
Improving the Classification of Land use
Objects using Dense Connectivity of

Convolutional Neural Networks

A Dissertation
Submitted in partial fulfillment of

the requirements for the degree of
Master of Technology

by

Aishwarya Gujrathi
(183310004)

Supervisors:
Prof. Krishna Mohan Buddhiraju

and

Prof. Christian Heipke, M. Sc. Chun Yang (Leibniz Universität
Hannover)

Centre of Studies in Resources Engineering

Indian Institute of Technology Bombay
Mumbai 400076 (India)

31 May 2020

Dedicated to my parents for their unconditional love and support. . .

Approval Sheet

This dissertation entitled “Improving the Classification of Land use Objects using Dense

Connectivity of Convolutional Neural Networks ” by Aishwarya Gujrathi is approved for

the degree of Master of Technology.

Examiners

Supervisor (s)

Chairman

Date:

Place:

Declaration

I declare that this written submission represents my ideas in my own words and where

others’ ideas or words have been included, I have adequately cited and referenced the

original sources. I declare that I have properly and accurately acknowledged all sources

used in the production of this report. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsified any

idea/data/fact/source in my submission. I understand that any violation of the above will

be a cause for disciplinary action by the Institute and can also evoke penal action from

the sources which have thus not been properly cited or from whom proper permission has

not been taken when needed.

Aishwarya Gujrathi

Date: 31 May 2020 (183310004)

vii

Abstract

Land use is an important variable in remote sensing which describes the functions carried

out on a piece of land in order to obtain benefits and is especially useful to the person-

nel working in the fields of urban management and planning. The land use information

is maintained by national mapping agencies in geo-spatial databases. Commonly, land

use data is stored in the form of polygon objects; the label of the object indicates land

use. The main goal of classification of land use objects is to update an existing database

in an automatic process. Recently, Convolutional Neural Networks (CNN) have been

widely used to tackle this task utilizing high resolution aerial images (and derived data

such as digital surface model). One big challenge classifying polygons is to deal with

the large variation in their geometrical extent. To overcome this challenge, we adopt the

method of cropping proposed in [19] to decompose polygons into regular patches of fixed

size. The decomposition leads to two sets of polygons: small and large, where the for-

mer suffers from a lower identification rate. This thesis proposes CNN methods which

incorporate dense connectivity and integrate it with intermediate information via global

average pooling to improve land use classification, mainly focusing on small polygons.

Different network variants are presented by incorporating intermediate information via

global average pooling from different stages of the network. The proposed methods are

experimented on two sites, Hameln and Schleswig (Germany);experiments show that the

dense connectivity and integration of intermediate information has a positive effect not

only on the classification accuracy on the whole but also on the identification of small

polygons.

ix

Table of Contents

Abstract ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 2

1.2 Contribution . 3

1.3 Outline . 3

2 Literature Review 5
2.1 Traditional Methods . 5

2.1.1 Kernel Based Techniques . 6

2.1.2 Region Based Techniques . 7

2.1.3 Object Based Techniques . 9

2.2 Land-use classification based on Conditional Random Fields 11

2.3 Land-use classification based on Convolutional Neural Networks 14

2.3.1 LiteNet . 15

2.3.2 LuNet . 16

3 Theoretical Foundation 19
3.1 Background . 19

3.1.1 Perceptron . 20

3.1.2 Multi layer Perceptron . 21

3.1.3 Forward and Back propagation 22

3.2 Convolutional Neural Networks . 23

3.2.1 Convolution Layer . 24

3.2.2 Pooling Layer . 25

3.2.3 Fully connected layer . 25

xi

xii Table of Contents

3.2.4 Non-linearity . 26

3.2.5 Batch Normalization . 27

3.2.6 Loss function . 28

3.2.7 Optimization algorithms . 29

3.2.8 Regularization . 30

3.3 Network Architectures . 31

3.3.1 LeNet . 31

3.3.2 AlexNet . 32

3.3.3 ResNet . 33

4 Problem Statement 35
4.1 Problem statement . 35

5 Methodology 37
5.1 Patch preparation . 37

5.2 Dense connectivity . 38

5.3 DenseLuNet . 39

5.4 Network Variants . 40

5.5 Inference of polygons . 41

6 Results and Discussion 43
6.1 Datasets and Test Setup . 43

6.1.1 Datasets . 43

6.1.2 Test setup . 43

6.2 Evaluation of Land Use Classification 45

6.2.1 Evaluation and comparison of network variants 45

6.2.2 Effectiveness of using global average pooling 46

6.2.3 Influence of the object size . 46

6.2.4 Analysis of confusion matrix . 47

7 Conclusion and Outlook 49

A Appendix 51
A.1 Programming . 51

A.2 Confusion Matrices . 52

References 55

Acknowledgements 65

List of Figures

2.1 Adjacency events within a 3 × 3 kernel window [4] 6

2.2 Land cover map of Graphtown [4] . 8

2.3 Exploded representation of Graphtown [3] 8

2.4 Graph Visualisation of Graphtown for spatial relation ’Adjacency’[4] . . . 9

2.5 Location of the city of Sagunto [9] . 10

2.6 CRF consisting of a land cover layer (c) and land use layer (u) [2] 12

2.7 Image representing super-pixels for land cover classification (left) and

land use objects for land use classification (right) [2] 13

2.8 Architecture of LiteNet-O [18] . 15

2.9 Architecture of LuNet [19] . 17

2.10 ROI location and feature extraction [19] 18

3.1 The illustration of a perceptron computing weighted sum of inputs and

applying an activation function on it . 20

3.2 Neural network processing . 21

3.3 Convolution layer illustrating one convolution filter outputs one feature map 24

3.4 The illustration of a spatial pooling operation with a filter size of 2× 2 by

a stride of 2 in the hight direction, and 2 in the width direction 25

3.5 Nonlinear functions (a) Sigmoid function (b) Tanh function (c) ReLU

function (d) Leaky ReLU function . 26

3.6 Batch Normalization Algorithm . 28

3.7 Architecture of LeNet-5 [14] . 32

3.8 Architecture of AlexNet [13] . 33

3.9 Architecture of a residual block [8] . 33

3.10 The architecture of ResNet-18 . 34

5.1 The figure represents two database objects, the left image represents bi-

nary object mask and right image represents the corresponding RGB im-

age patch from digital orthophoto . 38

xiii

xiv List of Figures

5.2 A 3-layer dense block with n input channels and k growth rate. Please

refer to texts for the abbreviations. 39

5.3 Structure of Two-Branch-Convolution 40

5.4 The architecture of DenseLuNet. TL: Transition layer, DenseBlock: cf.

Figure 5.2, Two-Branch-Convolution: cf. Figure 5.3 41

5.5 The architecture of DenseLuNet-2 . 42

6.1 Confusion Matrix of DenseLuNet-12 on Hameln dataset 47

6.2 Confusion Matrix of DenseLuNet-12 on Schleswig dataset 48

A.1 Confusion Matrix of LuNet on Hameln dataset 52

A.2 Confusion Matrix of DenseLuNet on Hameln dataset 52

A.3 Confusion Matrix of DenseLuNet-1 on Hameln dataset 52

A.4 Confusion Matrix of DenseLuNet-2 on Hameln dataset 53

A.5 Confusion Matrix of LuNet on Schleswig dataset 53

A.6 Confusion Matrix of DenseLuNet on Schleswig dataset 53

A.7 Confusion Matrix of DenseLuNet-1 on Schleswig dataset 53

A.8 Confusion Matrix of DenseLuNet-2 on Schleswig dataset 54

List of Tables

2.1 List of descriptive features extracted at different object aggregation levels 11

6.1 Class distribution of Hameln and Schleswig. The table lists number of

small polygons, large polygons and total number of polygons. 44

6.2 Results of land use classification. Network variants (cf. section 5.4). F1:

F1 score, OA: Overall Accuracy, both evaluated on the basis of objects.

Best scores are printed in bold. 45

6.3 Results of land use classification represented separately for large, small

and all polygons (cf. Table 6.2). The results are provided for all the net-

work variants on Hameln and Schleswig dataset. The number of polygons

in each set is given in parenthesis. 47

xv

Chapter 1

Introduction

Land use is an important variable in remote sensing which describes the functions carried

out on a piece of land in order to obtain benefits. Land cover refers to the physical

material on the surface of a given parcel of land. Land use classification assigns labels

to larger functional units or spatial entities [18, 19, 20, 21]. Land cover can be derived

from spectral characteristics of remote sensing data [4, 12, 5], but it is not true for land

use. Land use is an abstract concept [4], a combination of social, economical and cultural

factors.

In the region of central Europe, the government surveying authorities maintain

geospatial database of property boundaries. The semantic information in such a database

become outdated quickly as the property owners are not obliged to inform the government

of change in land use. Thus, a system is required to analyse the change in land use of the

property object stored in geospatial database. This can be done by automatic derivation of

semantic information from aerial images [2]. The derived information is checked against

the current information stored in the database and thus a database update is performed.

Recent works on land use classification are based on Convolutional Neural Net-

works (CNN) [18, 19, 20, 21]. CNN provide better results than the traditional classifiers

that take hand-crafted features as input. Traditional approaches for land use classification

require hand-crafted features derived from image data, and then apply a supervised

classifier such as Random Forests to deal with these features. However, the methods

incorporating hand-crafted features are strenuous and time consuming. CNN provide a

framework in which features can be learned from training data, which explains much of

the success of CNN in classification.

1

2 Introduction

1.1 Motivation

The rapid progress in remote sensing technology has resulted in a bulk of images of the

earth surface taken by satellites, airplanes or drones, with different imaging modalities.

With the large availability of data, the focus shifts to the automatic extraction of valuable

information. Deep learning is known to provide impressive results when large amount of

data is available, and is currently being used in many remote sensing applications [22].

Also, with the rapid growth of Graphic Processing Units (GPUs), the training and testing

time has been largely improved.

Land use classification is an important task in remote sensing, especially useful to

the personnel working in the fields of urban management and planning. Geospatial land

use database contain important information with high benefits for the above mentioned

users, but fast changes in land use due to urban growth and land use conversion makes

the geospatial databases outdated quickly. The objects stored in geospatial database are

represented in the form of polygon objects, with the object label indicating land use. The

polygon object can be of any size, but CNN takes a fixed size input. Therefore, this leads

to two types of polygons: the polygon which fits into the window size of CNN is called a

small polygon, the polygon which is larger than the window size of the CNN is called a

large polygon.

One of the challenges faced while classifying polygon objects is because of their

large variation in terms of geometric extent. For example, road objects are typically

thin and long, but residential objects may be very large or small in size and of arbitrary

shape. As mentioned earlier, CNN requires a fixed size input patch. Therefore, the large

polygons must be decomposed into small patches. Two strategies proposed for patch

preparation in [18, 19] are: cropping and rescaling. The cropping strategy is differentiated

into two scenarios: Small polygons: If the polygon object fits into the window size of

CNN, it is placed in the window such that it’s centre coincides with polygon’s centre.

Large polygons: If the polygon object does not fit into the window size of CNN, it is

further split into tiles of size equal to window size of CNN. In the rescaling strategy, the

large polygons are rescaled using bilinear interpolation so that they fit into the window

size of polygon. The rescaling approach causes loss of information, therefore, cropping

strategy is used for patch preparation in this thesis. The object shape is represented in the

form of a binary mask, where the area inside the polygon object is represented by 255

and the area outside the object is represented by 0.

1.2 Contribution 3

Analysing the result of land use classification of polygons presented in [19], it is

observed that the small polygons are hard to be classified. This can be caused because

of the following reasons: (i) One problem of CNN is that as input passes through many

layers of a neural network, it can vanish by the time it reaches the end of the network.

(ii) The final 1-D feature vector before classification may not capture valid information

of the small polygons due to many convolution and pooling operations. DenseNet [10]

solves the problem of data loss by creating short paths from early layers to later layers,

maximizing the data flow through the network. Also, adding intermediate information

from different stages of the just before classification could be helpful in improving the

results.

1.2 Contribution

The goal of this thesis is to build on the methods proposed in [19] with the aim of improv-

ing the classification of land use objects, mainly focusing on small polygons. In particular,

the scientific contributions of this thesis can be summarized as follows:

1. To propose a network architecture incorporating dense connectivity [10] that

strengthens information flow to improve the land use classification. The key is

to create short paths from early layers to later layers, maximizing the data flow

through the network.

2. Applying global average pooling (GAP) [15] at different stages of the network,

resulting in many network variants, and utilize it as intermediate information in

the classification process, to compensate the data loss caused by the many pooling

operations in the network.

3. To conduct an extensive set of experiments to compare these network variants, and

to highlight the benefits and drawbacks of the proposed methods.

All the networks were implemented using tensorflow framework [1]. GPU with spec-

ifications (Nvidia GeForce GTX 1080 TI, 11GB) was used to accelerate training and

inference.

1.3 Outline

The content of the thesis has been split into the following sections.

4 Introduction

• Chapter 2 is dedicated to literature review, presenting traditional land use classifi-

cation methods such as Kernel based, Region based and Object based techniques.

More recent Conditional Random Field (CRF) based and CNN based land-use clas-

sification methods are also described.

• Chapter 3 presents a short primer on the concepts of Deep Learning, particularly

Convolutional Neural Networks, that will come handy in understanding the method-

ology of this thesis. The chapter starts with a discussion on CNN, different layers

of CNN and concepts related to training of the CNN such as loss functions, Opti-

mization algorithms and Regularization.

• Chapter 4 presents the drawbacks of the state-of-the-art in land use polygon classi-

fication and presents the problem that we set out to solve in this thesis.

• Chapter 5 presents our neural network architecture called "DenseLuNet" for land

use classification, along with it’s three variants.

• Chapter 6 compares the result of the proposed CNN with the state of the art. Also,

a comparison among the network variants is provided.

• Chapter 7 presents a conclusion of work presented and also provides an outlook for

further research.

Chapter 2

Literature Review

Land use classification has been an important area in remote sensing. Earlier, the spatial

resolution of the satellite images was coarse (eg., Multispectral Scanning Systems (MSS)

aboard Landsat 1-5 having spatial resolution 79 x 57 meters), and was inadequate for

performing land cover/land use classification. In the current times, it is possible to ob-

tain satellite images having spatial resolution better than 1 meter (eg., GeoEye-1 having

0.41meter panchromatic, 1.65-meter multispectral resolution). It is also possible to obtain

images using UAV’s with pixel dimension in the order of centimeters. Earlier, image pro-

cessing techniques based on separate feature extraction and classification pipelines were

used for Land use/land cover classification. With the availability of large quantity of data

(though data annotation is an issue), techniques based on neural networks are being used

for Land cover/Land use classification.

2.1 Traditional Methods

Land cover is the physical material present on a piece of land (eg., water, grass, concrete

etc.). Land use is the human activity that takes place on that land (eg., commercial,

industrial, residential etc.). Classification of land cover is simple because there is a

direct relationship between land cover and exitant spectral reflectance, but land use is

an abstract concept. Land use is a combination of economic and cultural factors and is

usually of great interest. Usually, the categories of land use have a spectrally-distinct

land cover type arranged in a characteristic spatial pattern that enables it’s recognition

using remotely-sensed images.

The technique suggested in [4] for land use classification is to divide the classifi-

cation procedure into two stages: the first being semantic segmentation of the image for

5

6 Literature Review

Figure 2.1: Adjacency events within a 3 × 3 kernel window [4]

land cover classification; the second being land use classification based on the spatial

pattern of land cover. The first stage can be performed by a number of techniques

ranging from supervised or unsupervised per-pixel classification algorithms to artificial

neural networks. The disadvantage of such a two stage process is that the accuracy

of the land use classification depends on the accuracy of land cover classification, ie.,

error in the first stage is propagated through the second stage. [12] and [5] investigated

segment-based land use classification. Segments are obtained by spectral classification.

Spatial information of segments such as size, neighbours etc., are used for rule-based

classification of image segments into land use categories. An interesting work on land

use object classification combining high spatial resolution imagery, LiDAR data and

cadastral plots in given in [9]. Land use objects are characterised by image based,

geometric and contextual hand crafted features.

The traditional methods of inferring land use from characteristic spatial arrange-

ment of land cover types can be broadly divided into three methods: (i) Kernel based

techniques, (ii) Region based techniques and (iii) Object based techniques.

2.1.1 Kernel Based Techniques

In kernel-based techniques, an n × m pixel window or kernel is used to convolve the

image to be classified, to find the relative frequency and spatial arrangement of land cover

labels. In [4], their method SPARK (SPAtial Re-classification Kernel) determines an

adjacency matrix M, where every element Mi j of the matrix represents the frequency of

pixels belonging to land cover class i that are adjacent to pixels belonging to land cover

class j. The adjacency events in a kernel of size 3 × 3 is shown in figure 2.1.

2.1 Traditional Methods 7

The matrix M is compared to the matrix Tk, where Tk is the template matrix for every land

use class k. The equation 2.1 is used to calculate the similarity index between the current

position of the kernel and the land use categories.

∆k = 1 −

√√√
1

2N2

C∑
i=1

C∑
i= j

(Mi j − Tki j)2 (2.1)

where N is the total number of adjacency events (for a 3 × 3 kernel in Fig. 2.1, N = 20),

C is the number of land cover classes, Mi j is an element of the adjacency event matrix

and Tki j is the corresponding element in the template matrix for land use class k. The

central pixel of the window is assigned the land use label k for which ∆k is maximum.

Kernel based techniques are easy to implement but suffers from following disadvantages:

smoothing of boundaries between land use/land cover parcels and determining the size of

the kernel beforehand.

2.1.2 Region Based Techniques

The region based techniques work on a group of pixels, representing a land cover parcel.

Since the focus is on parcels, additional information such as morphological properties

(size and shape of the parcels) and spatial and structural relationships (distance, direction,

adjacency, containment, etc.,) can be determined. Region based techniques are of greater

theoretical and computational complexity when compared to kernel-based techniques.

In [3], SAMS (Structural Analysis and Mapping System), which is a structural

pattern-recognition system has been described. From the thematically-labeled regions

(land cover parcels) present in the categorical raster-format, structural information is

derived. Morphological data (e.g., area, perimeter, shapes etc.,) and spatial and structural

relations are populated in a graph data model, known as XRAG (eXtended Relational

Attribute Graph), represented by the tuple:

XRAG = {N, E, EP, I, L,G,C} (2.2)

where N is a set of regions (N , ∅), E is the set of relations (edges) between n ∈ N (e.g.,

adjacency), EP is set of properties associated with E (e.g., distance and direction), I is the

set of properties associated with n ∈ N (e.g., area, shape, perimeter etc.,), L is the set of

labels assigned to n ∈ N, G is the set of group bindings (i.e., the label l ∈ L is assigned to

the group land cover or land use), C is the set stating the confidence with which a label

l ∈ L belongs to a region n ∈ N.

8 Literature Review

Figure 2.2: Land cover map of Graphtown [4]

Figure 2.3: Exploded representation of Graphtown [3]

In an XRAG model, each region (n ∈ N) is represented by a node and the rela-

tionship between a pair of regions is represented by edges. The attributes of the nodes

(I) represent non-relational properties of the regions whereas the attributes of the edges

represent relational properties between two regions. In [4], the preceding concepts are

explained using an example of raster format land cover map of an imaginary urban area

called "Graphtown" as shown in Fig. 2.2. It is assumed that the land cover map of graph

town is produced from a high spatial resolution remotely-sensed image.

Twelve discrete land cover regions are recognized by SAMS in the image of Graphtown

and it stores location and boundaries of these regions in Region Search Map (RSM) (Fig.

2.3). The XRAG data model is populated with the spatial and structural relationships

between regions determined from the RSM. The graph visualization of Graphtown for the

adjacency spatial relation is shown in Fig. 2.4. From such a graph representation, distinct

clusters of nodes and edges can be that exhibit a particular pattern can be identified. The

XRAG data model allows computation of simple quantitative measures that can be used

to distinguish urban land use classes.

2.1 Traditional Methods 9

Figure 2.4: Graph Visualisation of Graphtown for spatial relation ’Adjacency’[4]

In general, the spatial structure of the remotely-sensed images is much more complex than

the example of Graphtown. Also, the output of the land cover classification is subject to

the effects of mixed pixels, shadowing, misclassification and occlusion. The above factors

affect the morphological properties and spatial relations between land cover parcels. This

in turn affects the land use classification results.

2.1.3 Object Based Techniques

A disadvantage of remote sensing for land use classification is that, there is no direct

relationship between the land-use and spectral response. Pixel-based classification of

high resolution multi-spectral imagery is unsuitable for land-use classification because

of spatial heterogeneity in the spectral response of different cover types. An analysis

of contextual object based land-use classification is given in [9]. The descriptive

features used for classification are derived from high spatial resolution imagery and

airborne LiDAR data. The main aim here is to emulate human cognition by numerical

quantification of discriminant properties of images.

In an object-based approach, image analysis is performed on objects; an object is

a group of pixels created by a segmentation algorithm. In [9], cartographic limits from

the cadastral geospatial database were used to create objects. Two-stage classification

approach was used: land-cover types were detected in the first stage and in the second

stage, spatial context of land cover was used to determine land-use. Internal and external

level analysis of the objects provides the context. At an internal level, analysis of land

cover types inside the object is performed. At an external level, the neighbouring objects

are analysed.

10 Literature Review

Figure 2.5: Location of the city of Sagunto [9]

The study was carried out in the city of Sagunto in Spain as shown in the figure

2.5. The land-use classes to be discerned were: historical, urban, open-urban, detached

housing, terraced housing and industrial. An nDSM, which is the difference between

Digital Surface Model (DSM) and Digital Terrain Model (DTM) was derived from

LiDAR data.

Descriptive features at three object aggregation levels were defined: object-based,

internal context, and external context. Object-based features are divided into two feature

groups: image-based features (group I), and geometrical and three-dimensional features

(group II). Description of an object with respect to land-cover types within the object

was given in internal context features (group III). The characteristics of each object

with respect to adjacent objects was given in external context features (group IV). The

description of features extracted in different groups is shown in table 2.1.

The classification algorithm used was decision trees. The decision tree predicts the

land-use class based on several conditions on extracted features. To analyse the effects

of extracted features as listed in table 2.1, four classification tests were applied. In

the first test, classification was performed based on the image based features (group I).

In the second test, classification was performed based on image, geometrical and 3D

features (group 1 + group II). In the third test, classification was performed on image,

geometrical, 3D and internal context features (group I + group II + group III). Finally,

the fourth test was performed on the features extracted in all the groups. It was observed

that the overall classification accuracy consistently increased from Test-1 to Test-4. This

indicates the complementary nature of feature groups.

Object based techniques facilitate the usage of information from different data sources

and enables multi-scale analysis. Image objects are described in a greater depth than in

the pixel-wise approach. The only disadvantage of this approach is that the object-based

technique is highly dependent on the algorithm used to create the objects and its selected

parameters.

2.2 Land-use classification based on Conditional Random Fields 11

Group description Extracted features

Group I: image-based features Spectral: Mean, Standard deviation, Min-

imum, Maximum

Texture: Skewness, Kurtosis, Entropy,

Contrast etc.,

Group II: geometrical and three-dimensional features Compactness, Area, Perimeter, Hight

mean, Height maximum etc.,

Group III: internal context features Building Covered Ratio (BCR), Vegeta-

tion Covered Ratio (VCR) etc.,

Group IV: external context features Number of adjacencies, Mean distance

etc.,

Table 2.1: List of descriptive features extracted at different object aggregation levels

2.2 Land-use classification based on Conditional

Random Fields

An approach for simultaneous classification of land cover and land use using higher order

Conditional Random Field (CRF) is given in [2]. The method uses aerial images, digital

surface models (DSM) and polygon objects from land use database as input. CRF are

discriminative classifiers, represented by undirected graphical models consisting of nodes

n and edges e. The nodes represent image pixels or segments and the edges represent the

statistical dependencies between the class labels and data at the associated nodes. CRF

directly model the posterior probability P(y/x) of the label vector y = [y1, y2, ..., yi, ..., yn]

(i ∈ S is the index of the image site and S is the set of all image sites) given observations x.

The goal of CRF is to assign the most probable label to all the image sites simultaneously

(label vector y) from a set of classes L = [l1, ..., lm] given observations x.

P(y/x) =
1

Z(x)

(∏
i∈S

φ(yi, x).
∏
h∈H

ψh(yh, x)w
h)

(2.3)

In equation 2.3, φ(yi, x) is association potential which models the relation between class

label yi at the site i and the observations x and ψh(yh, x) is clique potential which models

the relation between the labels y j of all nodes n j that belong to a clique h ∈ H where h is

the index of the clique and H is the set of all cliques. Z(x) is the partition function that

acts as a normalization constant and wh represents the influence of clique potential in the

classification process.

12 Literature Review

Figure 2.6: CRF consisting of a land cover layer (c) and land use layer (u) [2]

The CRF in [2] consists of a land cover layer and a land use layer, that performs

simultaneous classification of land cover and land use with both the classification tasks

mutually supporting each other. The nodes in the land cover layer represent super-pixels,

the nodes in the land use layer correspond to objects in geospatial database. The

intra-layer edges represent spatial dependencies between neighbouring sites in the image,

whereas spatially overlapping sites are connected by inter-layer edges as shown in figure

2.6. This leads to higher order cliques (f1, f2, f3) modelling the semantic relation between

the land cover and land use sites in the clique. In figure 2.6, nodes are represented by

circles, intra-layer edges as solid lines and inter-layer edges as dashed lines. The land

cover and land use class labels to be determined are represented by yc
i and yu

i respectively.

CRF is applied according to equation 2.4 for land cover and land use classification:

P(y/x) =
1

Z(x)

(∏
i∈S c

φc(yc
i , x)w

1
.
∏
i∈S c

∏
j∈Nc

i

ψc(yc
i , y

c
j, x)w

2
.
∏
k∈S u

φu(yu
k , x)w

3

.
∏
k∈S u

∏
l∈Nu

k

ψu(yu
k , y

u
l , x)w

4
.
∏
h∈H

ψcu(yc
h, y

u
h)w

5) (2.4)

The label vector y represents the label configuration of nodes in both land cover and land

use layer, y = {yc, yu}. φc(yc
i , x) and φu(yu

k , x) are association potentials which model the

relationship between class labels yc
i and yu

k and the observations x, where i ∈ S c and k ∈ S u

are indexes belonging to land cover super-pixels S c and land use objects S u. ψc(yc
i , y

c
j, x)

and ψu(yu
k , y

u
l , x) represent the intra-layer interaction potentials which model the spatial

dependencies between neighbouring sites in each layer. Nc
i represents the neighbourhood

of the land cover super-pixel and Nu
k represents the neighbourhood of the land use object

in consideration. ψcu(yc
h, y

u
h) represents the inter-layer higher order potential that models

the relations between the labels of all nodes belonging to the clique h ∈ H. The parameters

2.2 Land-use classification based on Conditional Random Fields 13

Figure 2.7: Image representing super-pixels for land cover classification (left) and land

use objects for land use classification (right) [2]

(w1, w2, w3, w4, w5) give the impact of each potential relative to the first potential term w1

(w1 ≡ 1).

Given the observations x, site-wise feature vectors are generated corresponding to the

nodes in the land cover and land use layers. The site-wise feature vectors contain

image-based and geometric features. Association potential at both the layers is computed

by employing the Random Forest classifier [6]. The pair-wise intra-layer potential is also

computed using the Random Forest classifier. A feature vector is generated for each edge

in the land cover layer and land use layer. For the land cover layer, the feature vector for

each edge is computed by performing element-wise difference of the feature vectors of

the nodes joined by the edge. For land use layer, feature vector for each edge is computed

by concatenating the feature vectors of both the nodes joined by the edge.

The inter-layer higher order potential is computed using a joint iterative inference

procedure. In each iteration, the most probable label configuration is determined at each

layer separately, thus obtaining partial solution in the form of class labels for nodes in

land cover and land use layers. For both the layers, unary terms are obtained by applying

the following two assumptions: the higher order potential in each layer depends on the

class labels of the other layer, the second is that the class labels of other layer remain

constant during each iteration (the partial solution obtained previously). Not only la-

belling obtained in the partial solution, but also the beliefs for all the labels is considered.

The inference procedure is repeated until no change is observed in the classification result.

14 Literature Review

In the iterative inference procedure, the two classification tasks mutually influence

each other. Contextual relations between land cover and land use are integrated in the

classification process by using contextual features that describe complex dependencies

of all the nodes in a clique. A discriminative Random Forest classifier then approximates

the higher order potentials during the inference procedure. Although introducing

context in the classification process, this method is computation intensive because of the

hand-crafted feature extraction and iterative approach.

2.3 Land-use classification based on Convolutional

Neural Networks

With the emergence of classifiers that work on both spatial and spectral dimensions, e.g.,

neural network classifier, it is possible to perform land use classification is one step. With

the availability of large quantity of data, it has become possible to use techniques based

on Convolutional Neural Networks to perform land-use classification. Another variant

of classifiers called Support Vector Machines (SVMs) are frequently used for solving

image classification problems. SVMs are independent of the dimensionality of feature

space, therefore provide better classification results with limited training samples. Neural

networks and SVMs show comparable results for land use classification [7]. However,

neural network based classification is more robust to training site heterogeneity; and

such heterogeneity is common in remote sensing images [16].The classification problem

is mainly tackled using supervised learning methods. The land use information is

maintained by national mapping agencies in geo-spatial databases. Commonly, land use

data is stored in the form of polygon objects; the label of the object indicates land use.

As mentioned in Chapter 1, the first challenge in the classification of land use

polygons using CNN is the variation in geometric extent of polygons. To the best of

our knowledge, LiteNet [18] is the first architecture to perform classification of land use

polygons using CNN. The network was trained separately using RGB data and a label

image encoding land cover. The input patches for CNN were generated by decomposing

the polygons. In the input patch, the area inside the polygon is represented by RGB

data or land cover encoding and the area outside the polygon is set to 0. However,

this under-utilization of data leads to a loss of context information. [19] represent a

polygon using a combination of its shape in the form of a binary mask and the image

data (e.g. RGB), finally decomposing it to form patches of a fixed size. We adopt

this methodology for patch generation from polygons. LuNet [19], which is based on

2.3 Land-use classification based on Convolutional Neural Networks 15

Figure 2.8: Architecture of LiteNet-O [18]

LiteNet, consists of four convolutional blocks and two branches towards the end called

two-branch-convolution. The upper branch of the two-branch-convolution extracts global

features that are representative of the complete image. The lower branch uses a region

of interest (ROI) to focus on the most relevant regions in the image, which helps in the

classification of polygons. We also adopt this two-branch convolution in our architectures

in this thesis, as it was demonstrated to enhance the classification of land use polygons.

Another work on urban land use classification using object based CNN is presented in

[20]. The objects generated using mean shift clustering algorithm are classified into

two types: linearly and non-linearly shaped objects. Two CNNs with different model

structures and window sizes predict the labels for linearly and non-linearly shaped objects

and a rule based decision fusion is performed to combine the results. However, such

two-scale feature representation might be insufficient to characterize complex geometric

polygons. A joint deep learning framework for land cover and land use classification that

involves Multi Layer Perceptron (MLP) and CNN classification models was proposed

in [21]. The intrinsically hierarchical relationships between land cover and land use

were modelled via an iterative Markov process. However, their method focuses solely on

urban and suburban areas, leading to an insufficient model transferability. This section

briefly describes two network architectures LiteNet and LuNet proposed by Yang et al.,

in [18] and [19].

2.3.1 LiteNet

In [18], CNN takes an input image of 256 × 256 pixels, consisting of high resolution

aerial images, DSM and DTM and image encoding land cover classes and returns a

land-use label. As the sizes of polygons is variable and input size of CNN is fixed, patch

16 Literature Review

preparation is required. When the polygon is bigger than 256×256, the polygon was split

into tiles of 256 × 256 with 25% overlap between the tiles. All the tiles whose proportion

of area inside the polygon object less than 99.995% are rejected. The thresholding still

results in a large number of patches to the classified. Of the remaining tiles, 30% of

tiles were then selected at random for classification. A patched is then initialized with a

black background and the RGB values from the polygon object are copied to the patch.

When the polygon was small enough to fit into the window size of CNN, the patch was

initialized with a black background and the polygon was centered to coincide with center

of the window.

LiteNet-B architecture [18] consists of four convolution layers, each followed by a

ReLU operation and a max-pooling layer with a window of size 2 × 2 and stride 2. The

first three convolutional layers have 32, 64, and 96 filters of size 5 × 5, respectively.

The fourth convolutional layer has 128 filters with a size of 3 × 3. There are two fully

connected layers after the last pooling layer, having 128 neurons each. Each of the fully

connected layer is followed by a dropout layer with dropout ratio of 0.5. The last fully

connected layer gives as output, a vector of class scores. Soft-max classifier is applied to

obtain a probabilistic class score.

LiteNet-O [18], as shown in Fig. 2.8 is an extension of LiteNet-B architecture.

All convolutional layers were replaced by three successive 3 × 3 convolutional layers,

each followed by a ReLU. This introduces an implicit regularization due to more

non-linearity operations. The last convolution in LiteNet-B of size 3 × 3 is also replaced

by three successive 3 × 3 convolutional layers, so the receptive field of the combined

convolution is larger than the one of the last LiteNet-B layer. This architecture performs

poorly on the classification of small polygons and using black background for patch

generation leads to loss of context information. Also, uncertainties of land cover

classification is neglected by using using an image encoding land cover classes.

2.3.2 LuNet

LuNet [19] takes a fixed size input of 256×256, but the land use objects vary considerably

in size. Therefore, two patch preparation techniques were introduced in [19]: cropping

and re-scaling.

Cropping preserves the original resolution of the image. If the polygon object fits

into the window size 256 × 256 of the CNN, the patch preparation is straight forward.

2.3 Land-use classification based on Convolutional Neural Networks 17

Figure 2.9: Architecture of LuNet [19]

The polygon object is placed in the window such that it’s center coincides with the

window’s center. For the polygons that do not fit into the window size of 256 × 256,

they are split into tiles of 256 × 256 with 50% overlap between the tiles. The tiles whose

proportion of it’s area inside the polygon object is less than 0.005% are not considered

for creating patches. Of the remaining tiles, 40% are selected at random for patch

preparation. The object shape is represented in the form of a mask, where the area inside

the object is represented by 255 and area outside the object is represented by 0. The patch

to be classified consists of 4 + Nc where the first three bands are RGB data of polygon

objects, the fourth band is binary object mask, the remaining Nc bands are the pixel-wise

land-cover classification scores from SkipNet [19].

Using the technique of cropping leads to patches where the overall shape of the

objects is not preserved well. On the contrary, the polygon object, the mask and the

land cover classification scores can be scaled to fit the window size 256 × 256 of the

CNN. The resulting patches also have 4 + Nc bands. The RGB values and the land-cover

class scores are scaled using bilinear interpolation and the mask is scaled using nearest

neighbourhood interpolation.

LuNet consists of four convolutional blocks at the beginning and two branches towards the

end. Each convolutional block consists of three convolution layers of size 3 × 3 followed

by BN and ReLU. Each block in the two branches starts with a 3 × 3 convolution and a

max-pooling layer, followed by a second 3 × 3 convolution layer with ReLU and a final

average pooling layer. After the convolutional block 1, 2 and 3, there is a max-pool layer

of size 2× 2 with stride 2. Of the two sub-branches after convolutional block 4, the upper

branch extracts features representative of the complete image. The lower branch uses

ROI (Region of Interest) to focus on the most important regions in the image. ROI is

18 Literature Review

Figure 2.10: ROI location and feature extraction [19]

nothing but a rectangular image grid that tightly encloses the polygon. As the size of the

polygons vary, the ROI size also varies. Thus, the output of the fourth convolutional block

is resized to the size of 16 × 16 using bilinear interpolation. The feature vectors of the

two subbranches are concatenated and the combined feature vector is given as an input to

the fully connected layer that delivers a vector of class scores. Softmax function is then

applied to get the probabilistic class scores. This architecture performs better overall and

on small polygons when compared to LiteNet (cf. section 2.3.1) because of ROI in the

lower branch. The reason for this being the ability to zoom into the object region, which is

particularly helpful for small polygons which occupy a small part of the 256 × 256 input

image. However, this architecture takes land-cover classification scores from another

network SkipNet [19] as input. The land cover classification scores are derived from

the same RGB data that is used in land use classification. Therefore, the input of land

cover classification scores is redundant and the errors in the land cover classification are

propagated to the land use classification using LuNet.

Chapter 3

Theoretical Foundation

This chapter gives a brief introduction to the concepts of Deep Learning, particularly

Convolutional Neural Networks, that will come handy in understanding the methodology

of this thesis. The chapter starts with a discussion on CNN, different layers and con-

cepts related to training of the CNN such as loss functions, Optimization algorithms and

Regularization.

3.1 Background

The task of recognizing a concept from an image is very challenging for a computer

algorithm, although it seems trivial from the perspective of a human. Some of the chal-

lenges faced by computer algorithm include deformation, occlusion, illumination, scale

variation, background clutter etc. An ideal computer algorithm for image classification

would be the one which is less sensitive to intra-class variation and highly sensitive to

inter-class variation. One way to go about designing such an algorithm is to provide a

large number of examples of each class and let the algorithm learn the visual appearance

of objects belonging to each class. Such approach is called data-driven approach, and this

approach is the base line of Machine Learning, for that matter, Deep Learning. The two

major components of a data-driven approach are: Score function and Loss function. The

score function assigns a score vector to each image, this vector contains the confidence

value of the image belonging to each class. The loss function checks if the predicted

scores and the ground truth value agree with each other. The loss value is high if the

classifier is doing a bad job in classifying the training data and the loss value is low if the

classification algorithm is working well. Optimization algorithms are used to minimize

the loss function (w.r.t., parameters of score function).

19

20 Theoretical Foundation

Figure 3.1: The illustration of a perceptron computing weighted sum of inputs and

applying an activation function on it
https://pythonmachinelearning.pro/perceptrons-the-first-neural-networks/

Originally, the goal of Neural Network was to model the biological neural sys-

tems, but today, it has become more oriented towards the field of engineering and

research for obtaining good results in Machine Learning tasks. The next sections give a

primer on the building blocks of neural network called perceptron, including the process

of backpropagation through which it is possible to train the neural network classifier.

3.1.1 Perceptron

A perceptron or neuron is a basic unit of computation in a neural network. It receives

input from external sources or other neurons, for example (x1, x2, ..., xn) in figure 3.1.

Each input has an associated weight (w1, w2, ..., wn) corresponding to it’s importance when

compared to other inputs. The perceptron computes a weighted sum of its input and

applies an activation function on it. The activation function applied here is a step function,

which produces an output of 1 if the input is greater than or equal to 0, 0 otherwise.

The mathematical description of step function is given in equation 3.1. More on it’s

importance and the list of frequently used activation functions is discussed in section

3.2.4.

σ(z) =


1 z ≥ 0

0 z < 0
(3.1)

https://pythonmachinelearning.pro/perceptrons-the-first-neural-networks/

3.1 Background 21

Figure 3.2: Neural network processing
https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf

However, perceptrons are limited to solving two-class problems because of the step func-

tion. Also, perceptrons can only classify linearly separable sets of inputs. It is fair to

point out that networks consisting of more than one perceptron can be used to solve more

difficult problems, as they give rise to complex hyperplanes in the n-dimensional space.

3.1.2 Multi layer Perceptron

A Multi-Layer Perceptron (MLP) is a collection of perceptrons connected in an acyclic

graph. MLP consists of distinct layers of perceptrons, and this layer-wise organization of

perceptrons is important because it simplifies the evaluation of the network using matrix

operations. There are mainly three types of layers: a single input layer, any number of

hidden layers and a single output layer. The nodes in the input layer are not perceptrons

i.e., they do not perform any computation, they only pass the input to the next layer.

The nodes in the hidden and output layer are similar to perceptron except that they use

a non-linear activation function instead of a step function. The advantage of the hidden

layer lies in the fact that the complexity of the classifier can be further increased by

allowing the network to learn higher dimensional features from combinations of the

input. Thus, it is capable of distinguishing data that is not linearly separable. Also, MLPs

with one hidden layer are capable of approximating any continuous function.

MLPs are usually applied in a supervised learning setting, where the MLP tries to

model a correlation between the training data and the ground truth by adjusting the values

of weights and biases, by minimizing the error. The adjustment of weights and biases is

done by applying back propagation algorithm, which is described in next section.

https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf

22 Theoretical Foundation

3.1.3 Forward and Back propagation

Back propagation is a methodology of computing the gradients of expressions by

recursive application of chain rule. In simple terms, suppose there is a function f (x),

where x is a vector of inputs, the main idea is to find the gradient of f at x. In terms

of MLP, the function f corresponds to the loss function and input x corresponds to the

training data and network weights. First, the model is fed with input data and the result is

obtained. Error is calculated on the obtained result and is back-propagated to update the

parameters (weights).

The figure 3.2 contains an input layer i, hidden layer j and output layer k. Let wk j

denote weight from hidden layer to output layer, w ji denote weight from input layer to

hidden layer. Let a denote output of the activation function, t denote the target value

or ground truth and net denote the net input. Let the error on the obtained value after

forward propagation be calculated using mean squared error.

E =
1
2

∑
k

(tk − ak)2 (3.2)

The main goal of backpropagation is to update the weights of the neural network to reduce

the error E.

∆wk j ∝ −
∂E
∂wk j

(3.3)

Using chain rule equation 3.3 can be written as:

∆wk j = −ε
∂E
∂ak

∂ak

∂netk

∂netk

∂wk j
(3.4)

Considering the first term of equation 3.4 in which the error equation 3.2 is differentiated

with respect to the output obtained after forward propagation, we get equation 3.5

∂E
∂ak

=
∂(1

2 (tk − ak)2)
∂ak

= −(tk − ak) (3.5)

Now computing the second term of equation 3.4 where the activation applied is sigmoid,

we get:

∂ak

∂netk
=
∂(1 + e−netk)−1

∂netk
=

e−netk

(1 + enetk)2 = ak(1 − ak) (3.6)

Finally, differentiating net input with respect to weight, we get:

∂netk

∂wk j
=
∂(wk ja j)
∂wk j

= a j (3.7)

3.2 Convolutional Neural Networks 23

Substituting equations 3.5, 3.6 and 3.7 in equation 3.4, we get:

∆wk j = ε(tk − ak)ak(1 − ak)a j (3.8)

By substituting δk for the product of derivative of error and activation function in equation

3.8, we get equation 3.9 which gives us a weight updation for hidden to output layer

weight.

∆wk j = εδka j (3.9)

Similarly, weight updation equation for input to hidden layer can be derived as given in

equation 3.10, which depends on error at all the nodes which it is connected to.

∆w ji = εδ jai (3.10)

Inspite of being a very powerful algorithm, back propagation suffers from several limita-

tions. Back propagation algorithm can get stuck in a local minimum. This issue can be

addressed by using a momentum term α which brings in a factor of previous weight up-

date in the equation. Hence, it gets a small boost from the previous updation which may

help in pushing it out of the local minima. However, a large momentum value may push

the algorithm beyond global minima. Similarly, the learning rate or step size may push

the algorithm beyond global minima. Therefore, right setting of momentum and learning

rate parameters is very important for the model to function well which can be achieved

by tuning the model using validation set.

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are similar to the Neural Networks described

in the previous section. They consists of neurons and their goal is to learn weights and

biases. They are similar in terms of computation inside a single neuron such as dot

product and summation, applying non-linearity and computing loss function at the output

layer. The difference is that the CNN explicitly assumes that the input to the network are

images, hence by encoding certain properties into the architecture, it is possible to reduce

the number of parameters in the network. The layers in a CNN have neurons arranged in

3 dimensions which represent height, width and depth of the image. Also, a neuron in a

particular layer of CNN is only connected to a small number of neurons in the previous

layer unlike neural networks. At the end of the CNN, the whole image is reduced to a

vector of dimension equal to the number of classes, which represent class scores.

24 Theoretical Foundation

Figure 3.3: Convolution layer illustrating one convolution filter outputs one feature map
https://datascience.stackexchange.com/questions/67318/

convolution-layer-dimensions-in-deeper-layers

Four types of layers are mainly used to build CNN, namely Convolutional layer,

pooling layer, non-linearity and Fully connected layer. The next sections describe these

layers, the details of their parameters, hyperparameters and their connectivity.

3.2.1 Convolution Layer

Regular Neural Networks do not scale well to the images as they result in a large number

of parameters to be learnt. Convolution Layer is the main building block of CNN and

it consists of a set of learnable filters. The filter dimensions are small along width and

height dimension (typically 3 × 3 or 5 × 5), but extend to the full depth of input volume.

This is called filter size or receptive field of neuron and it is a hyperparameter. The input

image is convolved with each filter (represents shared parameters) during the forward

pass, which results in a two dimensional feature map. The response in the corresponding

feature map location is strong when the filter correlates well with a region of the input

image. Intuitively, low level features are learned by the filters in initial layers and high

level features are learned by filters in the later convolution layers of the network. The two

dimensional feature maps obtained as output of a particular convolution layer are stacked

together along the depth dimension to form 3 dimensional input volume to the next layer.

The other hyperparameters in CNN are number of filters at each layer, stride and padding.

Stride corresponds to the number of pixels to jump when we slide the filter to convolve

with the input image. The higher the stride, the smaller the output volume. Padding pads

the input volume with zeros at the borders, it is typically used to maintain the size of the

https://datascience.stackexchange.com/questions/67318/convolution-layer-dimensions-in-deeper-layers
https://datascience.stackexchange.com/questions/67318/convolution-layer-dimensions-in-deeper-layers

3.2 Convolutional Neural Networks 25

Figure 3.4: The illustration of a spatial pooling operation with a filter size of 2 × 2 by a

stride of 2 in the hight direction, and 2 in the width direction
https://cs231n.github.io/convolutional-networks/

output volume, so that width and height of input volume equals width and height of output

volume.

3.2.2 Pooling Layer

A pooling layer is generally placed between convolution layers. The main idea of pooling

layer is to reduce the size of the output volume along width and height dimensions in

order to reduce the number of parameters to be learnt thereby decreasing the computation

time. It provides invariance to slightly different input images. It also helps in controlling

overfitting. The hyperparameters in this layer are filter size and stride. In the pooling

layer, there are no parameters to be learnt since it computes a fixed function of the input.

The two most commonly used pooling operations are max pooling and average pooling.

The max pooling selects the maximum of the value in the coverage area of the pooling

filter, where as average pooling computes an average over all the values in the coverage

area of the pooling filter.

3.2.3 Fully connected layer

A fully connected layer typically appears towards the end of the CNN after all the convo-

lution and pooling layers and just before the output layer. Also called as a linear layer, it

flattens the output from the previous layers into a 1-dimensional vector. A linear transfor-

mation using weights and biases is then applied on this vector along with a non-linearity

function. The output layer typically contains nodes equal to the number of classification

https://cs231n.github.io/convolutional-networks/

26 Theoretical Foundation

Figure 3.5: Nonlinear functions (a) Sigmoid function (b) Tanh function (c) ReLU

function (d) Leaky ReLU function
https://www.researchgate.net/publication/323617663/

classes. Typically, softmax activation function is applied to the output of output layer to

obtain the probabilities of the input to belong to each class.

f (xi) =
exp(xi)∑
j exp(x j)

(3.11)

3.2.4 Non-linearity

A Non-linearity or activation function is a mathematical function to introduce non-

linearity in the model. It’s importance lies in the fact that the CNN typically approximates

a non-convex function and it is possible because of non-linear activations. The commonly

used activation functions are:

Sigmoid

The mathematical form of sigmoid non-linearity is σ(x) = 1/(1 + e−x). This function

squashes the input into a range of 0 to 1 as shown in figure 3.5 (a). Even though it

was frequently used historically, it is not being used in the current times because of it’s

drawbacks. The first drawback of sigmoid function is that it causes the gradient to become

zero when it saturates at 0 or 1. Also, the output of the sigmoid function is not zero-

centered. This causes the gradients of weights during back propagation to become all

positive or negative.

https://www.researchgate.net/publication/323617663/

3.2 Convolutional Neural Networks 27

Tanh

The mathematical form of Tanh non-linearity is Tanh(x) = (ex−e−x)/(ex+e−x). This func-

tion squashes the input into a range of −1 to 1 as shown in figure 3.5 (b). An advantage of

Tanh non-linearity is that it’s output is zero centered, therefore it is always preferred over

sigmoid non-linearity.

ReLU

The mathematical form of Rectified Linear Unit (ReLU) non-linearity is f (x) = max(0, x).

In simple terms, this function thresholds it’s input value at 0, and this non-linearity is

most commonly used. Because of its piece-wise linear non-saturating form, it accelerates

the convergence of Stochastic Gradient Descent compared to sigmoid and Tanh. The

disadvantage with ReLU non-linearity is that the ReLU units can die (never activate again)

when they have 0 gradient. With ReLU non-linearity, we may end up with a large number

of dead neurons in the beginning of the training, which results in poor learning of the

network. It is caused mainly due to bad initialization of parameters.

Leaky ReLU

The mathematical form of Leaky ReLU non-linearity is f (x) = max(αx, x) where α is

a small constant. It overcomes the dying problem of ReLU, as the function always has

a small fractional gradient. It is mainly important to overcome problems caused by bad

initialization of parameters.

3.2.5 Batch Normalization

Usually, before training a neural network, we preprocess the data to bring it to a normal

distribution so as to prevent early saturation of non-linear activations in the network. But

the distribution of activations is constantly changing in the intermediate layers during

training. This leads to a slow down in the training process because of a phenomena called

covariate shift, in which each layer has to adapt itself to a new distribution at every train-

ing step. We can normalize the inputs of each layer using Batch Normalization (BN) [11].

Networks can be made more robust to bad initialization using Batch Normalization

(BN). BN performs pre-processing at every layer in the network, and it is integrated into

the network in a differentiable manner. BN layer typically appears after the Convolution

layer. BN accelerates the training of deep networks and also makes the procedure more

stable. There are four steps in BN. The first step calculates mean over the mini-batch

28 Theoretical Foundation

Figure 3.6: Batch Normalization Algorithm
https://kratzert.github.io/images/bn_backpass/bn_algorithm.PNG

and the second step computes variance. The third step normalizes the mini-batch based

on calculated mean and variance. The last step allows the batch normalization transform

to represent identity, ie., to restore the distribution of data that is learned in the previous

layer. It is important to note that the parameters γ and β are learned along with other

parameters of the network. BN also acts as a weak regularizer by injecting noise while

operating on each mini-batch of data thereby preventing overfitting.

3.2.6 Loss function

A loss function is used to compute the deviation of the predicted output from the

ground truth and loss is nothing but an error in prediction. In other words, loss function

estimates the error of a set of weights in a neural network. A function with a smooth

high-dimensional landscape is preferable as a loss function because it is easy for the

optimization algorithm to navigate such a search space via iterative updations to model

parameters. The main aim is to obtain a set of parameters that minimize the difference

between the model’s predicted probability distribution and the distribution of probabilities

in the training dataset. This is termed as cross-entropy. The term cross-entropy comes

from the field of information theory that computes the difference between an estimated

distribution and true distribution. An important thing to note is that the loss function to

be used is directly dependent on the activation function that is used in the output layer of

neural network.

In the case of a regression problem, where it is required to predict the value of a

variable, the output layer has one node and a linear activation is applied in the output

https://kratzert.github.io/images/bn_backpass/bn_algorithm.PNG

3.2 Convolutional Neural Networks 29

layer. The best suitable loss function for this case is mean squared error (MSE). However,

multi-class variant of MSE was also used formerly to train a neural network.

MS E =
1
n

∑
i

(ti − xi)2 (3.12)

where x is a vector containing n predictions and ti is the one-hot encoded ground truth

vector correspond to prediction xi.

In a binary classification problem, the output layer has one node and a sigmoid activation

function is used in the output layer. In this case, the binary cross entropy or logarithmic

loss function is most suitable. In a multiple-class classification problem, the output layer

has nodes equal to the number of classes and the activation function used in the output

layer is softmax. In this case, cross-entropy loss is best loss function to use. Generally

speaking, the softmax function normalizes the class scores provided by the output layer

to probabilistic class scores. Let X is the vector containing class scores obtained from the

output layer and let xi is the ith element of the vector, then the probabilistic class score

of ith element is computed as in equation 3.11. Cross entropy loss is computed on this

probabilistic class score according to the equation 3.13. Here, ti and f (xi) represent the

one-hot encoded ground truth and output of the softmax function respectively.

CE = −
∑

i

ti log(f (xi)) (3.13)

3.2.7 Optimization algorithms

The main task of the neural network is to map a set of inputs to a set of outputs by

iteratively adjusting the parameters. It is not possible to find the perfect set of parameters,

since there are usually tens of millions of parameters to solve for, therefore the main

focus here is to find the best set of parameters by using optimization algorithms. In terms

of Neural Networks, the process of finding the set of parameters that minimize the loss

function is called optimization. The loss functions are non-convex but fully derivable.

Gradient is a generalization of slope. While slope is the rate of change in a 1-dimensional

function at a particular point, the gradient is a vector of slopes corresponding to each

dimension of function. The gradient gives us the direction of steepest rate of increase

in the function. Therefore, one needs to make an update in the negative direction

of the gradient. Because of large number of parameters, only first order derivatives

are applied as second order derivatives are costly in terms of computation and time.

However, one still needs to know how far along this direction we should step. This

step size or learning rate is one of the most important hyperparameter in Neural Networks.

30 Theoretical Foundation

Gradient Descent is the procedure of iteratively computing gradients and updating

the parameters in order to minimize the loss function. It is the most common and

standard method to perform optimization of loss functions in Neural Networks. Current

day neural networks are trained on millions of training examples. Computing the loss

function over complete set of training examples to perform a single parameter update

leads to very high time and space complexity. One way to mitigate this issue is to

compute the gradient over batches of training examples. This approached is called

Mini-Batch gradient descent or stochastic gradient descent (SGD). The reason why this

methodology works is because the training examples are correlated.

wt+1 = wt − η∆wt L(fwt(xi), yi) (3.14)

There is no proof of good convergence for SGD. In practice, this algorithm reaches a good

local minima even when parameters are randomly initialized. One reason for this might

be because of the stochastic property of this algorithm, in which it optimizes a new loss

function during every iteration, thus getting out from a bad minima. This topic is still

under active research.

3.2.8 Regularization

It is a methodology of preventing overfitting in Neural Networks. Overfitting is said to

occur when an algorithm performs well on the training data set, but does not perform

well on the test data set. One way to reduce overfitting is to train the neural network

with more data, but more training samples may not be available always. The most com-

monly used regularization strategy is L2 Regularization, also called as weight decay. It

penalizes squared magnitude of all weights in the network. The intuitive interpretation of

this regularization is that, it chooses the diffused weight vectors over concentrated weight

vectors.

L = L0 +
λ

2

∑
w

w2 (3.15)

where L0 is the original loss function, w is the weight vector and λ is the regularization

coefficient. Here λ
2

∑
w w

2 is the regularization term. The regularization term does not let

the weights grow too large when λ > 0. Taking first derivative of equation 3.15, we get:

∂L
∂w

=
∂L0

∂w
+ λw (3.16)

The SGD update then looks like:

3.3 Network Architectures 31

wt+1 = wt − η
∂L0

∂wt
− ηλw (3.17)

Since η and λ are positive, the value of w decreases during every iteration, hence the

name weight decay.

Data augmentation is another way of preventing overfitting. It artificially increases

the size of the training set so that the model does not memorize all the data. It is usually

performed by flipping the original images in horizontal or vertical directions or by

rotating the images at different angles.

3.3 Network Architectures

As computers became more powerful and processing speed increased, computationally

intensive but flexible neural network based classification has become more attractive. The

LeNet-5 architecture [14] is one of the first successful applications of CNN and is the

origin of most of the recent architectures. The building blocks of LeNet-5 are convolution,

pooling and non-linearity layers. Then, Alexnet [13], a deep neural network architecture

provided a seismic shift in the field of image classification. This section provides a brief

introduction to these two networks. Also, ResNet [8] is introduced, which will deepen

the concepts of very deep network with skip connections, which will help in laying the

foundation for this thesis.

3.3.1 LeNet

This network was developed by Yann LeCun in the 1990’s for identifying digits and zip-

codes. This architecture differs from the modern architecture in many ways, nevertheless,

it is the origin of much of the recent architectures. The LeNet-5 architecture consists of

two sets of convolution and average pooling layers, a flattening convolutional layer, two

fully connected layers and a softmax classifier.

The architecture of LeNet-5 can be summarized as:

• To accelerate the training, gray scale input images are normalized using mean and

standard deviation.

• Activation functions used are hyperbolic tangent and sigmoid.

• Sparse connection matrices (convolution) between adjacent layers, leading to low

computational costs. 5 × 5 convolutional filters with stride 1 and no padding.

32 Theoretical Foundation

Figure 3.7: Architecture of LeNet-5 [14]

• Average pooling used as pooling function. 2 × 2 convolution with stride 2.

• Two fully connected layers as final classifier.

• Loss function used is Mean Squared Error.

The main drawback of this architecture is that it lacks built-in mechanisms to avoid over-

fitting. The saturating activation functions cause the network to stop learning after first

few epochs of training. This network architecture is also sensitive to the initial weights.

3.3.2 AlexNet

Following the introduction of LeNet, CNNs were well known in the computer vision

community but did not dominate the field owing to the large demands of CNNs in terms

of training data and computational resources. AlexNet [13] is a breakthrough paper in

deep learning literature. It is a deep convolutional neural network with five convolutional

layers (some followed by max-pooling layers), three fully connected layers and a softmax

classifier at the end. AlexNet employs ReLU as non-linearity, as opposed to tanh non-

linearity employed by the neural network architectures previous to AlexNet. CNN with

ReLU units converge several times faster than their counterparts with saturating non-

linearities. Also, AlexNet employs overlapping pooling, the authors found that models

with overlapping pooling find it more difficult to overfit.

The model learned feature extractors in the lower layers are similar to traditional filters.

In the higher layers, high level feature extractors are learned over the ones in the pre-

vious layers, which are capable of identifying larger structures. AlexNet for the first

time proved that features obtained by learning can transcend the manually designed fea-

tures. AlexNet controls overfitting by employing dropout regularization. In this tech-

nique, the output of each neuron is set to 0 with a probability of 0.5. In this way, during

every iteration, the network samples a different architecture. But all the architectures

3.3 Network Architectures 33

Figure 3.8: Architecture of AlexNet [13]

Figure 3.9: Architecture of a residual block [8]

share the weights. In AlexNet, dropout was applied on the two fully connected layers.

Also, AlexNet employed image augmentation techniques such as flipping, clipping and

color changes. AlexNet showed that Deep Convolutional Neural Networks are capable

of near-human performance on large and challenging datasets using supervised learning.

However, the operations on overlapping blocks of pixels results in larger memory require-

ments. The use of large convolution filters (5 × 5) is not encouraged as it leads to poor

weight sharing. Also, due to the higher number of weights, it is computationally expen-

sive. The use of normal distribution to initialize the weights in the neural networks cannot

effectively solve the problem of vanishing gradient.

3.3.3 ResNet

ResNet [8] provides a residual learning framework to address the degradation problem

(addition of more layers leading to higher training error) faced while training deep

neural networks. The vanishing gradient problem was addressed using the normalized

34 Theoretical Foundation

Figure 3.10: The architecture of ResNet-18
https://www.bitcoininsider.org/article/53615/traffic-sign-classification

initialization of weights in the intermediate layers [11], but the deeper network accuracy

was saturated or degrading. In the residual learning framework, the neural network

layers are made to fit a residual mapping. The residual function F (x) is the difference

between the input and output of the residual block. The idea here is to push the residual

to zero, which is better than fitting an identity mapping using a stack of non-linear layers.

The mapping F (x) + x is realized using shortcut connection and element-wise addition,

performing identity mapping. These connections do not add to the complexity of the

model as they do not require additional parameters (a slight increase in computational

cost because of the extra element-wise additions).

In order to perform F (x) + x, x and F must have same dimensions. If this is

originally not the case, a linear projection is performed through the shortcut connection to

match the dimensions (another easy solution can be to perform zero padding to increase

dimension). The residual function F can take a flexible form (can contain arbitrary

number of layers). The figure 3.10 represents the architecture of ResNet-18, which has

18 parameter layers. The network layers are connected in series, along with some skip

connections. The final layer is fully connected layer which provides the classification

result. Dashed skip connections represent resizing. An obvious drawback of residual

networks is that the number of layers have to be increased significantly to achieve a small

improvement in accuracy. Nevertheless, because of the skip connections, ResNet acts

as an ensemble of multiple shallow networks. Moreover, ResNet solve the problem of

vanishing gradient not by preserving the gradient through the depth of the network, but

by using an ensemble of exponential number of shallow networks.

https://www.bitcoininsider.org/article/53615/traffic-sign-classification

Chapter 4

Problem Statement

In this chapter, we begin with a brief discussion of the current state-of-the-art in land use

classification of geospatial objects to set the platform for the problem that we set out to

solve in this thesis.

In chapter 2, the current state-of-the-art network architecture LuNet, for land use

classification of geospatial objects is introduced (cf. Section 2.3.2). In addition to

Digital Orthophotos, normalized Digital Surface Model (nDSM), land use objects from

geospatial database, this architecture takes land-cover classification scores from another

network SkipNet [19] as input. The land cover classification scores are derived from

the same RGB data that is used in land use classification. Therefore, the input of land

cover classification scores is redundant and the errors in the land cover classification are

propagated to the land use classification in this network. Small polygons are difficult to

be classified using LuNet. Small polygons occupy a small part of the input image. As

this image passes through many layers of the LuNet, it can vanish by the time it reaches

the end of the network. The final 1-D feature vector corresponding to the small polygon

may not be representative because of the data loss. To overcome the problem of data loss,

maximization of dataflow through the network can be performed. To make the final 1-D

feature vector representative of the input image, intermediate information from various

stages of the network can be utilized. The next section presents the problem statement

and builds on these ideas to find solutions for the problems.

4.1 Problem statement

The goal of this thesis is to build on the methods proposed in [19] with the aim of improv-

ing the classification of land use objects, mainly focusing on small polygons. The LuNet

35

36 Problem Statement

architecture [19] is considered as baseline for comparison for the networks proposed in

this thesis. In particular, the problems to be solved as part of this thesis and a brief picture

of the adopted approach can be summarized as follows:

1. Propose a network architecture that strengthens information flow to improve the

land use classification. The key is to create short paths from early layers to later

layers, maximizing the data flow through the network. We adopt dense blocks as

network component, motivated from the DenseNet architecture [10].

2. Utilize intermediate information from different stages of the network, to make the

final 1-D vector representative of the input image and compensate the dataloss. We

adopt global average pooling (GAP) [15] for this purpose. This results in many

network variants, depending on the stage of the network from which intermediate

information is utilized.

3. Conduct an extensive set of experiments to compare the proposed network with the

baseline and also a comparison among the network variants. Highlight the benefits

and drawbacks of the proposed methods.

Chapter 5

Methodology

This chapter presents a CNN for land use classification which is based on LuNet [19]

(cf. Section 2.3.2). As mentioned earlier, the large variation of polygons in terms of

geometrical extent is a challenge, because the CNN requires a fixed input size (256× 256

pixels in case of network proposed in this chapter) while returning a land use label. In

this work, the way in which the image patches are prepared follows the method of [19],

which is introduced in section 5.1. The concept of dense connectivity which influences the

"dense block" component of the proposed network is introduced in section 5.2. Section

5.3 outlines the "DenseLuNet" network architecture proposed in this thesis for land use

classification. Section 5.4 describes the different network variants based on the network

proposed in section 5.3 and section 5.5 describes the inference procedure.

5.1 Patch preparation

[19] propose two strategies for patch preparation: cropping and rescaling. The basic

approach to prepare the input data is to extract a window of size equal to input size

of CNN centred at the centre of gravity of the object from all data (RGB bands and

binary object mask) and present it to the CNN. This is unproblematic if the polygon

size corresponds well to the window size at the ground sampling distance (GSD) (small

polygons); otherwise the window is either dominated by information outside the object

or the object does not fit into the window. The method adopted to cope with the latter

problem is cropping: the window enclosing the object is split into tiles (patches) (large

polygons) of the desired size and all patches having a meaningful overlap with the object

are classified independently. Finally, the results for the individual input patches are

combined (cf. Section 5.5).

37

38 Methodology

Figure 5.1: The figure represents two database objects, the left image represents binary

object mask and right image represents the corresponding RGB image patch from digital

orthophoto

In this work, it is first checked if the polygon fits into a window of size 256 × 256, in this

case, the window is placed over polygon such that the centers of polygon and window

centres coincide. For polygons that do not fit into a window of size 256×256, the window

enclosing the polygon is split into patches of a series of tiles of size 256 × 256 with an

overlap of 50%. Each input patch has four bands: binary image mask (representing shape

of the polygon) and RGB bands.

5.2 Dense connectivity

The dense block concept is adopted from [10] as network component for classification in

the network proposed in this thesis and this section provides the motivation for adopting

dense block. Inside a dense block, the key is to create short paths from early layers to

later layers within a dense block, maximizing the data flow within the block. The spatial

size of feature maps remains constant in a dense block (Figure 5.2), where each layer

within the block obtains input (i.e. feature maps) from all the previous layers of the

block. Suppose, each layer in a dense block produces k feature maps, then the lth layer

has n + k(l − 1) input feature maps, where n is the number of input feature maps to the

dense block. The feature maps from previous layers of the dense block are concatenated

to build the feature maps of the lth layer. The number of feature maps generated by each

layer within a dense block, k, is called growth rate [10], which is very small (k = 12 in

this thesis), thus adding only a small number of feature maps at every layer. Therefore, if

5.3 DenseLuNet 39

Figure 5.2: A 3-layer dense block with n input channels and k growth rate. Please refer

to texts for the abbreviations.

there are L layers in a dense block, there are (L × (L + 1))/2 connections, as opposed to

just L connections in a traditional CNN architecture [13].

A dense block can consist of an arbitrary number of layers (4 layers per dense

block in this thesis). Each layer in the dense block performs a composite function of

three consecutive operations: batch normalization (BN), rectified linear unit (ReLU)

processing and 3 × 3 convolution (Conv). According to [10], the dense connectivity

strengthens feature propagation which is the key of its success in visual recognition.

5.3 DenseLuNet

This network is based on LuNet [19] architecture, which is the state-of-the-art in land use

classification of geospatial objects (already introduced in section 2.3.2). The DenseLuNet

consists of three dense blocks (cf. Section 5.2) with transition layers between them. A

transition layer (TL) consist of BN, ReLU, 3 × 3 convolution and 2 × 2 max-pooling

with stride 2 and the number of output channels is equal to the number of input channels.

TL facilitates down-sampling in the network. Every dense block contains four layers,

each layer generates 12 feature maps. After the last dense block, two-branch convolution

(which is adopted from [19]) is applied for generating a 512 dimensional feature vector

for classification. As shown in figure 5.3, the upper branch of the two-branch-convolution

extracts global features that are representative of the complete image by performing max-

pooling, followed by three convolution layers (3 × 3), BN and ReLU. The lower branch

uses an ROI, to focus on the most relevant regions in the image. In this branch, these

regions are focused by aligning a rectangular image grid enclosing the polygon. Due to

varying size of ROI, it is rescaled to a size of 16 × 16 by performing bilinear interpola-

tion. Bilinear interpolation is a resampling method that evaluates an unknown pixel value

40 Methodology

Figure 5.3: Structure of Two-Branch-Convolution

based on distance weighted average of four nearest pixel values. It is followed by three

convolution layers (3 × 3), BN and ReLU. Both branches perform 3 × 3 convolution and

8 × 8 average pooling at the end. The output of the two branches are concatenated and

given as input to the fully connected layer. The fully connected layer delivers a vector of

class scores (ZLU1 , ...,ZLUM)T , where CLU = (CLU1 , ...,CLUM)T is a set of land use classes

and ZLUc is the class score of an image in a mini-batch X for class CLUc . To obtain a

probabilistic class score, the softmax function is applied to the class scores:

P(CLUc |X) = so f tmax(ZLU |CLUc) =
exp (ZLU)∑M

i=1 exp (ZLU i)
(5.1)

Training is based on mini-batch Stochastic Gradient Descent (SGD) and step learning

policy. The function to be optimized is the cross-entropy loss:

L = −
1
N
.
∑
c,k

[
yk

LUc . log
(
P(CLUc |Xk)

)]
(5.2)

where Xk the kth image in the mini-batch, N is the number of images in a mini-batch, yk
LUc

is 1 if the training label of Xk is CLUc and 0 otherwise.

5.4 Network Variants

The many stages of convolution and pooling operations can cause the final 1-D feature

vector to capture no valid information of the input image. The intermediate information

from different pooling stages could be helpful for classification. The intermediate in-

formation is introduced via GAP [15]. GAP, when applied on the output of a network

layer, computes the average value of each feature map and results in a 1-D vector. GAP

5.5 Inference of polygons 41

Figure 5.4: The architecture of DenseLuNet. TL: Transition layer, DenseBlock: cf.

Figure 5.2, Two-Branch-Convolution: cf. Figure 5.3

is performed on the output of dense block and is concatenated to the 1-D feature vector

obtained from the two-branch convolution [19] (see figure 5.3), which serves as the final

feature vector for classification.

In this thesis, an investigation of four networks differing by the stages at which the in-

termediate information using GAP is extracted on the DenseLuNet base architecture is

presented:

1. DenseLuNet architecture as described in Section 5.3.

2. Applying the GAP at the output of the first dense block of DenseLuNet, referred to

as DenseLuNet-1.

3. Applying the GAP at the output of the second dense block of DenseLuNet, referred

to as DenseLuNet-2 (cf. Figure 5.5).

4. Applying the GAP at the output of the first and second dense block of DenseLuNet,

referred to as DenseLuNet-12.

For training these variants, the mini-batch size is set to 10. All networks are trained

for five epochs, using a base learning rate of 0.001 and reducing it to 0.0001 after two

epochs. Chapter 6 presents a detailed description of the results of these networks applied

on different datasets, and provides an analysis of contribution of intermediate information

from different stages towards the classification process.

5.5 Inference of polygons

All the evaluations of network variants are performed for polygons. The networks de-

scribed in sections 5.3 and 5.4 output a probabilistic score for each patch. Therefore, prob-

abilistic class scores are to be derived for each polygon from their corresponding patches.

42 Methodology

Figure 5.5: The architecture of DenseLuNet-2

If a polygon results in exactly one patch during cropping, its prediction is straightforward,

the prediction score of the polygon is the same as the patch score; if a polygon is split into

multiple patches, the product of the probabilistic patch scores is deter-mined first, and

then the prediction is made based on this product.

Chapter 6

Results and Discussion

In this chapter, the land use classification networks proposed in Chapter 5 are evaluated.

First, a comparison of different network variants is presented, then effectiveness of using

GAP is analysed. Also, influence of the polygon size on classification result is discussed.

6.1 Datasets and Test Setup

6.1.1 Datasets

The experiments for classification of land use are evaluated on two test sites, located

in the cities of Hameln and Schleswig (Germany). Hameln covers an area of 2km ×

6km. It contains densely built-up residential areas in the centre of the city as well as

detached houses, rural areas, industrial areas and rivers. Schleswig covers an area of 6km×

6km, showing similar characteristics as Hameln. For both Hameln and Schleswig, digital

orthophotos (DOP), and land use objects (corresponding to cadastral parcels) from the

German Authoritative Real Estate Cadastre Information System (ALKIS) are available.

The DOP are multispectral images (RGB + infrared / IR) with a ground sampling distance

(GSD) of 20cm.The reference for land use is derived from the German geospatial land use

database. 10 land use classes are to be discerned for the Hameln and Schleswig test sites:

residential (res.), non-residential (non-res.), urban green (green), traffic (traf.), square,

cropland (cropl.), grassland (grassl.), forest, water body (water) and others. The class

structure of land use is same as in [19].

6.1.2 Test setup

There are 2945 polygons in Hameln and 4345 polygons in Schleswig (cf. Table

6.1). Each test data set is split into two blocks for cross validation. The block size

43

44 Results and Discussion

Table 6.1: Class distribution of Hameln and Schleswig. The table lists number of small

polygons, large polygons and total number of polygons.

Class number Class name
Hameln Schleswig

Small Large Total Small Large Total

0 residential (res.) 94 434 528 238 743 981

1 non-residential (non-res.) 149 266 415 69 284 353

2 urban green (green) 179 181 360 186 304 490

3 traffic (traf.) 377 630 1007 211 808 1019

4 square 45 46 91 30 46 76

5 cropland (cropl.) 10 131 141 0 227 227

6 grassland (grassl.) 5 43 48 13 530 543

7 forest 12 87 99 31 345 376

8 water body (water) 9 50 59 56 87 143

9 others 110 87 197 76 61 137

is 10000 × 15000 pixels (6km2) and 30000 × 15000 pixels (18km2) for Hameln and

Schleswig, respectively. In each test run, one block is used for training and the other

one for testing. We evaluate land use classification based on the number of correctly

classified polygon objects. We report overall accuracy (OA), i.e., the percentage of land

use objects assigned the correct class label by the classification process, and F1 score,

i.e., the harmonic mean of precision and recall. All the networks were implemented

using tensorflow framework [1]. GPU with configuration (Nvidia GeForce GTX 1080

TI, 11GB) is used to accelerate training and inference.

Data augmentation is performed on the patches generated from cropping, the crop-

ping procedure is explained in Section 5.1. Depending on the size of polygons, the

polygons are differentiated into two sets: Large polygons, i.e. polygons that had to

be split because they do not fit into the input window of the CNN, are augmented by

horizontal and vertical flipping and by applying random rotations in intervals of 30◦. In

the other case, i.e. small polygons which fit the input size of the CNN, are augmented by

horizontal and vertical flipping and by applying random rotations in intervals of 5◦. In

the end, there are 354178 and 479978 patches for Hameln and Schleswig, respectively.

6.2 Evaluation of Land Use Classification 45

Table 6.2: Results of land use classification. Network variants (cf. section 5.4). F1: F1

score, OA: Overall Accuracy, both evaluated on the basis of objects. Best scores are

printed in bold.

Network Variant
F1 [%]

avg. F1 [%] OA [%]
res. non-res. green traf. square cropl. grassl. forest water others

Hameln

LuNet 76.5 60.5 57.1 87.8 40.2 55.9 30.9 66.0 34.6 46.0 55.6 69.2

DenseLuNet 81.2 65.8 70.8 89.5 47.9 73.1 32.6 66.9 34.3 43.7 60.6 74.0

DenseLuNet-1 84.4 69.4 74.8 87.9 44.8 72.8 26.3 72.8 38.9 44.0 61.6 74.9

DenseLuNet-2 82.6 67.4 71.0 89.6 41.0 67.1 20.5 68.2 37.5 48.6 59.4 74.4

DenseLuNet-12 84.8 69.6 72.7 89.6 39.6 70.2 25.9 70.7 35.8 47.6 60.7 75.8

Schleswig

LuNet 79.4 27.1 58.2 87.7 14.9 73.5 76.5 78.1 57.1 28.1 58.1 70.6

DenseLuNet 77.6 51.9 48.3 88.1 12.7 71.2 73.7 79.3 53.3 26.1 58.2 69.8

DenseLuNet-1 80.7 56.3 59.3 86.8 19.2 76.1 78.9 77.9 61.6 25.8 62.2 72.9

DenseLuNet-2 82.9 57.2 60.1 87.8 22.7 75.6 75.5 81.3 58.6 30.7 63.2 73.4

DenseLuNet-12 84.6 58.1 61.8 87.8 20.4 77.0 79.0 76.0 53.5 20.8 61.9 74.5

6.2 Evaluation of Land Use Classification

6.2.1 Evaluation and comparison of network variants

In this section, four variants of networks (cf. Section 5.4) are compared using two

datasets Hameln, and Schleswig. The LuNet network [19] serves as a baseline for

all other variants. The evaluation results for land use classification evaluated on

land use objects are given in Table 6.2. The best values achieved for every accuracy

measure on each dataset are printed in bold font. To summarize the performance of

the models, the F1 scores with respect to each land use class along with average F1

scores and OA are provided. Analysing Table 6.2, it is evident that DenseLuNet and

its variants perform better than LuNet in terms of either OA or average F1 score on

both datasets. The best performing variant on Hameln is DenseLuNet-12 which shows

an improvement of 6.6% and 5.1% in OA and F1 scores, respectively, in comparison

with LuNet. For Schleswig, an improvement of 3.9% and 3.8% in terms of OA and

F1 scores, respectively, was reached by DenseLuNet-12, which is the best performing

model on this dataset, in comparison with LuNet. On the contrary, DenseLuNet shows

about 1% decrease in OA on Schleswig dataset, whereas the F1 score remains the

same. The reason for this is unclear and requires further investigation. Overall, it is

easy to point out that incorporating dense connectivity leads to better classification results.

In general, all the network variants face difficulties in classifying objects belonging

46 Results and Discussion

to the classes square, grassland and others which can be attributed to the fact that only a

very small amount of training data is available for these classes, also others is a class of

heterogeneous appearance. DenseLuNet-1 shows highest improvement of the F1 score

for the class green by a margin of 17.7% on Hameln. On Schleswig, DenseLuNet-12

shows the highest improvement by a margin of 31% on non-residential.

6.2.2 Effectiveness of using global average pooling

In the network variants DenseLuNet-1 and -2, GAP is applied at the output of the 1st and

2nd dense block, respectively, and concatenated to the 1-D feature vector obtained towards

the end of the network. In the variant DenseLuNet-12, we apply GAP at the output of

both 1st and 2nd dense block. According to the study in section 5.4, the intermediate

information computed using GAP is helpful in the classification as it can compensate

for information that was lost due to many pooling operations in the network. Analysing

Table 6.2, it is easy to notice that the DenseLuNet variants with GAP perform better than

DenseLuNet on both, Hameln and Schleswig in terms of either OA or average F1 score.

However, when compared to the performance of DenseLuNet, for Hameln the difference

is not so pronounced: DenseLuNet-2 shows a slight decrease (1.2%) in average F1

score and OA being almost identical when compared to DenseLuNet. However, on the

Schleswig dataset, improvements are seen in both OA and average F1 score by all the

three DenseLuNet variants incorporating GAP. Therefore, it is consider that GAP has a

positive impact on the classification of land use polygons.

Among the three DenseLuNet variants incorporating GAP, DenseLuNet-12 is the

best performing variant on both Hameln and Schleswig in terms of OA, although, the

results pertaining to average F1 score do not show a particular trend. This is taken as an

indication that the more intermediate information added to the classification process, the

better are the classification results.

6.2.3 Influence of the object size

Table 6.3 shows the OA and average F1 scores of small and large polygons along with the

combined results which are the same as the ones shown in Table 6.2. The results are given

for all the network variants on Hameln and Schleswig. The small set consists of polygons

that were represented as a single patch in the classification process. The large set consists

of polygons that were split into patches during the input patch generation (cf. Section

5.1). In general, the large set accuracy is greater when compared to the small set because

large numbers of patches belonging to the large set are available during classification.

6.2 Evaluation of Land Use Classification 47

Table 6.3: Results of land use classification represented separately for large, small and all

polygons (cf. Table 6.2). The results are provided for all the network variants on Hameln

and Schleswig dataset. The number of polygons in each set is given in parenthesis.

Network Variant

Hameln Schleswig

OA[%] avg. F1 [%] OA[%] avg. F1 [%]

Large

(1955)

Small

(990)

All

(2945)

Large

(1995)

Small

(990)

All

(2945)

Large

(3435)

Small

(910)

All

(4345)

Large

(3435)

Small

(910)

All

(4345)

LuNet 72.5 62.7 69.2 56.5 38.9 55.6 73.9 58.1 70.6 58.5 39.7 58.1

DenseLuNet 76.7 68.7 74.0 60.5 47.6 60.6 74.1 53.7 69.8 57.5 39.1 58.2

DenseLuNet-1 78.2 68.4 74.9 63.0 45.9 61.6 77.1 57.1 72.9 62.4 43.6 62.2

DenseLuNet-2 77.6 68.1 74.4 59.9 49.5 59.4 77.5 57.7 73.4 63.6 42.2 63.2

DenseLuNet-12 79.1 69.2 75.8 62.3 48.2 60.7 78.4 59.7 74.5 62.0 42.0 61.9

DenseLuNet-12 shows best performance on Hameln and Schleswig in terms of OA of

small, large and all polygons, however, the average F1 scores do not show a particular

trend. Coming to the classification of small set, DenseLuNet-12 shows 6.5% improvement

in the OA in comparison to LuNet on Hameln. This can be attributed to a maximization of

data flow due to dense connectivity and utilization of intermediate information from two

stages of the network. However, in Schleswig, DenseLuNet-12 shows 1.6% improvement

in the OA of small set in comparison to LuNet, while the other DenseLuNet variants show

similar performance to that of LuNet in classification of small polygons.

6.2.4 Analysis of confusion matrix

In this section, an analysis of confusion matrices of the best performing network variant

DenseLuNet-12 is provided on both datasets Hameln and Schleswig. Also, the confusion

matrices of the remaining network variants can be found in Appendix A.2.

Figure 6.1: Confusion Matrix of DenseLuNet-12 on Hameln dataset

48 Results and Discussion

Figure 6.2: Confusion Matrix of DenseLuNet-12 on Schleswig dataset

A confusion matrix is used to measure the performance of a supervised machine

learning algorithm. The confusion matrix shown in figure 6.1 is a 10 × 10 matrix for

10 class classification. The diagonal elements of this matrix show the percentage of

total number of polygons assigned correctly to that class (percentage of true positives

ie., (true positives of class 0/total polygons)*100). Considering row 0, the non-diagonal

elements represent the percentage of total number of polygons incorrectly assigned to

different classes (percentage of false negatives). The last column and last row represent

completeness and correctness respectively. Completeness (recall) is the percentage of the

total number of items correctly assigned to a particular class compared to total number of

items belonging to that class (ground truth). Correctness (precision) is the percentage of

total number of items correctly assigned to a particular class compared to total number of

items assigned to that class by the classification algorithm.

Analysing the confusion matrix of DenseLuNet-12 on Hameln and Schleswig in

figure 6.1 and 6.2, one can observe that class 0 (residential) is mostly confused with class

1 (non-residential). It is because of similarity of the two land use classes because of built

up areas. Class 2 (urban green) is equally confused with all the other classes because of

the presence of trees in all the land use classes (residential areas may have trees along the

roadside). Class 4 (Square) (also known as junction or crossroad) is confused with class

3 (traffic) which is well understood. There is a general confusion between class 2 (urban

green), class 5 (cropland) and class 6 (grassland). Because of less available training

samples belonging to class 6 (grassland), it is confused with class 5 (cropland), another

reason is textural similarities of the two classes.

Chapter 7

Conclusion and Outlook

This thesis proposes a CNN architecture for classification of land use objects in a geospa-

tial database incorporating dense connectivity; we call it DenseLuNet. Three variants of

DenseLuNet are investigated differing by the stages at which the intermediate information

is extracted using GAP on two test sites, Hameln and Schleswig. DenseLuNet and its

variants perform better than LuNet [19] in terms of either overall accuracy or the average

F1 score on both datasets. Also, it is observed that intermediate information obtained

using GAP has a positive impact on the classification of land use polygons. Compared to

LuNet, DenseLunet-12 shows an improvement of 6.6% and 5.1% in OA and F1 scores,

respectively, for the Hameln dataset. DenseLuNet-12 shows best performance on Hameln

and Schleswig in terms of OA of small, large and all polygons. We conclude that the

more the intermediate information via GAP is utilized in the classification process, the

better are the classification results.

Future research should focus on including more object knowledge, e.g., in terms

of height information. We are also interested to incorporate a hierarchical and more

detailed class structure into our approach and to investigate the influence of partly incor-

rect training data; the latter as a way to be able to use large parts of existing geospatial

database content for training. Although some of that information will be outdated and

thus wrong, the problem of needing vast amounts of training data could be alleviated in

this way. Finally, dense connectivity requires significant amounts of GPU memory and

we faced memory issues implementing the network with more than three dense blocks.

To overcome these issues, network implementations using shared memories and gradient

checkpointing [17] can be performed.

49

Appendix A

Appendix

The implementation details are discussed in the appendix in terms of softwares and pack-

ages used for performing the experiments in this thesis. Also, the confusion matrices are

given as an addition to the discussion in Section 6.2.4.

A.1 Programming

The software has been written in Python-3 and run in Python 3.6.3. The following li-

braries have been used in the software development:

• Tensorflow 1.7.0

• Numpy

• cv2

• tifffile

• skimage

• PIL

• scipy

The network variants proposed in this thesis are written using Tensorflow 1.7.0 [1]. Ten-

sorflow is an open-source software library developed by Google for performing manip-

ulations on matrices called ’tensors’. It is mainly used for developing machine learning

and deep learning based applications.

51

52 Appendix

A.2 Confusion Matrices

Figure A.1: Confusion Matrix of LuNet on Hameln dataset

Figure A.2: Confusion Matrix of DenseLuNet on Hameln dataset

Figure A.3: Confusion Matrix of DenseLuNet-1 on Hameln dataset

A.2 Confusion Matrices 53

Figure A.4: Confusion Matrix of DenseLuNet-2 on Hameln dataset

Figure A.5: Confusion Matrix of LuNet on Schleswig dataset

Figure A.6: Confusion Matrix of DenseLuNet on Schleswig dataset

Figure A.7: Confusion Matrix of DenseLuNet-1 on Schleswig dataset

54 Appendix

Figure A.8: Confusion Matrix of DenseLuNet-2 on Schleswig dataset

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., et al. (2019). Tensorflow: Large-scale machine learn-

ing on heterogeneous systems. 2015. software available from tensorflow. org. URL

https://www. tensorflow. org.

[2] Albert, L., Rottensteiner, F., and Heipke, C. (2017). A higher order conditional ran-

dom field model for simultaneous classification of land cover and land use. ISPRS

Journal of Photogrammetry and Remote Sensing, 130:63–80.

[3] Barnsley, M. (1997). A graph based structural pattern recognition system to infer

urban land-use from fine spatial resolution land-cover data. Computer, Environment

and Urban Systems, 21:209–225.

[4] Barnsley, M. J. and Barr, S. L. (2000). Monitoring urban land use by earth observa-

tion. Surveys in Geophysics, 21(2-3):269–289.

[5] Bauer, T. and Steinnocher, K. (2001). Per-parcel land use classification in urban areas

applying a rule-based technique. GeoBIT/GIS, 6:24–27.

[6] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[7] Dixon, B. and Candade, N. (2008). Multispectral landuse classification using neural

networks and support vector machines: one or the other, or both? International Journal

of Remote Sensing, 29(4):1185–1206.

[8] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778.

[9] Hermosilla, T., Ruiz, L., Recio, J., and Cambra-López, M. (2012). Assessing con-

textual descriptive features for plot-based classification of urban areas. Landscape and

Urban Planning, 106(1):124–137.

55

56 References

[10] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely con-

nected convolutional networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708.

[11] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

[12] Johnsson, K. (1994). Segment-based land-use classification from spot satellite data.

Photogrammetric Engineering and Remote Sensing, 60(1):47–54.

[13] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105.

[14] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[15] Lin, M., Chen, Q., and Yan, S. (2013). Network in network. arXiv preprint

arXiv:1312.4400.

[16] Paola, J. D. and Schowengerdt, R. A. (1995). A detailed comparison of backpropa-

gation neural network and maximum-likelihood classifiers for urban land use classifi-

cation. IEEE Transactions on Geoscience and remote sensing, 33(4):981–996.

[17] Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., and Weinberger,

K. Q. (2017). Memory-efficient implementation of densenets. arXiv preprint

arXiv:1707.06990.

[18] Yang, C., Rottensteiner, F., and Heipke, C. (2018). Classification of land cover and

land use based on convolutional neural networks. ISPRS Annals of the Photogramme-

try, Remote Sensing and Spatial Information Sciences 4 (2018), Nr. 3, 4(3):251–258.

[19] Yang, C., Rottensteiner, F., and Heipke, C. (2019). Towards better classification of

land cover and land use based on convolutional neural networks. International Archives

of the Photogrammetry, Remote Sensing & Spatial Information Sciences.

[20] Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., and Atkinson, P. M.

(2018). An object-based convolutional neural network (ocnn) for urban land use clas-

sification. Remote sensing of environment, 216:57–70.

References 57

[21] Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., and Atkinson, P. M.

(2019). Joint deep learning for land cover and land use classification. Remote sensing

of environment, 221:173–187.

[22] Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., and Fraundorfer, F.

(2017). Deep learning in remote sensing: A comprehensive review and list of re-

sources. IEEE Geoscience and Remote Sensing Magazine, 5(4):8–36.

* Corresponding author.

IMPROVING THE CLASSIFICATION OF LAND USE OBJECTS USING DENSE

CONNECTIVITY OF CONVOLUTIONAL NEURAL NETWORKS

A. Gujrathi1,2 *, C. Yang1, F. Rottensteiner1, KM. Buddhiraju2, C. Heipke1

1 Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany - (gujrathi, yang, rottensteiner,

heipke)@ipi.uni-hannover.de
2 Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, India - bkmohan@csre.iitb.ac.in

Commission II, WG II/6

KEY WORDS: Land use classification, CNN, Geospatial land use database, DenseNet, global average pooling

ABSTRACT:

Land use is an important variable in remote sensing which describes the functions carried out on a piece of land in order to obtain

benefits and is especially useful to the personnel working in the fields of urban management and planning. The land use information

is maintained by national mapping agencies in geo-spatial databases. Commonly, land use data is stored in the form of polygon objects;

the label of the object indicates land use. The main goal of classification of land use objects is to update an existing database in an

automatic process. Recently, Convolutional Neural Networks (CNN) have been widely used to tackle this task utilizing high resolution

aerial images (and derived data such as digital surface model). One big challenge classifying polygons is to deal with the large variation

in their geometrical extent. For this challenge, we adopt the method of Yang et al. (2019) to decompose polygons into regular patches

of fixed size. The decomposition leads to two sets of polygons: small and large, where the former suffers from a lower identification

rate. In this paper, we propose CNN methods which incorporate dense connectivity and integrate it with intermediate information via

global average pooling to improve land use classification, mainly focusing on small polygons. We present different network variants

by incorporating intermediate information via global average pooling from different stages of the network. We test our methods on

two sites; our experiments show that the dense connectivity and integration of intermediate information has a positive effect not only

on the classification accuracy on the whole but also on the identification of small polygons.

1. INTRODUCTION

Land use is an important variable in remote sensing which

describes the socio-economic function of a piece of land in order

to obtain benefits (Barnsley & Barr 2000). In the region of central

Europe, the government surveying authorities maintain

geospatial database containing objects whose boundaries are

related to property boundaries. The information of land use of

property objects becomes outdated quickly as the property

owners are not obliged to inform the government of changes in

land use. Thus, a system is required to analyse the change in land

use of the objects stored in the geospatial database. This can be

done by extracting land use information from recently acquired

aerial images. The extracted information is checked against the

information stored in the database and thus a database update can

be performed (Gerke & Heipke, 2008; Albert et al., 2017).

The land use information is maintained by national mapping

agencies in geo-spatial databases in the form of polygon objects

with class labels indicating the object’s land use. This setting is

adopted in this paper, where the primitive considered for land use

classification is a polygon object of the geospatial database. The

main goal of land use classification is to update an existing

database in an automatic process. Traditional approaches for land

use classification require hand-crafted features derived from

image data, and then apply a supervised classifier such as

Random Forests to deal with these features. Here, contextual

models like Conditional Random Fields (CRF) have also been

applied for classification purpose, e.g. (Albert, et al., 2017).

However, these methods incorporating hand-crafted features are

strenuous and time consuming. The rapid progress in remote

sensing technology has resulted in a bulk of images of the earth

surface taken by satellites, airplanes or drones, with different

imaging modalities. With the large availability of data, the focus

shifts to the automatic extraction of valuable information.

Approaches based on CNN are known to provide impressive

results when large amount of training data is available; CNNs are

currently being used in many remote sensing applications (Zhu

et al., 2017).

For land use classification, a major challenge is the large

variation of polygons in terms of their geometrical extent; for

instance, road objects are thin and long, whereas residential

objects cover both, very large and quite small areas. Recently,

CNN-based method for land use classification proposed by Yang

et al. (2019) solved the problem by decomposing large polygons

into smaller patches of fixed size which suits the input of CNN.

To represent a polygon, they use a combination of its shape in the

form of a binary mask and the image data (e.g. RGB) and

decompose it to form patches of fixed size. We adopt this

methodology for the generation of input patches from polygons.

During the decomposition, two types of polygons are

differentiated: large polygons have multiple smaller patches

whereas small polygons have exactly one patch. In the analysis

of their classification results, the authors observed that the small

polygons are hard to be classified correctly. Possible reasons for

lower classification accuracy of small polygons are the

following: (i) One problem of CNN is that as input passes

through many layers of a neural network, the information can

vanish by the time it reaches the end of the network. (ii) The final

1-D feature vector before classification may not capture valid

information of the small polygons due to many pooling

operations.

58

In this paper, we build on the methods proposed in (Yang et al.,

2019) with the aim of improving the classification of land use

objects, mainly focussing on small polygons. In our work, we

only use the binary mask and RGB data as input. The scientific

contribution of this paper can be summarized as follows:

• We propose a network architecture incorporating dense

connectivity (Huang et al., 2017) that strengthens

information flow to improve the land use classification. The

key is to create short paths from early layers to later layers,

maximizing the data flow through the network.

• We apply global average pooling (GAP) (Lin et al., 2013) at

different stages of the network, resulting in many network

variants, and utilize it as intermediate information in the

classification process, to compensate the data loss caused by

the many pooling operations in the network.

• We conduct an extensive set of experiments to compare

these network variants, and to highlight the benefits and

drawbacks of the proposed methods.

In section 2, we give a review of related work. Our approaches

for land use classification are presented in sections 3. Section 4

describes the experimental evaluation of our approach.

Conclusions and an outlook are given in section 5.

2. RELATED WORK

We start with a brief introduction to land use classification. We

then briefly discuss a history of deep learning (especially CNN)

in land use classification. After that, we present the current state-

of-the-art in land use classification based on polygon objects in

geospatial databases.

Land cover is the physical material present on a piece of land

(e.g., water, grass, concrete etc.). Land use corresponds to the

socio-economic function of a piece of land (e.g., residential,

agricultural etc.). Classification of land cover is simpler because

there is a direct relationship between land cover and exitant

spectral reflectance, but land use is an abstract concept. The

technique suggested in Barnsley & Barr (2000) for land use

classification is to divide the classification procedure into two

stages: the first being semantic segmentation of the image for

land cover classification; the second being land use classification

based on the spatial pattern of land cover. The first stage can be

performed by a number of techniques ranging from a standard

maximum likelihood classifier to artificial neural networks. The

disadvantage of such a two stage process is that the accuracy of

the land use classification depends on the accuracy of land cover

classification, i.e., an error in the first stage is propagated through

the second stage. Johnsson (1994) and Bauer & Steinnocher

(2001) investigated segment-based land use classification.

Segments are obtained by spectral classification. Spatial

information of segments such as size, neighbours etc., are used

for rule-based classification of image segments into land use

categories. An interesting work on land use object classification

combining high spatial resolution imagery, LiDAR data and

cadastral plots in given in Hermosilla et al. (2012). Land use

objects are characterised by image based, geometric and

contextual hand crafted features. With the emergence of

classifiers that work on both spatial and spectral dimensions, e.g.,

neural network classifier, it is possible to perform land use classi-

fication is one step.

As computers became more powerful and processing speed

increased, computationally intensive but flexible neural network

based classification has become more attractive. The LeNet-5

architecture (LeCun et al., 1998) is one of the first successful

applications of CNN and is the origin of most of the recent

architectures. The building blocks of LeNet-5 are convolution,

pooling and non-linearity layers. Then, Alexnet (Krizhevsky et

al., 2012), a deep neural network architecture provided a seismic

shift in the field of image classification. Another variant of

classifiers called Support Vector Machines (SVMs) are frequent-

ly used for solving image classification problems. SVMs are

independent of the dimensionality of feature space, therefore

provide better classification results with limited training samples.

Neural networks and SVMs show comparable results for land use

classification (Dixon et al., 2008). However, neural network

based classification is more robust to training site heterogeneity;

and such heterogeneity is common in remote sensing images

(Paola & Schowengerdt 1995).

As mentioned in Section 1, the first challenge in the classification

of land use polygons using CNN is the variation in geometric

extent of polygons. To the best of our knowledge, LiteNet (Yang

et al., 2018) is the first architecture to perform classification of

land use polygons using CNN. The network was trained

separately using RGB data and a label image encoding land

cover. The input patches for CNN were generated by

decomposing the polygons. In the input patch, the area inside the

polygon is represented by RGB data or land cover encoding and

the area outside the polygon is set to 0. However, this

underutilization of data leads to a loss of context information.

Yang et al. (2019) represent a polygon using a combination of its

shape in the form of a binary mask and the image data (e.g. RGB),

finally decomposing it to form patches of a fixed size. We adopt

this methodology for patch generation from polygons. LuNet

(Yang et al., 2019), which is based on LiteNet, consists of four

convolutional blocks and two branches towards the end called

two-branch-convolution. The upper branch of the two-branch-

convolution extracts global features that are representative of the

complete image. The lower branch uses a region of interest (ROI)

to focus on the most relevant regions in the image, which helps

in the classification of polygons. We also adopt this two-branch

convolution in our architecture, as it was demonstrated to

enhance the classification of land use polygons.

Another work on urban land use classification using object based

CNN is presented in Zhang et al. (2018). The objects generated

using mean shift clustering algorithm are classified into two

types: linearly and non-linearly shaped objects. Two CNNs with

different model structures and window sizes predict the labels for

linearly and non-linearly shaped objects and a rule based decision

fusion is performed to combine the results. However, such two-

scale feature representation might be insufficient to characterize

complex geometric polygons. A joint deep learning framework

for land cover and land use classification that involves Multi

Layer Perceptron (MLP) and CNN classification models was

proposed in Zhang et al. (2019). The intrinsically hierarchical

relationships between land cover and land use were modelled via

an iterative Markov process. However, their method focuses

solely on urban and suburban areas, leading to an insufficient

model transferability.

Recent work by He et al. (2016) and Huang et al. (2017) has

shown that shorter connections between layers close to input and

those close to output in very deep CNNs leads to more accurate

and efficient to train networks; ResNet (He et al., 2016) uses

identity connections to bypass signal and summation operations

when combining input and output layers. These networks are

easier to optimize and gain accuracy from considerably increased

depth. Many ResNet layers contribute very little and there is a

large amount of redundancy in deep residual networks.

Stochastic depth (Huang et al., 2016) randomly drops the layers

59

during training to overcome this problem. Feed-forward neural

network can be considered as an algorithm with a state variable,

where the state is passed on from layer to layer. Every neural

network layer reads the state from its previous layer and writes to

the subsequent layer its own state in addition to the previous state.

The network architectures that make the state preservation

implicit are desirable to overcome redundancy in network layers.

The DenseNet architecture (Huang et al., 2017) differentiates be-

tween the information that is added to the network and infor-

mation that is preserved. DenseNet allows maximum information

flow within the network, by connecting all layers within a dense

block. The DenseNet architecture encourages improved flow of

information and gradients throughout the network, alleviates the

vanishing-gradient problem, and helps in strengthening feature

propagation. Also, this architecture significantly reduces the

number of parameters to be learnt and encourages feature reuse.

GAP (Lin et al., 2013) computes the average value of each fea-

ture map at a particular layer of the network. An advantage of

GAP is that it sums up the spatial information which might be

useful in classification of data. GAP also introduces global con-

text (Yu et al., 2018) providing high level sematic information.

Our approach follows the concepts of Huang et al. (2017) and Lin

et al. (2013). We use dense block as main classification unit and

GAP to obtain intermediate information, which we believe helps

in feature propagation and compensates the data loss in our CNN

architecture.

3. LAND USE CLASSIFICATION USING CNN

In this section, we propose a CNN for land use classification

which is based on LuNet (Yang et al., 2019). As mentioned

earlier, the large variation of polygons in terms of geometrical

extent is a challenge, because our CNN requires a fixed input size

(256 x 256 pixels) while returning a land use label. In this work,

the way in which the image patches are prepared follows the

method of Yang et al., (2019), which is introduced in section 3.1.

The concept of dense connectivity is introduced in section 3.2.

Section 3.3 outlines the network architecture used for land use

classification. Section 3.4 describes the network variants and

section 3.5 describes the procedure.

3.1 Patch preparation

The basic approach to prepare the input data is to extract a

window of 256 x 256 pixels centred at the centre of gravity of the

object from all data (RGB bands and binary object mask) and

present it to the CNN. This is unproblematic if the polygon size

corresponds well to the window size at the ground sampling

distance (GSD); otherwise the window is either dominated by

information outside the object (for very small objects) or the

object does not fit into the window. The method we adopt to cope

with the latter problem is cropping: we split the window

enclosing the object into tiles (patches) of the desired size and

classify all patches having a meaningful overlap with the object

independently. Finally, the results for the individual input

patches are combined (cf. section 3.5).

3.2 Dense connectivity

We adopt the dense block concept from Huang et al. (2017) as

network component for classification. The key is to create short

paths from early layers to later layers, maximizing the data flow

through the network. The spatial size of feature maps remains

constant in a dense block (Fig. 2), where each layer within the

block obtains input (i.e. feature maps) from all the previous layers

of the block. Suppose, each layer in a dense block produces k

feature maps, then the lth layer has 𝑛 + 𝑘 × (𝑙 − 1) input feature

maps, where 𝑛 is the number of input feature maps to the dense

block. The feature maps from previous layers of the dense block

are concatenated to build the feature maps of the lth layer. The

number of feature maps generated by each layer within a dense

block, 𝑘, is called growth rate (Huang et al. 2017), which is very

small (𝑘 = 12 in our paper), thus adding only a small number of

feature maps at every layer. Therefore, if there are 𝐿 layers in a

dense block, there are (𝐿 × (𝐿 + 1)) ÷ 2 connections, as

opposed to just 𝐿 connections in a traditional CNN architecture

(Krizhevsky et al., 2012).

A dense block can consist of an arbitrary number of layers (we

use 4 layers per dense block in our paper). Each layer in the dense

block performs a composite function of three consecutive

operations: batch normalization (BN), rectified linear unit

(ReLU) processing and 3 × 3 convolution (Conv). According to

Huang et al. (2017), the dense connectivity strengthens feature

propagation which is the key of its success in visual recognition.

Figure 2. A 3-layer dense block with n input channels and k

growth rate. Please refer to texts for the abbreviations.

Figure 1. The architecture of DenseLuNet-2. TL: Transition layer, DenseBlock: cf. Fig. 2, Two-Branch-Convolution: cf. Yang et

al. (2019)

60

3.3 DenseLuNet

This network is based on LuNet (Yang et al., 2019) and consists

of three dense blocks (cf. Section 3.2) with transition layers

between them. A transition layer (TL) consist of BN, ReLU,

3 × 3 convolution and 2 × 2 max-pooling with stride 2 and the

number of output channels is equal to the number of input

channels. TL facilitates down-sampling in our network. Every

dense block contains four layers, each layer generates 12 feature

maps. After the last dense block, two-branch convolution (Yang

et al., 2019) is applied for generating a 512 dimensional feature

vector for classification. The upper branch of the two-branch-

convolution extracts global features that are representative of the

complete image by performing max-pooling, followed by three

convolution layers, BN and ReLU. The lower branch uses an

ROI, to focus on the most relevant regions in the image. In this

branch, we focus on these regions by aligning a rectangular

image grid enclosing the polygon. The output of the two branches

are concatenated and given as input to the fully connected layer.

The fully connected layer delivers a vector of class scores

(𝑍𝐿𝑈1 , … , 𝑍𝐿𝑈𝑀)𝑇, where ℂ𝐿𝑈 = {𝐶𝐿𝑈1 , … , 𝐶𝐿𝑈𝑀} is a set of

land use classes and 𝑍𝐿𝑈𝑐 is the class score of an image in a mini-

batch 𝑋 for class 𝐶𝐿𝑈𝑐. To obtain a probabilistic class score, the

softmax function is applied to the class scores:

 𝑃(𝐶𝐿𝑈𝑐|𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝐿𝑈 , 𝐶𝐿𝑈𝑐) =
𝑒𝑥𝑝(𝑍𝐿𝑈)

∑ 𝑒𝑥𝑝(𝑍
𝐿𝑈𝑖)𝑀

𝑖=1

, (1)

Training is based on mini-batch Stochastic Gradient Descent

(SGD) and step learning policy. The function to be optimized is

the cross-entropy loss:

 𝐿 = −
1

𝑁
 ∙ ∑ [𝑦𝐿𝑈𝑐

𝑘 ∙ log(𝑃(𝐶𝐿𝑈𝑐|𝑋𝑘))]𝑐,𝑘 , (2)

where 𝑋𝑘 is the 𝑘𝑡ℎ image in the mini-batch, 𝑁 is the number of

images in a mini-batch, 𝑦𝐿𝑈𝑐
𝑘 is 1 if the training label of 𝑋𝑘 is

𝐶𝐿𝑈𝑐 and 0 otherwise.

3.4 Network variants

The many stages of convolution and pooling operations can cause

the final 1-D feature vector to capture no valid information of the

input image. The intermediate information from different pooling

stages could be helpful for classification. We introduce the

intermediate information via GAP (Lin et al., 2013). GAP, when

applied on the output of a network layer, computes the average

value of each feature map and results in a 1-D vector. GAP is

performed on the output of dense block and is concatenated to the

1-D feature vector obtained from the two-branch convolution

(Yang et al., 2019), which serves as the final feature vector for

classification.

In this paper, we investigate four network variants differing by

the stages at which the intermediate information using GAP is

extracted on the DenseLuNet base architecture: i). DenseLuNet

architecture as described in Section 3.3. ii). Applying the GAP at

the output of the first dense block of DenseLuNet, referred to as

DenseLuNet-1. iii). Applying the GAP at the output of the second

dense block of DenseLuNet, referred to as DenseLuNet-2 (cf.

Fig. 1). iv). Applying the GAP at the output of the first and

second dense block of DenseLuNet, referred to as DenseLuNet-

12. For training these variants, the mini-batch size is set to 10.

All networks are trained for five epochs, using a base learning

rate of 0.001 and reducing it to 0.0001 after two epochs.

3.5 Inference of polygons

All network variants output a probabilistic score for each patch.

If a polygon results in exactly one patch during cropping, its pre-

diction is straightforward, the prediction score of the polygon is

the same as the patch score; if a polygon is split into multiple

patches, the product of the probabilistic patch scores is deter-

mined first, and then the prediction is made based on this product.

4. EXPERIMENTS

4.1 Datasets and test setup

4.1.1. Datasets: Our experiments for classification of land use

are evaluated on two test sites, located in the cities of Hameln and

Schleswig (Germany). Hameln covers an area of 2 𝑘𝑚 × 6 𝑘𝑚.

It contains densely built-up residential areas in the centre of the

city as well as detached houses, rural areas, industrial areas and

rivers. Schleswig covers an area of 6 𝑘𝑚 × 6 𝑘𝑚, showing

similar characteristics as Hameln. For both Hameln and Schles-

wig, digital orthophotos (DOP), and land use objects (corres-

ponding to cadastral parcels) from the German Authoritative Real

Estate Cadastre Information System (ALKIS) are available. The

DOP are multispectral images (RGB + infrared / IR) with a

ground sampling distance (GSD) of 20 𝑐𝑚. The reference for

land use is derived from the German geospatial land use database.

Network

Variant

F1 [%] avg. F1

[%]

OA

[%]
res. non-res. green traf. square cropl. grassl. forest water others

Hameln

LuNet 76.5 60.5 57.1 87.8 40.2 55.9 30.9 66.0 34.6 46.0 55.6 69.2

DenseLuNet 81.2 65.8 70.8 89.5 47.9 73.1 32.6 66.9 34.3 43.7 60.6 74.0

DenseLuNet-1 84.4 69.4 74.8 87.9 44.8 72.8 26.3 72.8 38.9 44.0 61.6 74.9

DenseLuNet-2 82.6 67.4 71.0 89.6 41.0 67.1 20.5 68.2 37.5 48.6 59.4 74.4

DenseLuNet-12 84.8 69.6 72.7 89.6 39.6 70.2 25.9 70.7 35.8 47.6 60.7 75.8

Schleswig

LuNet 79.4 27.1 58.2 87.7 14.9 73.5 76.5 78.1 57.1 28.1 58.1 70.6

DenseLuNet 77.6 51.9 48.3 88.1 12.7 71.2 73.7 79.3 53.3 26.1 58.2 69.8

DenseLuNet-1 80.7 56.3 59.3 86.8 19.2 76.1 78.9 77.9 61.6 25.8 62.2 72.9

DenseLuNet-2 82.9 57.2 60.1 87.8 22.7 75.6 75.5 81.3 58.6 30.7 63.2 73.4

DenseLuNet-12 84.6 58.1 61.8 87.8 20.4 77.0 79.0 76.0 53.5 20.8 61.9 74.5

Table 1. Results of land use classification. Network variants cf. section (3.4). F1: F1 score, OA: Overall Accuracy, both evaluated on

the basis of objects. Best scores are printed in bold.

61

We distinguish 10 land use classes for the Hameln and Schleswig

test sites: residential (res.), non-residential (non-res.), urban

green (green), traffic (traf.), square, cropland (cropl.), grassland

(grassl.), forest, water body (water) and others. The class

structure of land use is same as in (Yang et al., 2019).

4.1.2. Test setup: There are 2945 polygons in Hameln and 4345

polygons in Schleswig. Each test data set is split into two blocks

for cross validation. The block size is 10000 × 15000 pixels

(6 𝑘𝑚2) and 30000 × 15000 pixels (18 𝑘𝑚2) for Hameln and

Schleswig, respectively. In each test run, one block is used for

training and the other one for testing. We evaluate land use

classification based on the number of correctly classified

database objects. We report overall accuracy (OA), i.e., the

percentage of land use objects assigned the correct class label by

the classification process, and F1 score, i.e., the harmonic mean

of precision and recall. All the networks were implemented using

tensorflow framework (Abadi et al., 2015). We use a GPU

(Nvidia GeForce GTX 1080 TI, 11GB) to accelerate training and

inference.

We perform data augmentation on the patches generated from

cropping. Here, we differentiate two scenarios: Large polygons,

i.e. polygons that had to be split because they do not fit into the

input window of the CNN, are augmented by horizontal and

vertical flipping and by applying random rotations in intervals of

30°. In the other case, i.e. small polygons which fit the input size

of the CNN, are augmented by horizontal and vertical flipping

and by applying random rotations in intervals of 5°. In the end,

there are 354178 and 479978 patches for Hameln and Schleswig,

respectively.

4.2 Evaluation of land use classification

4.2.1. Evaluation and comparison of network variants: In this

section, we compare four variants of networks (cf. Section 3.4)

using two datasets Hameln and Schleswig. The LuNet network

serves as a baseline for all other variants. The evaluation results

for land use classification evaluated on land use objects are given

in Table 1. The best values achieved for every accuracy measure

on each dataset are printed in bold font. To summarize the

performance of the models, the F1 scores with respect to each

land use class along with average F1 scores and OA are provided.

Analysing Table 1, it is evident that DenseLuNet and its variants

perform better than LuNet in terms of either OA or average F1

score on both datasets. The best performing variant on Hameln is

DenseLuNet-12 which shows an improvement of 6.6% and 5.1%

in OA and F1 scores, respectively, in comparison with LuNet.

For Schleswig, an improvement of 3.9% and 3.8% in terms of

OA and F1 scores, respectively, was reached by DenseLuNet-12,

which is the best performing model on this dataset, in comparison

with LuNet. On the contrary, DenseLuNet shows about 1%

decrease in OA on Schleswig dataset, whereas the F1 score

remains the same. The reason for this is unclear and requires

further investigation. Overall, we point out that incorporating

dense connectivity leads to better classification results.

In general, all the network variants face difficulties in classifying

objects belonging to the classes square, grassland and others

which can be attributed to the fact that only a very small amount

of training data is available for these classes, also others is a class

of heterogeneous appearance. DenseLuNet-1 shows highest

improvement of the F1 score for the class green by a margin of

17.7% on Hameln. On Schleswig, DenseLuNet-12 shows the

highest improvement by a margin of 31% on non-residential.

4.2.2. Effectiveness of using global average pooling: In our

network variants DenseLuNet-1 and -2, we apply GAP at the

output of the 1st and 2nd dense block, respectively, and

concatenate it to the 1-D feature vector obtained towards the end

of the network. In the variant DenseLuNet-12, we apply GAP at

the output of both 1st and 2nd dense block. We believe that the

intermediate information computed using GAP is helpful in the

classification as it can compensate for information that was lost

due to many pooling operations in the network. Analysing Table

1, it is easy to notice that the DenseLuNet variants with GAP

perform better than DenseLuNet on both, Hameln and Schleswig

in terms of either OA or average F1 score. However, when

compared to the performance of DenseLuNet, for Hameln the

difference is not so pronounced: DenseLuNet-2 shows a slight

decrease (1.2%) in average F1 score and OA being almost

identical when compared to DenseLuNet. However, on the

Schleswig dataset, improvements are seen in both OA and

average F1 score by all the three DenseLuNet variants

incorporating GAP. Therefore, we consider that GAP has a

positive impact on the classification of land use polygons.

Among the three DenseLuNet variants incorporating GAP,

DenseLuNet-12 is the best performing variant on both Hameln

and Schleswig in terms of OA, although, the results pertaining to

average F1 score do not show a particular trend. We take this as

an indication that the more intermediate information added to the

classification process, the better are the classification results.

4.2.3. Influence of the object size: Table 2 shows the OA and

average F1 scores of small and large polygons along with the

combined results which are the same as the ones shown in Table

1. The results are given for all the network variants on Hameln

and Schleswig. The small set consists of polygons that were

represented as a single patch in the classification process. The

Network

Variant

Hameln Schleswig

OA[%] avg. F1 [%] OA[%] avg. F1 [%]

Large

(1955)

Small

(990)

All

(2945)

Large

(1955)

Small

(990)

All

(2945)

Large

(3435)

Small

(910)

All

(4345)

Large

(3435)

Small

(910)

All

(4345)

LuNet 72.5 62.7 69.2 56.5 38.9 55.6 73.9 58.1 70.6 58.5 39.7 58.1

DenseLuNet 76.7 68.7 74.0 60.5 47.6 60.6 74.1 53.7 69.8 57.5 39.1 58.2

DenseLuNet-1 78.2 68.4 74.9 63.0 45.9 61.6 77.1 57.1 72.9 62.4 43.6 62.2

DenseLuNet-2 77.6 68.1 74.4 59.9 49.5 59.4 77.5 57.7 73.4 63.6 42.2 63.2

DenseLuNet-12 79.1 69.2 75.8 62.3 48.2 60.7 78.4 59.7 74.5 62.0 42.0 61.9

Table 2. Results of land use classification represented separately for large, small and all polygons (cf. Table 1). The results are provided

for all the network variants on Hameln and Schleswig dataset. The number of polygons in each set is given in parenthesis.

62

large set consists of polygons that were split into patches during

the input patch generation (cf. Section 4.1.2). In general, the large

set accuracy is greater when compared to the small set because

large numbers of patches belonging to the large set are available

during classification. DenseLuNet-12 shows best performance on

Hameln and Schleswig in terms of OA of small, large and all

polygons, however, the average F1 scores do not show a

particular trend. Coming to the classification of small set,

DenseLuNet-12 shows 6.5% improvement in the OA in

comparison to LuNet on Hameln. This can be attributed to a

maximization of data flow due to dense connectivity and

utilization of intermediate information from two stages of the

network. However, in Schleswig, DenseLuNet-12 shows 1.6%

improvement in the OA of small set in comparison to LuNet,

while the other DenseLuNet variants show similar performance

to that of LuNet in classification of small polygons.

5. CONCLUSION

In this paper, we proposed a CNN architecture for classification

of land use objects in a geospatial database incorporating dense

connectivity; we call it DenseLuNet. We investigate four variants

of networks differing by the stages at which the intermediate

information is extracted using GAP on two test sites.

DenseLuNet and its variants perform better than LuNet (Yang et

al., 2019) in terms of either overall accuracy or the average F1

score on both datasets. Also, we observe that intermediate

information obtained using GAP has a positive impact on the

classification of land use polygons. Compared to LuNet,

DenseLunet-12 shows an improvement of 6.6% and 5.1% in OA

and F1 scores, respectively, for the Hameln dataset. DenseLuNet-

12 shows best performance on Hameln and Schleswig in terms

of OA of small, large and all polygons. We conclude that the

more the intermediate information via GAP is utilized in the

classification process, the better are the classification results.

Future research should focus on including more object

knowledge, e.g., in terms of height information. We are also

interested to incorporate a hierarchical and more detailed class

structure (Yang et al., 2020) into our approach and to investigate

the influence of partly incorrect training data; the latter as a way

to be able to use large parts of existing geospatial database

content for training. Although some of that information will be

outdated and thus wrong, the problem of needing vast amounts

of training data could be alleviated in this way. Finally, dense

connectivity requires significant amounts of GPU memory and

we faced memory issues implementing the network with more

than three dense blocks. To overcome these issues, network

implementations using shared memories and gradient

checkpointing (Pleiss et al., 2017) can be performed.

ACKNOWLEDGEMENTS

We thank the Landesamt für Geoinformation und Landes-

vermessung Niedersachsen(LGLN), the Landesamt für Ver-

messung und Geoinformation Schleswig Holstein (LVermGeo)

and the Landesamt für innere Verwaltung Mecklenburg-

Vorpommern (LaiV-MV) for providing the test data and for their

support of this project. The first author is a Master’s student at

Centre of Studies in Resources Engineering, Indian Institute of

Technology Bombay and a Combined Study and Practice Stays

for Engineers from Developing Countries (KOSPIE) Scholar,

funded by Deutscher Akademischer Austauschdienst (DAAD),

whose support is gratefully acknowledged.

REFERENCES

Abadi, M. et al. (2015). Large-scale machine learning on

heterogeneous systems. https://www.tensorflow.org (accessed

11/04/2020).

Albert, L., Rottensteiner, F. & Heipke, C. (2017). A higher order

conditional random field model for simultaneous classification of

land cover and land use. ISPRS JPhRS 130: 63-80.

Bauer, T., & Steinnocher, K. (2001). Per-parcel land use

classification in urban areas applying a rule-based

technique. GeoBIT/GIS, 6, 24-27.

Barnsley, M. J. & Barr, S. L. (2000). Monitoring urban land use

by earth observation. Surveys in Geophysics 21(2): 269-289.

Dixon, B., & Candade, N. (2008). Multispectral landuse

classification using neural networks and support vector

machines: one or the other, or both? Int. J. RS, 29(4), 1185-1206.

Gerke, M. & Heipke, C. (2008). Image based quality assessment

of road databases. Int. J. of Geoinf. Science, 22 (8), 871-894.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual

learning for image recognition. CVPR, 770-778.

Hermosilla, T., Ruiz, L. A., Recio, J. A. & Cambra-López, M.

(2012). Assessing contextual descriptive features for plot-based

classification of urban areas. Landscape and Urban Planning,

106(1): 124-137.

Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q.

(2016). Deep networks with stochastic depth. ECCV, 646-661.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q.

(2017). Densely connected convolutional networks. CVPR,

4700-4708.

Ioffe, S. & Szegedy, C. (2015). Batch Normalization:

accelerating deep network training by reducing internal covariate

shift. International Conference on Machine Learning, 448-456.

Johnsson, K. (1994). Segment-based land-use classification from

SPOT satellite data. PE&RS, 60(1), 47-54.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). ImageNet

classification with deep convolutional neural networks. NIPS'12,

25 Vol. 1, 1097-1105.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998).

Gradient-based learning applied to document recognition.

Proceedings of the IEEE 86(11): 2278–2324.

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv

preprint arXiv:1312.4400.

Paola, J. D., & Schowengerdt, R. A. (1995). A detailed

comparison of backpropagation neural network and maximum-

likelihood classifiers for urban land use classification. IEEE

Transactions on Geoscience and remote sensing, 33(4), 981-996.

Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., &

Weinberger, K. Q. (2017). Memory-efficient implementation of

densenets. arXiv preprint arXiv:1707.06990.

63

Yang, C., Rottensteiner, F., & Heipke, C. (2018). Classification

of land cover and land use based on convolutional neural

networks. ISPRS Annals IV-3, 251-258.

Yang, C., Rottensteiner, F., & Heipke, C. (2019). Towards better

classification of land cover and land use based on convolutional

neural networks. International Archives XLII-2/W13, 139-146.

Yang, C., Rottensteiner, F., & Heipke, C. (2020). Exploring

semantic relationships for hierarchical land use classification

based on convolutional neural networks. ISPRS Annals, V-B2.

Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., & Sang, N. (2018).

Learning a discriminative feature network for semantic

segmentation. CVPR, 1857-1866.

Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., &

Atkinson, P. M. (2018). An object-based convolutional neural

network (OCNN) for urban land use classification. Remote

Sensing of Environment, 216, 57-70.

Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., &

Atkinson, P. M. (2019). Joint Deep Learning for land cover and

land use classification. Remote Sensing of Environment, 221,

173-187.

Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., &

Fraundorfer, F. (2017). Deep learning in remote sensing: A

comprehensive review and list of resources. IEEE Geoscience

and Remote Sensing Magazine, 5(4), 8-36.

64

Acknowledgements

Foremost, I would like to express my sincere gratitude to Deutscher Akademischer Aus-

tauschdienst (DAAD) for granting Combined Study and Practice Stays for Engineers from

Developing Countries with Indian IITs (KOSPIE) Scholarship to carry out this thesis at

Leibniz Universität Hannover (LUH), Germany. I would like to sincerely thank my super-

visor, Prof. Krishna Mohan Buddhiraju, for his constant support, motivation and patience

throughout the course of the thesis.

I express my indebtedness to Prof. Christian Heipke (Institut für Photogrammetrie und

GeoInformation (IPI), LUH) for offering me the opportunity and resources to carry out

this thesis in his research group, resulting in a submission of paper in ISPRS Congress

2020. I sincerely acknowledge his guidance, support and understanding in all the matters

during the course of my research stay. I extend my thanks to Prof. Franz Rottensteiner

for his many comments and inputs. I am very grateful to M. Sc. Chun Yang for his time,

patience, ideas, resources and helping me at all times during the research and writing of

this thesis. I thank the members of IPI research group for both simulating discussions and

many office parties.

I take this opportunity to thank Centre of Studies in Resources Engineering (CSRE) as a

whole. In particular, I am grateful to Prof. Alok Porwal for motivating me to pursue a ca-

reer in research and Prof. Biplab Banerjee for his patience in answering all my technical

queries throughout my master’s journey in IIT Bombay. I thank the administrative staff at

CSRE for their support to make the research stay possible. I extend my thanks to all my

peers at CSRE for giving me the memories of a lifetime. Finally, I thank my family for

always being there.

Aishwarya Gujrathi
IIT Bombay

31 May 2020

65

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Outline

	Literature Review
	Traditional Methods
	Kernel Based Techniques
	Region Based Techniques
	Object Based Techniques

	Land-use classification based on Conditional Random Fields
	Land-use classification based on Convolutional Neural Networks
	LiteNet
	LuNet

	Theoretical Foundation
	Background
	Perceptron
	Multi layer Perceptron
	Forward and Back propagation

	Convolutional Neural Networks
	Convolution Layer
	Pooling Layer
	Fully connected layer
	Non-linearity
	Batch Normalization
	Loss function
	Optimization algorithms
	Regularization

	Network Architectures
	LeNet
	AlexNet
	ResNet

	Problem Statement
	Problem statement

	Methodology
	Patch preparation
	Dense connectivity
	DenseLuNet
	Network Variants
	Inference of polygons

	Results and Discussion
	Datasets and Test Setup
	Datasets
	Test setup

	Evaluation of Land Use Classification
	Evaluation and comparison of network variants
	Effectiveness of using global average pooling
	Influence of the object size
	Analysis of confusion matrix

	Conclusion and Outlook
	Appendix
	Programming
	Confusion Matrices

	References
	Acknowledgements

