
Leibniz Universität Hannover
Institut für Photogrammetrie und Geoinformation

Investigations on the application of
collaborative visual SLAM using dynamic

Ground Control Points

Master Thesis

submitted by

Yi Huang

at 06. Dec. 2019

Professor: Prof. Dr.-Ing. Christian Heipke
Supervisor: M.Sc. Philipp Trusheim

Yi Huang: Investigations on the application of collaborative visual SLAM using dynamic
Ground Control Points, Master Thesis, c© 06. Dec. 2019

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe
verfasst und keine anderen Hilfsmittel als angegeben verwendet habe. Die vorliegende Arbeit
ist frei von Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus anderen Werken
entnommen sind, habe ich als solche kenntlich gemacht. Diese Arbeit wurde in gleicher oder
ähnlicher Form noch bei keinem anderen Prüfer als Prüfungsleistung eingereicht und ist auch
noch nicht veröffentlicht.

Hannover, den 06. Dec. 2019

Yi Huang

Abstract

With the development of autonomous driving, more and more people are studying the tech-
nology of simultaneous localization and mapping based on the use of multiple lightweight and
cheap camera sensors. Car2X research has also been developed alongside autonomous driv-
ing, and information exchange has become an indispensable part. Therefore this thesis will
combine information exchange and simultaneous localization and mapping. A vehicle that
can transmit its own precise position information is referred to as a dynamic Ground Control
Point (GCP), which is expected to assist in the positioning of receiving information vehicles.
In order to investigate how to use dynamic GCPs in the collaborative visual simultaneous
localization and mapping (CoSLAM), the simulation method is applied.

The simulated data include dynamic GCPs, dynamic cameras, and 3D static tie points.
The entire implementation process is divided into three steps. The first step is to initialize
the map. The exterior orientation of each camera in the first two frames is known, so using
the matching 2D feature points and cameras’ exterior orientation in all views of the first
two frames to reconstruct 3D static tie points and calculate their covariance matrix. The
second step is motion estimation. According to the matching relationship between 3D static
tie point and 2D feature point in the new frame, the initial exterior orientation of the camera
in the new frame is calculated by EPnP. Then the exterior orientation is optimized by the
Levenberg-Marquardt algorithm and the corresponding covariance matrix could be obtained.
The third step utilizes the new exterior orientation of each camera to update the old map
points and generate new map points. The third and second steps are cycled until the end of
the simulation.

Afterward, three scenarios of real road conditions are simulated in the experiment, and the
difference between whether to use dynamic GCPs is analyzed. It is found that the camera’s
pose error grows slower and even changing its original error trend after using dynamic GCPs
when the camera contains motion on both translation and rotation.

Keywords: CoSLAM, dynamic GCPs

iii

Contents

1. Introduction 1

2. Related Work 5
2.1. Filter-based SLAM . 5
2.2. SFM-based SLAM . 6
2.3. SLAM in a dynamic environment . 7

3. Theoretical Background 9
3.1. Camera model . 10

3.1.1. Pinhole camera model . 10
3.1.2. Distortion . 12

3.2. Sensor data . 13
3.3. Front end . 14

3.3.1. Direct method . 14
3.3.2. Feature-based method . 16

3.4. Back end . 28
3.4.1. Filter-based optimization . 29
3.4.2. Nonlinear optimization . 31

3.5. Loop closing . 33
3.6. Mapping . 34

4. Methodologies 35
4.1. Initialize map . 36
4.2. Motion estimation . 38
4.3. Update map . 42

5. Experiments and Results 43
5.1. Scenario A . 45
5.2. Scenario B . 48
5.3. Scenario C . 52

6. Conclusion and Outlook 57

Appendix A. Lie group and Lie algebra 61

v

List of Figures

3.1. Front end and back end in a typical SLAM system [1] 9
3.2. Basic visual SLAM framework . 10
3.3. Pinhole camera model [2] . 10
3.4. Image (x, y) and camera (xcam, ycam) coordinates [2] 11
3.5. Radial distortion [3] . 13
3.6. Schematic diagram for direct method [4] . 16
3.7. Feature-based VO . 17
3.8. Epipolar geometry constraint [5] . 21
3.9. Four possible solutions for relative orientation parameters from E [2] 24

4.1. Flow chart of main process . 36

5.1. Distribution of static tie points . 44
5.2. Model of scenario A . 45
5.3. The number of seen 3D points . 46
5.4. The difference between estimated pose and reference 47
5.5. Model of scenario B . 49
5.6. The number of seen dynamic GCPs . 50
5.7. The difference between estimated pose and reference 51
5.8. Model of scenario C . 52
5.9. The number of seen dynamic GCPs . 54
5.10. The difference between estimated pose and reference 55

vii

List of Tables

5.1. The initial positions of camera and dynamic GCPs [m] 45
5.2. RMSE in translation [m] . 48
5.3. RMSE in rotation [rad] . 48
5.4. The initial positions of cameras and dynamic GCPs [m] 49
5.5. RMSE in translation [m] . 51
5.6. RMSE in rotation [rad] . 52
5.7. The initial positions of cameras and dynamic GCPs [m] 53
5.8. RMSE in translation [m] . 55
5.9. RMSE in rotation [rad] . 56

ix

Acronyms

SLAM Simultaneous Localization and Mapping

GNSS Global Navigation Satellite System

CoSLAM Collaborative visual SLAM

GCPs Ground Control Points

SFM Structure from Motion

BA Bundle Adjustment

EKF Extended Kalman Filter

MonoSLAM Monocular Simultaneously Localization and Mapping

PTAM Parallelization of Tracking and Mapping

IMU Inertial Measurement Unit

VO Visual Odometry

DoG Difference-of-Gaussian

SVD Singular Value Decomposition

PnP Perspective-n-Point

DLT Direct Linear Transformation

GN Gauss-Newton

LM Levenberg-Marquardt

BoW Bag of Words

RANSAC Random Sample Consensus

RMSE Root Mean Square Error

xi

1. Introduction

Localization and mapping are essential parts of autonomous driving. Localization deter-
mines exterior orientation (pose), mapping integrates the surrounding environment into a
model with the help of exterior orientation and observations. The problem of simultaneous
localization and mapping is called SLAM [6]. For localization and mapping, the external
sensors commonly used are Global Navigation Satellite System (GNSS), camera and laser
scanner. It is well known that the above sensors are noisy and there are restrictions on use.
Laser scanners accurately sense the environment, but because they are very expensive and
cumbersome, they can not be widely used or mounted on small carriers. GNSS has a high
demand for the environment. It is suitable for areas with wide fields of vision and fewer obsta-
cles. As a result, it usually can not work well in narrow streets. Due to the great attenuation
of satellite signals indoors, which results in reduced accuracy, thus GNSS generally does not
work well indoors. However, cameras are more likely to work in an unknown environment
and could perceive more information such as colors and textures. Hence in recent years,
people have gradually explored more possibilities for lighter, smaller, and cheaper cameras
[7]. This thesis also aims to investigate the application of the camera. The camera is used as
the only external sensor for simultaneous localization and mapping, known as visual SLAM.

With the development of Car2X research in the past years, more and more information ex-
change will occur. According to the distribution of data information processing space, it can
be divided into the centralized processing method and the distributed processing method
[8]. In this thesis, localization is based on distributed processing of information, multiple
independent cameras are used to improve the localization by collaboration between these
sensors. Mapping is based on centralized processing of information, using all useful informa-
tion from cameras to generate a more accurate global map. The multi-camera collaboration
application in visual SLAM is called collaborative visual SLAM (CoSLAM) [9].

Vehicles with accurate position information are called dynamic Ground Control Points
(GCPs). The specific task of the thesis is to investigate how dynamic GCPs with known
coordinates in image and object space can be used in a CoSLAM by means of simulations.
To investigate this question different scenarios should be generated using a given simulation
tool. A scenario consists of multiple cameras observing each other and dynamic GCPs. The
simulation tool handles three different objects:

1. Dynamic cameras: These are moving cameras that capture the images. The exterior
orientation is unknown.

1

1. Introduction

2. Dynamic GCPs: These are moving objects with known positions in a global coordinate
system at all times.

3. Static tie points: These points are stable in position, their 3D position is unknown.

In the simulation tool, the number of cameras, dynamic GCPs and static tie points and
their trajectories vary depending on the needs of the scenario. The simulation tool projects
the object information into image space and provides the image coordinates of the seen ob-
jects. In addition, it also provides the 3D position of every dynamic GCP at each epoch. The
main task of this thesis is that using the above data by the CoSLAM to calculate the position
of every static tie point and the exterior orientation of every camera in each epoch. In the
end, the effect of dynamic GCP on CoSLAM is evaluated by the correctness and accuracy of
the results.

The main problem in the implementation process is how to calculate the camera exterior
orientation and the application of dynamic GCPs. Since using only the camera as the exter-
nal sensor means that there is no other information to predict its own motion, the localization
can merely rely on the observations obtained by itself. From a mathematical point of view,
there is no motion equation for the model, only the observation equation. Thus, dynamic
GCPs are expected to improve the accuracy of cameras’ exterior orientation and static tie
points’ position, i.e. controlling the drift of the error. Nonetheless, the number of dynamic
GCPs seen by each camera per frame is different. How many dynamic GCPs should be set
in order to maximize the positive impact on the results remains to be discussed. At the same
time, the distribution of dynamic GCPs should also be analyzed, because the centralized
distribution of dynamic GCPs may lead to poor results.

In order to make the structure of this thesis and the content of each chapter clearer, the
overall structure of the thesis is presented as follows:

• In chapter 2 the development of SLAM is described. It mainly introduces the work
and important achievements of the predecessors in the field of SLAM and highlights
the major breakthroughs made in the field of visual SLAM.

• In chapter 3 the theoretical background for visual SLAM is presented. The basic
knowledge required to apply the visual SLAM method is explained in detail (such as
the theory and formula of photogrammetry and computer vision) and some of the
knowledge needed in CoSLAM is also supplemented.

• In chapter 4 the specific operations and implementation steps to achieve localization
and mapping are explained. Principally expounding the implementation method and
the setting of the parameters, as well as the application of simulated data.

2

• In chapter 5 the form and content of the scenario and the setting of the parameters
are described. The results of different scenarios about the application of dynamic GCPs
are discussed and the correctness and accuracy of the results are also analyzed.

• In chapter 6 the conclusion with the application of dynamic GCPs in CoSLAM is in
made. Then the outlook on the next steps to be taken in the methodologies is given.

3

2. Related Work

SLAM allows a robot to perceive the unknown environment, build an environmental map
and continuously determine its position according to the environmental map. In 1986 R.C.
Smith and P. Cheeseman first propose the probabilistic SLAM problem [10], which is con-
sidered the key to achieving a truly autonomous mobile robot. Then in the early 1990s the
research group of Hugh F. Durrant-Whyte discusses and solves an open problem (which can
be seen as ”which came first, the chicken or the egg?”): localization and mapping depend
on each other, accurate localization depends on the correct map, and correct mapping needs
accurate location [11]. This discovery stimulates the subsequent research on the SLAM al-
gorithm in terms of computational complexity and approximate solution. In 1998 Kalman
filter-based SLAM is combined with probabilistic localization and mapping by Thrun [12].
After that, the filter-based SLAM algorithm is widely used and becomes the mainstream of
the SLAM algorithm [7]. After 2000, SLAM gradually replaces the laser scanner with various
cameras as a new research direction, as computer processing performance has been improved
significantly. Because of this, SLAM researchers get ideas from the Structure from Motion
(SFM) problem [13] and start to introduce the optimization method bundle adjustment (BA)
[14] into SLAM. The difference between the optimization method and the filtering method
is that the optimization method is not an iterative process, but considers the information in
all past frames, i.e. a difference between least squares and maximum likelihood. The first
and second sections focus on the important methods of filter-based SLAM and SFM-based
SLAM in visual SLAM.

In the past decades, most visual SLAM techniques have been in view of the assumption
that the surrounding environment is static. In fact, the surrounding environment exists a
lot of moving objects. When these visual SLAM techniques are applied to actual scenes,
various problems or even failures occur. Therefore, in recent years, how to apply SLAM in a
dynamic environment has become a direction of SLAM research. The third section mainly
introduces the SLAM in a dynamic environment closely related to this thesis.

2.1. Filter-based SLAM

In 1990 Smith et al. firstly present the stochastic map which is the representation of un-
certain spatial relationships between objects and use the Extended Kalman Filter (EKF) to
find an exactness solution [15]. They use EKF to estimate the position of feature (landmark)

5

2. Related Work

and of the robot in the state space at the same time. Yet the disadvantage is obvious, the
problem of high computational complexity always exist.

Monocular Simultaneously Localization and Mapping (MonoSLAM) is the first real-time
monocular visual SLAM system [16]. MonoSLAM uses EKF as the filtering, tracks the sparse
feature points, and updates their mean and covariance with state vector that contains the
camera’s current state and all landmarks. In EKF, the position of each feature point is
subject to a Gaussian distribution and an ellipsoid can be used to represent its mean and
uncertainty. One of the disadvantages of this algorithm is that sparse points are easily lost.
The main disadvantage is that, no matter how the filter equation is sorted and calculated, its
computational complexity is at least proportional to the square of the number of landmarks.
The reason is that landmarks’ locations are added to the estimated state vector, this is also
the reason for difficulty meeting the requirements of constructing large-scale maps and real-
time.

In order to be able to apply visual SLAM in a large number of landmarks, Montemerlo et al.
[17] propose a new algorithm for updating particle filter which is called FastSLAM. It divides
the joint SLAM state into the motion part and the conditional map part. For the purpose
of reducing the sampling space, the pose of the robot is expressed by particles with different
weights and pose state is recursively estimated with the aid of the particle filter method. In
particular, the map is represented by an independent Gaussian distribution, the recursive
estimation of the map state uses the EKF method. The advantage of the algorithm is that
on the one hand the computational complexity is reduced. On the other hand, the particle
filter method directly approximates the model, does not require the control vector and the
observation to satisfy the Gaussian distribution. However, the disadvantage is how to deter-
mine the number of particles. A large number of particles means they require a large amount
of memory and calculation time, but a small number of particles lead to inaccurate results [7].

2.2. SFM-based SLAM

Nistr et al. [18] publish the visual odometry (VO) to gradually solve SFM-based SLAM.
For the first time, a system for ego-motion estimation in real-time of a single camera or
stereo rig is introduced in detail, including feature extraction, feature matching, and robust
estimation. In the following study, the front end mainly refers to the VO.

Klein and Murray [19] propose and implement the parallelization of tracking and map-
ping (PTAM), distinguish the front and back ends for the first time (the tracking needs
real-time response image data, the map optimization is placed on the back end). PTAM
is based on keyframes and two parallel processing threads. The keyframe means, instead

6

2.3. SLAM in a dynamic environment

of finely processing each image, several key images are stringed together to optimize their
trajectory and map. Two parallel processing threads are tracking and mapping. Specifically,
the tracking thread does not modify the map but uses known maps for fast tracking; while
the mapping thread focuses on the creation, maintenance, and updating of the map. Even
if the mapping thread takes a long time, the tracking thread still has a map to track (if the
device is still within the scope of the built map). In addition, PTAM also implements the
strategy of relocation. If the number of successful inliers is insufficient (such as image blur-
ring, fast motion, etc.), the tracking fails. Then the relocation is started, the current frame
already compares the thumbnails of keyframes and selects the most similar keyframe as the
prediction of the current frame orientation. The disadvantage of PTAM is that the scene
is small and the tracking is easy to lose when the camera moves fast or tracks moving objects.

In 2015 Mur-Artal et al. propose the monocular ORB-SLAM [20] and in 2016 expand
ORB-SLAM to get ORB-SLAM2 which supports for stereo and RGBD sensors [21]. ORB-
SLAM innovatively uses three threads to complete SLAM, which adds a separate loop closing
thread to the PTAM algorithm framework. In addition, the PTAM algorithm framework has
been improved: 1) ORB-SLAM tracking, mapping, relocation and loop closing all use uniform
ORB features [22], ORB feature’s calculation efficiency is better than SIFT [23] or SURF [24]
and has good rotation and scaling invariance; 2) thanks to the use of the visibility graph, the
tracking and mapping operations are concentrated in a local cross-view area, enabling them
to operate in real-time on a wide range of scenes without depending on the size of the overall
map; 3) uses a unified Bag-of-Words model to perform relocation, loop closing and indexing
to improve detection speed; 4) improves the lack of PTAM (can only manually select the
initialization from planar scenes) and proposes a new automatic robust system initialization
strategy on the basis of model selection, allows reliable automatic initialization from planar
or non-planar scenes. Yet the downside is that on the one hand, it takes a lot of time to
calculate the ORB feature for each image and the three-threads architecture puts a heavy
burden on the CPU. On the other hand, a sparse feature point map can only meet the po-
sitioning requirements, but can not provide navigation, obstacle avoidance or other functions.

2.3. SLAM in a dynamic environment

To deal with SLAM in a dynamic environment, mainly distinguishing between static and
dynamic objects. That is motion segmentation which classifies dynamic and static features,
which relies chiefly on computational geometric models (e.g., fundamental matrix, homogra-
phy) and sometimes requires the help of an inertial measurement unit (IMU). There are five
technologies to segment static and dynamic features: background-foreground initialization,
geometric constraint, optical flow, ego-motion constraint, and deep learning [25]. The simu-
lation in this thesis already contains distinguished static and dynamic points. Since the idea

7

2. Related Work

of the thesis is based on CoSLAM in Zou and Tan’s paper, the motion segmentation of Zou
and Tan’s paper applies the reprojection error method of geometric constraint technology,
thus only geometric constraint is introduced.

Zou and Tan [9] first present CoSLAM which uses multiple cameras to handle pose esti-
mation and distinction between static and dynamic features. In terms of pose estimation,
for the dynamic scene they design a multi-camera collaborative optimization scheme and
add the dynamic point constraint to the optimization function (minimization of reprojection
error). As for the distinction between static points and dynamic points, firstly all points are
treated as static points and then are discriminated according to the reprojection error: if the
reprojection error of a point for a single camera frame exceeds the threshold, the category of
the point is marked as ”unknown”, then combined with the information of other cameras, it
can be judged whether the point is a dynamic point. But the biggest limitation when using
this method in the real world is to require time synchronization for each camera.

Tan et al. [26] use a similar approach with Zou and Tan [9], but they consider occlusion
to make the results more robust. Projecting feature points to the current frame can compare
appearance and structure, then it could be found that if this area has changed, i.e. whether
the area may be occluded due to the change of perspective. The invalid 3D points can be
deleted and updated in a timely and efficient manner so that the system can cope well with
gradually changing scenes. The problem remains that fast moving objects can lead to failure,
and the system can only work in a small range.

8

3. Theoretical Background

In 2016 Cadena et al. [1] talk about the past, present and future of SLAM. They not
only evaluate and affirm the past work, but also propose the direction for the development
of SLAM, as well as a typical system of SLAM is given in In Fig. 3.1. This system consists
mainly of two parts: the front end and the back end. The front end performs data processing
and integration, the back end performs inference estimation, the important loop closing step
requires feedback from the back end and data from the front end to promote a more robust
system.

Figure 3.1.: Front end and back end in a typical SLAM system [1]

On the basis of the SLAM structure in the above Fig. 3.1, the basic visual SLAM frame-
work is summarized in Fig. 3.2. The basic visual SLAM framework includes 5 components:
sensor data, front end, back end, mapping and loop closing. Since this thesis is based on
monocular cameras, the detailed description of these important components is only relevant
to monocular cameras. Section 3.1 explains the staple model of the camera, including imaging
principle, coordinate transformation, and distortion. The section 3.2 introduces the reading
and preprocessing of camera data. The front end is presented in section 3.3 and is also known
as VO. It expounds on how to quantitatively estimate the motion of the camera from images
of adjacent frames. Section 3.4 describes the back end which optimizes the results of the front
end. Loop closing in the section 3.5 usually determines whether the camera appears in the
previous position by judging the similarity of the image, thus solving the problem of position
drift over time. Mapping is based on different sensor types and application requirements.
Section 3.6 briefly introduces the common maps.

9

3. Theoretical Background

Figure 3.2.: Basic visual SLAM framework

3.1. Camera model

The process of a monocular camera mapping points in the world coordinate system to the
image pixel coordinate system can be expressed by a simple pinhole model. However, by
reason of the presence of the camera lens, the above process is distorted. Wherefore the next
two sections focus on a pinhole model and distortion.

3.1.1. Pinhole camera model

Figure 3.3.: Pinhole camera model [2]

The pinhole camera model in Fig. 3.3 shows the central projection of a point with global
coordinate X = [X,Y ,Z]T onto the image plane Z = f . The line connecting point X and

10

3.1. Camera model

camera center C intersects the image plane at point x. Assuming that the principle point
p is the origin of coordinate in the image plane, according to the similarity of triangles the
coordinate of point x is [f XZ , f YZ , f]T . Ignoring the last item, the 2D camera coordinates of
point x is [f XZ , f YZ]T . Yet actually it exists principal point offset shown in Fig. 3.4, the true
image coordinates of point x is [f XZ + px, f YZ + py]

T [2].

Figure 3.4.: Image (x , y) and camera (xcam, ycam) coordinates [2]

If point X and point x are represented in homogeneous coordinates, the central projection
is able to be simply signified as a linear mapping between their homogeneous coordinates,
which is expressed as a matrix multiplication:

fX + Zpx

fY + Zpy

Z

 =

f 0 px 0

0 f py 0

0 0 1 0

X

Y

Z

1

 (3.1)

K =

f 0 px

0 f py

0 0 1

 (3.2)

The matrix K is called calibration matrix, the 3 parameters of calibration matrix K are
called interior orientation. The above formula is derived based on assumptions that camera
center C is the origin of the global coordinate, it means that the point X is in the camera
coordinate system, so [X,Y ,Z, 1]T can be written as Xcam. Then the Equ. 3.1 can be
represented as:

11

3. Theoretical Background

x = K [I | 0] Xcam (3.3)

However generally, the camera center C is not the origin of the global coordinate system.
Therefore point X should be convert from global coordinate system to the camera coordinate
system through the transformation matrix Tcam

global first. The transformation matrix Tglobal
cam

include 3× 3 rotation matrix R that represents orientation of camera coordinate system and
3×1 translation vector t that represents camera center position in global coordinate system.
Rotation matrix R and translation vector t together are called exterior orientation.

T globalcam =

 R t

0T 1

 (3.4)

T camglobal = T global−1cam =

 RT −RT t

0T 1

 (3.5)

The mapping of point X from global coordinate to camera coordinate is shown in Equ. 3.6:

Xcam =

 RT −RT t

0T 1

X

Y

Z

1

 =

 RT −RT t

0T 1

X (3.6)

Combining Equ. 3.3 with the above formula 3.6 to get the following formula:

x ∼ K RT [I | − t] X (3.7)

The projection matrix P is determined by the calibration matrix and the transformation
matrix:

P = K RT [I | − t] (3.8)

3.1.2. Distortion

The lens in front of the camera affects the propagation of light during imaging. For ex-
ample, irregular refraction of light is produced as it passes through the lens. The closer to
the edge of the image, the more obvious the tendency that a straight line through the lens
becomes a curve on the image. This phenomenon is called distortion. Distortion can be
generally grouped into radial distortion and tangential distortion [27]. Radial distortion is
induced by an imperfect lens manufacturing process that can result in defects in the shape of

12

3.2. Sensor data

the lens. Radial distortion [3] mainly includes barrel distortion with positive radial displace-
ment and pincushion distortion with negative radial displacement. Normal image without
distortion (a), barrel distortion (b) and pincushion distortion (c) are shown in Fig. 3.5:

Figure 3.5.: Radial distortion [3]

A radial distortion model is exhibited in Equ. 3.9 and Equ. 3.10 [28]:

∆xr = xcam(k1(x
2
cam + y2cam) + k2(x

2
cam + y2cam)2 + k3(x

2
cam + y2cam)4) (3.9)

∆yr = ycam(k1(x
2
cam + y2cam) + k2(x

2
cam + y2cam)2 + k3(x

2
cam + y2cam)4) (3.10)

where xcam and ycam are arbitrary coordinates in the image coordinate system, k1, k2, k3
are parameters of radial distortion.

Due to the fact that the lens is not parallel to the image plane, tangential distortion takes
place [29]. In general, radial distortion affects the image a lot than tangential distortion,
which means radial distortion is less credible and needs to be corrected [30]. A tangential
distortion model is shown in Equ. 3.11 and Equ. 3.12 [28] with p1, p2 as parameters of
tangential distortion:

∆xt = 2p1xcamycam + p2((x
2
cam + y2cam)2 + 2x2cam) (3.11)

∆yt = p1((x
2
cam + y2cam)2 + 2y2cam) + 2p2xcamycam (3.12)

3.2. Sensor data

In visual SLAM the common visual sensors include monocular, stereo and RGB-D cam-
eras. A monocular camera has only one camera, a stereo camera has two cameras, and an
RGB-D camera usually carries multiple cameras. In addition, RGB-D cameras could capture

13

3. Theoretical Background

color images. In this thesis, only needed monocular cameras is presented.

The advantages of the monocular camera are the simple structure, low cost, besides that
it is easy to calibrate and identify. The disadvantage is that in a single image, the true size
of an object cannot be determined. If two images are obtained by the motion of the camera,
the distance of the camera motion can be calculated. However, this distance is uncertain and
diffs from the real distance by a scale. For this reason that in feature-based monocular slam,
the monocular camera is usually initialized by panning. Then the absolute length of the
relative translation is fixed to 1, the depth of objects can also be calculated by triangulation.
Hence the size of the camera trajectory and the map can be gained in the monocular SLAM,
although it still differs from the real trajectory and map by a real scale.

Calibration should be performed first before the experiment begins. The purpose is to
establish the relationship between the global coordinate system and the image coordinate
system. Therefore, the parameters required to be solved include interior parameters, exte-
rior parameters, and distortion parameters. ”Zhang’s Algorithm” is a camera calibration
method using a one-sided checkerboard [31]. This method not only conquers the disadvan-
tages of high-precision calibration required by the traditional calibration but also supplies
higher accuracy and more convenient operation compared to self-calibration. Thus, Zhang’s
algorithm is encapsulated as the function and widely used in computer vision. The actual
steps for camera calibration refer to the paper [31].

3.3. Front end

VO estimates the relative pose of the camera on the basis of two adjacent frames. Since
this estimate is affected by noise, the estimation error of the previous frame is added to
the motion of the subsequent frame, this phenomenon is called drift. In other words, the
cumulative error of VO over time leads to pose drift. Therefore, VO can only be used as
the front end which estimates the rough result that used as the initial value of the back end.
According to the difference of used image information the implementation method of VO
can be grouped into the direct method using gray information and the feature-based method.
The next two sections will focus on the feature-based method and briefly introduce the direct
method for the reason that the feature method is steady and insensate to illumination and
dynamic objects.

3.3.1. Direct method

The direct method doesn’t depend on feature points because not only it takes a lot of time
and computation to extract and match feature points, but also the process of extracting
feature points from an image discards a lot of useful information in the image. Thence the

14

3.3. Front end

direct method skips the step of extracting the feature points and estimates the motion by
minimizing the photometric error instead of minimizing the reprojection error. In addition,
because the direct method uses more information about image pixels, it is more robust in the
poorly textured part than the feature-based method. The direct method saves the time of
feature extraction, but if a large amount of image information is used for motion estimation,
the large optimization problem in the later stage requires a large amount of computation to
solve, so that the direct method can only achieve real-time through GPU acceleration.

According to the number of used pixels, the direct method is grouped into sparse direct
method, dense direct method and semi-dense direct method [32]:

• Sparse Direct Method: Choosing sparse keypoints but not requiring descriptors, so the
calculation and matching of descriptors can be avoid to make calculations simpler. The
reconstruction depends on sparse keypoints.

• Semi-dense Direct Method: Consider using only pixels with gradients and discarding
the pixels whose gradients are not obvious because such pixels have no positive effect
in motion estimation. Finally performing semi-dense reconstruction.

• Dense Direct Method: All pixels are used for motion estimation and reconstruction,
which has high requirements for computation. Yet the built dense map has many
functions, such as path planning and obstacle avoidance.

The direct method is on account of the assumption that the gray value is constant, i.e.
assuming that the imaged gray value of a point is constant at various views. However, when
the illumination changes, the direct method is easy to fail. The reason is that the constraint
of gray value invariance requires the luminosity error between two images to be as small as
possible. In Fig. 3.6 shows the relationship of point P between space and image and the
relationship between two frames. The corresponding pixel points of the point P in the space
on the first frame and the second frame image are P1 and P2, respectively. Beyond that,
the relative pose in the following figure is represented by rotation matrix R and translation
vector t, it is able to be expressed by the Lie algebra ξ (see in appendices A).

In order to obtain the pose of the camera in the second frame relative to the first frame,
an optimization problem is established according to the hypothesis of gray value invariance.
As shown in Equ. 3.13, the optimal solution is gained by minimizing the photometric error
which is represented by the variable e [4].

e = I1(P1)− I2(P2) (3.13)

The optimization function exhibited in Equ. 3.14 is the L2 norm of the photometric error.

min
ξ
J(ξ) = ||e||2 (3.14)

15

3. Theoretical Background

Figure 3.6.: Schematic diagram for direct method [4]

There are endless points in reality, if each point is represented as Pi, then the whole camera
pose estimation problem becomes the Equ. 3.15:

min
ξ
J(ξ) =

N∑
i=1

eTi ei (3.15)

where ei is expressed in Equ. 3.16.

ei = I1(P1,i)− I2(P2,i) (3.16)

The specific solution to the above formulas will not be outlined here.

3.3.2. Feature-based method

The feature-based method considers that some representative points should be picked first
which called feature points. Thereafter, the motion of the camera is estimated only for these
feature points while reckoning the 3D position of the feature points. However, information
about other non-feature points in the image is discarded. For each feature point, in order to
explain its difference from other points the ”descriptor” is created. A descriptor is usually a
vector containing information about feature points and surrounding areas. If the descriptors
of two feature points are similar, they can be considered to be the same point. On the basis
of the information of the feature points and the descriptors, the matching points in the two
images could be calculated. Once the matched feature points are found, the relative pose is

16

3.3. Front end

able to be calculated by the epipolar geometry. After the feature points are reconstructed by
relative pose, the reprojection errors of the feature points are minimized to obtain the best
solution for the pose.

The following flow chart 3.7 shows the entire process of feature-based VO including feature
detection, feature matching, motion estimation, and triangulation. They are an indispensable
part of VO and have been gradually improved by predecessors [18–20]. Thence, the next
few sections will elaborate on the specific implementation steps of the main components of
feature-based VO.

Figure 3.7.: Feature-based VO

3.3.2.1. Feature detection

The feature is the representation of image information, high standards are generally re-
quired for selected features. For example, they should have invariance to changes of per-
spective and illumination and have some flexibility for blur and noise. Relative to the edges
and pixel blocks of the image, the corner points with strong local grey value gradients in
different directions are easier to calculate and compare their similarities in the two images.
For this reason, the corner points become a so-called feature. However, when the observed
distance or the perspective changes, the shape or type of the corner point changes so that
it cannot be recognized. Thus, scientists in the area of computer vision have studied many
more steady local image features, such as SIFT [23], SURF [24], ORB [22], etc. They have
different performance in the aspect of rotation, scale invariance, and computational speed.

17

3. Theoretical Background

The feature consists of two parts: keypoint and descriptor. Examples for keypoint are Harris
corners [33], Shi-Tomasi corners [34] and FAST corners [35]. Feature descriptor contains
BRIEF [36], BRISK [37], SURF, SIFT, ORB, etc. The next paragraphs will deal with the
basic steps of SIFT, SURF and ORB and their respective highlights.

The full name of SIFT is the Scale Invariant Feature Transform which presented in 2004 by
Canadian professor David G. Lowe [23]. SIFT feature is a very stable local feature because
it is scale and rotation invariant. The SIFT algorithm has the following main steps:

• Create different resolutions of image: That is the construction of Difference-of-Gaussian
(DoG) Pyramid. A pyramid with a linear relationship (scale space) is constructed
so that the feature points of the image can be found on the continuous Gaussian
kernel scale. In addition, using a first-order DoG function to approximate a Gaussian
Laplacian is equivalent to approximately calculate the most stable feature of an image,
while greatly reducing the amount of computation.

• Keypoint localization: First, keypoint is selected by the local extrema of the DoG
scale space, and then the low-contrast points and the unstable edge response points are
removed to obtain the true keypoint.

• Orientation assignment: A gradient direction histogram is generated on account of the
local image gradient direction, and the peak of the gradient direction histogram yields
a dominant keypoint direction. All further orientations are computed relative to this
dominant direction.

• Keypoint descriptor construction: Based on position, direction, and scale information
of the SIFT keypoint a set of vectors is applied to depict the information of the keypoint
and its surrounding neighborhood pixels.

SIFT is based on lots of heuristics and free parameters, and it is extensively used in com-
puter vision and photogrammetry. Nonetheless, the shortcoming of SIFT is that there is no
global control in local method and no perspective invariance.

On the basis of the SIFT algorithm SURF (Speeded Up Robust Features) [24] mainly
improves the defects of the SIFT algorithm, such as slow operation speed and large calculation
amount. The SURF process is similar to SIFT, hence only improvements are reflected in the
following aspects:

• SURF relies on Hessian matrix to transform images, and the positions of keypoints are
detected according to the extremum of the Hessian matrix determinant. Apart from
the above step, using box blur filtering to approximate Gaussian blur.

• SURF builds scale pyramids by keeping the image size constant but changing the size
of the box filter instead of downsampling.

18

3.3. Front end

• SURF uses the response of the first-order Haar wavelet in both x and y directions as
the distribution information of the constructed feature vector which improves matching
speed.

ORB (Oriented FAST and Rotated BRIEF) [22] is a very good real-time image feature
extraction and description algorithm. ORB improves the FAST (Features from Accelerated
Segment Test) feature extraction algorithm and uses the extremely fast binary descriptor
BRIEF (Binary Robust Independent Elementary Features). FAST detects where the gray
value of a local pixel changes significantly. This means if a pixel is obviously different from
the surrounding neighborhood, the pixel can be considered a corner point. Within the
neighborhood of a keypoint in BRIEF, n pairs of pixels pi, qi (i = 1, 2, ..., n) are selected.
Then comparing the gray value of each pixel pairs, if I(pi) > I(qi), 1 is generated in the
binary string, otherwise 0. All pixel pairs are compared to generate a binary string of length
n, this binary string is a feature descriptor in BRIEF. The improvements implemented by
ORB based on FAST feature extraction algorithm are explained below:

• In order to avoid the excessively concentrated corner points extracted by FAST, non-
maximum suppression is applied.

• Aim to extract corner points with high quality, ORB can specify the number n of
extracted corner points and then calculate the Harris response value for the extracted
corner points. The response values are sorted from large to small, and the first n corner
points are selected as the final extracted feature point set.

• Image pyramids are used and corner points on each layer of pyramids are detected to
retain scale invariance.

• Intensity Centroid method is employed to maintain the rotation invariance.

3.3.2.2. Feature matching

Feature matching solves data association problems in SLAM, which is to associate the same
image parts seen in multiple perspectives. This is accomplished by comparing the distances
between descriptors to determine the similarity.

Different distance metrics can be chosen depending on the descriptor. If the type of de-
scriptor is floating point, Euclidean distance [38] can be chosen. For a binary [39] descriptor
(such as BRIEF), Hamming distance [40] is more suitable. The Hamming distance between
two different binaries refers to the number of different bits of two binary strings.

The simplest and most intuitive method is the Brute-Froce Matcher, which calculates the
distance between a feature descriptor and all other feature descriptors, and then sorts the

19

3. Theoretical Background

resulting distances to match the nearest one keypoint. This method is simple, but there are a
large number of error matches, which requires some strategy to filter out the wrong matches.
Some methods for optimizing Brute-Froce Matcher are described below.

• Twice the minimum distance: choosing twice the minimum distance found in all
matched point pairs as the judging criteria. If Hamming distance between a matched
point pair is greater than the value, it is considered to be a wrong match and filtered
out; if it is less than the value, it is considered to be a correct match.

• Cross matching: Cross matching carries out a Brute-Froce Matcher again after Brute-
Froce Matcher. If keypoint A is matched to keypoint B by Brute-Froce Matcher, and
point B is once again matched to keypoint A by Brute-Froce Matcher, it is considered
to be a correct match.

• KNN matching: K-nearest neighbor matching means that picking K points which have
the most similarity with the feature point. If K is 2, that is called KNN bidirectional
matching method. For each feature point, there will be 2 matches. If the distance ratio
of the first match and the second match is large enough, then this is considered to be
a correct match [41].

3.3.2.3. Motion estimation

Motion estimation can be performed based on matched feature points. There are three
types of situations in motion estimation. The first is the relative pose estimation between
2D images, the second is the projection relationship calculation between the 3D point cloud
and the 2D image, and the third is the similarity transformation reckoning between 3D point
clouds.

2D-2D motion estimation The 2D-2D correspondence is usually used for the initialization
of the visual SLAM system because there is only 2D-2D data association at the beginning.
First of all, the pose estimation between 2D images is explained. The geometric constraint
between any two images can be represented by Fig. 3.8. The center of the left camera is Ol,
the center of the right camera is Or, and the line connecting center Ol and center Or is called
the baseline. Assuming that the feature points are correctly matched, so the feature point
in the left projective plane is pl and its corresponding feature point in the right projective
plane is pr. Image ray Olpl and Orpr intersects at point P in 3D space. Point Ol, Or and P
determines a plane called epipolar plane. The intersections of the baseline and the projective
planes are respectively el and er called epipole. The intersection lines of the epipolar plane
and the projective planes are called epipolar line.

20

3.3. Front end

Figure 3.8.: Epipolar geometry constraint [5]

Coplanarity of point Ol, Or and P is called epipolar constraint which could be represented
using fundamental matrix F in Equ. 3.17 [2, 42].

pTr · F · pl = 0 (3.17)

Fundamental matrix F is a 3 × 3 matrix that expresses the correspondence between the
feature points of an image pair. The F matrix contains the spatial geometric relationship
(exterior orientation) of the two images and the camera calibration parameters (interior ori-
entation). Since the rank of the F matrix is two and it can be freely scaled, at least seven
pairs of feature points are needed to estimate the F matrix.

Essential matrix E is a 3 × 3 matrix which differs from the fundamental matrix F only
by the calibration matrix. Kl and Kr (see in Equ. 3.2) are the calibration matrix of the
left and right cameras respectively. The relationship between the essential matrix E and the
fundamental matrix F can be indicated by Equ. 3.18.

E = KT
r · F ·Kl (3.18)

The E matrix has nine unknown parameters. Since the rank of E matrix is two, singular
value has two constraints and epipolar constraint exists, E consists of five degrees of freedom
which means that make use of at least five pairs of feature points to estimate E matrix is
allowed. In addition to the fundamental matrix and the essential matrix, there is also a
matrix called the homography matrix H. H matrix describes the mapping of plane in global
coordinate system and image coordinate system, it is not introduced here.

21

3. Theoretical Background

Solving the relative pose depends on E matrix and F matrix. The normalized eight-point-
algorithm [43] is the easiest way to calculate the fundamental matrix. Therefore, the basic
process of solving the fundamental matrix by the eight-point-algorithm is elaborated in detail
below, and then the essential matrix through the relationship between the essential matrix
and the fundamental matrix is obtained.

To avoid numerical issues, it is necessary to condition the image coordinates within the
feature point sets before estimating the fundamental matrix. Firstly determining the center
of gravity (xC,l, yC,l) and (xC,r, yC,r) of the feature points in two images. Secondly calculating
the average distances S̄img,l and S̄img,r of all feature points from the centres of gravity in
image space. Thirdly obtaining the scales S2D,l =

√
2/S̄img,l and S2D,r =

√
2/S̄img,r for image

coordinate. Supposing N ≥ 8 feature point pairs extracted on the left and right images are
xl,i and xr,i with i = 1, 2, 3...N , thence conditioning can be expressed in Equ. 3.19.

x
′

= T2D · x, T2D =

S2D 0 −S2D · xC

0 S2D −S2D · yC

0 0 1

 (3.19)

After that the conditioned feature points in image coordinate are x
′
l,i and x

′
r,i. For each

point pair x
′T
r,i ·F ·x

′
l,i = 0 is satisfied. This constraint is able to expressed via the Kronecker

product and the vec-Operator: (x
′
l,i ⊗ x

′
r,i)

T · vec(F) = 0. The expanded description can be
seen in the Equ. 3.20.

(x
′
l,1 ⊗ x

′
r,1)

T

...

(x
′
l,N ⊗ x

′
r,N)T

 · vec(F) = 0 (3.20)

The above formula 3.20 can also be written as Equ. 3.21.

NA9 ·9 f1 =N 01 (3.21)

If there is a certain (non-zero) solution, the rank of the coefficient matrix A is at most
eight. As F is a homogeneous matrix, the solution is unique in the absence of a scale factor
and can be directly solved by a linear algorithm under the premise that the rank of matrix
A is eight. Matrix A’s rank may be greater than eight due to noise in the coordinates of the
feature points, thus a least-square solution is required which can be solved by Singular Value
Decomposition (SVD) in Equ. 3.22.

A = U · S · V T (3.22)

22

3.3. Front end

The solution of f is the singular vector corresponding to the smallest singular value of the
coefficient matrix A, that is, the last column vector of the matrix V. The rank of the F matrix
is two because the fundamental matrix has an important characteristic that is the singularity.
For the fundamental matrix, nonsingularity means that the calculated epipolar lines don’t
coincide. Therefore, a singular constraint is added to correct the matrix F

′
derived from f.

First of all, SVD is carried out for F
′

in Equ. 3.23:

F
′

=
[
f(1 : 3) f(4 : 6) f(7 : 9)

]
= U · S′ · V T (3.23)

where S
′

= diag(σ1,σ2,σ3) . Then smallest singular value is set to 0: S = diag(σ1,σ2, 0).
The corrected F matrix is obtained by product of U, the corrected S and V T in Equ. 3.24:

F = U · S · V T (3.24)

The final F matrix is recovered from the conditioning:

F = T T2D,r · F · T2D,l (3.25)

For the essential matrix, the normalized point pairs are substituted into the eight-point-
algorithm of F to get the initial E matrix. Then E matrix is also subjected to SVD. Fi-
nally reconstructing E matrix with the singular value constraint through replacing S

′
=

diag(σ1,σ2,σ3) by S = diag(1/2(σ1 + σ2), 1/2(σ1 + σ2), 0).

The next step is to recover the camera’s motion based on the estimated essential matrix E,
i.e. calculating the external orientation (R is rotation matrix and t is translation vector) of
the camera. This process is derived from SVD: E = U · S · V T with S = diag(1, 1, 0). There
are two solutions for t: t1 = v3 and t2 = −v3 (v3 refers to the last column of matrix V). And

R has also two solutions: R1 = V ·W ·UT and R1 = V ·W T ·UT with W =

0 −1 0

1 0 0

0 0 1

.

Fig. 3.9 shows the combinations of two rotation matrix R and two translation vector t to
get four possible solutions. Only in solution (a) the 3D point in both cameras has a positive
depth. Thus, as long as substituting any point into four solutions and calculating the depth
of the point in two cameras, the correct solution could be outcropped.

3D-2D motion estimation The characteristics of 3D-2D are commonly used in the oper-
ation phase of the visual SLAM system. The previous camera pose and the points in 3D
space are known. It is necessary to estimate the correspondence between these 3D points and
2D feature points in the current frame. With this correspondence, the Perspective-n-Point

23

3. Theoretical Background

Figure 3.9.: Four possible solutions for relative orientation parameters from E [2]

(PnP) method can be used to solve the pose. There are many ways to solve PnP problems,
such as P3P [44], Direct Linear Transformation (DLT) [2], EPnP [45] and UPnP [46]. Apart
from this, BA is able to resolve the PnP problem. DLT and BA are interpreted next.

First introducing DLT, assuming that a 3D homogeneous point X is projected onto the
image plane by the 3 × 4 projection matrix P with twelve unknown parameters to get the
feature point x = [u, v, 1]T which can be represented in Equ. 3.26:

x = λPX, P =

pT1

pT2

pT3

 (3.26)

The cross product can be applied to eliminate the unknown λ: x×x = 0 i.e. x×PX = 0.
This formula can be described in detail by the following equation:

0 −1 v

1 0 −u

−v u 0

pT1X

pT2X

pT3X

 = 0 (3.27)

24

3.3. Front end

Expanding the above formula 3.27 to get

upT3X − pT1X = 0, vpT3X − pT2X = 0, upT2X − vpT1X = 0 (3.28)

Obviously, the third equation in the above equation can be obtained by the first two
equations which means each feature point offers two linear constraints on P. Making an
assumption that the number of feature points is N (N ≥ 6), a linear system of equations
could be listed:

−XT
1 0 u1X

T
1

0 −XT
1 v1X

T
1

...
...

...

−XT
N 0 uNX

T
N

0 −XT
N vNX

T
N

p1

p2

p3

 = 0 (3.29)

The Equ. 3.29 can be written as 2NA12 ·12 P1 = 0. Because of the existence of the error
AP does not equal zero, the ||p|| is also fixed to 1 due to homogeneous coordinates, thus the
SVD can be utilized to solve the problem. Implementing SVD for A: A = U · S · V T , P is
the rightest column of V.

Local BA wants to minimize the reprojection error between image coordinate of observa-
tions and reprojected reconstructed 3D points, i.e. minimizing the sum of squares of a large
number of nonlinear functions which can be solved by a nonlinear least-squares algorithm.
The common algorithms are Gauss-Newton (GN) algorithm and Levenberg-Marquardt (LM)
algorithm [47]. In the following description, x is a state vector containing rotation and trans-
lation parameters, h is the increment of x. f(x) is a series of nonlinear equations, i.e.
reprojection error equations for 3D points. For small ||h|| the GN algorithm performs a
first-order Taylor expansion on f(x) to obtain a Jacobian matrix J of the derivative of f(x)
with respect to x, which can be seen in Equ. 3.30 [48].

f(x+ h) ' l(h) = f(x) +
∂f(x)

∂x
h = f(x) + J(x)h (3.30)

Then the function F (x) is defined in the following formula, which depicts the sum of
squares of f(x+ h):

F (x+ h) ' L(h) =
1

2
l(h)T l(h)

=
1

2
fT f + hTJT f +

1

2
hTJTJh

= F (x) + hTJT f +
1

2
hTJTJh

(3.31)

25

3. Theoretical Background

where f = f(x) and J = J(x). Then calculating the first derivative of L(h) and making it
equals zero: L

′
(h) = JT f + JTJh = 0, the GN step hgn which minimizes L(h) can be found

in Equ. 3.32.

JTJhgn = −JT f (3.32)

However, this algorithm does not converge when JTJ is a singular matrix or in ill condi-
tion. If the size of the step is too large, the local approximation may not be accurate. LM
algorithm implements some improvements on the basis of Gauss-Newton algorithm. Next,
the basic principle and specific steps for LM algorithm are explained.

LM algorithm adds damping parameter µ to the Equ. 3.32 and the formula can be expressed
in Equ. 3.33.

(JTJ + µI)hlm = g, g = −JT f and µ ≥ 0 (3.33)

If the damping parameter µ is small, JTJ dominates which signifies that the quadratic
approximation is good and the LM algorithm is closer to the GN algorithm. Otherwise when
µ is large, µI occupies a dominant position and hlm appears in the steepest descent direction,
which means that the nearby quadratic approximation is bad.

The steps of LM algorithm are then shown in Alg. 1. Firstly the initial value of the pa-
rameters should be determined. k is the number of iterations and starts from zero, kmax
is the maximum number of iterations and is chosen by user. The factor v is initialized to
two. The state vector x is first assigned by the initial input value and then updated by the
calculated increment hlm. Matrix A and matrix g come from the Equ. 3.33. Matrix Qxx is
the covariance matrix of state vector x, which is the inverse of matrix A. The initial value of
the damping parameter µ is related to the size of the elements in A, where τ is also selected
by user. In stopping criteria, ε1 and ε2 are small and positive numbers, which are chosen by
the user. During the iterative process, the condition for controlling the update is the gain
ratio %, where the numerator is the gain of the actual nonlinear model and the denominator
is the gain predicted by the linear model. If % is large, it means that the linear result nears
to the real model, µ should be reduced to bring the next LM algorithm step closer to the
GN algorithm step. If % is small, then the linear approximation is very poor, µ is needed to
be increased. The purpose is to make the next LM algorithm step approaches the steepest
descent direction and reduce the step length. At each iteration, judging the value of % and
checking if the exit condition is met. If any exit condition is met, outputting the state vector
x and exiting the LM algorithm.

3D-3D motion estimation The 3D-3D data correspondence is mainly used to estimate
and correct the cumulative error of the loop, and to calculate a similar transformation that

26

3.3. Front end

Algorithm 1 Levenberg-Marquardt method [48]

k := 0; v := 2; x := x0
A := J(x)TJ(x); g := J(x)T f(x)
found := (||g||∞ ≤ ε1); u := τ ·max {aii}
while (not found) and (k < kmax) do
k := k + 1; Qxx := A−1; Solve (A+ µI)hlm = −g
if ||hlm|| ≤ ε2(||x||+ ε2) then
found :=true

else
xnew := x+ hlm
% := (F (x)− F (xnew))/((L(0)− L(hlm))
if % > 0 then
x := xnew
A := J(x)TJ(x); g := J(x)T f(x)
found := (||g||∞ ≤ ε1)
u := u ·max

{
1
3 , 1− (2%− 1)3

}
; v := 2

else
u := u · v; v := 2 · v

end if
end if

end while

can align the loop. It is mainly used for RGB-D cameras and stereo cameras, so it is not
mentioned here.

3.3.2.4. Triangulation

After gaining relative pose between two images or among multiple images, triangulation
can be exploited to acquire the coordinates of feature points in 3D space. For example in two
views, assuminting that P1 = [pT1,1, p

T
1,2, p

T
1,3]

T and P2 = [pT2,1, p
T
2,2, p

T
2,3]

T are projection matrix
for two images, the desired homogeneous coordinates of 3D point is X and its corresponding
feature points are x1 = [u1, v1, 1]T and x2 = [u2, v2, 1]T . The principle is similar to the DLT
(see in 3.3.2.3) which uses cross product to eliminate the unknown scale. Therefrom each
feature point affords two linear constraints on X and the system of linear equations is shown
in Equ. 3.34 [2].

27

3. Theoretical Background

AX =

u1p

T
1,3 − pT1,1

v1p
T
1,3 − pT1,2

u2p
T
2,3 − pT2,1

v2p
T
2,3 − pT2,2

X = 0 (3.34)

However, due to the influence of noise, the above equation is always not equal. Therefore,
the problem could be solved by the least-squares method (such as SVD). X is the rightest
column of V which is decomposed from A = U · S · V T .

3.4. Back end

VO can get the relative pose between two frames. Due to the inevitable error accumula-
tion, the absolute pose is drift that means it becomes increasingly inaccurate as time goes
on. Therefore, with the help of the back end a reliable solution is able to be built. There are
two main methods for back end optimization. One is based on the optimization of filtering
theory, because of the simplicity EKF [49] is the mainstream method in the early stage which
relies on the Markov assumption. Markov assumption is the state of this frame that is only
related to the previous frame of the current frame and has nothing to do with the previous
frames (like VO), thus it is difficult to achieve global optimization. The other one is nonlinear
optimization, it takes all the data into consideration and puts them together for optimization.
Although it will increase the amount of calculation, the result is much better. The state of
the system is introduced first, then filter-based optimization and nonlinear optimization are
expounded in the next two sections.

In the process of visual SLAM, the system can be described by motion equation and
observation equation which are shown in Equ. 3.35:

 xk = fk−1(x
k−1,uk−1) + wk−1

lk = hk(x
k) + vk

(3.35)

where f is the motion equation that infers the current state from the previous state based
on the input information and h is the observation equation which gives the observation data
generated when the camera sees a 3D point. x presents all unknowns at each time k = 1, 2, ...
including cameras’ exterior orientation and landmarks’ 3D position, u is the input control
part, w is the system noise, v is the observation noise and l is the observation.

28

3.4. Back end

3.4.1. Filter-based optimization

In a linear Gaussian system, the equations of motion and observation are linear, and the
two noise terms obey the Gaussian distribution of zero-mean. The linear system is expressed
as follows [50]:

xk = Φk−1xk−1 + Lk−1uk−1 + wk−1

lk = Akxk + vk

wk ∼ N(0,Qkww)

vk ∼ N(0,Qkll)

(3.36)

where xk or xk−1 is the state vector in the current or previous frame. Qkww is a covariance
matrix of system noise w. Qkll is a covariance matrix of observation noise v. These two
covariances are generally set in advance based on experience. Φk−1 is the transfer matrix
that is calculated based on the linear relationship between the previous state xk−1 and the
current state xk. Lk−1 is the control matrix which can be obtained on the basis of the linear
relationship between control part uk−1 and states. Ak is the design matrix that is gained from
the relationship between observation lk and current state xk. For linear Gaussian systems,
Bayesian rules can be used to calculate the posterior probability distribution of x which is
the derived process of Kalman filter. Kalman filter is an unbiased optimal estimation of the
recursive form of linear systems, the derived results are shown as follows:

Qkxx,− = Φk−1Qk−1xx,+Φk−1T +Qk−1ww

x̂k− = Φk−1x̂k−1+ + Lk−1uk−1

Kk = Qkxx,−A
kT (AkQkxx,−A

kT +MkQkllM
kT)
−1

x̂k+ = x̂k− +Kk(lk − hk(x̂k−))

Qkxx,+ = (I −KkAk)Qkxx,−

(3.37)

where x̂k− is the predicted state vector and x̂k+ is the corrected state vector in the current
frame, Qkxx,− and Qkxx,+ are covariance matrices corresponding to x̂k− and x̂k+, respectively.
K is the Kalman gain calculated by optimal estimation and used to scale the innovation
lk−hk(x̂k−). When the predicted state is obtained by the motion equation (see the first equa-
tion of Equ. 3.36), the predicted state can be corrected according to the scaled innovation.

However, most systems in the real world are not linear, as well as states and noise are
not affected by Gaussian distribution. Therefore, it is necessary to linearize the system and
approximate the distribution of states and noises with a Gaussian distribution. For EKF,

29

3. Theoretical Background

the linearization of the Equ. 3.35 can be performed using Taylor-series with the development
point xk−1 = x̂k−1+ :

xk = fk−1(x̂
k
+,uk−1,wk−1, 0) +

∂fk−1

∂x

∣∣∣
x̂k−1
+

(xk−1 − x̂k−1+) +
∂fk−1

∂w

∣∣∣
x̂k−1
+

wk−1 (3.38)

The nonlinear observation equations h are linearized analogously to f also on the basis of
Taylor-series at the development point xk = x̂k−:

lk = hk(x̂
k
−, 0) +

∂hk
∂x

∣∣∣
x̂k−

(xk − x̂k−) +
∂hk
∂v

∣∣∣
x̂k−

vk (3.39)

In the approximation of the linear system, the noise term and the state term are treated
as Gaussian distribution. Thus, as long as their mean and covariance matrices are estimated,
the state can be described. After such an approximation, the follow-up work is the same as
the Kalman filter. So EKF is a direct extension of Kalman filter. The formula given by EKF
is consistent with Kalman filter, and the linearized matrix is used instead of the transfer
matrix and the design matrix in the Kalman filter. The calculated result of EKF 1. order
for the Gauss-Markov-Model is summarized in following equation:

Qkxx,− = Φk−1Qk−1xx,+Φk−1T +Gk−1Q
k−1
ww Gk−1

T

x̂k− = fk−1(x̂
k
+,uk−1,wk−1, 0)

Kk = Qkxx,−A
kT (AkQkxx,−A

kT +Qkll)
−1

x̂k+ = x̂k− +Kk(lk − hk(x̂k−, 0))

Qkxx,+ = (I −KkAk)Qkxx,−

(3.40)

where Φk−1 =
∂fk−1

∂x

∣∣∣
x̂k−1
+

, Gk−1 =
∂fk−1

∂w

∣∣∣
x̂k−1
+

, Ak =
∂hk
∂x

∣∣∣
x̂k−

, Mk =
∂hk
∂v

∣∣∣
x̂k−

.

EKF has some limitations. For example, it only linearizes using first-order Taylor-series
expansion at a fixed point and then directly calculates posterior probability based on the
linearization result. However, the first-order Taylor-series expansion depends on the nonlin-
earity of the observation and state equations. If these equations have a higher-order term
(such as 7 order), the first-order Taylor expansion does not necessarily approximate the whole
function. Another drawback is the limited storage space of the EKF. EKF needs to store
the mean and variance of the state, at the same time maintain and update them. There are
a large amount of landmarks in the visual SLAM. If these landmarks are put into the state,
the amount of storage will increase squared with the number of states, so EKF is not suitable
for large scenes.

30

3.4. Back end

3.4.2. Nonlinear optimization

Local BA is used in VO for nonlinear optimization, but only the camera’s pose and land-
marks’ position between two adjacent frames are optimized. For back end optimization, all
poses and positions of all landmarks for the entire map need to be Optimized, which means
that the amount of data is greatly increased. A huge amount of data can cause a sharp
increase in computation which is not suitable for real-time. Until the last decade, people
gradually realized the sparsity of BA in the SLAM problem, so that it can be used in real-
time scenarios [51]. Sparsity refers to the additional sparsity of the Hessian matrix H when
some camera states are not associated with landmarks in BA. The method for solving BA
with the help of sparsity will be explained next.

The observation equation is expressed in Equ. 3.41:

h(x) :

 x
′

= xc − f r11(X−tx)+r21(Y−ty)+r31(Z−tz)r13(X−tx)+r23(Y−ty)+r33(Z−tz)

y
′

= yc − f r12(X−tx)+r22(Y−ty)+r32(Z−tz)r13(X−tx)+r23(Y−ty)+r33(Z−tz)

(3.41)

where camera’s rotation matrix is R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 and camera’s translation vector is

t = [tx ty tz]
T . xc, yc and f are interior orientation. [X Y Z]T is the position of 3D point in

global coordinate system. [x
′
y
′
]T is the image coordinate of the 3D point projected on the

image. x = [c1, ..., cm, p1, ..., pn]T stands for camera’s exterior orientation ci (include rotation
and translation parameters) and landmark’s 3D position pj . l is the observations, then the
error of this observation is e = l−h(x). Therefore, the overall cost function can be expressed
as [52]:

1

2

m∑
i=1

n∑
j=1

||eij ||2 =
1

2

m∑
i=1

n∑
j=1

||l − h(x)||2 (3.42)

When adding a small increment ∆x to the argument x, the objective function becomes:

1

2
||f(x+ ∆x)||2 ≈ 1

2

m∑
i=1

n∑
j=1

||eij + Jc,ij∆ci + Jp,ij∆pj ||2 (3.43)

where Jc,ij represents the partial derivative of the entire cost function 3.42 to the camera
pose in the current state, and Jp,ij represents the partial derivative of the function to the
location of the landmark. Then organizing camera poses and landmarks’ positions separately:

xc = [c1, c2, ..., cm]T ∈ R6m, xp = [p1, p2, ..., pn]T ∈ R3n (3.44)

31

3. Theoretical Background

Consequently, the Equ. 3.43 can be simplified as follows:

1

2
||f(x+ ∆x)||2 =

1

2
||e+ Jc∆xc + Jp∆xp||2 (3.45)

where Jacobian matrices Jc and Jp are the derivatives of the overall objective function
to the overall variable. Finally, an incremental linear equation like LM and GN should be
solved, taking GN as an example:

H∆x = g (3.46)

The Hessian matrix H can be represented by the Jacobian matrix:

H = JTJ =

JTc Jc JTc Jp

JTp Jc JTp Jp

 , J = [Jc Jp] (3.47)

The sparse structure of Hessian matrix H caused by Jacobian matrix has been discovered
in recent years and can be explicitly represented by graph optimization [53]. For the error
function eij , its constraint depends only on the values of the two nodes i and j, i.e. its
corresponding Jacobian matrix has the following form:

Jij =
(

02×6, ...,
∂eij
∂ci

, 02×6, ..., 02×3,
∂eij
∂pj

, ..., 02×3

)
(3.48)

Afterwards the Hessian matrix H =
∑

i,j J
T
i,jJi,j obtained by Jacobian matrix can be

divided into four blocks:

H =

Hcc Hcp

HT
cp Hpp

 (3.49)

where Hcc and Hpp are diagonal matrices which have non-zero blocks only at Hi,i and Hj,j .
The block structure of the matrix H is the adjacency matrix of the graph, that is to say, in
the non-zero matrix block of the H matrix which is not diagonal, there is a side between the
variables corresponding to the position.

Subsequently, the Equ.3.46 could be replaced by the Equ. 3.50:Hcc Hcp

HT
cp Hpp

∆xc

∆xp

 =

gc
gp

 (3.50)

Since the diagonal matrix is less difficult to invert, the Schur elimination can be used to
eliminate the non-diagonal portion Hcp of the upper right corner to obtain the incremental
equation about ∆xc:

32

3.5. Loop closing

[Hcc −HcpH
−1
pp H

T
cp]∆xc = gc −HcpH

−1
pp gp (3.51)

After getting xc, xp can be solved by xp = H−1pp (gp −HT
cp∆xc).

In this process, only the Schur elimination is introduced to marginalize the landmarks’
positions, but the Cholesky decomposition can also be used for marginalization. Of course,
the pose variable can also be eliminated. However, the number of landmarks’ positions is
greater than the number of poses, so it is easier to calculate the pose variables by eliminating
the landmarks’ positions first.

3.5. Loop closing

The purpose of loop closing is to eliminate the cumulative error caused by relative pose
estimation, the approach is that comparing the similarity of two frames of images to establish
the constraint between distant matching frames. The popular loop closing method in the
existing SLAM system is a method of combining feature points with Bag of Words (BoW)
[54]. The main steps of this BoW-based approach are briefly described, including building
dictionary, BoW vector, similarity calculation, and loop closing verification:

• Building dictionary: This process of producing a dictionary is equivalent to the clus-
tering process of a descriptor, which can be generated using the K-means algorithm
[55]. Since the generated dictionary is too large, it will cost much time on searching
matched words one by one, a k-d tree is used to express the dictionary [56].

• BoW vector: Each descriptor in the image searches its corresponding word in the
dictionary tree and receives its ID and weight. If two descriptors map to the same word,
the weights are added together to get a fixed length vector. After all the descriptors
find the corresponding word, a vector is generated about whether the word is present
on the image.

• Similarity calculation: There are many ways to calculate similarity, such as the L1
norm of two BoW vectors’ difference.

• Loop closing verification: Check whether the matching two frames are close, or there
are enough matching points, if a pose is consecutively matched several times with
several frames near a pose in history; feature matching is performed on the two frames
detected by the loop closing, and then the motion of the camera is estimated, after
that the motion is placed in the previous pose map to check whether there is a big
difference between the previous estimation and estimation after loop closing.

33

3. Theoretical Background

3.6. Mapping

Mapping is the process of rebuilding a map. A map is a description of the environment,
but this description is not fixed and depends on the application of the SLAM. In general,
maps can be divided into the metric map and the topological map [57].

The metric map emphasizes the precise representation of the positional relationship of ob-
jects in the map, it is usually classified with the sparse map and the dense map. The location
of the landmark points discussed earlier can produce sparse map, which is mainly used for
positioning in VO and loop closing. Conversely, dense map focus on modeling everything
which can be seen, it is primarily for navigation or avoiding barriers. The monocular cam-
era’s dense map does not use the matched sparse feature points, but rematches each pixel. It
requires the use of epipolar search and block matching techniques [58]. Once the coordinate
of each pixel is known in each image, triangulation could be applied to determine the depth.
It is worth noting that triangulation needs to be performed multiple times to allow depth to
converge. In other words, the depth estimation gradually converges from an uncertain value
to a stable value as the measurement increases [59]. The advantage of the metric map is that
it is easy to build, save, and plan for short paths. Yet building it requires accurate position
estimation. In most cases, many details of the dense map are useless which consumes a lot
of storage space.

The topological map underlines the relationship between map elements compared to the
accuracy of metric maps. A topology map is a graph consisting of nodes and edges, it consid-
ers only the connectivity between nodes. The topological map doesn’t require precise location
information, has low spatial complexity, and allows for efficient path planning. However, it is
difficult to construct a map in a large environment when the sensor information is blurred. In
addition, it may create a path that does not meet the best criteria and is difficult to identify
the location.

34

4. Methodologies

This chapter discusses the main method using in the thesis. Firstly the known information
of simulated data is introduced. To get close to reality, zero-mean Gaussian noise is added
to all simulated data. The maximum variance is added to the simulation data under the
precondition that the system is working properly. The position of the 3D dynamic GCPs
and the matched feature points between adjacent frames and among cameras are known in
this thesis. For 3D dynamic GCPs with the highest accuracy, the variance of Gaussian noise
is assumed to be 10−5 m. For feature detection error, the presumed variance of Gaussian
noise is one pixel. Aim to ensure that the reconstruction of the 3D static points and the
camera pose (exterior orientation) have a true scale, the true pose of every camera in the
first two frames is given. Since the rotation matrix is more sensitive to the reconstruction of
the 3D static tie point than the translation matrix, a smaller error is added to the rotation
parameter. Gaussian noise with variances of 10−2 m and 10−4 rad is added to the rotation
and translation parameters respectively. In addition, the camera moves at a speed of 36km/h
and takes a picture at a frequency of 20Hz. The calibration matrix K of each camera is set
the same and it is shown in Equ. 4.1.

K =

f 0 cx

0 f cy

0 0 1

 =

10000 0 6911.5

0 10000 3839.5

0 0 1

 [px] (4.1)

The transformation matrix Tglobal
cam of the camera in the global coordinate system including

the rotation matrix R and translation vector t is:

T globalcam =

R t

0T 1

 (4.2)

In that way the transformation matrix Tcam
global from the camera coordinate system to the

global coordinate system could be written as:

T camglobal = T global−1cam =

RT −RT t

0T 1

 (4.3)

35

4. Methodologies

This means that the projection matrix P from 3D space to image space can be expressed
as:

P = K(T camglobal)(1:3) = KRT [I | − t] (4.4)

So the projection model used throughout the system is:

x ∼ PX (4.5)

where X is the position of the 3D point and x is the projected image coordinate. This
thesis is on the strength of the above model, the main steps are exhibited in Fig. 4.1. The
following sections have a detailed introduction to the specific operations of initializing the
map, estimating the motion and updating the map.

Figure 4.1.: Flow chart of main process

4.1. Initialize map

For all cameras, the poses (exterior orientations) in the global coordinate of the first two
frames are known. In order to make the simulation of this thesis more realistic, Gaussian
noise is added to all poses before starting all steps. Rotation is represented by a matrix in
3D space, but the operation of adding noise can only be used at the parameter level. First of
all, the parameters representing the orientation in the rotation matrix should be extracted.
Euler angle, quaternion, and Lie algebra are often employed to express rotation. However,
the Euler angle has a very large defect, i.e. gimbal deadlock. Therefore, usually in the
application scenario related to rotation, the quaternion is used rather than the Euler angle.
Yet among these three methods, Lie algebra is the only one that is possible to represent

36

4.1. Initialize map

rotation and translation at the same time. In addition, when solving the nonlinear least-
squares optimization used by the pose, the relative pose calculated on the Lie algebra can
avoid singular points and ensure that a small transformation matrix can also be shown [60].
Wherefore this thesis utilizes Lie algebra to represent rotation and translation, and performs
mathematical calculations. Lie algebra se(3) is exhibited in Equ. 4.6 (see in appendices A):

se(3) =

exp(ξ) = exp

w× u

0T 0

 ∈ R4×4

∣∣∣∣∣∣w× ∈ so(3),u ∈ R3, ξ =

u
w

 ∈ R6

 (4.6)

where u is the translation parameter and w is the rotation parameter, which can be

obtained by logarithmic mapping of the transformation matrix owing to exp

w× u

0T 0

 =R V u

0T 1

.

After that, Gaussian noise N(0, 10−4m2) and N(0, 10−8rad2) can be added to u and w,
separately. Then the noisy Lie algebra ξ = (u w)T is converted into Lie group by exponential

mapping, so the required noisy transformation matrix (pose) T globalcam is got. The covariance
matrix of the pose is shown in Equ. 4.7.

Qξξ =

10−4m2 0 0 0 0 0

0 10−4m2 0 0 0 0

0 0 10−4m2 0 0 0

0 0 0 10−8rad2 0 0

0 0 0 0 10−8rad2 0

0 0 0 10 0 10−8rad2

(4.7)

Similarly, there is also an error of the feature detection in reality. Therefore, the variance
of the Gaussian noise is set to one pixel and added to the image coordinates, the noisy image
coordinates of the feature points are obtained. Then the covariance matrix of the feature
point is displayed in Equ. 4.8.

Qff =

1 0

0 1

 px2 (4.8)

The error of the observation is caused by camera pose error and feature detection error,
the covariance matrix of the observation is shown in Equ. 4.9:

37

4. Methodologies

Qll = AQξξA
T +Qff (4.9)

where matrix A is the derivative of the projection equation 4.5 to the exterior parameter
ξ of camera. The derivative of the transform equation A.12 to the exterior parameter ξ
is known in Equ. A.14, as a result the 2 × 6 matrix A can be derived by multiplying the
derivative of the transformation equation to the exterior parameter ξ and the derivative of
the projection equation to the point Xcam.

A =
∂x

∂ξ
=

∂x

∂Xcam

∂Xcam

∂ξ
=

 f
Xcam,z

0 −fXcam,x

X2
cam,z

0 f
Xcam,z

−fXcam,y

X2
cam,z

 [I | −Xcam×] (4.10)

In Equ. 4.10 Xcam× represents skew-symmetric matrix of Xcam = RT [I | − t]X.

When reconstructing a 3D static tie point for each feature point, searching the feature
point which exists in at least 2 views. At the same time, the image coordinate and camera
pose of this feature point in the appearing view are recorded. If a feature point exists
just in one view, the feature point is preserved until it will be observed again. Afterward,
triangulation (see in section 3.3.2.4) could be performed using the recorded poses and image
coordinates of the feature point, as well as its covariance matrix is calculated. In this thesis,
multiple cameras work together to build a map, which means that a 3D static tie point can
be reconstructed together by corresponding feature points of different cameras in different
frames. It is then updated by the latest observations, thus the position of the 3D static tie
point obtained by all information is more accurate. The covariance matrix for the 3D static
point is shown in Equ. 4.11 [9]:

QXX = (JTQ−1ll J)−1 (4.11)

where 2× 3 matrix J is the derivative of the projection equation 4.5 to the position X of
3D static tie point which can be seen in Equ. 4.12.

J =
∂x

∂X
=

∂x

∂Xcam

∂Xcam

∂X
=

 f
Xcam,z

0 −fXcam,x

X2
cam,z

0 f
Xcam,z

−fXcam,y

X2
cam,z

RT (4.12)

Storing the position and covariance matrix of all generated 3D static tie points in the
second frame is equivalent to obtaining an initialized sparse map.

4.2. Motion estimation

After acquiring the position of the 3D static tie point from the initialized map, the camera
pose can be calculated from the third frame. The projection matrix estimated from the cor-

38

4.2. Motion estimation

respondence between 3D static tie point and the 2D image feature points belongs to the PnP
problem mentioned above (see section 3.3.2.3). In the above described method of solving
PnP, the EPnP with the complexity O(n) uses a linear method to solve the problem. Com-
pared to the DLT that calculates the linear solution, the premise of EPnP is the same as the
thesis, i.e. the calibration matrix is known. Moreover, it also considers nonlinear constraints
and has low sensitivity to noise, so results are more accurate. Compared to P3P which can
process three point pairs, but has no effect on more points. EPnP can handle a large number
of points and is effective for both planar (only three) and non-planar (≥ four) points. The
most important thing is that EPnP does not require an initial value, while other iterative
methods are more affected by the initial value. For the above reasons, EPnP is applied
herein. In the global coordinate system, the 3D coordinates are signified as a weighted sum
of a set of virtual control points by EPnP algorithm. For the ordinary case, it requires four
control points and they can’t be on the same plane. Then the camera pose could be further
solved after calculating the coordinates of the four control points in the camera coordinate
system.

The main steps of EPnP is introduced below. For more details, please refer to the paper
[45].

• Selecting control points: The first control point selects the centroid position of all
3D points and selects the remaining control points to constitute a foundation that is
consistent with the data’ main direction, the process is similar to principal component
analysis. This method is also similar to the normalized point coordinates of DLT and
can improve the stability of EPnP.

• Calculating the weight sums of eigenvectors: Multiplying by the camera coordinates of
the virtual control point and the calibration matrix to obtain the image coordinates. By
expanding this equation two linear equations of a 3D point can be obtained. Combining
the linear equations of all 3D points to gain a 2n× 12 linear equation M , the unknown
variable x with twelve unknown parameters is the coordinates of the four control points
in the camera coordinate system. The solution of x is the null space of M , so x is able to
be represented as the sum of the N rightmost column singular vectors that correspond
to M ’s N null singular values.

• Choosing the right linear combination: Determining the coefficients of the rightmost
column singular vector in x to get a deterministic solution. N is related to the number
of point pairs, control points, camera focal length, and noise, considering N = 1, 2, 3, 4,
the initial values of the coefficients can be obtained separately.

• GN optimization: Using GN to minimize the difference between control points in the
two coordinate systems yields an exact solution of four coefficients. Then, according to
the control point, the coordinates of all 3D points in the camera coordinate system are

39

4. Methodologies

restored. That means, all the 3D-3D matches are known. Thus, by solving the known
matched iterative closest points problem, the transformation matrix between the global
coordinate system and the camera coordinate system can be gained.

Aim to get a more precise result, nonlinear optimization can be performed after EPnP.
Therefore, the transformation matrix in the projection matrix estimated by EPnP is usually
used as the initial value of the camera exterior orientation, and then BA is utilized to gain the
optimal solution. In this thesis, Random Sample Consensus (RANSAC) [61] is also employed
to detect the solution obtained by EPnP. In RANSAC the most amount of inliers obtained
by EPnP and their corresponding solution are selected, afterward applying BA to optimize
the approximate solution. The LM algorithm (see in section 3.3.2.3) in BA is chosen in this
thesis. The reason is that the solution of LM could shun the non-singular and ill-conditioned
problems of linear equations’ coefficient matrix to some degree, as well as supply more robust
and precise increments. Before performing this part of the operation, Gaussian noise is added
to the dynamic GCPs. This thesis is based on the higher accuracy of dynamic GCPs than
any other parameters, so Gaussian noise N(0, 10−10m2) is added to the dynamic GCPs.

The main steps of using RANSAC to pick an approximate solution for every camera are
described in the Alg. 2. First of all, the initial value is needed to be determined. p1 indicates
that there is a final probability of 0.995 to select a subset without outliers. p2 represents
a probability of 0.7 that contains inliers in each iteration. The threshold is a condition for
judging the inlier. If the reprojection error of a point is less than five, it will be regarded as
an inlier. n is the number of point pairs that need to be entered in EPnP. Dynamic GCPs
are always considered as inliers because of their extremely high accuracy, then they are also
inputted into EPnP. The number of dynamic GCPs seen by each camera at each frame is
recorded as nd. If the number of seen dynamic GCPs nd is greater than or equal to the
number of required point pairs n, then all seen dynamic GCPs are input to EPnP and the
number of RANSAC iterations is set to one. Otherwise, randomly selecting ns = n−nd static
tie points for each iteration and determining iteration number according to p1, p2 and ns.
Within each iteration, a projection matrix P can be got. According to the projection matrix
P, the image coordinates of all 3D points (including all 3D static tie points and 3D dynamic
GCPs) projected on the image of the current frame are calculated. Afterward, the L2 norm
between image coordinates of all 3D points and of their corresponding feature points could
be gained, which is the so-called reprojection error. Hereafter finding all the inliers whose
reprojection error is smaller than the threshold, storing the inliers with more quantities and
the projection matrix in each iteration. After finishing the iteration, the projection matrix
and inliers with most quantities are obtained.

Recalling the LM Alg. 1 mentioned before, τ , kmax, ε1, ε2 should be chosen by user. In
this thesis, τ = 10−3, ε1 = 10−12, ε2 = 10−12 and kmax = 200. Try the experiment according
to the parameters set in the thesis and found that no more than 50 iterations will trigger

40

4.2. Motion estimation

Algorithm 2 RANSAC+EPnP

p1 := 0.995; p2 := 0.7; threshold := 5; numinliers := 0
n :=number of point pairs selected in EPnP
found :=use dynamic GCPs
if found:= true then
nd :=the number of seen dynamic GCPs

else
nd := 0

end if
if nd >= n then
numiter := 1

else
numiter := log(1−p1)

log(1−p2)ns

ns := n− nd the number of chosen static tie points in RANSAC
end if
for i ∈ numiter do

random choose ns static tie points
use nd + ns points in EPnP to get projection matrix P
e := reprojection error for all points
countset := sets for e < threshold
if len(countset) > numinliers then
numinliers:=len(countset)
Pbest :=P
inliers :=countset

end if
end for

the conditions for exiting the LM algorithm, so setting the maximum number of iterations
to 200 is sufficient. The most important part of the LM algorithm is also the derivation of
the projection matrix to the exterior parameters, which has been derived in Equ. 4.10. In
addition, when implementing the LM algorithm, the iteration of the exterior parameters is
implemented based on Lie algebra, but the performing of the matrix operation makes use
of the transformation matrix. Therefore, there is always a mutual conversion between the
Lie algebra and the transformation matrix. Finally, the optimal exterior parameters and
corresponding covariance matrix Qξξ = (ATQ−1ll A)−1 are obtained for each camera.

41

4. Methodologies

4.3. Update map

During the update process k = 3, 4, 5..., k−1 represents the previous frame and k represents
the current frame. After obtaining the new pose ξk of each camera in the motion estimation,
the position and covariance matrix of the 3D static tie point can be updated. First of all,
traversing the 3D static tie points that have been generated, and finding the corresponding
feature points in current frame. The covariance matrix Qkll of observation is then calculated
from the covariance matrix Qkξξ of the new pose, the equation is given at Equ. 4.9. Because
the 3D static tie point is still, the predicted position and covariance matrix in the current
frame is equivalent to the corrected position and covariance matrix in the previous frame,
they are displayed in Equ. 4.13:

Xk
− = Xk−1

+ , QkXX,− = Qk−1XX,+ (4.13)

The derivative of the projection equation 4.5 to the position Xk
− of 3D static tie point

is supplied in Equ. 4.12. Thus, the Kalman gain used to update 3D static points is shown
below [9]:

Kk = QkXX,−J
kT (JkQkXX,−J

kT +Qkll)
−1 (4.14)

Then the position of 3D static tie point could be renewed:

Xk
+ = Xk

− +Kk(lk − h(Xk
−)) (4.15)

where lk is observation in current frame and h(Xk
−) is observation equation which comes

from Equ. 4.5.

At the same time the covariance matrix of 3D static point is able to updated:

QkXX,+ = (I −KkJk)QkXX,− (4.16)

Afterward, searching matching feature points of 3D static tie points that do not appear on
the map. These feature points should exist in the current frame and are previously retained
which has only one view. Then using the image coordinates and camera poses of all views
where the feature point is located to carry out triangulation (see in section 3.3.2.4), the
position and covariance matrix in Equ. 4.11 of the new 3D static tie point could be received.

After completing all the steps, the pose and covariance matrix for each camera at each
frame can be got, which means that the trajectory of each camera could be displayed. Si-
multaneously, the position and covariance matrix of the 3D static tie point are also obtained,
and the sparse map based on the 3D static tie point is able to be built. Later the actual
situation on the road will be simulated to evaluate the performance of the entire system and
the dynamic GCPs.

42

5. Experiments and Results

Before doing the experiment, the number of point pairs entered in EPnP need to be de-
termined. Since this experiment simulates the actual road conditions, the 3D points seen by
the camera in the actual situation are often not in one plane. Therefore, this experiment
simulates the seen points which are non-planar (≥ four). In the trial run, it is found that
when the number of point pairs is just four, the program could not run normally. In addition,
the paper of EPnP also chose at least five point pairs. Because up to six dynamic GCPs are
set in thesis experiment, the number of point pairs that need to input EPnP is six. That
means, six− nd static points are selected each time in RANSAC.

Then some basic settings of the experiment are introduced, a total of three scenarios are
set up in this experiment. Scenario A comes from the face-to-face driving of the vehicle,
which contains one camera and three dynamic GCPs. Scenario B originates from one-way
driving of the vehicle, including three cameras and three dynamic GCPs. Scenario C is the
vehicle driving at the junction of three roads, three cameras and six dynamic GCPs are set.
In the above scenarios, the trajectories of the camera and dynamic GCPs are fixed manually.
There are 400 static tie points in the experiment. These static tie points are generated by
a random number generator, and the random number seed is fixed at 400, so the generated
random number sequence generated each time is the same. This method ensures that the
experimental environment is identical for each scenario, and the distribution of static tie
points is shown in Fig. 5.1. The area of the entire simulated field is just 60× 60× 5 m, so all
simulations only run a limited and less time.

Due to the randomness of results caused by RANSAC, the simulation of each scenario
runs 10 times to get average value, which ensures that the results are more convincing and
not affected by a single run. After obtaining the average pose of each camera in each frame,
it is necessary to evaluate the estimated pose. Since the true camera pose of each frame is
known, it is treated as the reference, the difference between the estimated average pose and
the reference value can be compared. Here, the estimated average pose and reference are
converted to Lie algebras, and then the L2 norm (Euclidean norm) between the translation
and rotation parameters and the reference value are calculated separately. The calculation
formula for translation parameters is given in the following Equ. 5.1:

differencetranslation =
√

(ue,1 − ur,1)2 + (ue,2 − ur,2)2 + (ue,3 − ur,3)2 (5.1)

43

5. Experiments and Results

Figure 5.1.: Distribution of static tie points

where ue represents the estimated average translation parameter and ur is translation part
from reference. The numerical subscript represents three parameters related to corresponding
coordinate axes. The rotation formula is the same as the translation formula, please see
Equ. 5.2. we is the estimated average rotation parameter and wr is rotation part from
reference.

differencerotation =
√

(we,1 − wr,1)2 + (we,2 − wr,2)2 + (we,3 − wr,3)2 (5.2)

The prediction is that using dynamic GCPs can effectively suppress the increase of error,
it will also reduce the overall error, so the root mean square error (RMSE) is used as the
evaluation standard too. The calculation formulas for RMSE is written as follows:

RMSEtranslation =

√√√√ 1

n

n∑
t=1

(ue,t − ur,t)2 (5.3)

RMSErotation =

√√√√ 1

n

n∑
t=1

(we,t − wr,t)2 (5.4)

where n is the number of frames. In the following sections the three scenarios are described

44

5.1. Scenario A

in detail, as well as the experimental results are elaborated, the role of dynamic GCPs is also
analyzed and evaluated.

5.1. Scenario A

Figure 5.2.: Model of scenario A

Table 5.1.: The initial positions of camera and dynamic GCPs [m]

X Y Z

camera -10.0 10.0 2.5

dynamic GCP0 24.0 11.0 4.0

dynamic GCP1 26.0 13.0 1.5

dynamic GCP2 28.0 17.0 3.25

dynamic GCP3 30.0 15.0 2.4

Fig. 5.2 shows the model of the scenario A. On the two-way street, the lower camera goes
straight to the right, and four dynamic GCPs above go straight to the left. These four
dynamic GCPs are not on the same plane. The initial positions of the camera and four dy-
namic GCPs are displayed in Tab. 5.1. In X direction the initial distance between the camera
and the nearest dynamic GCP is 34 m, and each dynamic GCP differs by 2 m. Eventually

45

5. Experiments and Results

stopped when the camera is 6 m from the nearest dynamic GCP. The camera or dynamic
GCPs’ entire travel distance is 14 m, the travel distance per frame is 0.5 m.

In order to see the effect of dynamic GCPs on camera pose, whether to use dynamic GCPs
is tested separately in the same scenario. When dynamic GCPs are not used, the camera
locates itself with the static tie points it sees, while updating and generating the static tie
points with its new pose. When using dynamic GCPs, dynamic GCPs are always involved in
each calculation as the inliers. The number of seen 3D points for the camera in every frame
is shown in Fig. 5.3. Fig. 5.3a shows the number of static tie points that the camera can
see in each frame of scenario A. Because the scenario has borders, fewer static tie points can
be seen as the camera goes straight towards the borders. Aim to understand the impact of
dynamic GCPs distribution on camera positioning, the number of dynamic GCPs that the
camera can see per frame is fixed to four and is displayed in the Fig. 5.3b.

(a) Static tie points (b) Dynamic GCPs

Figure 5.3.: The number of seen 3D points

Fig. 5.4 shows the absolute error between the estimated pose and the reference value.
Figures in the same column belong to the same test. Fig. 5.4a shows the translation and
rotation errors caused by not using dynamic GCPs, and Fig. 5.4b exhibits the translation
and rotation errors produced when four dynamic GCPs are seen per frame. For translation
errors, the overall error is gradually increasing when GCPs are not applied. Because the
camera is getting closer to the far point that is originally generated and greatly affected
by noise, now these seen noisy static tie points are used to locate the camera, so the error
accumulates more and the error grows faster later. In addition, fewer static tie points over
time also mean fewer matching points. Suitable points may not be found to help the camera
locate, which will also have a positive effect on the accumulation of errors. The rotation
error rises slowly until the 25th frame because the camera goes straight without rotation, so

46

5.1. Scenario A

the estimated rotation is accurate. After the 25th frame, the rotation error increases rapidly
probably due to the sharply reduced matching points and the corresponding less accurate
static tie points.

(a) No dynamic GCPs (b) Total 3 dynamic GCPs

Figure 5.4.: The difference between estimated pose and reference

The translation error using dynamic GCPs grows very fast before the 15th frame. Since
the dynamic GCPs are far away from the camera at the beginning, the four dynamic GCPs
seen by the camera are concentrated in a small area and cannot play a larger role. After the
15th frame, the dynamic GCPs are getting closer to the camera, and the four GCPs seen by
the camera start to be scattered throughout the image plane. At this time, dynamic GCPs
can use its high precision to accurately determine the position of the camera, so the pose
error is reduced. For the rotation error, it has a similar trend to the translation error. When
the seen dynamic GCP is scattered in the view of the camera and gradually stabilized, the
error fluctuates during this period.

47

5. Experiments and Results

Then the RMSE of the translation and rotation parameters are obtained. It can be seen
from the Tab. 5.2 and Tab. 5.3 that the RMSE with four dynamic GCPs is smaller than
without dynamic GCPs.

Table 5.2.: RMSE in translation [m]

No dynamic GCPs Total 4 dynamic GCPs

camera 0.1189 0.0879

Table 5.3.: RMSE in rotation [rad]

No dynamic GCPs Total 4 dynamic GCPs

camera 0.0026 0.0025

Compared to the absence of dynamic GCPs, translation and rotation errors grow slowly
and overall RMSE is reduced when using dynamic GCPs. It can be found that the usage
of dynamic GCPs has a positive impact on the positioning of the camera and decentralized
dynamic GCPs can effectively control the growth of errors.

5.2. Scenario B

It can be seen from scenario A that when the dynamic GCPs are closer to the camera, the
dynamic GCPs are more conducive to camera positioning. Thus in scenario B, let dynamic
GCPs and cameras drive in the same direction to make dynamic GCPs play a greater role.
The model of scenario B is displayed in Fig. 5.5. Three cameras and three dynamic GCPs
go straight on a one-way street, three cameras have the same height. The initial positions of
three cameras and four dynamic GCPs are listed in Tab. 5.4. In Y direction each camera is 4
m apart and a dynamic GCP is distributed 2 m in front of each camera. The overall travel dis-
tance of the camera or dynamic GCPs is 14 m, and the travel distance of each frame is 0.5 m.

48

5.2. Scenario B

Figure 5.5.: Model of scenario B

Table 5.4.: The initial positions of cameras and dynamic GCPs [m]

X Y Z

camera0 7.6 -10.0 2.5

camera1 11.2 -6.0 2.5

camera2 6.8 -2.0 2.5

dynamic GCP0 7.0 -8.0 3.25

dynamic GCP1 11.0 -4.0 2.75

dynamic GCP2 7.6 0.0 2.4

For scenario B, whether to use dynamic GCP is also tested separately. Like scenario A, the
cameras in scenario B go straight, but not rotate. Due to the influence of the boundaries, the
number of static tie points observed in each frame decreases over time, as shown in Fig. 5.6a.
Aim to compare the impact of the quantity of dynamic GCPs used on the positioning of each
camera in scenario B, let each camera see a different number of dynamic GCPs as shown in
Fig. 5.6b. The bottom camera0 can always see three dynamic GCPs, the middle camera1

49

5. Experiments and Results

can see two dynamic GCPs all the time and the top camera2 can only see one dynamic GCP.

(a) Static tie points (b) Dynamic GCPs

Figure 5.6.: The number of seen dynamic GCPs

Fig. 5.7 shows the translation and rotation errors for whether to use dynamic GCPs. When
dynamic GCPs are not used, firstly the translation errors of the three cameras decrease in
third and fourth frames. Because a large number of map points produced by the initial
collaboration can accurately locate the camera and reduce the initial error. Then translation
errors grow at the same speed, but the more rear the camera is, the camera translation error
is smaller. The reason is that when collaborative mapping, the rear camera0 can see more
static tie points, which can choose more precise map points to determine its position. Later,
the number of static tie points that each camera can observe is getting less, so each camera
may not be able to choose a particularly accurate map points to calculate its location. As a
result, the translation error of each camera begins to grow rapidly. Since each camera has
only linear motion and no rotation, the rotation error of each camera is only fluctuating and
is extremely small.

For the usage of dynamic GCPs, the shortcomings of static tie points are reduced, i.e. the
decrease in the number of static tie points seen later will roughly not negatively affect the
positioning of the camera. So that the translation error of each camera becomes very small
and there is basically not related to the number of dynamic GCPs seen by each camera.
For rotational errors, since the dynamic GCPs remain relatively stationary with the camera,
they may not have a positive impact on the rotation parameters when going straight. At the
same time, it may still be affected by the difference in the number of seen dynamic GCPs,
resulting in a difference in the magnitude of the rotation error of each camera.

50

5.2. Scenario B

(a) No dynamic GCPs (b) Total 3 dynamic GCPs

Figure 5.7.: The difference between estimated pose and reference

The results in the Tab. 5.5 and Tab. 5.6 are similar to the error trends shown in the above
Fig. 5.7. The RMSE of the translation when using the dynamic GCPs is smaller than the
case of the unused dynamic GCPs, whereas the RMSE of the rotation with using the dynamic
GCPs is greater than the case of the without dynamic GCPs.

Table 5.5.: RMSE in translation [m]

No dynamic GCPs 3 dynamic GCPs

camera0 0.003805 0.001773

camera1 0.005366 0.001738

camera2 0.007608 0.001914

51

5. Experiments and Results

Table 5.6.: RMSE in rotation [rad]

No dynamic GCPs 3 dynamic GCPs

camera0 0.000054 0.000094

camera1 0.000051 0.000114

camera2 0.000048 0.000117

When multiple cameras are driving in one direction, the use of dynamic GCPs can reduce
translation errors and RMSE, but the number of dynamic GCPs will not play a significant
role in it. The rotation errors and RMSE will increase slightly, and the error may be smaller
due to the larger number of dynamic GCPs. Compared with scenario A, the RMSE of
scenario B is much smaller. On the one hand, dynamic GCPs are closer to the camera, they
are more scattered on the image plane, so they can play a good role. Another more important
aspect is that scenario B uses multiple cameras to map the same area, thus the generated
static tie points are more accurate and the positioning of the camera is more precise.

5.3. Scenario C

Figure 5.8.: Model of scenario C

52

5.3. Scenario C

The model of scenario C in Fig. 5.8 simulates the situation at the junction of three roads.
There are a total of three cameras and six dynamic GCPs, the three cameras have the same
height, but the six dynamic GCPs are not coplanar. The initial positions of every camera
and every dynamic GCP are shown in Tab. 5.7. A dynamic GCP is placed at 2 m front and
rear of each camera. One dynamic GCP is put in front of each camera is to ensure that each
camera can see at least one dynamic GCP. All points in Fig. 5.8 follow the direction of the
arrow. The camera0 at the bottom goes straight up and then turns right. The camera1 on
the right moves all the way to the left. The camera2 on the left advances to the right and
then turn right. The total travel distance of each point is 14 m, and the travel distance of
each frame is 0.5 m.

Table 5.7.: The initial positions of cameras and dynamic GCPs [m]

X Y Z

camera0 10.0 2.0 2.5

camera1 18.0 10.0 2.5

camera2 2.0 10.0 2.5

dynamic GCP0 0.0 10.0 1.5

dynamic GCP1 4.0 10.0 2.5

dynamic GCP2 20.0 10.0 2.25

dynamic GCP3 16.0 10.0 1.75

dynamic GCP4 10.0 0.0 2.75

dynamic GCP5 10.0 4.0 2.0

In scenario C, camera0 and camera2 both go straight and rotate 90 degrees, while cam-
era1 only goes straight. The number of static tie points they observe is shown in Fig. 5.9a.
Similarly owing to the existence of the boundaries, the number of observed static points will
decrease over time. One benefit of scenario C is that because of the different motion trajec-
tories of each camera, it can see different numbers of dynamic GCPs at each moment. In
this way, it is possible to compare the effects of changes in the number of observed dynamic
GCPs on camera positioning. The number of observed dynamic GCPs by each camera per
frame is exhibited in Fig. 5.9b.

53

5. Experiments and Results

(a) Static tie points (b) Dynamic GCPs

Figure 5.9.: The number of seen dynamic GCPs

Test implementation is still divided into whether to use dynamic GCPs. Fig. 5.10 depicts
the translation and rotation errors for both tests. For the case where dynamic GCP is not
used, the errors of translation and rotation are basically in an increasing state. The error of
camera1 and camera2 is the fastest growing, while the error of camera2 is slowly increasing.
Camera1 has been in a straight line state, the static tie point it sees has been decreasing and
the static tie points which camera1 needs to locate are only generated and updated by cam-
era0 and camera2 at the beginning, after that the static tie points are updated by the new
pose obtained by itself. The static tie points that are updated by camera1 has lower accuracy
than by collaborative mapping of other cameras. Moreover, these points are also the points
far from the camera1 which have larger noise, so the pose error of the camera1 that loses the
collaborative mapping becomes larger. The case of camera2 is similar to camera1. When it
turns, most of the static tie points it sees are not on the map. Thus the static tie points used
to locate camera2 can only be generated and updated by itself, and its pose error grows very
quickly. Camera0 can achieve small pose errors through collaborative mapping like the other
two cameras in the beginning. When camera0 turns to the right, most of the static tie points
with higher accuracy it sees are generated and updated by the collaborative mapping of pre-
vious camera1 and camera2, as a result the pose error of camera2 has the slowest growth rate.

The above situation has been changed for the case of using dynamic GCPs. Since camera1
and camera2 see more dynamic GCPs than camera2 in the approximately first 14 frames, the
error growth of camera1 and camera2 is not only suppressed but also has a small fluctuation.
After that, the number of seen dynamic GCPs decreases, thence the errors of camera1 and
camera2 slowly increase. Camera0 sees fewer dynamic GCPs than the other two cameras
from the beginning, so its pose error increased significantly faster than the other two cameras.
In the middle, camera0 is also positively affected by dynamic GCPs, thus the error slowly

54

5.3. Scenario C

increased by about six frames. Afterward, the number of seen dynamic GCPs reduces,
therefore the pose error begins to increase rapidly.

(a) No dynamic GCPs (b) Total 6 dynamic GCPs

Figure 5.10.: The difference between estimated pose and reference

Table 5.8.: RMSE in translation [m]

No dynamic GCPs Total 6 dynamic GCPs

camera0 0.0384 0.0118

camera1 0.0761 0.0031

camera2 0.0743 0.0032

55

5. Experiments and Results

Table 5.9.: RMSE in rotation [rad]

No dynamic GCPs Total 6 dynamic GCPs

camera0 0.0007 0.0011

camera1 0.0011 0.0002

camera2 0.0014 0.0003

Tab. 5.8 and Tab. 5.9 give the RMSE for each camera about translation and rotation.
It can be seen that in addition to the RMSE of camera0 about rotation, the RMSE of the
other cameras with respect to translation and rotation in the condition of using a total of six
dynamic GCPs is less than the unused case. Probably because the rotation error of camera0
grows too fast at an early stage, the inhibition of error growth by dynamic GCP is limited.
Another obvious finding is that without dynamic GCPs the RMSE of camera0 is smaller than
the other two cameras, but with six dynamic GCPs it is larger than the other two cameras.
This finding also matches the situation in the above Fig. 5.10.

It can be found that camera0 with the slowest error growth and the smallest RMSE becomes
the one with the fastest error growth and the largest RMSE among all cameras because it
sees the least number of dynamic GCPs. Therefore, the number of seen dynamic GCPs can
change the trend of camera error growth. Dynamic GCPs are beneficial to assist camera
positioning and control error growth. Compared with scenario A, the dynamic GCPs in
scenario C are close to the camera and collaborative mapping is applied, camera positioning
in scenario C performs better than scene A. Compared with scenario B, although pose errors
in scenario C are bigger than scenario B, scenario C can better reflect the positive role of the
number of dynamic GCPs in camera positioning.

56

6. Conclusion and Outlook

In the experiment, a total of 3 scenarios are planned to test the impact of dynamic GCPs
on camera positioning. The first scenario is about a two-way street, a camera and four non-
planar dynamic GCPs move face to face. As they approach the increase in camera errors
is controlled after the 15th frame due to the increasing dispersion of dynamic GCPs on the
image plane as shown in Fig. 5.4, which is in line with expectations. The second scenario
regards to vehicles driving on a one-way street, each of the three cameras has a dynamic
GCP in front of it. The rear camera can see more dynamic GCPs. It is found in Fig. 5.7 that
dynamic GCPs can greatly reduce the translation error, but the magnitude of the translation
error is similar for different cameras, which means it is almost not affected by the number
of seen dynamic GCPs. Another discovery is that the rotation error with dynamic GCPs is
greater than without dynamic GCPs. This is not in line with expectations, maybe dynamic
GCPs and cameras remain relatively stationary which has no positive impact on rotation.
The further experiment can make dynamic GCPs walk randomly in front of the camera to see
if it can reduce the rotation error. The third scenario simulates the situation at the junction
of three roads, three cameras come from different directions and each of them has a dynamic
GCP in front and back. The number of dynamic GCPs seen by each camera is changing, and
a camera that can see a larger number of dynamic GCPs can more effectively reduce its own
pose error and suppress the growth of error as displayed in Fig. 5.10. This phenomenon fits
expectations. In these three scenarios, scenario A can conclude that decentralized dynamic
GCPs are effective in suppressing error growth. Scenario B has the smallest error due to
cooperative mapping and close-range dynamic GCPs. Scenario C reflects the impact of the
seen changing number of dynamic GCPs on camera positioning, more seen dynamic GCPs
have a more positive influence on reducing error.

However, this ideal result only exists in the simulated experiment, because the Gaussian
noise added to the known parameters in this experiment is relatively small, and the final
error does not increase so much. Yet the actual situation is much more complicated. For
example, when dealing with real data, the actual noise may be much larger, and there is also
a mismatch that not added to the simulated data. In addition, when the number of required
dynamic GCPs increases, the cost of communication increases. How many dynamic GCPs
are needed to optimize the results is also a problem. Thus there is so much future work that
needs to be implemented to make the results more robust and realistic.

Due to the usage of simulated data, feature detection and feature matching are not in-

57

6. Conclusion and Outlook

cluded in this thesis. In practice, this is a part which has huge impact on pose accuracy and
time consuming. Therefore, in the actual operation process, this part needs to be further
understood and optimized. In addition to this, there is no back end optimization. Thus
further work can include back end optimization to reduce pose error more effectively. At the
same time, if the camera repeatedly appears in a certain place, the loop closing has a great
positive effect on the decrease of the pose error. In this thesis, the first two frames of the
camera pose are known to reconstruct the 3D static tie point, the scale of the initial map
is constructed, and the PnP problem is used to solve pose. In fact, the initialization of the
monocular camera is done by panning the camera, and then obtaining a fixed scale about
pose and map. Aim to find the true scale, the step size of the vehicle in each frame can be
obtained by means of other sensor data, such as data from an inertial measurement unit.

For information exchange, the actual exchange of information needs to consider the cost.
For example, the information within how much distance should be accepted, it should be
judged which information is useful, how long should the information be retained to ensure
the real-time and validity of this information without occupying a large amount of storage
space. In addition, this thesis uses a vehicle with a determined location as a dynamic GCP.
In fact, the vehicle is not a point, but an object. The vehicle seen in the camera is also
composed of a lot of discrete points, then some meaningful points from these points can be
used as the dynamic GCPs. The question about how many dynamic GCPs are needed to
optimize the results can be turned into another question, i.e. how many vehicles can be seen
in the camera, and how many meaningful points should be extracted from the vehicle. An-
other problem is that this thesis is based on the assumption that dynamic GCP has higher
accuracy, but the vehicle itself does not have such high pose accuracy which comes from
sensors. Thus these issues should be discussed in real-world experiments.

This thesis uses dynamic GCPs in CoSLAM based on simulated data and finds that dy-
namic GCPs help in positioning and suppression of error drift. However, the implementation
process still lacks back end optimization, which needs to be improved. Apart from this, more
experiments should be set up and more realistic situations ought to be considered to analyze
the application of dynamic GCPs.

58

Appendices

59

A. Lie group and Lie algebra

Lie group refers to a group with continuous (smooth) properties. The Lie groups mentioned
in this thesis is the real matrix groups. They are continuous in real space and closed with
respect to multiplication and inversion, that is to say consistent with the multiplication and
inversion of the matrix. All the three-dimensional rotation matrix sets constitute a special
orthogonal group SO(3) in Equ.A.1 [62, 63]:

SO(3) =
{
R ∈ R3×3|RRT = I, det(R) = 1

}
(A.1)

For SO(3), each differential rotation axis has one degree of freedom with a total of three
degrees of freedom. Lie algebra so(3) is a set of skew-symmetric 3× 3 matrices that describe
the tangent space around the identity element of the group, i.e. differential rotation around
each axis. The derivatives of rotation for each axis is as follows:

G1 =

0 0 0

0 0 −1

0 1 0

 , G2 =

0 0 1

0 0 0

−1 0 0

 , G3 =

0 −1 0

1 0 0

0 0 0

 (A.2)

so(3) can be obtained by a linear combination of the above differential rotations. The
three-dimensional vector w = [w1,w2,w3]

T ∈ R3 represents the coefficients. Then the linear
combination can be written in Equ. A.3.

w1G1 + w2G2 + w3G3 =

0 −w3 w2

w3 0 −w1

−w2 w1 0

 ∈ so(3) (A.3)

It is obvious that the above formula is also the skew-symmetric matrix of w which is called
w×. The relationship between Lie algebra and Lie group can be represented by exponential
mapping and logarithmic mapping. The exponential mapping can transform the Lie algebra
into the Lie group, conversely the logarithmic mapping converts the Lie group into the Lie
algebra. The exponential map is given below:

exp(w×) = I + (
sin θ

θ
)w× + (1− cos θ

θ2
)w2
× (A.4)

61

A. Lie group and Lie algebra

where θ = arccos tr(R)−1
2 is the radian of the rotation around the axis provided by w. And

vector w can be extracted from the off-diagonal elements of ln(R) = θ
sin θ · (R − R

T). The
premise is that θ is so small that the above Rodrigues formula can be successfully imple-
mented by using Taylor expansion.

If a vector x ∈ R3 becomes a vector y ∈ R3 through the rotation matrix R ∈ SO(3), it can
be linearly represented by the following equation:

y = Rx (A.5)

Then the differentiation of y about x is:

∂y

∂x
= R (A.6)

The differentiation by the rotation parameter can be expressed as multiplication of the
rotation and the exponential of the tangent vector:

∂y

∂R
=

∂

∂w

∣∣∣∣
w=0

(exp(w) ·R) · x

=
∂

∂w

∣∣∣∣
w=0

exp(w) · (R · x)

=
∂

∂w

∣∣∣∣
w=0

exp(w) · y

= (G1y | G2y | G3y)

= −y×

(A.7)

All the transformation matrix sets constitute a special Euclidean group SE(3) in Equ.A.8:

SE(3) =

T =

R t

0T 1

 ∈ R4×4|R ∈ SO(3), t ∈ R3

 (A.8)

The Lie algebra se(3) corresponding to SE(3) a linear combination of differential transla-
tions and rotations, and the corresponding coefficient is ξ = (u w)T ∈ R6. The differential
translations and rotations are presented in the following equations.

62

G1 =

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G2 =

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G3 =

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

G4 =

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , G5 =

0 1 0 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , G6 =

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

(A.9)

Afterwards, the element of se(3) can be written as the linear combination: u1G1 +u2G2 +
u3G3 + w1G4 + w2G5 + w3G6 ∈ se(3). The exponential mapping form on se(3) is briefly
described as follows:

exp(ξ) = exp

w× u

0T 0

 =

exp(w×) V u

0T 1

 =

R V u

0T 1

 (A.10)

where R = I+Aw×+Bw2
× and V = I+Bw×+Cw2

×. A, B, C are expressed in Equ. A.11:

θ =
√
wTw

A = sin θ
θ

B = 1−cos θ
θ2

C = 1−A
θ2

(A.11)

For the above formula, Taylor expansion can still be used when θ2 is small.

Similarly assuming a vector x ∈ R3 is converted to a vector y ∈ R3 through the transfor-

mation matrix T =

R t

0T 1

 ∈ SE(3), it can be written as:

y = Tx = [R | t]x = Rx+ t (A.12)

The differentiation by vector x is:

∂y

∂x
= R (A.13)

63

A. Lie group and Lie algebra

With the help of the derivation of the Equ.A.7, the differentiation by the transformation
parameters is:

∂y

∂T
= (G1y | G2y | G3y |G4y | G5y | G6y) = (I | − y×) (A.14)

64

Bibliography

[1] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, Jose
Neira, Ian Reid, and John Leonard. Simultaneous localization and mapping: Present,
future, and the robust-perception age. IEEE Transactions on Robotics, 32, 06 2016. vii,
9

[2] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge University Press, Cambridge, UK; New York, 2003. vii, 10, 11, 21, 24, 27

[3] Junhee Park, Seong-Chan Byun, and Byung-Uk Lee. Lens distortion correction using
ideal image coordinates. IEEE Transactions on Consumer Electronics, 55, 2009. vii, 13

[4] Zhetao Zhang and Wanggen Wan. Dovo: Mixed visual odometry based on direct method
and orb feature. 2018 International Conference on Audio, Language and Image Pro-
cessing (ICALIP), pages 344–348, 2018. vii, 15, 16

[5] Ha Quang Thinh Ngo and Mai-Ha Phan. Design of an open platform for multi-
disciplinary approach in project-based learning of an epics class. Electronics, 8:200,
02 2019. vii, 21

[6] Hugh Durrant-Whyte, David Rye, and Eduardo Nebot. Localization of autonomous
guided vehicles. In Georges Giralt and Gerhard Hirzinger, editors, Robotics Research.
Springer London, 1996. 1

[7] Jorge Fuentes-Pacheco, Jose Ascencio, and J. Rendon-Mancha. Visual simultaneous
localization and mapping: A survey. Artificial Intelligence Review, 43(1):55–81, Jan
2015. 1, 5, 6

[8] Lawrence A. Sharrott. Centralized and distributed information systems: Two architec-
ture approaches for the 90s. In Douglas J.V. Albright J.W. Ball M.J., ODesky R.I.,
editor, Healthcare Information Management Systems. Springer, New York, NY, 1996. 1

[9] Danping Zou and Ping Tan. Coslam: Collaborative visual slam in dynamic environ-
ments. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013. 1, 8, 38,
42

[10] Randall C. Smith and Peter Cheeseman. On the representation and estimation of spatial
uncertainty. The International Journal of Robotics Research, 5(4):56–68, 1986. 5

65

Bibliography

[11] J. J. Leonard and H. F. Durrant-Whyte. Simultaneous map building and localization
for an autonomous mobile robot. In Proceedings IROS ’91:IEEE/RSJ International
Workshop on Intelligent Robots and Systems ’91, pages 1442–1447 vol.3, Nov 1991. 5

[12] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A probabilistic approach to con-
current mapping and localization for mobile robots. Machine Learning, 31(1):29–53,
Apr 1998. 5

[13] Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Frank Verbiest, Kurt Cornelis, Jan
Tops, and Reinhard Koch. Visual modeling with a hand-held camera. International
Journal of Computer Vision, 59(3):207–232, Sep 2004. 5

[14] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bun-
dle adjustment — a modern synthesis. In Bill Triggs, Andrew Zisserman, and Richard
Szeliski, editors, Vision Algorithms: Theory and Practice, pages 298–372, Berlin, Hei-
delberg, 2000. Springer Berlin Heidelberg. 5

[15] Randall Smith, Matthew Self, and Peter Cheeseman. Estimating uncertain spatial rela-
tionships in robotics. In Ingemar J. Cox and Gordon T. Wilfong, editors, Autonomous
Robot Vehicles, pages 167–193, New York, NY, 1990. Springer New York. 5

[16] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time sin-
gle camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(6):1052–1067, June 2007. 6

[17] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fastslam: A
factored solution to the simultaneous localization and mapping problem. Proceedings of
the National Conference on Artificial Intelligence, 11 2002. 6

[18] David Nistr. Oleg Naroditsky. James Bergen. Visual odometry. Proceedings of the IEEE
conference on computer vision and pattern recognition, 1:652659, 2004. 6, 17

[19] G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces. In
2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,
pages 225–234, Nov 2007. 6

[20] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards. Orb-slam: A versatile and accurate
monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, Oct 2015. 7,
17

[21] R. Mur-Artal and J. D. Tards. Orb-slam2: An open-source slam system for monocular,
stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–1262, Oct 2017.
7

66

Bibliography

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to
sift or surf. In 2011 International Conference on Computer Vision, pages 2564–2571,
Nov 2011. 7, 17, 19

[23] David G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, Nov 200. 7, 17, 18

[24] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In
Aleš Leonardis, Horst Bischof, and Axel Pinz, editors, Computer Vision – ECCV 2006,
pages 404–417, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. 7, 17, 18

[25] Muhamad Risqi Utama Saputra, Andrew Markham, and Niki Trigoni. Visual slam and
structure from motion in dynamic environments: A survey. ACM Computing Surveys,
51:1–36, 02 2018. 7

[26] Wei Tan, Haomin Liu, Zilong Dong, Guofeng Zhang, and Hujun Bao. Robust monocular
slam in dynamic environments. 2013 IEEE International Symposium on Mixed and
Augmented Reality, ISMAR 2013, pages 209–218, 10 2013. 8

[27] D. C. Brown. Decentering distortion of lenses. Photogrammetric Engineering and Remote
Sensing, 1966. 12

[28] J. Nico P. de Villiers, F. Wilhelm Leuschner, and Ronelle Geldenhuys. Centi-pixel
accurate real-time inverse distortion correction. In International Symposium on Op-
tomechatronic Technologies, 2008. 13

[29] Pierre Drap and Julien Lefvre. An exact formula for calculating inverse radial lens
distortions. Sensors, 16:807, 06 2016. 13

[30] J. Weng, P. Cohen, and M. Herniou. Camera calibration with distortion models and
accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(10):965–980, Oct 1992. 13

[31] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(11):1330–1334, Nov 2000. 14

[32] Z. Chen, W. Sheng, G. Yang, Z. Su, and B. Liang. Comparison and analysis of feature
method and direct method in visual slam technology for social robots*. In 2018 13th
World Congress on Intelligent Control and Automation (WCICA), pages 413–417, July
2018. 15

[33] Chris Harris and Mike Stephens. A combined corner and edge detector. In In Proc. of
Fourth Alvey Vision Conference, pages 147–151, 1988. 18

[34] Jianbo Shi and Tomasi. Good features to track. In 1994 Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 593–600, June 1994. 18

67

Bibliography

[35] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.
In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors, Computer Vision – ECCV
2006, pages 430–443, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. 18

[36] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary
robust independent elementary features. In Kostas Daniilidis, Petros Maragos, and Nikos
Paragios, editors, Computer Vision – ECCV 2010, pages 778–792, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg. 18

[37] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary robust invariant scalable
keypoints. In 2011 International Conference on Computer Vision, pages 2548–2555,
Nov 2011. 18

[38] Howard Anton and Chris Rorres. Elementary linear algebra : applications version. New
York : Wiley, 7th ed edition, 1994. 19

[39] Leibniz G. Explication de l’arithmtique binaire, die mathematische schriften. 7:223,
1879. 19

[40] Derek J. S. Robinson. An Introduction to Abstract Algebra. Walter de Gruyter, 2003.
19

[41] Y. Tian, L. Deng, and Q. Li. A knn match based tracking-learning-detection method
with adjustment of surveyed areas. In 2017 13th International Conference on Compu-
tational Intelligence and Security (CIS), pages 447–451, Dec 2017. 20

[42] Christian Heipke and Franz Rottensteiner. Photogrammetric computer vision. 21

[43] R. I. Hartley. In defense of the eight-point algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(6):580–593, June 1997. 22

[44] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. Complete so-
lution classification for the perspective-three-point problem. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(8):930–943, Aug 2003. 24

[45] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o(n)
solution to the pnp problem. International Journal of Computer Vision, 81, 02 2009.
24, 39

[46] Adrián Peñate Sánchez, Juan Andrade-Cetto, and Francesc Moreno-Noguer. Exhaustive
linearization for robust camera pose and focal length estimation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35:2387–2400, 2013. 24

[47] Philip E. Gill and Walter Murray. Algorithms for the solution of the nonlinear least-
squares problem. SIAM Journal on Numerical Analysis, 15(5):977–992, 1978. 25

68

Bibliography

[48] Kaj Madsen, Hans Nielsen, and O Tingleff. Methods for non-linear least squares prob-
lems (2nd ed.). page 60, 01 2004. 25, 27

[49] Daniel Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. John Wiley & Sons, 01 2006. 28

[50] Hamza Alkhatib. Script for filtering in the state space. 2018. 29

[51] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José
Neira, Ian D. Reid, and John J. Leonard. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE Transactions on
Robotics, 32:1309–1332, 2016. 31

[52] Zhongnan Qu. Efficient optimization for robust bundle adjustment. 2018. 31

[53] Rainer Kmmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Bur-
gard. G2o: A general framework for graph optimization. Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA), pages 3607 – 3613, 06 2011. 32

[54] Nathaniel Merrill and Guoquan Huang. Lightweight unsupervised deep loop closure.
Robotics: Science and Systems 2018, 06 2018. 33

[55] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,
28(2):129–137, March 1982. 33

[56] D. Galvez-Lpez and J. D. Tardos. Bags of binary words for fast place recognition in
image sequences. IEEE Transactions on Robotics, 28(5):1188–1197, Oct 2012. 33

[57] Sebastian Thrun. Learning metric-topological maps for indoor mobile robot navigation.
Artificial Intelligence, 99:21–71, Feb 1998. 34

[58] Matia Pizzoli, Christian Forster, and Davide Scaramuzza. Remode: Probabilistic,
monocular dense reconstruction in real time. 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 2609–2616, 2014. 34

[59] George Vogiatzis and Carlos Hernandez. Video-based, real-time multi-view stereo. Image
and Vision Computing, 29:434–441, 06 2011. 34

[60] H. Strasdat, J. M. M. Montiel, and A. Davison. Scale drift-aware large scale monocular
SLAM. In Robotics: Science and Systems VI. Robotics: Science and Systems Founda-
tion, Jun 2010. 37

[61] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. Commun.
ACM, 24:381–395, 1981. 40

69

Bibliography

[62] Ethan Eade. Lie groups for computer vision. 12 2014. 61

[63] Ethan Eade. Lie groups for 2d and 3d transformations. 10 2018. 61

70

	Introduction
	Related Work
	Filter-based SLAM
	SFM-based SLAM
	SLAM in a dynamic environment

	Theoretical Background
	Camera model
	Pinhole camera model
	Distortion

	Sensor data
	Front end
	Direct method
	Feature-based method

	Back end
	Filter-based optimization
	Nonlinear optimization

	Loop closing
	Mapping

	Methodologies
	Initialize map
	Motion estimation
	Update map

	Experiments and Results
	Scenario A
	Scenario B
	Scenario C

	Conclusion and Outlook
	Appendix Lie group and Lie algebra

