Bieger, J., Li, X., and Wang, P. (2019). Cumulative learning. In In-
ternational Conference on Artificial General Intelligence, pages 198–208. Springer.

Thórisson, K. R., Bieger, J., Schiffel, S., and Garrett, D. (2015). Towards flexible
task environments for comprehensive evaluation of artificial intelligent systems and
automatic learners. In International Conference on Artificial General Intelligence,
pages 187–196. Springer.

Thórisson, K. R., Bieger, J., Thorarensen, T., Sigurardóttir, J. S., and Steunebrink,
B. R. (2016). Why artificial intelligence needs a task theory. In International
Conference on Artificial General Intelligence, pages 118–128. Springer.

Thrun, S. B. (1992). E cient exploration in reinforcement learning. Technical report,
Technical Report CMU-CS-92-102, School of Computer Science, Carnegie Mellon .

46

Bibliography

Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the Turing
Test, pages 23–65. Springer.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with
double q-learning. In Thirtieth AAAI conference on artificial intelligence.

Wang, P. (2006). Rigid flexibility: the logic of intelligence, volume 34. Springer
Science & Business Media.

Wang, P. (2007). The logic of intelligence. In Artificial general intelligence, pages
31–62. Springer.

Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General
Intelligence, 10(2):1–37.

Wang, P., Liu, K., and Dougherty, Q. (2018). Conceptions of artificial intelligence
and singularity. Information, 9(4):79.

Xie, M., Jean, N., Burke, M., Lobell, D., and Ermon, S. (2016). Transfer learning
from deep features for remote sensing and poverty mapping. In Thirtieth AAAI
Conference on Artificial Intelligence.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks? In Advances in neural information processing
systems, pages 3320–3328.

Zamora, I., Lopez, N. G., Vilches, V. M., and Cordero, A. H. (2016). Extending the
openai gym for robotics: a toolkit for reinforcement learning using ros and gazebo.
arXiv preprint arXiv:1608.05742.

47

