
Master thesis
Deep domain adaptation for semantic segmentation of

remotely sensed images based on activation

distribution matching

Yunshuang Yuan, 10007354

Supervisor:

Prof. Franz Rottensteiner(IPI)

M.Sc. Dennis Wittich(IPI)

M.Sc. Christian Poss(BMW)

Institute of Photogrammetry and Geoinformation

Leibniz Universität Hannover

Hannover, March 16, 2020

Deep domain adaptation for semantic

segmentation of remotely sensed images based

on activation distribution matching

Yunshuang Yuan

Abstract
Domain adaptation(DA) is a very important topic in machine learning because

labelling data manually is very expensive especially for semantic segmentation.

DA is essential to leverage labelled data in the source domain for better perfor-

mance of classi�cation in the target domain. This thesis addresses DA for seman-

tic segmentation which is rarely researched but very necessary in the �eld of re-

mote sensing. A computational e�cient fully convolutional neural network(FCN)

is proposed to solve the classi�cation task in this study. Two statistic-based

methods, Maximum Mean Discrepancy(MMD) anddeep Coral, are introduced

to deal with deep DA and are the key points of this thesis. They were rarely used

before for semantic segmentation. However, they are possible to decrease the dis-

tribution discrepancy between source and target representations. Experiments

are conducted where activation distributions of an intermediate layer in the en-

coder of FCN are matched with both methods. The results show thatdeep Coral

performs better than MMD. Based on the model afterdeep Coraladaptation on

the intermediate layer, additional small accuracy gain can be obtained by further

aligning the output logits layer with deep Coral. At last, appearance adaptations

between synthetic and real dataset and bewteen two remote sensing datasets are

performed using Cycle GAN. It shows that it can not guarantee the mitigation of

the distribution discrepancy problem of feature representations between two re-

mote sensing datasets while it can dramatically decrease the discrepancy between

synthetic and real dataset.

Keywords

Domain adaptation, Semantic segmentation, Remote Sensing, Maximum Mean

Discrepancy, Deep Coral, Cycle GAN, Convolutional Neural Network.

Statement

I state that this Master Thesis has been written entirely by myself. No further sources

and auxiliaries except those mentioned in this thesis have been used and all parts of the work

taken literally or analogously from other sources are indicated by citation. Furthermore, I

state that this work in the same or a similar form has not been submitted to an examination

authority.

Yunshuang Yuan

Contents

Contents

1. Introduction 1

2. Related Works 4

2.1. Semantic segmentation . 4

2.2. Deep Domain Adaptation . 6

2.3. Deep Domain Adaptation for Semantic Segmentation(DDASS) 7

3. Semantic Segmentation 10

3.1. Notations and De�nitions . 11

3.2. Components and Architecture of the FCN 12

3.2.1. Basic modules for the Network Architecture 12

3.2.2. Architecture of the FCN . 20

3.3. Performance Evaluation Metrics . 22

3.3.1. Pixel Accuracy and Overall Accuracy 23

3.3.2. Mean Intersection Over Union . 23

4. Domain Adaptation(DA) 25

4.1. Notations and De�nitions . 25

4.2. Maximum Mean Discrepancy (MMD) . 26

4.3. Deep Correlation Alignment (Deep CORAL) 28

4.4. Cycle-Consistent Adversarial Networks(Cycle GAN) 30

4.5. Methodology for DA . 33

4.5.1. Matching feature maps of an intermediate layer n of the encoder . . . 33

4.5.2. Matching output logits . 35

4.5.3. Appearance adaptation with Cycle GAN 36

5. Experiments and Results 37

5.1. Datasets . 37

5.2. Experiments . 40

5.2.1. Semantic segmentation . 41

5.2.2. DA with MMD and Deep Coral . 42

5.2.3. Appearance Adaptation with Cycle GAN on input images 43

5.3. Result and Evaluation . 45

5.3.1. Semantic Segmentation without DA 46

5.3.2. DA with MMD and Deep Coral . 49

5.3.3. Comparison of Performances of Deep Coral and MMD 54

5.3.4. Appearance Adaptation with Cycle GAN on input images 56

i

Contents

6. Conclusion 60

References 62

Appendix A. Predictions on 3City data set 68

A.1. Predictions in the same domain . 68

A.2. Predictions on the target domain without DA 69

A.3. Predictions after deep Coral adaptation on l7 70

A.4. Predictions after deep Coral adaptation on l7 and logits 71

A.5. Predictions after MMD adaptation on l7 . 72

Appendix B. Predictions on ISPRS data set 73

B.1. Predictions in the same domain . 73

B.2. Predictions on the target domain without DA 75

B.3. Predictions after deep Coral adaptation on l7 76

B.4. Predictions after deep Coral adaptation on l7 and logits 77

B.5. Predictions after MMD adaptation on l7 . 78

ii

1. INTRODUCTION

1. Introduction

With the development of Deep Neural Networks(DNN), research on computer vision

has achieved immense successes based on this technique. DNN can dramatically surpass

the accuracy limit of traditional methods like SVM[22] and Random Forest[30]. Since Ima-

genet[18], a large visual database with more than 14 million images designed for visual object

recognition, was launched, the research direction of deep learning on computer vision began

to thrive. From the famous AlexNet [38] to ResNet[29], ImageNet classi�cation error(top

5) has been decreased from 16.4% to 3.6%. Along with DNN based image classi�cation,

other important computer vision tasks like object detection and semantic segmentation have

also drawn great attention. In addition to the rapid development of the hardware for deep

learning, another important factor for the great progress made in this �eld is the availability

of numerous datasets like COCO[43], Pascal VOC[21], Cityscapes[15] and KITTI[24] with a

huge amount of images and the corresponding labels for di�erent tasks. However, in real ap-

plications, annotating images is very expensive, especially for semantic segmentation. The

task of semantic segmentation is to assign a semantic label to each pixel in the images.

Thus, the images for this task should be pixel-wise labeled according to a pre-de�ned class

structure. In order to save labeling e�ort, it is better to increase the performance of the

model from the perspective of training methods rather than increasing the amount of labeled

data.

Moreover, pixel-wise classi�cation for semantic segmentation is much more di�cult than

image classi�cation or object detection, since it is very sensitive to the changes of marginal

distributions of pixel-features and the joint distributions of pixel-features and pixel-labels.

These two distributions of training data of a DNN are assumed to be the same as that of the

test data. This prerequisite is usually not ful�lled. Because in reality, the images might be

collected by di�erent devices or under di�erent environments. For instance, in the �eld of

bioinformatics, biomedical engineers help radiologists doing tissue segmentation or pathology

detection using DNN based semantic segmentation. The trained model would always fail

if a new scanner or even new con�guration or calibration for the same scanner is used for

taking medical images[57]. In Remote Sensing(RS), aerial images of city 1 taken by one

camera in winter and the images of city 2 taken by another camera in summer may have a

big feature di�erence. One application of semantic segmentation of remotely sensed images

in this work is to use the DNN trained on one source dataset(e.g. images of city 1) and then

do predictions on a target dataset(e.g. images of city 2). If the statistical distributions of

the data in city 1 and city 2 are very di�erent, DNN trained on city 1 can hardly perform

well on city 2. Besides, the class label distributions of RS datasets may also di�er between

cities. For example, one city may have more densely distributed buildings and fewer trees

than another. The di�erence of the area and the shape of each building between di�erent

1

1. INTRODUCTION

domains can also be problematic for classi�cation during inference. All these di�erences

may lead to an accuracy drop when the network trained on one city is used to predict labels

of images of another city. It is arduous and not reasonable to create new dataset for each

new scenario or new domain. Thus, it is necessary to utilize DA to decrease the in
uence of

the probability distribution discrepancy of image features between source and target dataset

during inference.

DA is a sub�eld of transfer learning, which aims to narrow the marginal distribution gap

of features and the joint distribution gap of features and labels between source and target

datasets on the condition that the input space as well as the label space should be the same

in both source and target domain, namely the task in both domain should be the same.

The main task of this work is to use statistical DA methods to improve the classi�cation

accuracy on the target domain on the assumption that no labels are available in the target

domain. Speci�cally, a model trained on a labeled source dataset(source domain) and an

unlabeled target dataset(target domain) should perform as well as possible on an unlabeled

target domain.

There are many approaches for DA in the �eld of computer vision. In recent years, many

research �ndings have revealed that DA using deep features extracted by DNN outperforms

the shallow features extracted by traditional methods[16]. So this study focus on DNN-based

DA, which is notated as deep DA. Deep DA introduces source-target distance constrains or

source-target discriminators on deep features to minimize the feature distribution di�erence

between source and target. According to the training methods, deep DA can be classi�ed into

two main categories: one-stage training and two-stage training. One-stage training directly

trains the whole network with a combination of a classi�cation loss and a discrepancy loss or

an adversarial loss. Two-stage training trains both encoder and classi�er on source data and

then adapts the parameters of the network using target unlabeled data to make the adapted

encoder and the classi�er work better on target images. No matter for one-stage training or

two-stage training, most state-of-the-art approaches use adversarial discriminative methods

to solve the domain discrepancy problem of semantic segmentation. In contrast, the rarely

researched non-adversarial deep DA methods are the emphasis of this thesis. Maximum

Mean Discrepancy(MMD) and deep Coral are two e�cient and statistic-based methods that

were �rst introduced by [71] and [65], respectively, to the deep DA of image classi�cation. In

this work, these two methods are used on the problem of deep DA for semantic segmentation.

Experiments with MMD and deep Coral are conducted based on the RS datasets. In order

to compare the performance of the two methods, DA is achieved by aligning the feature

activations of an intermediate layer of the encoder with MMD and deep Coral, respectively,

as the distance metric between source features and target features. According to [65], deep

Coral can be used on any layer. However, it is hard to use MMD on a layer like the output

logits layer that has too many pixel samples due to the computational complexity of MMD.

2

1. INTRODUCTION

So the performance of the same method on aligning feature distribution of di�erent layers is

evaluated only by experiments with deep Coral. An intermediate layer of the encoder and

the output logits layer of the decoder are chosen for these experiments. At last, one more

experiment is performed to see if the joint adaptation of di�erent layers can further optimize

the result. In this experiment, the adaptation is achieved by aligning the intermediate layer

of encoder followed by the alignment of the output logits layer.

Another task addressed in this work is automated recognition and segmentation of

car components in BMW dataset. In a typical scenario, there are hundreds of di�erent

components for a car. It is very expensive to label all the images for di�erent parts of

a car. However, the 3d CAD models of all car components are available, they can be

used to simulate the scenario of the real application and create synthetic images and the

corresponding labels using software like Unity or Blender. Ideally, these synthetic images can

be directly used to train the semantic segmentation network. However, the problem is that

the synthetic images are very di�erent from real images in appearance. One way to overcome

this is image-to-image translation which is a problem of learning a function of mapping an

input image to an output image from the su�cient training data[36]. It can change the

appearance(style) of the images. However, the training data of input and output images

should be paired. Namely, the input and output image in an image pair should contain

the same content. However, in most applications, the paired image dataset is not available.

Cycle GAN[82] introduces cycle consistency loss to tackle this problem and makes it possible

to learn mapping functions only with the unpaired images from two domains. Thus, Cycle

GAN is used in this work to mitigate the appearance di�erence between synthetic images

and real images. To check if this technique can also perform well and stable on RS datasets

so that it can be integrated into the method with activation distribution matching to further

improve the target classi�cation quality, one more experiment is conducted on appearance

adaptation by utilizing Cycle GAN[82] both on BMW dataset and RS dataset.

The rest of the paper is organized as follows. Section 2 will �rst give an overview of

the related works. In section 3, the concept of semantic segmentation will be de�ned, then

the components and the overall architecture of DNN used in this work will be discussed.

In section 4, a formal description of DA will be de�ned, and it is followed by the de�nition

of MMD and deep Coral and by the explanation of Cycle GAN. In the end of this section,

the methodology of applying MMD, deep Coral and Cycle GAN for DA will be explained.

In section 5, the datasets used in this work will be introduced and the experiments made

are described. Afterwards, the results of all experiments will be visualized graphically and

evaluated. In the last section, the conclusion is drawn based on the results obtained and an

outlook for future work will be given.

3

2. RELATED WORKS

2. Related Works

Both semantic segmentation and deep DA techniques are two extensive research �elds.

The related works of semantic segmentation and deep DA will be discussed separately. Then

the state-of-the-art works that aim to solve DA problems for semantic segmentation will be

discussed.

2.1. Semantic segmentation

Semantic Segmentation describes the pixel-wise classi�cation of images. It is regarded

as a much more challenging task compared to image classi�cation. Instead of assigning a

single label to each image, semantic segmentation gives every single pixel a semantic label.

Before DNN is applied for this task, hand-crafted features which are obtained by using pre-

de�ned algorithms like SIFT[47] and HOG[17], and traditional machine learning techniques

like SVM[22], random forest[30] are used to do the classi�cation. In recent years, tremendous

successes in semantic segmentation have been achieved by using DNN.

Fully Convolution Network(FCN)[63] can be regarded as a milestone for semantic seg-

mentation. Contrarily to regular Convolutional Neural Networks(CNN) for image classi�-

cation, a FCN doesn't contain any fully connected layers but can adapt the basic feature

encoding structure of these CNNs like VGG, AlexNet, and ResNet to take an input image

of arbitrary size and then generate the output image with the same spatial dimension as

input. In general, a FCN �rst encodes the images into feature maps in a latent feature space

and then decode/upsample the feature maps with interpolation or transposed convolution

to scale the feature maps back to the original input size and construct a label map.

Based on FCN, many networks have been developed. These networks follow the basic

structure of standard CNN to build the encoder, but they use di�erent strategies to upsample

the encoded feature maps. ICNet[79] uses bilinear interpolation for upsampling to make the

model as light as possible. U-Net[61], a convolutional network originally developed for se-

mantic segmentation of biomedical images, utilizes up-convolution(transposed convolution)

to perform upsampling in order to learn more complex and precise assembling of feature

information. It has the same number of convolutional layers and transposed convolutional

layers for downsampling and upsampling respectively. Based on this symmetric structure,

skip connections between downsampling and upsampling layers are applied to combine high-

level semantic information with low-level information of higher resolution to further re�ne

the semantic segmentation result. Segnet[3] also has a symmetric encoder-decoder struc-

ture, but instead of transferring the entire feature maps to the corresponding decoder layer

by skip connections, it stores the indices of maximum activations during max-pooling, and

4

2. RELATED WORKS

then utilizes these indices to perform upsampling in the decoder and produce sparse feature

maps. Each upsampling layer is followed by several convolution layers to generate dense

feature maps. DeconvNet[56] uses the same up-pooling strategy, but it introduces decon-

volution to generate dense feature maps. According to the results of the works mentioned

above, decoding feature maps with convolutions or transposed convolutions perform better

than interpolation. In this thesis, transposed convolution is used for upsampling to simply

construct the symmetric encoder-decoder structure like U-Net. This structure is also utilized

by [75] and [74] to classify pixels of aerial images in RS. However, these two U-Net variants

both have two separate encoder branches for multispectral(MS) images and Digital Surface

Model(DSM) images because [75] shows that separate encoders for MS and DSM images

perform slightly better than a single encoder for the fused input of MS and DSM images.

[74] further improved the structure of [75] by using zero-mean convolution for height data

to make the model invariant to local terrain height changes, and by replacing padded con-

volution with unpadded convolution not only because of the positive e�ect on accuracy but

also because of the computational e�ciency. Besides, [74] also uses convolution and trans-

posed convolution for downsampling and upsampling respectively because they can preserve

small details better than max-pooling and bilinear interpolation. In this thesis, the same RS

datasets are used as in [74]. The basic network structure for semantic segmentation in [74]

is adopted.

In addition to the basic encoder-decoder structure mentioned above, many techniques

can be integrated into any semantic segmentation networks to further improve the per-

formance. For example, Conditional Random Field(CRF) as a post-processing method

can re�ne the �nal semantic segmentation result. It is integrated into DeepLabV1[9] and

DeepLabV2[8]. Instead of regarding CRF as a post-processing step, CRF-RNN[81] formu-

lates CRF as Recurrent Neural Network(RNN) and integrate this into FCN, and train the

network in an end-to-end manner. These techniques can be used as an extra aid for semantic

segmentation and will not be discussed in this thesis which mainly focuses on DA. More-

over, networks like PSPNet[80] which uses pyramid pooling can reduce the errors caused

by di�erent sizes or resolutions of the same object. Because pyramid pooling combines the

information from di�erent convolution layers that convey information of di�erent semantic

levels and di�erent sizes of the reception �eld. This network structure is useful when the

input images have di�erent resolutions. In this work, images for each DA experiment are

converted to the same resolution. Thus, it is not necessary to use pyramid pooling to increase

the complexity and capacity of the network.

5

2. RELATED WORKS

2.2. Deep Domain Adaptation

Deep DA aims to leverage available labeled data from the source domain to make

the semantic segmentation model perform better on the target data, where no labels are

available. Deep DA methods can be classi�ed into discrepancy-metric-based methods([71],

[46], [66], [65]), and adversarial-discriminative-model-based methods([70], [23]) based on

how the features from source and target are di�erentiated.

Deep Domain Confusion(DDC)[71] is one of the early works of solving DA for image clas-

si�cation that is based on Maximum Mean Discrepancy(MMD). DDC introduced MMD loss

to the outputs of the fully connected layer of AlexNet[38] between source and target activa-

tions to mitigate the feature distribution discrepancy. Deep Adaptation Network(DAN)[46]

is published one year after DDC, it modi�ed DDC based on two considerations. First, the

domain shift may occur in multiple layers. Second, kernel functions are critical for MMD

estimation. So DAN uses multi-kernel MMD(MK-MMD) to adapt all fully connected layers.

CORrelation ALignment(CORAL)[66] is proposed to align second-order statistics of source

and target features to minimize domain shift. It computes a linear transformation based on

the covariance of source and target features and applies this transformation on the source

features to transform these features from the source domain to the target domain. This

transformation can be split into two steps. First, whitening the source feature by removing

the covariance of the source features. Then, re-coloring the whitened source feature by apply-

ing the covariance of the target features to the source features. Deep Coral[65] replaces the

linear transformation in the original work CORAL by an implicit nonlinear transformation

in DNN that is learned by backpropagation and gradient descent.

Adversarial Discriminative Domain Adaptation(ADDA)[70] is the �rst generalized frame-

work for adversarial discriminative DA. It uses 2-stage training. At �rst, it trains the whole

network including encoder and classi�er on source dataset. Then, it copies weights from

the source encoder to the target encoder and shares the same classi�er in both source and

target domain. Only the weights in the target encoder are updated in an adversarial manner,

namely, it trains the target encoder and discriminator jointly. Domain-Adversarial Neural

Network(DANN)[23] proposed a similar architecture, but it trains encoder, classi�er and

discriminator simultaneously by inserting gradient reversal layer between encoder and dis-

criminator, so that the network can be trained by minimizing both classi�cation loss and

discrimination loss. According to the authors' announcement, the new proposed Geometry-

Aware Domain Adaptation Network(GA-DAN)[77] can model domain shifts that are caused

by large perspective changes of objects in the images and can realistically convert images

across domains that have very di�erent geometric appearance characteristics. This might be

very bene�cial for augmenting datasets like COCO, Cityskypes, in which one speci�c object

might be observed in di�erent directions. However, aerial images are taken remotely with a

6

2. RELATED WORKS

speci�c height and orientation, namely the camera has certain pose, and the objects on the

ground are static, so the domain shift caused by perspective changes can hardly in
uence

RS images.

The technologies for solving DA problems are very diverse. Based on the works men-

tioned above and many other works, DA techniques have evolved a lot and been applied to

di�erent scenarios on DNN applications. Many of these methods are not originally designed

for semantic segmentation. However, the basic ideas of these methods can be inspiring for

semantic segmentation. In this work, MMD and deep Coral will be explored based on the

task of semantic segmentation.

2.3. Deep Domain Adaptation for Semantic

Segmentation(DDASS)

In the recent two years, deep DA for semantic segmentation has been researched a lot

make use of the huge street-view datasets like GTA5, SYNTHIS, and CITYSCAPES. Most

papers in this research direction are published in these 2 years and the networks developed

are mostly based on these 3 datasets. In contrast, the topic DDASS in remote sensing

community has not been researched too much.

There are many di�erent techniques for DDASS based on matching the input or output

distribution of any possible layer in a DNN from source and target domain. The start

point of solving this problem is to think "which" distribution should be aligned and "where"

the chosen distribution should be aligned. "Which" refers to marginal distribution or joint

distribution. The marginal distribution of a high-dimensional variable doesn't relate to

any pre-de�ned classes. So the alignment of marginal distribution is notated as global

matching. In contrast, joint distribution relates to two variables, the feature variable, and

the label variable. The label variable is related to pre-de�ned label categories. So category-

wise matching is then used to refer to joint distribution alignment. "Where" refers to the

location of the input or output data of a layer. These locations of layers are sorted into

3 levels, appearance(input data of the �rst layer), feature(activations of any intermediate

layer of a network) and output(logits output before the softmax layer, probability output

after softmax, or predictions). The overview of this taxonomy is summarized in �gure 1.

The arrows on the �rst level of the taxonomy tree tell "where" the distribution should be

matched. The text notated on the arrow shows "which" distribution of the data at the chosen

location can be matched. Each full path from left to right refers to a complete method. For

example, the unique path to image translation means this method aligns the global marginal

distribution of input images(appearance adaptation). Based on this taxonomy, the methods

for DDASS will be listed �rstly according to "which"(global or category-wise) and then

7

2. RELATED WORKS

Figure 1: A taxonomy for deep domain adaptation methods of semantic segmentation

according to "where"(appearance, feature or output).

All methods do theglobal alignment. On top of this, some methods also triedcategory-

wise alignment to decrease the joint distribution discrepancy of features and outputs. For

example, [7] achieved this by using multiple domain classi�ers, [32] re-weights the gradients

by transferring the image-level label distribution from source to target domain. [49] also

uses a re-weight strategy, but it re-weights the adversarial loss instead of gradients. [83]

uses di�erent proportion parameters to �lter pseudo labels similar as [35], which utilizes a

category-balanced pseudo-label-selection strategy.

Appearance alignment is one class of methods that makes the style of the images from

source and target domains look similar. Normalization can be regarded as a standard pre-

processing step, it is used nearly in all image processing DNNs. To further alleviate the over-

�tting problem between source and target domain, [74] uses online augmentation by applying

random scale and shift during training. Image translation is another prevalent method for

translating image styles from one domain to another. Most works use CycleGAN([82])

architecture or the variants of it to do the image translation to decrease the appearance

discrepancy between source and target images([54],[31],[4], [41],[11],[25],[10]). There are also

other techniques to translate image appearance like [6] which uses multiple encoders to

disentangle domain-invariant and domain-variant features and then combine these two of

di�erent domains to obtain new stylized images. Di�erent from CycleGAN, [12] introduces

a cycle-free architecture to change the image appearance. Since this class of method can

be regarded as pre-processing of the images, it can be applied additionally to any other DA

method. In this work, online augmentation will be used for training the source models to

make the trained source model more robust both in the source and target domain. Image

translation with CycleGAN will also be tested both on RS data and BMW data to prove if

it can generally help to decrease the domain discrepancy for all applications.

8

2. RELATED WORKS

Feature in �gure 1 refers to the activation of any intermediate layer in a semantic

segmentation network. There are loads of works aligning feature distributions and mostly

in a adversarial manner([7],[32],[31],[33],[11],[48]). DAN[60] instead uses normalization to

align feature distributions. And di�erent from DA for image classi�cation, there is no work

applying MMD or deep Coral to solve the DDASS problem, no matter in feature space or

output space. So in this work, the potentiality of MMD and deep Coral will be explored.

Output in the taxonomy can be the predicted label map, the probability output af-

ter the softmax layer or the logits output before the softmax layer as mentioned above.

The two main methods operating on output layer are the adversarial method and pseudo

label/self-training. Adversarial methods align the output distributions by using discrimina-

tors to distinguish the output from the source and the target domain. Similar to a standard

GAN, it updates the weights of semantic segmentation model and discriminators jointly by

maximizing the discriminative loss and minimizing the generative loss. [68] aligns the output

logits, [6] instead aligns the source prediction and the target prediction while [73] aligns the

fused features of the predicted depth map and the entropy of logits. Instead of matching

the output distribution of source and target model, [53] matches the source ground truth

labels and the predicted labels of both the source and the target image. Self-training, on the

other hand, is the process of minimizing the cross-entropy between the predictions and the

generated/selected pseudo labels. Pseudo labels are the predicted labels. The most reliable

pseudo labels are "picked" and then used to supervise the training of semantic segmentation

network. There are di�erent ways to choose reliable labels. [83] and [19] choose the labels

in the whole prediction map that have a higher probability than a pre-de�ned threshold

probability. [35] uses category-balanced pseudo-label selection. The number of the selected

pixels for each class depends on the occurrence frequency of this class in the source images.

Besides, there are also other forms of pseudo labels. For example, [7] "softens" the label by

using grid-wise label distributions(proportion of each class in each grid). [78] utilizes super-

pixels to generate pseudo labels and [42] replaces superpixel in [78] with overlapped squares.

Since it is hard to �nd any patterns in the label maps that are invariant in both source and

target domain when solving DA problem of RS domains in this work, methods like [7], [42]

and [42] would all fail. However, one experiment will be conducted in this work by aligning

the output logits with deep Coral instead of adversarial methods mentioned above.

9

3. SEMANTIC SEGMENTATION

3. Semantic Segmentation

Semantic Segmentation is a task of assigning a label to every single pixel in an image, in

other words, the trained DNN of semantic segmentation can "understand" images on pixel

level. Figure 2 gives an overview of semantic segmentation. For this task, semantic labels

on the right side are supposed to be generated by passing the input image on the left side

of the �gure to the semantic segmentation DNN. Each label has a semantic meaning. For

example, label 3 means plants or grass and is marked in green.

Figure 2: An example of semantic segmentation[37]

Compared to plain object detection, semantic segmentation can extract richer seman-

tic information from images and locate the objects more precisely. Classi�ers of semantic

segmentation are more powerful and straight forward than that of object detection in many

applications, such as brain tumor segmentation(�g:3a) for MRI images of the brain using

BRATS[52] dataset, it can not only detect the tumor but also locate where exactly they are

and tell what shape they have. For autonomous driving, it's also very bene�cial to classify

every pixel in the street scene so that the vehicle can make the best decision on where to

go with this rich information of semantic segmentation(�g:3b). In RS, manually labeling

the aerial images to generate land use or land cover map is very time-consuming(�g:3c). If

one semantic segmentation model is trained on a small amount of labeled dataset and then

used to segment and classify the pixels in aerial images of other datasets, it can save a lot

of time.

There are traditional segmentation algorithms like k-means, mean-shift, watershed, and

spectral clustering that can be used to segment the images into patches. They can be

combined with traditional classi�cation algorithms like SVM, random forest, and adaboost

to achieve the semantic segmentation. But nowadays, DNN based algorithms have become

more popular and are the state of the arts in this task since they can achieve higher accuracy

and can integrate the segmenter and the classi�er into one single model and get the �nal

10

3. SEMANTIC SEGMENTATION

(a) Brain tumor segmentation (b) Street scene segmentation

(c) Aerial image segmentation

Figure 3: Use cases of semantic segmentation

semantic segmentation result on the
y. So in this work, only the deep-learning-based

semantic segmentation algorithms will be discussed.

In the following subsections of this chapter, the task of semantic segmentation will be

de�ned formally. Afterwards, the network architecture used in this work will be explained.

In the last part of this chapter, the evaluation metrics being used in this thesis will be

discussed.

3.1. Notations and De�nitions

To better describe the task of semantic segmentation, some notations are introduced. A

dataset is de�ned asD = f x i ; yi gN
i =1 , where eachx i is an independent sample or image drawn

from variable spaceX , yi is the corresponding label mask forx i and belongs to the label

spaceY. X and Y refer to the samples drawn from variable spaceX and Y respectively.

The variable spaceX is a real spaceRd�h�w , d; h; w are the number of channels, height and

width of the input image respectively. The output label space is a discrete real spaceRh�w

of C classes. Each pixel of the a label map has one of the label values from setf 1,...,Cg.

11

3. SEMANTIC SEGMENTATION

Domain is notated asD = fX ; Y; P(X); P(X; Y)g, which contains 4 components, the input

spaceX , the marginal distribution of the input data P(X), the output spaceY and the joint

distribution of X and Y, P(X; Y). The DNN architecture of the task is de�ned asM , of which

the parameters are� . The task of semantic segmentation is de�ned asT = fX ; Y; f (�)g,

which has 3 components, input spaceX , label spaceY and objective prediction functionf (�),

which is the combination ofM and � and also represents the conditional distributionP(Y jX).

The predicted label mask for input imagex i is notated asŷi . With all notations de�ned

above, the task of semantic segmentation can be summarized and de�ned as equation

min
�

R̂(� jD; M) = min
�

1
N

NX

i =1

l (f (x i); yi) = min
�

1
N

NX

i =1

l (M (x i ; �); yi) (1)

To obtain the optimal con�guration of the parameters � , the empirical risk R̂ expressed in

equation 1 should be minimized with the condition of training dataD. N is the number of

samples.l is a loss function, which will be further discussed in section 3.2.1.

3.2. Components and Architecture of the FCN

Before introducing the holistic view for the network architecture, a brief explanation of

the common basic modules of FCNs for semantic segmentation is given in the �rst part. DNN

is composed of many di�erent layers, it is not possible to list and explain them all in this

work, only the modules used in this work are introduced. These modules are then connected

and depicted graphically in subsection 3.2.2. The network used in this work is a FCN net-

work and it also has a symmetric encoder-decoder structure like U-Net. Di�erent from most

other works, which uses standard base networks like VGG, ResNet, etc. as feature extrac-

tor(encoder), a simpler structure for both feature extractor(encoder) and classi�er(decoder)

is built with convolutional layer, dropout, Recti�ed Linear Unit(ReLU), transposed convolu-

tional layer, and cross-entropy for loss computation. Besides, skip-connections are not used

across the whole work.

3.2.1. Basic modules for the Network Architecture

Convolutional Layer

Compared to the fully connected layer, the convolutional layer is more e�cient when

applied to structural data like images and point clouds. In a fully connected layer, each

neuron is connected to every neuron in the previous layer, and each connection has its own

weight. In contrast, each neuron in a convolutional layer is only connected to a few nearby

neurons and each set of weights(weights in each �lter) in this layer is shared across the whole

12

3. SEMANTIC SEGMENTATION

image because convolutional layer assumes that the same feature is equally likely to occur

anywhere in the image.

Figure 4: Convolutional layer[5]

Assume that there is an image with 1 channel and the size of 6x6 as input. Figure 4 gives

an overview of how a convolutional layer with a �lter size of 3x3 works. The parameters of the

�lter are also called weights, they weight the importance of the pixel values by multiplying

the weights and the image values covered by the �lter(red rectangle, this area is also called

as receptive �eld) element-wise. The summation of these multiplications will be the value for

the �rst element of output(red circle). Then the �lter is shifted one step(pixel) to the right,

and the multiplication and the summation are done again on this position. How many steps

to move after each operation is de�ned as stride, in this case, stride=1. A convolutional

layer is composed of many �lters(kernels), which operates on input that has many channels.

All feature channels of the input are convolved with each �lter and one single channel of

the new feature maps is generated for each �lter by summing up all convolution results of

this �lter operated on all channels of the previous feature maps. For example, if an input of

shape 3� 6� 6(depth� height � width) is given, and 10 �lters are used for the convolutional

layer, the output shape will be 10� 4 � 4. The output size is shrunk from 6 to 4 in �gure

4. Mathematically, convolution operation can be expressed as equation

Oi;m;n = bi;m;n +
Cin � 1X

c=0

�
X

j;k

Wi;j;k � I c;m� j;n � k (2)

Oi;m;n is the value at the location of the m-th row and the n-th column of the i-th output

feature map of the convolutional layer.Cin is the number of channels in the input feature

13

3. SEMANTIC SEGMENTATION

maps. Index j and k indicate the location of weight in the �lter. Namely, Wi;j;k is the

weight at the j-th row and the k-th column of the i-th �lter. I is the input feature map, the

subscripts ofI indicate the channel, row, and column of the input respectively.

To overcome the edge e�ect caused by the size shrinking mentioned above, padding

techniques like zero padding, re
ection padding, replication padding, and partial convolution-

based padding[44] can be used. They pad the image with a certain width of borders with

di�erent strategies before the image is passed to a convolutional layer. Zero padding �lls the

borders with zeros. Re
ection and replication use the pixel values of edges in the original

image to do the padding. Di�erent from these 3 methods, partial convolution-based padding

regards padded borders as holes and recovers the information of the holes by convolution

operations. It can e�ectively reduce the bad predictions on the edges of the images. To

decrease the training time, no padding is used in this work.

Another technique for convolution is dilated convolution[76]. It skips points during

convolution and can enlarge the receptive �eld without increasing the numbers of weights.

The normal convolution mentioned above can be regarded as a dilated convolution with a

dilation factor of 1. In this work, the RS images are small enough so that the receptive �eld

of the feature point can cover the whole image only with a few convolutional layers, so the

dilation factor is set to 1 for all convolutional layers.

Transposed Convolutional layer

Once input images are contracted into feature maps with smaller size after encoding by

convolutional layers, up-sampling is needed to translate the low-resolution feature maps into

high-resolution output images. Semantic segmentation, as well as the generator in GAN[26],

is the application of up-sampling. Bilinear interpolation and transposed convolution[20](also

known as deconvolution or fractionally-strided convolution) can be used to perform up-

sampling. Bilinear interpolation samples the nearby pixel values in the image and uses them

to compute the value for the new interpolated pixel. It is easy to implement and has no

parameters to be learned, so it can decrease the number of parameters and decrease the

capacity of the model. Di�erent from bilinear interpolation, transposed convolution bears

learnable parameters, and can perform better in many tasks. So if the network is not

supposed to work on devices like smartphone and other low costs embedded system that

only have very limited computational power, it is preferred to use transposed convolution

for up-sampling, because it can increase the accuracy dramatically compared to bilinear

interpolation.

Figure 5 shows 2 examples of transposed convolution, which are used in the network ar-

chitecture of this work. Assuming that the input shape is 1� 4� 4, the �rst example(notated

as tr. conv1) shows how transposed convolution with stride 2 and �lter size 2 works. Similar

14

3. SEMANTIC SEGMENTATION

Figure 5: Transposed Convolution

to convolution, the �lter of transposed convolution should also shift from left to right and

from top to bottom until the �nal feature map is generated. For example, �lter with param-

eters of 4 ones multiplies with the values in the green rectangle element-wise and then these

values are summed up. As a result, the value 2(0� 1 + 0 � 1 + 0 � 1 + 2 � 1) is obtained as the

�rst element, which is marked as green, for the feature map on the right. More examples of

the same operation are marked with di�erent colors. The size of the feature map is doubled

after transposed convolution with the con�guration of the �rst example and the values of

the feature map are just copying values from the input, but if the weights are di�erent, the

values of the output feature map would be more diverse. In the second example(notated as

tr. conv2), stride equals 1 and �lter size is 3. Similar to convolution, no padding is used for

transposed convolution to make the network symmetric so that the size of the input images

can be recovered at the output.

Activation Functions

Convolutional layers only contain multiplication and summation. If many di�erent

convolutional layers are connected one by one directly, they would perform just like one

layer only with di�erent weights, because nested matrix multiplications can be replaced by

15

3. SEMANTIC SEGMENTATION

a single multiplication. It is proven in equation

Oi l +1 ;m l +1 ;n l +1 = bi l +1 ;m l +1 ;n l +1 +

Cin l +1 � 1X

cl +1 =0

X

j l +1 ;k l +1

Wi l +1 ;j l +1 ;k l +1 � I cl +1 ;m l +1 � j l +1 ;n l +1 � k l +1

= bi l +1 ;m l +1 ;n l +1 +

Cin l +1 � 1X

cl +1 =0

X

j l +1 ;k l +1

Wi l +1 ;j l +1 ;k l +1 � (bi l ;m l ;n l

+
Cin l � 1X

cl =0

X

j l ;k l

Wi l ;j l ;k l � I cl ;m l � j l ;n l � k l)

= bi l +1 ;m l +1 ;n l +1 +

Cin l +1 � 1X

cl +1 =0

X

j l +1 ;k l +1

Wi l +1 ;j l +1 ;k l +1 � bi l ;m l ;n l

+

Cin l +1 � 1X

cl +1 =0

X

j l +1 ;k l +1

Cin l � 1X

cl =0

X

j l ;k l

Wi l +1 ;j l +1 ;k l +1 � Wi l ;j l ;k l � I cl ;m l � j l ;n l � k l

(3)

which utilizes equation 2 and takes two directly connected layersl and l+1 into consideration.

As the equation derived above, the expression in the red rectangle can be regarded as a single

bias and that in the blue rectangle as a single weight.

In order to increase the complexity and capacity of the model, non-linearity is introduced

between convolutional layers. Some of these non-linear functions used in DNN are listed in

Figure 6. They are also called activation function because they decide whether a neuron

should be activated("�red") or not. Sigmoid is very computational expensive because of the

exponential term. Besides, Sigmoid, as well as tanh, has the vanishing gradient problem

because the output values will get saturated if the input is too large or too small. The

gradients will get smaller and smaller along the backpropagation path from the last layer

to the �rst layer. ReLU solves the vanishing gradient problem by using a linear function

for all positive input values. It outputs zero values when the input is negative and makes

the activations sparse. The linear function and the sparsity of activations make ReLU much

easier to compute than Sigmoid and tanh. The drawback of ReLU is that a neuron can

hardly recover once it gets negative value and outputs 0, this problem is called Dying ReLU.

The variants of ReLU, Leaky ReLU, solves this problem by giving a small slope to the

negative region as described in �gure 6. ELU replaces the linear part of Leaky ReLU in the

negative region with a curve so that the small slope works only on negative values that are

near to zero. This can make a part of the activations saturated and speed up training[13].

Maxout is a learnable activation function that is a generalization of ReLU and leaky ReLU

and doesn't have the dying ReLU problem. But it increases the number of parameters to be

learned.

16

3. SEMANTIC SEGMENTATION

Figure 6: Activation functions for DNN[14]

In this work, easy and fast convergence of the network is the �rst criterion for selecting

modules. ReLU and Leaky ReLU are easy to compute both in the forward and the backward

path of training DNN. They are also saturation-free and parameter-free. During training,

no strong signs of vanishing gradient problem are observed by using ReLU. So instead of

Leaky ReLU, the standard ReLU is chosen as the activation function in this work.

Dropout

DNNs are supposed to learn general concepts from speci�c examples. However, it is

common that a DNN also learns speci�c concepts from the samples. This makes the DNN

perform very well on the data it was trained on but much worse on the test dataset, which the

model has never seen during training. This happens because the model is overly complex and

has too many parameters. This problem is called over�tting. Neural networks are susceptible

to over�tting because they use many layers and parameters to represent a complex function

and it is hard to �nd the best-�tted networks for a speci�c task. Techniques like data

augmentation, regularization, and dropout[64] are used to prevent over�tting while training

neural networks. Image normalization and online augmentation are the two methods of data

augmentation that will be used in this work. They are regarded as pre-processing steps

rather than the module of DNN, so the detailed con�guration of these two methods will be

discussed in the experiments part in section 5.

In addition to data augmentation, regularization like L1 (Laplacian) or L2 (Gaussian)

penalties on the weights of models can be used to decrease the capacity of the model and

reduce over�tting. They minimize the absolute or the squared values of weights by adding

the L1 or L2 regularization term to the loss function mentioned in equation 1. Dropout,

on the other hand, modi�es the network itself and will be used in the network of semantic

segmentation in this work. Figure 7 shows how dropout works. It randomly drops neurons

17

3. SEMANTIC SEGMENTATION

Figure 7: Dropout[64]

during training with a probability of pdrop . During test, it uses all neurons by multiplying

a factor of (1 � pdrop) to the activations. Dropout aims to increase generalization of the

neural networks by mitigating the correlation among neuron activations[67]. This assumption

may not hold when dropping out neurons for output of 2d-convolutional layers since these

neurons are strongly spatial correlated. To overcome this, [67] proposed spatial dropout,

which randomly drops some channels of the features maps during training. In other words,

if one channel is dropped out, all values of the feature map in this channel would be set

to zero. Since the network used for semantic segmentation is FCN which only contains

convolutional and transposed convolutional layers, the spatial dropout module will be used

in each convolution block.

Softmax

Softmax is also an activation function that is often used in the last layer to produce an

output vector per pixel that represents a probability distribution. The sum of all values in

the vector is 1. Softmax function is de�ned in equation

� (zk) =
ezk

P C
i =1 ezi

(4)

C is the number of all possible classes,k is the current class, for which the probability is to

be computed.z is the input vector.

Cross Entropy

Cross entropy is a concept in information theory. In information theory, entropy is

originally de�ned by Shannon[62] to calculate the smallest average size of encoding for the

transmission of messages. It is mathematically de�ned in as

H (P) = � EP [logP] = �
X

i

Pi logPi =
X

i

Pi log
1
Pi

(5)

18

3. SEMANTIC SEGMENTATION

P is the distribution of all possible events, andPi is the probability of the occurrence of

the i-th event when considering a discrete case. For example,Pi can refer to the occurrence

probability of "sunny" day when encoding di�erent whether conditions. In the last term

of the equation, log 1
Pi

tells the number of bits needed for encoding the message of the i-th

event. In reality, the real distribution is always unknown, so cross-entropy is introduced

to measure the average number of bits needed to encode data coming from a source with

an unknown real distribution P by a model Q([55],p.57), which is shown in the following

equation.

H (P; Q) = � EP [logQ] = �
X

i

Pi logQi (6)

Since cross-entropy is always not the optimized encoding, it is bigger, or in the best

case equal to the real entropy. The distance between the cross-entropy of the distributionQ

of the sampled data and the entropy of the underlying real distributionP of these samples

is called Kullback-Leibler Divergence(KL-Divergence) and is expressed as

DKL (PkQ) = H (P; Q) � H (P) = �
X

i

Pi logQi +
X

i

Pi logPi =
X

i

Pi log
Pi

Qi
(7)

It can be reformed to

H (P; Q) = H (P) + DKL (PkQ) (8)

In equation 8, it is easy to �nd that the KL-divergence can be minimized by minimizing

cross-entropy, because for a certain dataset, the entropy of it's real distribution is certain and

can be regarded as a constant. In a machine learning problem, small KL-Divergence means

the distribution learned from the samples is close to the real distribution of the variable in

the space, from which the samples are drawn.

To train DNN, the loss function is needed as guidance to tell the current model, how

good it is performing now so that it can backpropagate gradients correctly. Cross entropy is

one of the most popular loss functions. In semantic segmentation, the output shape of the

softmax layer isC � H � W. C is the number of classes,H and W are the height and width

of the input image respectively. The output of the networks is notated aŝp , and p̂kij means

the probability that the pixel in the i th-row and j th-column belongs to classk. Based on

this notation, cross-entropy can be expressed as

19

3. SEMANTIC SEGMENTATION

LCE = �
X

kij

pkij logp̂kij (9)

Inspired by cross-entropy, Negative Log-Likelihood(NLL) loss

LNLL = �
X

kij

� (ŷkij) � logŷkij (10)

is often used after softmax layer. The function� in NLL loss equation is

� (ŷkij) =

8
<

:
1 if ŷkij = ykij

0 otherwise
(11)

which equals one only in the case that predicted label ^ykij equals the ground truth labelykij ,

otherwise it equals zero. Softmax and NLL loss can be combined into one module described

as

L task = �
X

kij

� (ŷkij) � log
eôkij

P
k eôkij

= �
X

kij

� (ŷkij) � (ôkij � log
X

k

eôkij)
(12)

to simplify the computation. The letter o refers to the output logits layer before the softmax

layer.

3.2.2. Architecture of the FCN

The network architecture follows the basic structure of [74]. Instead of using the orig-

inal UNet-like structure, the skip connections, without which the accuracy is only slightly

dropped, is omitted. Since the focus of this work is DA, the simpler structure of semantic

segmentation network for experiments of DA is preferred. Another di�erence from [74] is

that the input image size is decreased from 640x640 to 320x320 based on the observation that

the performance of the network is not highly a�ected by the image size if a robust network

structure is used. Because the input size is halved, the size of the feature maps in the latent

space, in other words, the output size of the feature extractor is also halved, which may lead

to the loss of spatial information. Without skip connections, the lost spatial information

can barely be recovered, so 2 convolutional layers and 2 transposed convolutional layers are

removed to make the latent feature maps spatially larger. Figure 8 shows the whole structure

of the network used for aerial image segmentation tasks. Since the shape of this network

20

3. SEMANTIC SEGMENTATION

Figure 8: Network architecture

21

3. SEMANTIC SEGMENTATION

looks like the letter "Y", it is called Ynet. Similar to [74], separate paths for Multi-Spectral

images(MSI) and the DSM images are used because [75] shows that a single path for MSI

and DSM input performs worse than two paths.

On the top of �gure 8 is the legend of di�erent modules in the network. For example,

the �rst red block refers to a sequence of modules, convolution(�lter size is 5x5, stride is 1),

dropout and ReLU successively, which are regarded as one layer. In the whole network, the

probability 0.1 is used for dropout. The lower part of �gure 8 shows how these layers are

connected. In the encoders, down-sampling is achieved by convolution with a �lter size of

2 � 2 and a stride of 2. The same �lter size and stride are used for transposed convolution

in the decoder to make the encoder and decoder symmetric. After each down-sampling(up-

sampling) layer, a 3� 3 convolution(transposed convolution) with a stride size of 1 is used to

encode(decode) the features from the previous layer. Regarding the small size of the input

image, only 4 down-sampling(up-sampling) layers are used. The numbers on the left of each

module block indicate the output channels of the convolutional or transposed convolutional

layers. On the right, the output feature map size for each layer is given. The output of the

network has the shape of 3� 320� 320 and will be used to compute the lossL task (equation 12)

during training. During inference, softmax is used instead to generate probabilities and the

�nal label is determined by the maximum probability across class channels for each pixel.

3.3. Performance Evaluation Metrics

In order to evaluate how the model performs, appropriate metrics, which operate on

predicted labels and ground truth labels should be used. Pixel Accuracy, Overall Accuracy,

and mean Intersection Over Union(mIOU) are the metrics used in the work for semantic

segmentation. In the following subsections, they will be explained one by one. Before

introducing these metrics, several notations are de�ned as follows:

ˆ TP: True Positive indicates the number of pixels that are classi�ed as classk are truly

from class k.

ˆ FP: False Positive indicates the number of pixels that are classi�ed as classk but

labeled as other classes in the ground truth.

ˆ TN: True Negative indicates the number of pixels that are from other classes are not

classi�ed as classk.

ˆ FN: False Negative indicates the number of pixels that are truly from classk but

classi�ed as other classes.

22

3. SEMANTIC SEGMENTATION

3.3.1. Pixel Accuracy and Overall Accuracy

Pixel Accuracy(PA) is the percentage of pixels that are correctly classi�ed. For class

k, it is de�ned as

PAk =
TPk + TNk

TPk + FPk + TNk + FNk
(13)

Overall Accuracy(OA) is the PA-like metric for evaluating the accuracy of all classes.

OA is calculated with the number of correctly classi�ed pixels divided by the total number

of pixels in the input image. Mathematically, it can be expressed as

OA =
P N

i =1 � (ŷi = yi)
kYk

(14)

The function � (ŷi) is similar to equation 11. ŷi and yi are the predicted label of thei th-pixel

in the predicted label mapŶ and the label of the same location in the ground truth label

map Y respectively. kYk represents the total numberN of pixels in Y.

There is a drawback of this metric. If class labels are strongly unbalanced, this metric

would be unreliable to represent how good the model is performing in some applications. For

example, if only very small objects are within the image. These objects only compose 10% of

the pixels in the image, and except these pixels, other pixels are background. The accuracy

can still reach 90% if the whole image is classi�ed as background. In this situation, mIOU

is always preferred. However, for aerial images, di�erent classes are mostly well distributed,

so OA will still be used as the main evaluation metric for the semantic segmentation model

in this work.

3.3.2. Mean Intersection Over Union

Figure 9: Intersection Over Union(source:Wikipedia)

Intersection Over Union(IOU) is an e�ective metric commonly used in semantic

segmentation. It is also known as Jaccard Index. Figure 9 describes this metric graphically.

23

3. SEMANTIC SEGMENTATION

Mathematically, it can be expressed as the following function.

IOUk =
TPk

TPk + FPk + FNk
(15)

Mean Intersection Over Union(mIOU) is simply the mean value of IOUs over all

classes, which is calculated with

mIOU =
1
C

CX

i = k

IOUk (16)

C is the total number of classes. This metric gives the evaluation of overall performance of

the network.

24

4. DOMAIN ADAPTATION(DA)

4. Domain Adaptation(DA)

All machine models are driven by data. The performance of machine learning models is

highly dependent on data, especially when using deep learning methods. One of the biggest

challenges for machine learning is that the data distribution drawn for training is more or

less divergent from the real distribution of the target test dataset. DA deals with this kind of

scenarios, in which a model trained on a source dataset is to be used on a target dataset that

has a di�erent but related distribution compared to the source dataset. According to [58],

DA is one sub-task of transfer learning and it assumpts that labeled data is only available

for source domain.

In this work, DA on deep learning models will be discussed. DNNs aim to learn higher

level of semantic features than traditional machine learning methods. This makes DA harder

because it is challenging to make a DNN only learn the features that are discriminative for

a speci�c task from the insu�cient training data. As discussed in the related works, the

state-of-the-art solutions for this problem can be categorized into appearance, feature and

output alignment based on the "where to align" strategy. Most of these works use the

adversarial method to do the alignment. In this work, two non-adversarial and statistic-

based methods that are rarely researched for deep DA of semantic segmentation will be

explored. Experiments based on these two methods, Maximum Mean Discrepancy[27] and

deep Coral[65], will be conducted.

4.1. Notations and De�nitions

According to the de�nition of domain in the section of semantic segmentation, a source

domain is de�ned asDS = fX S; YS; P(X S); P(X S; YS)g, and a target domain asDT =

fX T ; YT ; P(X T); P(X T ; YT)g. Similarly, the semantic segmentation task for both domains

are de�ned as TS = fX S; YS; f S(�)g = fX S; YS; P̂ (YSjX S)g and TT = fX T ; YT ; f T (�)g =

fX T ; YT ; P̂ (YT jX T)g respectively. P̂ means that this is the learned probability, which is an

approximation of the real distribution. Then, the transfer learning and DA can be de�ned

as follows:

De�nition 1 (Transfer learning(TL)) Given a target learning taskTT in domain

DT and the auxiliary source learning taskTS in domain DS. Transfer learning is de�ned

as hTT ; DT ; TS; DS; f T (�)i which aims to improve the performance of predictive function

f T (�) for learning task TT by discover and transfer latent knowledge fromDS and TS,

whereDS 6= DT because of the possible di�erence in any of the 4 components,X ; Y; P(X)

and P(X; Y), between source and target domains.

25

4. DOMAIN ADAPTATION(DA)

De�nition 2 (Domain Adaptation(DA)) Given a TL problem. Domain adaptation

is a sub-task of the TL with the conditions ofXS = XT , YS = YT , and P(X S) 6= P(X T),

P(X S; YS) 6= P(X T ; YS) for domains and the conditions ofDS = f xS
i ; yS

i gNS
i =1 and DT =

f xT
i ; �g NT

i =1 for available datasets in both domains.

Regarding the DA task for semantic segmentation, the conditions for domains inDe�-

nition 2 mean that the input space has the same dimension and the output space has the

same number of classes, only the distributions of the two domains are di�erent. This di�er-

ence refers to the marginal distribution of the input variable as well as the joint distribution

of input and output variables. In addition, a TL problem is calleddeep TL , when f T (�) is

a non-linear function which is represented by a DNN. As for the sub-task DA, it is called

deep DA .

4.2. Maximum Mean Discrepancy (MMD)

MMD is �rst proposed to address the Two-Sample Test[27] problem in statistics. A

two-sample test is a test performed on the data of two random samples, each independently

obtained from a di�erent given population and the purpose of the test is to determine whether

the di�erence between these two populations is statistically signi�cant[69]. To perform the

two-sample test, a well behaved functiony = f (x) is used. This function can map sample

point x1 and x2, that are drawn from very di�erent distributions p and q respectively, to

very di�erent values y1 andy2 so that the distance of the output values,jy1� y2j, can be as

large as possible in order to better distinguish the distributionp and q. On the other hand,

if the two samples are drawn from the same distribution or very similar distributions, the

distance jy1 � y2j has to be as small as possible, and ideally 0. MMD is a metric for mea-

suring di�erence or discrepancy of two distributions by utilizing a set of such well-behaved

functions. According to [27], the de�nition of MMD is de�ned as

De�nition 3 (MMD) Given observationsX := f x1; : : : ; xmg and Y := f y1; : : : ; yng,

independently and identically distributed(i.i.d.) from distribution p and distribution q,

respectively, and notationEx� p[f (x)] and Ey� q[f (y)] as expectations with respect top

and q, respectively. LetF be a class of functionsf : X ! R, MMD is de�ned as

MMD [F ; p; q] := sup
f 2F

(Ex� p[f (x)] � Ey� q[f (y)]) (17)

The quality of the MMD depends on the set of smooth functionsF that are used for

computing MMD. F should be "rich enough" to uniquely identify p = q, and "restrictive

enough" to provide useful �nite sample estimates so that MMD can converge as the number

26

4. DOMAIN ADAPTATION(DA)

of samples increases. The function classes in the unit balls[72] in the characteristic Repro-

ducing Kernel Hilbert Spaces(RKHS)[59], notated asH, are proven in [27] to satisfy both

conditions. RKHS is a space of functions and can also be treated as an implicit feature space.

To simplify the computation of MMD, kernel and mean kernel embedding are introduced.

They are de�ned as

De�nition 4 (Kernel) Let X be a non-empty set. A function k:X � X ! R is called

a kernel if there exists aR-Hilbert space and a map� : X ! H such that8x; x0 2 X ,

k(x; x0) := h� (x); � (x0)i H

De�nition 5 (Mean kernel embedding(MKE) [27]) Given distribution p, non-empty

set X and kernel k: X � X ! R,

� p =
R

X k(x; �)p(dx), � p � H

is the KME of p if Ex� pf = hf; � pi H for all f � H . The estimated KME on the given

N samples is

�̂ p = 1
N

P N
n=1 k(xn ; �)

Based on de�nition 3 and 5, and assuming the existence of MKEs forp and q are

satis�ed, the functions F are in the unit balls of RKHS, the square of MMD distance can

be derived into

MMD 2
k [F ; p; q] = k� p � � qk2

H (18)

� p; � q are the MKEs of distribution p and q respectively. Then "kernel trick" is used to

avoid evaluation of mean embedding inH of an in�nite number of dimensions.

MMD 2
k [F ; p; q] = Ex� p[k(x; x0)] � 2Ex� p;y� q[k(x; y)] + Ey� q[k(y; y0)] (19)

gives the kernel version of the squared MMD.x and x0 are di�erent samples from the same

distribution, and similar for y and y0. k is the characteristic kernel in the universal RKHS,

which are dense in the space of bounded continuous functions. Gaussian RKHS is univer-

sal and can approximate bounded and continuous functions arbitrarily well. In practice,

equation

^MMD
2
k [X; Y] =

1
m(m � 1)

X

i 6= j

k(x i ; x j) �
2

mn

X

i 6= j

k(x i ; yj) +
1

n(n � 1)

X

i 6= j

k(yi ; yj) (20)

is used for the discrete case, which only has a limited number of samples for estimating MMD.

One of the most important property of MMD isMMD 2
k [F ; p; q] = 0 if and only if p = q. But

because of sampling variance, ^MMD
2
k [X; Y] always do not equal zero even ifp = q. The

27

4. DOMAIN ADAPTATION(DA)

choices of kernels are also very critical for the test power and low test error of two-sample

test[28]. So similar to [39] and [45], multiple characteristic kernels are used to estimate MMD

distance of two distributions.

With the Gaussian kernel de�ned in

k(x; y) = exp(
�k x � yk2

2� 2
); � > 0 (21)

MMD loss is de�ned as biased MMD in the equation

LMMD =
1

N 2
(

NX

i;j =1 ;i 6= j

X

� k

exp(�
1

2� 2
k

kAS
i � AS

j k2
2)

� 2
NX

i;j =1 ;i 6= j

X

� k

exp(�
1

2� 2
k

kAS
i � AT

j k2
2)

+
NX

i;j =1 ;i 6= j

X

� k

exp(�
1

2� 2
k

kAT
i � AT

j k2
2))

(22)

based on equation 20. AS
i and AT

i are feature samples from source and target domain

respectively. N is the number of samples and� k is the parameter for thek-th Gaussian

kernel. For example, feature mapsAS and AT from both domains are with shapec� h � w,

then each sample pointAS
i or AT

i has the feature dimension ofc. Feature mapsAS, as well

as AT , hasN = w � h samples.

4.3. Deep Correlation Alignment (Deep CORAL)

DNNs have many layers connected successively. Each layer can change the distribution

of the activations from the previous layer. As DNN goes deeper, a small change in the bottom

layers will cause a dramatic change in the distributions of top layers. [34] introduced Batch

Normalization(BN) to solve this problem and call this phenomenon as Internal Covariate

Shift(ICS). BN normalizes the data of each mini-batch to be zero-mean and unit-variance

to compensate ICS. However, BN can not align the covariances of the source data and the

target data.

Correlation Alignment (CORAL) is �rst introduced to DA by [66]. It minimizes the

domain shift by aligning the second-order statistics of source and target distributions. Figure

10 demonstrates the main principle of CORAL. It describes how datasets with 3 features are

aligned in 3d space. Red points are samples from the target domain and blue from the source

domain. In the top left plot, features from source and target domain are normalized to zero

mean and unit standard deviation, their distribution covariances are still di�erent. CORAL

28

4. DOMAIN ADAPTATION(DA)

Figure 10: Correlation Alignment[66]

aims to align the covariances and get the result plotted in (c). Instead of de-correlating, in

other words, whitening both source and target like plot (d), [66] re-correlates/re-colors the

whitened source features with the target covariance.

CORAL is applied for object recognition in [66]. Ifx is the d-dimentional feature vector

generated by representation� (I) with I as the input image, all feature vectors of then images

in the dataset can be written as the matrixX = [x1; x2; : : : ; xn] in shaped � n. Then the

covariance matrixQ of X is

Q = E[(X � E[X])(X � E[X])T] =
(X � � X)(X � � X)T

n � 1
(23)

� X is the mean of all feature vectors. Mathematically, CORAL can be described with the

equation

min
A

kQŜ � QT k2
F = min

A
kAT QSA � QT k2

F (24)

in which QS; QT are the covariance matrices of source and target feature vectors respectively.

A is the linear transformation which transformsQS into QŜ. And k � k2
F denotes the matrix

Frobenius norm. [66] has proofed that the analytically optimal solution

A � = (US� +
S

1
2 UT

S)(UT [1:r]� +
T [1:r]

1
2 UT

T [1:r]) (25)

for the minimization problem above is composed of 2 parts. The �rst part can be regarded

29

4. DOMAIN ADAPTATION(DA)

as whitening of the source data, the second part re-colors the whitened source data with

target covariance. US; � S; UT ; � T are the eigenvectors and eigenvalues of source and target

data respectively. � + is the Moore-Penrose pseudoinverse. Symbolr indicates the smallest

rank of QS and QT .

Instead of computing the analytically linear transformation, deep Coral replaces the

linear transformation of CORAL by an implicit nonlinear transformation in the DNN learned

by backpropagation and gradient descent. In semantic segmentation, each pixel in the feature

maps is regarded as a sample point. If the output activations of one layer are the feature

maps of shapec � h � w, then the number of samples/features isn = h � w, the dimension

of each feature vector isd = c. The reshaped matrix of feature maps is notated as feature

matrix F with shape n � d. Based on this, feature matrix for source and target data can

be notated asFS and FT respectively. The number of source feature samples isnS and the

number of target feature samples isnT . Then the unbiased covariances of source and target

features can be computed with the following equations.

QS =
1

nS � 1
(F T

S FS �
1

nS
(FS)T (FS)) (26)

QT =
1

nT � 1
(F T

T FT �
1

nT
(FT)T (FT)) (27)

Deep Coral minimizes the CORAL loss

LCORAL =
1

4d2
kQS � QT k2

F (28)

to align covariance of source and target features. This loss can be applied to any layer in

the semantic segmentation DNN.

4.4. Cycle-Consistent Adversarial Networks(Cycle GAN)

Di�erent from MMD and Deep Coral, Cycle GAN[82] doesn't need the assumption that

source and target images can be mapped to the same feature space. It simply transfers the

appearance of the images from one domain to another. Compared to the previous work,

paired image-to-image translation[36] which learns a function of mapping an input image to

an output image from the su�cient training data of paired images, the training images for

Cycle GAN do not have to be paired. This is very bene�cial because in most applications,

it is very hard to obtain paired images from source and target domain. In this thesis, Cycle

GAN is applied to conduct experiments to show how Cycle GAN performs on synthetic-to-

real DA problems for the BMW dataset and on real-to-real DA problems for remote sensing

datasets. Since Cycle GAN consists of two Generative Adversarial Networks(GAN), GAN

30

4. DOMAIN ADAPTATION(DA)

will be introduced at �rst and then Cycle GAN will be explained.

Figure 11: Generative Adversarial Network Schema

GAN is a network, which can learn the marginal distribution of data and generate

data from random noise. It is composed by two DNNs, the generator, which can learn

the distribution of a given dataset and generate similar data from random Gaussian noise,

and the discriminator, which focuses on di�erentiating the generated data and the real data.

These two DNNs act like opponents to each other. Generator aims to generate more realistic

data that can "fool" the discriminator, and the discriminator, on the other side, tries to

improve its ability to di�erentiate the real and fake images. Figure 11 shows the idea behind

the GAN. The generator network is composed of multiple transposed convolutional layers,

and its structure is similar to the decoder(classi�er) of Ynet explained in this work. The

discriminator network is made by multiple convolutional layers and/or fully connected layers.

It can either do image-level classi�cation or pixel-level classi�cation. The 1-dimensional noise

vector z is �rstly fed to the generator and transferred to a fake image. Then together with

real images in one batch or in turn, they are passed to the discriminator to be exterminated

for their realness. The parameters of generator and discriminator are updated alternatively

by maximizing the discriminator loss

LD =
X

x2 X

logDX (x) +
X

z

log(1 � DX (G(z))) (29)

and minimizing the generator loss

LG =
X

z

log(1 � DX (G(z))) (30)

There are many di�erent versions of objective functions for calculating the losses, and this

is not the emphasis of this work, more extensive reading can be found in [26], [2], [40], [39],

etc..

31

4. DOMAIN ADAPTATION(DA)

Figure 12: Cycle GAN Schema[82]

Figure 13: Generative Adversarial Network Schema in Cycle GAN

Cycle GAN contains 2 generators and 2 discriminators as depicted in �gure 12(a). G

is the forward generator, which maps the input images from domain X into domain Y, and F

the backward generator, which maps images in the opposite direction.DX , DY are the two

discriminators. DX learns how to di�erentiate the generated fake imagesF (Y) from X and

facilitate F to translate images from domain Y into more X-like images, and vice versa for

DY . The generators in these 2 GANs are di�erent from the GAN explained above, it contains

encoder as well as decoder structure and takes in an image as input instead of a random

noise vector. The modi�cation is shown in �gure 13. Moreover, Cycle GAN introduced two

more losses, the cycle consistency loss and the identity loss, which are the constraints for

keeping the image structural content during translation. The cycle consistency loss is the

L1 distance between the real images and it's "traveled" version, which traveled through the

2 generators and came back again((b) and (c) in �gure 12). It can be expressed as

L cyc(G; F) =
X

x2 X

(kF (G(x)) � xk1) +
X

y2 Y

(kF (G(y)) � yk1) (31)

The identity loss is optional and is described in equation

L idt (G; F) =
X

x2 X

(kG(x) � xk1) +
X

y2 Y

(kF (y) � yk1) (32)

32

4. DOMAIN ADAPTATION(DA)

The �nal objective function is shown by equation

L cycleGAN = LGAN (G; DX ; X; Y) + LGAN (F; DY ; Y; X) + �L cyc(G; F) +
L idt (G; F) (33)

The parameter� and
 are the hyperparamters to control the relative importance between

the GAN losses, the cycle consistency loss and the idendity loss. GAN lossLGAN is optimized

by maximizing discriminator loss and minimizing generator loss described in equation 29 and

30. But, instead of log likelihood [82] uses least-squares loss[51] for training discriminator D

and generator G. The losses forLGAN (G; D; X; Y) are given in the following equations.

LD =
X

y2 Y

((D(y) � 1)2) +
X

x2 X

(D(G(x))2) (34)

LG =
X

x2 X

((D(G(x)) � 1)2) (35)

The discriminator and generator loss of bothLGAN (G; DX ; X; Y) and LGAN (F; DY ; Y; X)

can be derived from the equation 34 and 35 by replacing the correspondent letters.

In this work, the same structure of the Cycle GAN in the original work is used to adapt

the appearance of the images from the source domain to the target domain. More details

about this network can be found in [82].

4.5. Methodology for DA

In this part, �ve methods for DA using the techniques mentioned above will be intro-

duced. Approach 1 and 2 uses deep Coral and MMD, respectively, to match the distributions

of feature maps of an intermediate layer. In approach 3, deep Coral is used to match the

output logit. In approach 4, deep Coral is used to match the distributions of both the inter-

mediate feature maps and the output logits. The last approach is utilizing Cycle GAN to

adapt image appearances.

4.5.1. Matching feature maps of an intermediate layer n of the encoder

It is shown in [74] that feature matching of intermediate layers can achieve better results

than using early layers because these are heavily correlated with input and late layers are

more correlated with the labels. Experiments of matching other layers of Ynet also show

degraded performance than matching intermediate layers, so the con�guration of matching

the intermediate layer is adopted for feature matching with MMD and deep Coral. Figure 14

gives an overview of this adaptation strategy. For the source and target task, two di�erently

parameterized Ynets are used. One Ynet is �rstly trained on the source dataset, this trained

33

4. DOMAIN ADAPTATION(DA)

Figure 14: Domain Adaptation with feature matching on intermediate layer n of encoder

network is called source network. Then the weights of the source network is copied to another

Ynet which is called target network, and only the parameters of layer 1 to layer n of the

target network are to be updated. Source and target network share the parameters of the

layers after layer n. This is shown in �gure 14 with an example of n=7. Blue indicates source,

red indicates target. The weights of layers in the blue dashed rectangle of the source network

are �xed, only the weights of layers in the red dashed rectangle of the target network are to

be adapted. The weights of the remaining part of the Ynet are shared by the source and

the target network. To update the weights of layers in the red dashed rectangle, constraints

of MMD or deep Coral loss, as well as the L1 distance between the weights of the source

and the target layers in the dashed rectangles, are used. The loss function is summarized in

equation

Lmmd;ln = �L MMD + �L W;ln (36)

and

L crl;ln = �L CORAL + �L W;ln (37)

LMMD and LCORAL are given in equation 22 and 28 respectively. They both operate on the

activations of layer n. LW;ln is the L1 weights loss between source and target parameters

expressed in equation

LW;ln =
1
N

X
j� S

l1� ln � � T
l1� ln j (38)

This constraint is used to preventing target weights from drifting away too much from source

34

4. DOMAIN ADAPTATION(DA)

weights. � S
l1� ln and � T

l1� ln are the parameters in the �rst n layers of source and target network

respectively. N is the number of weights in the �rst n layers. Hyper-parameters� and � are

used to balanceLMMD (LCORAL) and LW . In the coming chapter, notationsMMD ln and

Crl ln are used to identify the experiments of matching activations of layer n by minimizing

Lmmd;ln and L crl;ln respectively.

4.5.2. Matching output logits

Figure 15: Domain Adaptation with feature matching on output digits

According to the con�guration in [65], the weights of the whole network are updated

with the gradients of the deep Coral loss between logits output of source and target data

and the cross-entropy loss between source predictions and ground truth labels. Deep Coral

loss on logits output layer is also used for the DA of semantic segmentation in this work as

described in �gure 15. Similar toCrl ln , the weights of the trained source network are copied

to the target network at the beginning of the adaptation. Then the weights of the target

network are updated by minimizing loss

L crl;log = �L CORAL + �L W (39)

LCORAL operates here on logits outputs. On the right side of �gure 15, the logits output of

source data is marked with blue and target with red.LW is the averagedL1 norm between

the weights of the source network� S(blue dashed rectangle in �gure 15) and that of the

35

4. DOMAIN ADAPTATION(DA)

target network � T (red dashed rectangle in �gure 15), which is shown in equation

LW =
1
N

X
j� S � � T j (40)

N here is the number of all parameters of Ynet. The method explained above is notated as

Crl log.

4.5.3. Appearance adaptation with Cycle GAN

Di�erent from the previous two methods, which adapt the target network based on

the trained source network, Cycle GAN translates the images before training FCN. This

method can be regarded as a pre-processing step and can be applied additionally to any

DA methods discussed above. The approach of using Cycle GAN for DA can be described

in 3 steps. First, both source images and target images are used to train the Cycle GAN.

Sencond, the source images are fed to the trained Cycle GAN and translated to the target

domain. Namely, source images are rendered with the style/appearance of target images. At

last, the original source images and the translated source images are used to train FCN from

scratch and this FCN is regarded as the target network that is used to predict the labels of

target images.

36

5. EXPERIMENTS AND RESULTS

5. Experiments and Results

In this section, the datasets that are used in this work will be described. Then, the

experiment settings for semantic segmentation and DA approaches that are explained in the

previous section will be given. The results and evaluation of all experiments will be dicussed

in the last subsection.

5.1. Datasets

In this work, 3 datasets are used to conduct the experiments. Two(3Cities, ISPRS) are

remote sensing datasets, which contain aerial images and DSM images. The third one is the

BMW dataset, which contains synthetic and real images of car components.

3City dataset has 3 sub-datasets, each sub-dataset is obtained by taking images of one

single city and is regarded as one domain. These 3 cities are Buxtehude(C1), Hannover(C2)

and Nienburg(C3) in Germany. Each city has 9 patches of size 3333x3333 pixels, they are

cut from one big image of size 10000x10000 pixels. The center patch is taken as the test set

and the rest as the training set. Each patch contains 2 images and 1 corresponding label

map. The �rst image is the IR-G-B image, which contains 3 channels, namely InfraRed(IR),

Green(G) and Blue(B). The second image is the normalized DSM image, which records the

height values above the ground. And the label map is the manually annotated pixel-level

label map. The label maps have 3 classes, "ground", "tree" and "building". Figure 16

shows one example patch in this dataset. The left image in the �gure is IR-G-B image, the

second DSM image is normalized for visualization, and the right label map image is plotted

with colors, white indicates ground, green means tree and orange means building. 3City

dataset has the Ground Sampling Distance(GSD) of 20cm, which means each pixel covers a

20cmx20cm patch on the ground.

Figure 16: One patch and the corresponding reference of 3City Dataset. Class "ground" is
in white, "tree" in green, and "building" in orange

37

5. EXPERIMENTS AND RESULTS

ISPRS Benchmark[1] for 2D semantic labelling consists of 2 sub-datasets(2 domains),

Potsdam and Vaihingen. Potsdam has 38 patches and Vaihingen 33 patches. Di�erent

patches may have di�erent sizes, the average size is about 2000x2000 pixels. Each patch

contains IR-G-B, DSM and label images, but the DSM images of this dataset are not nor-

malized. The o�cial dataset split is used in this work. It has a better label distribution

balance between train and test splits. The test sets of both cities are split again into val-

idation and test set. Table 1 gives the detail about the split. The number in the table is

patch number. Images of Potsdam have the GSD of 5cm, and Vaihingen 8cm. In order to

make GSD the same for both cities, Potsdam is re-sampled to the GSD of 8cm. Patch 1 of

Potsdam is shown in �gure 17 as an example of this dataset. Di�erent from 3City, ISPRS

classi�es pixels into 6 categories, they are impervious surfaces, building, low vegetation, tree,

car and clutter, respectively. However, Class clutter contains di�erent objects and has many

di�erent or even unpredictable features, it in
uences the DA result a lot, so this class is

merged into the class impervious surface for all experiments in this work.

Table 1: ISPRS dataset split

city training validation test

Potsdam 1, 2, 3, 6, 7, 8, 11, 12,
13, 17, 18, 19, 23, 24,
25, 29, 30, 31, 32, 33,
34, 36, 37, 38

4, 5, 9, 10 14, 15, 16, 20, 21, 22,
26, 27, 28, 35

Vaihingen 1, 3, 5, 7, 9, 12, 14,
16, 18, 20, 21, 23, 25,
27, 30, 32

2, 4, 6, 8 10, 11, 13, 15, 17, 19,
22, 24, 26, 28, 29, 31,
33

Figure 17: Patch 1 of Potsdam. Class "impervious surfaces" is in white, "building" in blue,
"low vegetation" in cyan, "tree" in green, "car" in yellow and "clutter" in red.

For both 3Ctiy and ISPRS, 200 random images of size 320x320 are cropped from each

patch for training and validation set. For the test set, the original sized patches are kept,

38

5. EXPERIMENTS AND RESULTS

but it will be cropped during testing. In the end, 1600 training images and 1 test patch are

obtained for each city of 3City dataset. Potsdam has 7200 training images, 1936 validation

images, and 10 test patches. Vaihingen has 4800 training images, 605 validation images, and

13 test patches.

Figure 18: Label distributions in dataset 3City and ISPRS

Figure 19: Label count of dataset ISPRS

The label distributions for these two remote sensing datasets are shown in �gure 18. It

shows that the amount of samples is imbalanced across di�erent classes. In 3City dataset, the

samples of the class tree are much more than the other two classes. The label distributions

for C1 and C3 are similar while C2 has more buildings and fewer trees than them. In the

bottom subplot of �gure 18, the label distribution of ISPRS is also imbalanced, especially

39

5. EXPERIMENTS AND RESULTS

for the minority class "car". The biggest di�erence of label distribution between Potsdam

and Vaihingen occurs at class "ground" and "tree". Di�erent from 3City dataset, which

has the same amount of samples for each city, ISPRS has many more samples in Potsdam

than in Vaihingen as shown in �gure 19. This might also in
uence the result of domain

adaptation.

BMW dataset has two sub-sets, the real set, and the synthetic set. Real set contains

76 RGB images taken by realsense camera, and 80 synthetic images are generated by Unity

using 3d models, they are shown in �gure 20. Each image has a size of 720x1280 pixels

and shows the car components in a container. There are many di�erent car components,

but only one component, which is called "combox", is used in the experiments of this work.

The pixels in these images are classi�ed into 3 categories, namely, combox, container, and

background.

Figure 20: real and syntheic images with it's correspondent label mask. Class "combox" is
in green, "container" in blue and "background" in black

5.2. Experiments

Implementation details of training FCNs for semantic segmentation on the datasets

explained above will be given in the �rst part of this subsection. Then the settings for DA

experiments using MMD and deep Coral will be described. At last, the experiments of DA

using Cycle GAN will be explained.

40

5. EXPERIMENTS AND RESULTS

5.2.1. Semantic segmentation

In this part, the experiment settings of semantic segmentation without DA will be given.

The experiments on dataset 3City and ISPRS will be explained �rst. Then the experiments

for BMW data will be discussed.

On 3City and ISPRS dataset, 5 Ynets are trained, one for each city. The data are

augmented by random
ipping vertically or horizontally, and then by randomly rotating by

0, 90,180, or 270 degrees followed by channel-wise normalization with mean and standard

deviation calculated over the whole sub-dataset(domain). To further augment the dataset,

online augmentation used in [74] is also applied in this work during training based on the

observation that this method can decrease the accuracy drop when test on the target dataset.

Each sample is randomly scaled and shifted according to distributions � N (1:0; 0:1) and

h � N (0:0; 0:1) respectively.

The weights are optimized using Adam optimizer with parameters 0.95 and 0.999 for

exponential decay rate of the �rst- and the second-moment estimates respectively. The

learning rate during the whole learning process is 0.0001 and the mini-batch size for each

iteration is 4. Each Ynet is trained for 300000 iterations. In each domain of 3 City, the model

with the best training accuracy is chosen for testing, and in each domain of ISPRS, the model

with the best validation accuracy is chosen. For testing, the sliding-window strategy in [74]

is used because this overlapped prediction strategy can improve the OA 1-3%. The window

slides with a step size of 160 pixels. In each step, one cropped image is normalized and fed

to the network to generate pixel-wise class scores. This leads to multiple predictions on each

pixel, from which all predictions are aggregated and the most con�dent classes are chosen

for the �nal prediction maps. In other words, each pixel is predicted 1 to 3 times, the scores

for each pixel are summed up and the most con�dent class is �nally assigned to this pixel.

For the BMW dataset, the same network structure of Ynet is used, but only one encoder

is used for the 3 channel inputs. This network is simply called FCNb("b" means basic). Two

FCNbs will be trained, one on the synthetic dataset, one on the real dataset. In the pre-

processing step, the training images are randomly
ipped vertically or horizontally and then

normalized channel-wise by the corresponding mean and standard deviation calculated over

all images of the synthetic dataset or the real dataset. The same online augmentation ex-

plained above is also used for images of the BMW dataset. The con�gurations for parameter

optimizer, learning rate, and mini-batch size are the same as for the experiments of 3City

and ISPRS. Since the test images have the same shape as the training images, no sliding

window is needed. Test images are simply normalized and then fed to the network.

41

5. EXPERIMENTS AND RESULTS

5.2.2. DA with MMD and Deep Coral

In 3City dataset, there are 3 cities. Each adaptation chooses one city as source dataset

and one as target dataset. So there are 6 adaptations, namelyC1 ! C2; C1 ! C3; C2 !

C1; C2 ! C3; C3 ! C1; C3 ! C2. In ISPRS, there are only 2 adaptations, Potsdam!

Vaihingen and Vaihingen! Potsdam. In this section, the experiment settings of DA will be

described. All experiments of the method with MMD and deep Coral are performed on all

adaptations of RS data. The DA method with Cycle GAN will be tested on both BMW

data and RS data. For BMW data, the DA is performed from the synthetic domain to the

real domain. For RS data, this method will be performed on 4 adaptations, namely 2 DAs

between C2 and C3 and 2 between Potsdam and Vaihingen.

MMD on layer 7

Start from the pre-trained Ynets, DA is achieved in this experiment with MMD by

matching the feature activations of an intermediate layer n. Speci�cally, layer 7 of Ynet is

taken for the feature matching because this layer is not very close to the input and saves

more computation time than the previous two layers which have more pixels. Besides, it also

contains more spatial information than the last 3 layers of the encoder. This experiment

is notated asMMD l7. The same pre-processing strategy of pre-training the Ynet is used

for DA but without online augmentation. The optimizer used for adaptation is still Adam.

Only the exponential decay rate for the �rst moment estimates of Adam is decreased to 0.5.

Since the weights only need to be modi�ed slightly, the learning rate is decreased to 10e� 5.

In order to balance the input distribution in each iteration, the mini-batch size is as large as

possible. On a 32GB GPU, the biggest mini-batch size can only reach 6, because multi-kernel

MMD is very computationally expensive. Since it is hard to �nd a criterion to terminate

the training process of DA, the networks are trained for 50 epochs for all adaptations on

3City dataset and 30 epochs on ISPRS because ISPRS has much more samples than 3City.

The hyperparameter� for lW;l 7(n = 7) in equation 22 is set to 100. If bigger learning rate

10e� 4 is used instead of 10e� 5, � should also be increased to about 1000. A sign of stable

adaptation is that the lW;l 7 can enter into a stable state within several epochs. In other

words, if lW;l 7 keeps increasing, it is very likely to get negative transfer after several epochs.

Since the determination for� is also very tricky, the experimentMMD l7 will be conducted

with di�erent � values, namely� = 0:0005; 0:001; 0:005. Moreover, the Gaussian kernels of

MMD are parameterized with � = [1; 2; 4; 8; 16], which is the same as in [39].

Deep Coral on layer 7 and logits

Using deep Coral, experiments are conducted by aligning covariance of activations of the

intermediate layer n or logits output of the last layer before softmax. Same asMMD l7, layer

n=7 is taken as the intermediate layer for experiment of deep Coral. The two experiments

42

5. EXPERIMENTS AND RESULTS

of aligning layer 7 and logits are notated asCorall7 and Corallog respectively. Since the

alignment on both layers simultaneously shows worse result than any of them alone, this

con�guration will not be discussed. Instead, one more experiment is conducted by aligning

these two layers jointly based on the observation thatCorallog can mostly obtain accuracy

gain at the �rst 15 epochs and the results are also not sensitive to the parameter� . Moreover,

after Corall7, the parameters of the last 3 layers of the encoder and the parameters of the

decoder are still not adapted, the performance of the target network is possible to be further

optimized by aligning logits starting from the model that is adapted byCorall7. Namely, the

pre-trained semantic segmentation network is �rst adapted withCorall7 and then followed

by the adaptation Corallog. This experiment is notated asCorall7;log. For Corall7, ablation

test is done with � = 100; 200; 400; 800. The experiments ofCorallog are conducted with

� = 0:01; 0:001; 0:0001; 0:00001 and the learning rate is set to 10e� 6. The � values for

Corallog are much smaller because the pre-trained Ynet has bigger values as well as bigger

covariance in the output of the last layer of a decoder than the 7-th layer of the encoder. The

deep coral lossLCORAL is much larger for this con�guration. In order to balance this term

with lW , small � values are used. The other hyperparameters not mentioned forCorall7 and

Corallog keep the same as forMMD l7. For Corall7;log, � = 200 is chosen for adapting layer

7 and � = 0:01 is used for adapting logits, other con�gurations keep the same asCorall7
and Corallog.

5.2.3. Appearance Adaptation with Cycle GAN on input images

Experiments of DA with Cycle GAN are conducted by changing the appearance of im-

ages. It can be very helpful to translate the images from synthetic domain to the real domain

so that the network can be trained on the automatically labeled and translated fake images

in stead of real images that should be labeled manually. For example, there are thousands

of parts for a car, in order to automate the whole process of the logistic transportation of

these parts in the factory, the recognition of them is necessary. But annotating all these

components is very time-consuming. So in this work, the images of one example car com-

ponent, namely, the BMW dataset that contains the component "combox" is taken for the

experiment of transferring the appearance information from the real data to the synthetic

data. This method can be applied to other car components straight forward.

In addition to synthetic-to-real adaptation for BMW data, more experiments on RS

data are conducted to test if Cycle GAN can also help DA between 2 RS domains that only

contains real images. The combinations of Potsdam-Vaihingen and C2-C3 are chosen because

they have a di�erent type of domain discrepancies compared with BMW data. As shown in

�gure 20, synthetic images are di�erent from real images mostly in the appearance aspect.

The structure and geometry of the objects in the scene are roughly the same. However, in

43

	Introduction
	Related Works
	Semantic segmentation
	Deep Domain Adaptation
	Deep Domain Adaptation for Semantic Segmentation(DDASS)

	Semantic Segmentation
	Notations and Definitions
	Components and Architecture of the FCN
	Basic modules for the Network Architecture
	Architecture of the FCN

	Performance Evaluation Metrics
	Pixel Accuracy and Overall Accuracy
	Mean Intersection Over Union

	Domain Adaptation(DA)
	Notations and Definitions
	Maximum Mean Discrepancy (MMD)
	Deep Correlation Alignment (Deep CORAL)
	Cycle-Consistent Adversarial Networks(Cycle GAN)
	Methodology for DA
	Matching feature maps of an intermediate layer n of the encoder
	Matching output logits
	Appearance adaptation with Cycle GAN

	Experiments and Results
	Datasets
	Experiments
	Semantic segmentation
	DA with MMD and Deep Coral
	Appearance Adaptation with Cycle GAN on input images

	Result and Evaluation
	Semantic Segmentation without DA
	DA with MMD and Deep Coral
	Comparison of Performances of Deep Coral and MMD
	Appearance Adaptation with Cycle GAN on input images

	Conclusion
	References
	Appendix Predictions on 3City data set
	Predictions in the same domain
	Predictions on the target domain without DA
	Predictions after deep Coral adaptation on l7
	Predictions after deep Coral adaptation on l7 and logits
	Predictions after MMD adaptation on l7

	Appendix Predictions on ISPRS data set
	Predictions in the same domain
	Predictions on the target domain without DA
	Predictions after deep Coral adaptation on l7
	Predictions after deep Coral adaptation on l7 and logits
	Predictions after MMD adaptation on l7

