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Abstract

Over recent years, assessing the uncertainty of a depth has received increased attention due to its

capability to detect erroneous estimates. Especially, deep learning approaches greatly improved

general performance. With this, the extraction of features from multiple modalities has proven

to be highly advantageous due to unique and varying characteristics of every respective modality.

However, most works focus on using only a single type of feature, which is especially noticeable in the

context of Convolutional Neural Networks (CNNs). Though, considering their distinct strengths,

combining different types of features promises to be beneficial for the task of confidence estimation.

Additionally, the use of hand-crafted modality as a valid network input poses an entirely new topic.

To further advance the idea of combining different types of features for confidence estimation, in

this work, a CNN-based approach is presented, exploiting multi-modal uncertainty cues. In more

detail, a CNN is implemented, having a tri-modal and tetra-modal configuration. Both jointly

learn features from RGB images, depth maps, and cost volumes, while the latter configuration

additionally inserts a novel hand-crafted modality named warped difference, created to support

classification at intensity gaps. To fully utilize the advantages of every modality in geometric

context, a local-global network architecture was chosen, further denoted as LGC+, based on its

baseline network LGC. As a consequence the RGB image, the depth map and warped difference

pose as the chosen modality for the global network. The local subnetwork processes raw cost

volumes only.

Qualitative and quantitative results suggest a minimal performance gain when additionally using

warped difference in a global approach. However, the influence of hand-crafted modality conforms

to its intention by increasing accuracy at intensity gap, even though this comes with a performance

loss at detecting fine detail.

Further evaluation also revealed the remarkable effectiveness of the proposed approach. Both

variants of LGC+ outperform LGC by a large margin, which confirms the beneficial influence of

using multiple modalities. However, comparing both variants directly, the tri-modal approach is

decisively more performant than the tetra-modal network. This is most likely due to similar features

of both subnetworks, highlighting the importance of feature diversity.

Based on these results, total performance is improvable by applying a method that allows the

network to only consider features, which are relevant to the local image condition. End-to-end

learning poses a potential strategy to achieve this relevancy weighting.
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1 Introduction

Stating a prominent topic of photogrammetry-related research for decades (Roberts, 1963), infer-

ring depth by utilizing stereo image pairs provides unique information regarding the analysis of

three-dimensional scenes. As a results of this, applications span from augmented reality (Wang

et al., 2014) as well as surveillance (Seki et al., 2014) to object recognition (Gandarias et al.,

2019), classification (Gao et al., 2018) and reconstruction (Coenen and Rottensteiner, 2019). The

latter mentioned approaches especially impact mobile robotics’ performance and, consequently,

autonomous driving. Considering the strict requirements bearing on autonomy in a traffic envi-

ronment, the safety of potential passengers, objects in the close environment, and the robot itself

must be assured.

Nevertheless, estimating depth via dense stereo matching is not a trivial task due to its ill-posed

nature. Other challenges are posed by various image and object conditions: illumination and re-

flections, repetitive patterns, low textured and textureless objects, as well as occlusions and depth

discontinuities.

To acquire a solution nonetheless, locating correspondences of two stereo images, where the dif-

ference between those is referred to as disparity, is a mandatory prior. However, considering the

multitude of failure cases mentioned earlier, estimating confidence of stereo correspondences, de-

picting its degree of reliance or correctness, is crucial. This procedure of uncertainty estimation

raised the interest of researchers in recent years (Hu and Mordohai, 2012; Poggi et al., 2017, 2021).

In particular, since confidence maps support the refinement of depth, therefore increasing the total

accuracy of a given disparity map (Spyropoulos et al., 2014).

However, estimating uncertainty itself poses a concise challenge. Starting with manually crafted

measures of confidence, especially during the last decade, the deployment of artificial intelligence,

accelerated by the rise of more powerful computers and an extensive collection of training data

(Heipke and Rottensteiner, 2020), set a new milestone, distinctively improving general perfor-

mance. While in the beginning, machine learning was the go-to approach, nowadays, deep learning

architectures, such as Convolutional Neural Networks (CNN), make up the significant majority of

methods to estimate confidence, achieving peak accuracy (Poggi et al., 2021). Nevertheless, the

performance gain is remarkable, issues are still far from being resolved.

However, a valid strategy is the combination of complementary features from multiple modalities.

While single and bi-modal networks represent the plurality of CNNs, in particular tri-modal input

(Kim et al., 2019, 2020), consisting of the RGB image, disparity map, and cost volume poses as
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the most promising approach at increasing robustness to the multitude of failure cases.

Based on the advantages of multi-modality, this subsequentially raises questions regarding the

amount and type of additional input modalities, especially the effect and required characteristics

of features from four or more modalities are yet to be researched.

1.1 Contributions

The aim of this work includes research about the effect of using features from multiple modalities

within a CNN architecture to estimate uncertainty of depth for dense stereo matching. In detail,

the following aspects are covered:

� assess the suitability of different modalities to estimate confidence in global and local context,

� construction of a novel and complementary modality, which aims to stabilize classification at

typical failure cases of stereo matching,

� concept of a CNN architecture, which utilizes features from up to four modalities.

1.2 Structure

The thesis is organized into seven chapters. Chapter 2 provides basic knowledge about stereo

matching, modalities in the context of computer vision, and convolutional neural networks. The

current state of the art and related work, which is needed to put the work into context, is presented

in Chapter 3. Chapter 4 contains the proposed network structure detailing the reasoning behind

design-decisions. In Chapter 5, the experimental setup is defined, followed by discussing the results

in Chapter 6. The conclusion, as well as the outlook for future work, is presented in the Chapter 7.
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2 Theoretical Background

This chapter provides essential knowledge and concepts used in this thesis. First, dense stereo

matching is described (Sec. 2.1). A definition of modalities is given in the following Section

2.2. The chapter is completed by describing the fundamentals and components of Convolutional

Neural Networks and existing architectures that are needed to elaborate on the network structure

elaborated in this thesis (Sec. 2.3).

2.1 Dense matching

Extracting depth information of 2D images provides valuable cues for the analysis of a scene, for

example, when reconstructing objects. Recognizing these advantages, the interest of researchers has

grown substantially. Consequently, a general sequence of dense matching emerged, as established

by Scharstein et al. (2001). The taxonomy concretely consists of four steps:

1. matching cost computation

2. cost (support) aggregation

3. disparity computation / optimization

4. disparity refinement

For the first step, the similarity of a stereo image pair is determined by computing the cost for

every pixel along the epipolar line at a pre-defined disparity interval. Commonly used methods

for this step include the absolute or squared difference of intensity or census transform (Zabih and

Woodfill, 1994). The resulting matching cost, also denoted as cost volumes, are dense voxel grids,

where the x and y-axis depict the image coordinates, while the z-axis contains the disparity cost

over the whole interval inform of a curve.

Given the initial cost volume, aggregation reduces noise and ambiguity in the cost curves. The

objective of cost aggregation is to smooth out noisy regions. Since global methods are robust to

outliers, aggregation is generally skipped (Scharstein et al., 2001). For local methods without global

optimization, several aggregation strategies exist, for instance, by a sum or average of values within

the cost volumes.

A disparity map is computed during step three by either using initial or aggregated cost volumes.
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Local optimization uses a greedy approach by choosing the pixel the disparity with the least cost.

Global optimization utilizes energy minimization, approaching the problem with methods such as

belief propagation (Pearl, 1982), graph cuts (Greig et al., 1989) and semi-global matching (SGM),

proposed by Hirschmueller (2005).

The final step initiates further refinement of the disparity to increase matching accuracy (Scharstein

et al., 2001).

Even though the taxonomy is hinting at a relatively mundane method to imply depth, dense match-

ing is not a trivial task. As stated by Tosi et al. (2018) and Mehltretter and Heipke (2019), depth

estimation is an ill-posed problem caused by projecting a 2D image to a 3D scene, therefore in-

creasing dimensionality without specific information, leading to ambiguous solutions. Additionally,

many challenges, for instance, dealing with occlusions, depth discontinuities, transparent or reflec-

tive surfaces, texture-less and low textured regions, as well as illuminations, remain (Poggi and

Mattoccia, 2016c; Kim et al., 2019).

Despite these issues, a solution can still be acquired by obtaining corresponding points via the afore-

mentioned dense matching approach. However, the reliability of these points must be scrutinized,

especially considering the challenges of depth estimation. Therefore it is highly advantageous to

determine the per-pixel uncertainty of every point match expressed in a confidence map, depicting

the correctness of the computed values of the disparity map.

The confidence map can subsequently be used to refine the disparity estimation, as demonstrated

by Spyropoulos et al. (2014). For object reconstruction, confidence maps can be used as a weighting

mechanism, rewarding high confidence with a higher weight (Poggi and Mattoccia, 2016a).

2.2 Modalities

Modalities (lat. modalitas) roughly translates to measure or regulation. In computer vision, modal-

ities describe the type of data or measure used to extract information of a scene. When elaborating

on modalities, the description of the receptive field is essential. Further, it can be defined as the

spatial incorporation of neighbouring pixels in a geometric context.

For the rest of this thesis, local context means a small receptive field, whereas the opposing global

context refers to a large receptive field. Differentiating between both is beneficial since research

has shown that several advantages and disadvantages appear depending on the geometric context

and the used modality.

A large receptive field enables feature extraction of many neighbouring pixels, therefore providing

insight from farther regions of the image. However, due to the extensive number of included pixels,

this leads to high computational complexity.

While there are several approaches, limiting the pixel input but still guaranteeing information

extraction by utilising CNN-architectures such as encoder-decoder networks (Ronneberger et al.,

2015), this inevitably also leads to smoothing effects. However, this behaviour is expected. Like
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other methods, such as Gaussian blur, noisy pixel and fine detail of the image are omitted caused by

compression. Nevertheless, due to the gain of cues from farther regions of the image, classification

is more robust to failure cases such as occlusions and depth discontinuities. Additionally, global

information aids in dealing with low-textured and texture-less regions, due to the higher probability

of including meaningful information of large objects, for example, edges and corners.

Contrary, a local approach only incorporates features extracted from a small neighbourhood of

pixels, effectively detecting high-frequency patterns. Because every pixel or patch is considered

discretely without pre-processing, such as compression, fine detail is preserved, while outliers are

detected (Kim et al., 2017b, 2018). In general, local tend to be more accurate than global ap-

proaches. Nevertheless, issues due to occlusion, depth discontinuities, and large texture-less regions

pose an acute challenge.

As aforementioned, the chosen modality and its geometric context highly impact the information

gained. Furthermore, every respective modality provides domain-specific cues when observing spe-

cific region properties, expressing its discriminative power or sometimes referred to as attention

(Kim et al., 2019). In this context, not every modality is similarly helpful for uncertainty estima-

tion. Therefore, presented are only relevant modalities inserted into networks within this thesis.

Images state as the most fundamental and broadly used modality in all of computer vision. These

are two-dimensional matrices or tensors filled with discrete values. A concatenation of three colour

channels leads to RGB images. As stated by Eitel et al. (2015); Zhu et al. (2016); Poggi and

Mattoccia (2016a) using RGB-images is especially useful within the context of global feature ex-

traction since features such as edges, corner or shaded regions are accurately detected. Near image

boundary, RGB-image provide valuable cues Kim et al. (2019). Locally the contribution of features

from the RGB image domain is negligible since they generally contain less condensed information

than other modalities such as disparity maps or cost volumes (Tosi et al., 2018; Fu et al., 2019).

Raw image data is also used to construct new data types, specifically crafted for certain tasks or as

an intermediate solution. This is exemplified by disparity maps and cost volumes (Sec. 2.1). Both

form the fundamental modality of uncertainty estimation since confidence is based on either a given

disparity or a modality that implicitly contains the disparity map, such as a cost volume. How-

ever, both are discriminable regarding their characteristics. Features from the disparity domain

provide meaningful cues to differentiate between correct and incorrect matches, therefore showing

high value in regions with a lot of noise (Kim et al., 2019). Due to low computational complexity,

disparity maps are used in a local and global context.

As of recent cost volumes are used for confidence estimation because of their ability to include

additional cues compared to disparity maps (Kim et al., 2019; Mehltretter and Heipke, 2019). Cost

volumes provide information by analysing the entire cost curve over the whole disparity range

instead of a single supposedly optimal value. This is particularly useful when dealing with texture-

less regions since also the results of the curve analysis potentially provide meaningful information.
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Therefore, in local context, features from the cost volume domain lead to high accuracy. Never-

theless, one can assume that in a global context, using features from cost volumes corresponds

to accurate results.Mehltretter and Heipke (2019) demonstrated that this is not the case. High

computational complexity while no increase in accuracy is achieved, it is recommended that cost

volumes are solely used within the local context.

2.3 Convolutional Neural Networks (CNN)

Proving its potential by achieving peak accuracy in the ImageNet Large Scale Visual Recognition

Challenge (Russakovsky et al., 2015), with AlexNet (Krizhevsky et al., 2012) the first publicly

recognized Convolutional Neural Network (Lecun et al., 1990) presented itself as the state of art

deep learning architecture in image analysis. Reasons regarding the high performance of CNNs for

images are manifold. Convolutions, in general, excel at analysing a grid-like input such as one- or

multidimensional image (Goodfellow et al., 2016). Additionally, for image processing, information

is extracted through spatial interaction and relation of adjacent pixels in a kernel, leading to promi-

nent features such as edges or corners, therefore being translation invariant. In a fully connected

network, however, the pixel itself is interpreted as a feature, requiring an enormous amount of

parameters for processing, considering the size of an image. By applying a filter kernel smaller

than the input, as realized in CNNs, this amount is drastically reduced. Hence fewer parameters

and less memory are needed. This is called sparse interaction (Goodfellow et al., 2016).

Since research is highly active, a novel or updated network architecture is published frequently, only

the building blocks of a CNN are described within this section. Additionally, established CNNs

used within the thesis are detailed at the end of this section.

2.3.1 Structure

Citing Goodfellow et al. (2016) the general structure consists of the following layers:

� convolutional layer

� detector layer

� pooling layer

Usually, the input I passes through consecutive convolutional layers, where I is a given modality

or a combination of those as explained in Section 2.2. A convolution in image analysis describes

the application of a multidimensional array called local filter kernel K running through I. This

is achieved by computing the dot-product of the coefficients of K, referred to trainable weights w

with an extract of I of the same size. After that, the window shifts according to a predefined step
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size (referred to as stride), repeating this procedure until the whole input tensor is processed. The

final output of a convolution comprises all values of the intermediate result.

However, since an entire 3x3 extract is required, values at the edge pixel are not fully considered,

leading to information loss and reducing the output dimension, as shown in Figure 2.1. To preserve

input size, a method called padding is used to adjust the output dimensions. The most common

approach is zero padding, adding zeros at the image border, enabling the filter kernel application

centred on the initial border pixel.

Figure 2.1: Example of 2D-convolution without padding. An extract of the input I is multiplied by

a 3x3 filter kernel K. The values of the intermediate result tensor are added and used

to create the convoluted output. Since no padding is applied, the output size (5x5) is

smaller than the input (7x7).

Subsequently, a non-linear activation function within the detector layer is applied after each con-

volutional layer. This is needed because learning a multi-dimensional and complex data pattern

cannot be approximated by a linear function. Broadly implemented activation functions are Rec-

tified Line Unit (ReLU), proposed by Hahnloser et al. (2000) as seen in eq. 2.1:

ReLU(x) =

{
0 if x ≤ 0

x if x > 0
(2.1)

or the Sigmoid function, also called logistic function in eq. 2.2, proposed by (Han and Moraga,

1995):

Sigmoid(x) =
1

1 + e−x
(2.2)

The next block includes pooling layers, referred to as subsampling. In this context, the objective

is to increase the receptive field while reducing the geometric size of the feature map, making it

more resistant to variances (Goodfellow et al., 2016). A prominent example of downsampling is

max pooling, where a maximum entry within a pooling window of a given size (for example, 2x2

pixels) applied on the input is extracted. Instead of a maximum, it is also possible to use a mean

value, referred to as average pooling. Depending on the stride and pooling window dimension, the
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input dimensions are altered and usually reduced, decreasing computing time. The structure of a

basic CNN is given in Figure 2.2.

Figure 2.2: Overview of a CNN architecture. First a filter-kernel K is applied to the input I.

To enable non-linearity an activation function is deployed, resulting in a feature map.

During subsampling a pooling window is applied, leading to the final downsampled

feature map.

Considering image classification as one of the tasks a CNN is used for, a method which connects

the input I and a given number of classes C is needed.

One method includes the usage of fully connected (or dense) layers at the end of the network.

Specifically, raw class scores are the output of fully connected layers, ranging from -∞ to +∞.

These are further normalized with the softmax function Bishop (2006) as demonstrated in eq.

2.3, converting logits into the final score, which depicts the feature class in C with the highest

probability.

softmax(xi) =
exp(xi)∑
j exp(xj)

(2.3)

In contrast, encoder-decoder networks, inspired by U-Net (Ronneberger et al., 2015), generally

do not include fully connected layers but two sampling techniques. During encoding, a series

of convolution and pooling operations lead to a reduction of dimensions, called downsampling.

Followed by an upsampling within the decoding, restoring the original input dimension by applying

a series of deconvolutions, sometimes referred to as strided transposed convolutions (Zeiler et al.,

2010). However, during the downsampling step, fine details are lost. Thus, skip connections

are introduced, concatenating encoding with decoding features at the same resolution, recovering

valuable information, and stabilizing training. The purpose of using an encoder-decoder network

is to enable a large receptive field (as described in Sec. 2.2), therefore increasing information gain

while keeping a reasonable runtime by reducing the amount of parameter.
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2.3.2 Training

Training is performed supervised or unsupervised, where supervised includes reference data. Vice

versa, unsupervised has no access to reference data. The objective during training is to learn the

weights w and biases b, contained in the filter kernels K. Since those parameters are unknown,

an initial value problem is implied. To solve this issue, Xavier-initialisation (Glorot and Bengio,

2010) is used, where initial values of w and b are chosen dynamically, based on the number of input

units to the convolution filters. To enable learning, a function must be established, which describes

the accuracy of the prediction. Stating a loss function L(w) the goal is to minimise L, where L
can be interpreted as an error of prediction. The smaller the error, the more accurate the result.

Therefore, the purpose of L(w) is to penalize wrong assignments with a high loss, whereas correct

assignments result in a low loss, converging the predicted values to the reference data’s actual value

by adapting weights. Binary Cross Entropy is a commonly used loss function (Goodfellow et al.,

2016).

Stating this objective, the loss must be known to update weights, referred to as optimisation. This is

achieved by using mini-batch stochastic gradient descent (SGD) (Robbins and Monro, 1951), where

a subset of training samples defines a batch. In SGD, a batch is propagated through a network,

called forward pass. During the backward pass, the gradient of the loss is computed, which is

used to update and optimise the prior weight according to the chosen loss function, referred to as

backpropagation (Rumelhart et al., 1986). Generally, this process can be interpreted as searching for

the global minimum of a curve. Since a multidimensional problem with imperfect data is proposed,

issues such as random noise and stagnation in unwanted local minima are relevant. Therefore

momentum, which introduces a moving average of the gradient to update weights, is applied. As

many different optimization algorithms (Ruder, 2016) are available, the most frequently used is the

Adam-optimizer (Kingma and Ba, 2017).

2.3.3 CNN Architectures

Since fundamental knowledge of two established CNNs is required to discuss the elaborated network,

this subsection characterises every respective architecture used within this thesis.

LGC

In 2018 Tosi et al. proposed LGC-Net (Local Global Confidence network), a CNN-architecture,

which aims at using a multi-modal input by separating between an independent local and global

network, fusing their respective confidence predictions within a final fusion network (Fig. 2.3).

Due to the small receptive field and similar accuracy, either CCNN (Poggi and Mattoccia, 2016c),

which utilizes features from the disparity map or LFN (Fu et al., 2019), that additionally includes

the reference image, can be deployed as the local network.

The global network, named ConfNet, enables a large receptive field by using an encoder-decoder
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Figure 2.3: Architecture of LGC (Tosi et al., 2018). The network consists of a local and a global

subnetwork combined in a late-fusion module. Local confidence is computed by either

LFN (Fu et al., 2019)[a.1], using RGB-images and disparity maps, or CCNN (Poggi

and Mattoccia, 2016c) [a.2], utilizing disparity maps. Furthermore, RGB images and

disparity maps are the input of the global subnetwork ConfNet (b). The disparity map

and local and global confidence are forwarded into the fusion network(c), estimating

the final confidence map.

architecture, gaining more insight into farther regions while maintaining input size. An overview

of ConfNet is illustrated in Figure 2.4. RGB images, as well as disparity maps, serve as the input.

First, a 3x3 convolution with ReLU on each cropped modality is applied. The concatenation of

both feature maps is forwarded into the encoding block, containing a series of four 3x3 convolutions

with batch normalization and a 2x2 max-pooling layer as well as a ReLU activation, halving input

size while simultaneously doubling the number of channels. This leads to a reduction of spatial

dimensions by a factor of 16 but an increase of channel quantity by a factor of 8. To restore the

original image size while decoding, a series of four deconvolutions and convolutions with ReLU

activation is applied. The resulting feature map is classified by a single convolution with Sigmoid

activation, leading to the final confidence.

A late fusion module combines the global and local confidence as well as the disparity map to

compute the final prediction. This is achieved by putting every respective input into three inde-

pendent blocks without weight sharing, consisting of four 3x3 convolutions with ReLU activation.

The resulting feature maps are fused by a concatenation and forwarded into two fully connected

layers. Like LFN, the final confidence is computed by a single convolutional layer with Sigmoid

activation.

CVA-Net
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Figure 2.4: Architecture of ConfNet (Tosi et al., 2018). The input consists of an RGB image and a

disparity map. Each modality is forwarded into a single convolutional layer, resulting

in a feature map. The concatenation of both feature maps is inserted into the encoding

unit, consisting of series of four 3x3 convolutions and 2x2 max pool operations, leading

to a size loss. The original image size is regained during decoding by applying four

3x3 deconvolutions and convolutions with ReLU-activation. The final confidence map

is outputted by classifying the feature map using a convolutional layer with Sigmoid

activation.

Mehltretter and Heipke (2019) proposed CVA-Net, extracting features directly from raw cost vol-

umes within a CNN architecture. The network consists of three elements, as shown in Figure

2.5. Six 3D-convolutions are applied to the cost volume extract, reducing input size by two pixels

for every convolution, leading to a single cost curve. Merging all information of a cost volume

extract increases robustness to noise while also reducing the effect of ambiguities. During depth

processing, high-level features of the merged cost curves are extracted. Specifically, in this step, ten

3D-convolutions are applied. Until a filter depth of 64 is reached, every layer’s depth is doubled.

No depth increase is implied for the remaining convolutional layer.

Figure 2.5: Architecture of CVA-Net (Mehltretter and Heipke, 2019). The network is composed of

three elements. A single cost curve is computed from the cost volume extract during

neighborhood fusion, which is further processed along the disparity axis. The classifi-

cation layer computes the final confidence at the end of the network.
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The last element of the network classifies the previous step’s feature map. For this reason, a

fully connected layer with ReLU activation, followed by another fully connected layer with a sig-

moid activation, is used, resulting in the final confidence estimation. For generalisation drop-out,

(Srivastava et al., 2014) with a rate of 0.5 is applied to the fully connected layers.
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3 Related works

This chapter aims to inform about current state of the art approaches, estimating the confidence of a

given depth map. In general, Mehltretter and Heipke (2019) identified three distinctive approaches:

� use of hand-crafted features (Sec. 3.1),

� feature combination (Sec. 3.2),

� deep learning (Sec. 3.3).

The following sections further outline every method aforementioned. Several network architec-

tures are described and compared, demonstrating the progress of research achieved, leading to

increasingly more accurate confidence estimations. Section 3.4 of this chapter includes a summary

detailing similarities, advantages, and disadvantages of the current approaches.

3.1 Hand-crafted features

The first approach relies on features extracted from carefully hand-crafted data and specifically

tailored to detect typical issues of depth estimation such as occlusion, depth discontinuities, and

texture-less regions. More precisely, these features are generated by analysing either the disparity

map, cost volume, or RGB-image. Having the objective to detect unreliable pixels, most commonly

used features are cost volume-based features, such as peak ratio of matching cost, naive peak ratio,

maximum and minimum margin as well the disparity-based left-right consistency. An extensive

evaluation of hand-crafted confidence measures is given in Hu and Mordohai (2012) and further ex-

panded by Poggi et al. (2017) and Poggi et al. (2021). Exemplary, Fusiello et al. (1997) proposed a

robust disparity estimation method using left-right consistency with an adaptive and multi-window

approach.

Nevertheless, the success of eliminating unreliable pixels using a single measure is limited by its spe-

cialisation to deal with a single issue, therefore missing robustness to different image characteristics

and the ability to generalize.
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3.2 Feature combination

Grouping up a set of hand-crafted features in a vector to increase robustness and accuracy while

learning model parameters with a machine learning approach form the second method. Especially

linear aggregation (Sun et al., 2017) and random forest classifier (Breiman, 2001) are represented.

The latter approach can further be divided regarding its processed domain: cost-volume and dis-

parity forest.

Cost-volume forest

The first implementation of a cost-volume forest was proposed by Haeusler et al. (2013), using

a set of 23 hand-crafted features. More precisely, multi-variate as well as features acquired with

scale-space sampling at full, half, and quarter resolution are inserted. With this, it is possible to

progressively refine the disparity map by removing matches with low reliability.

In contrast, while remaining at a single scale, GCP (Spyropoulos et al., 2014) corrects initially

wrong matches, therefore proposing one of the first approaches to refine a given disparity using a

confidence map in a post-processing manner. It assigns confident pixels as ground control points

and implements a receptive field, using a 5x5 window to incorporate information of neighbouring

pixels.

Park and Yoon (2015) furthers elevates the extension of the receptive field to incorporate additional

information by adding features based on an incrementally increasing window size, totalling in either

22 or 50 features.

In contrast to every other cost volume forest mentioned, Kim et al. (2017b) extracts and concate-

nates features at pixel and super pixel-level, implying spatial coherency, potentially inherent within

the confidence map. This is supported by their observation that the resulting confidence map and

the used measure are correlated in a local context.

Disparity forest

Another method of feature combination is to infer features directly from the disparity map, elimi-

nating the need for a cost volume. However, since cost volumes generally provide more information

than disparity maps, disparity forests tend to be less accurate, as confirmed by Poggi et al. (2021).

The main advantage lies in the fact that processing cost volumes generally pose a higher com-

putational complexity than features from the disparity domain. Therefore fewer resources and

computational time is required.

Utilising these advantages, an adaption of ensemble learning (Haeusler et al., 2013) uses a total of

7 features based on the disparity map and the RGB image.

With O(1), Poggi and Mattoccia (2016b) proposes an approach to minimise computing time by

limiting feature selection to the disparity domain only. Two variants computing either 20 or 47

features are available.
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In summary, especially cost volume forests reach high accuracy (Poggi et al., 2021), due to domain-

specific features, which are crafted to deal with particular image conditions in a dataset. However,

this performance is often limited to that exact or a closely related dataset. In case of a wide variety

of objects and challenging image conditions, feature combinations cannot reliably detect unreliable

matches and generalize, for example, when comparing outdoor and indoor scenes (Kim et al., 2018;

Fu and Fard, 2018; Kim et al., 2019).

3.3 Deep learning approach

The final strategy utilises a deep learning approach to replace manual feature construction com-

pletely, therefore learning features and model parameters (Heipke and Rottensteiner, 2020). Since

features in this approach are explicitly learnt by the network to fit the task, generalisation is im-

proved (Poggi et al., 2021). Due to its advantages as enumerated in 2.3, CNN is the most prominent

deep learning network architecture. A distinction is achieved by categorising with respect to the

primary input modality, namely disparity and cost volume CNN.

Disparity CNN

Patch-based variants such as CCNN (Poggi and Mattoccia, 2016c) and PBCP (Seki and Pollefeys,

2016) are the pioneers of a deep learning approach, estimating confidence. Both are relatively shal-

low networks with a small receptive field, focussing on fine-grained features from the left disparity

domain, while the latter additionally includes the right disparity map, based on the idea that the

consistency of both disparity maps is correlated to a correct match.

However, since feature extraction of both networks is limited to the disparity domain only, elab-

orating on the idea of multi-modality, Fu et al. (2019) proposed an early fusion (EF)-network

(EFN), which fuses the disparity and RGB-image input with a concatenation, forwarded into a

single feature extractor, therefore incorporating valuable cues from both modalities into the net-

work. Related to EFN, the late fusion (LF) network (LFN) (Fu et al., 2019) first extracts features

in separate towers without sharing weights. The resulting feature maps are only then concatenated

and classified to obtain the final confidence estimation. By comparing both model types, Fu et al.

(2019) concluded that LFN achieves higher accuracy and has better generalization ability. Addi-

tionally, Zhu et al. (2016) stated that EF networks could ignore consistency and complementary

information.

Realising the advantages of LFN, Fu and Fard (2018) proposes MMC, enlarging the receptive field

by applying deconvolutions solely on the RGB-image input.

ConfNet (Tosi et al., 2018), presented in Section 2.3, further extends this strategy of enlarging the

receptive field with an encoder-decoder network, based on the structure of U-Net (Ronneberger

et al., 2015). However, due to smoothing effects caused by the large receptive field, confidence
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estimation of ConfNet trends towards less accurate results.

A combination of a local with a global approach, like ConfNet, combined in a late fusion module,

leads to the current state of the art of disparity CNN, named LGC (Tosi et al., 2018). Using a late

fusion module enables the network to combine a local and global network (described in sec 2.3),

inferring more accurate results than any standalone disparity-based approach. Tosi et al. employs

ConfNet as its global network. However, due to smoothing effects as mentioned in Section 2.2,

networks using a large receptive field also tend to be less accurate. A complementary local network

provides high accuracy when dealing with fine details and finding outliers to overcome this issue.

Tosi et al. evaluated four approaches regarding their respective accuracy in local context. CCNN

(Poggi and Mattoccia, 2016c) and PBCP use features from the disparity domain, whereas EFN and

LFN (Fu et al., 2019) additionally inserts RGB-images into the network. His findings underline that

CCNN and LFN both perform best and with minimal differences in accuracy, even though LFN

additionally takes local cues from RBG-images into account, further validating the low impact of

features from the RGB-domain in local context. Hence either CCNN and LFN is used as the local

network. The final confidence is computed by combining both networks in a late fusion module.

However, the total confidence depends on the accuracy of the local and global network. Therefore,

total accuracy is increased, by improving either one or both networks.

Cost Volume CNN

Considering the advantages of information contained in cost volumes (Sec. 2.2), over the last years,

a multitude of cost volume CNNs have been proposed. RCN (Shaked and Wolf, 2017) stated as

one of the first CNN to process cost volumes, jointly learning the disparity map and its confidence.

During the refinement step, incorrect disparity values are detected and replaced by interpolating

neighbouring pixels, according to the confidence map. However, a disadvantage of this approach is

the large amount of dense ground truth data required.

In contrast to RCN, MPN (Kim et al., 2017a) focuses on estimating the confidence of a given dis-

parity map with a fusion approach. It consists of three sub-networks, namely cost volume feature

extractor, disparity feature extractor, which is combined using a fusion network, based on the idea

that cues from the disparity and cost volume providing helpful information to predict confidence.

Additionally, a top-K matching probability volume layer is proposed, enabling feature extraction

of cost volumes with varying sizes, due to changing search ranges of the stereo pair.

Based on the idea of RCN by utilising a unified network architecture for cost optimization and confi-

dence, UCN (Kim et al., 2018) is proposed. Unlike RCN, however, UCN extracts features from cost

volumes and estimated disparities, including cues from two domains. To solve the inherent scale

variation problem when processing cost volumes, features are extracted by a matching probability

construction network (MPCN), using an encoder-decoder architecture to enable a large receptive

field, followed by a normalisation and top-K layer. Features from the disparity map are obtained

with multiple convolutions of different filter sizes. Like MPN, a concatenation of the disparity and
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cost volume feature map is forwarded into the fusion network. Since the network learns jointly, a

large amount of dense ground truth data to effectively train the network is still mandatory.

When comparing all cost volumes networks above, either a single or two modality is used, even

though features from RGB-images provide meaningful cues, demonstrated by prominent random

forest approaches (Haeusler et al., 2013; Spyropoulos et al., 2014; Park and Yoon, 2015).

LAF (Kim et al., 2019) follows this strategy of a tri-modal input. Notably, they propose an

attention inference network within LAF, weighting every respective modality according to their

locally-varying attention, providing a more accurate result than a simple concatenation. Addition-

ally, by simultaneously learning spatial parameters, referring to the size of the receptive field, local

consistency is improved.

Similar to RCN and UCN, ACN (Kim et al., 2020) jointly learns the disparity map and confi-

dence. ACN consists of a generative cost aggregation network, similar to MPCN from UCN, and

a discriminative confidence estimation network combining matching cost, disparity, and colour im-

ages through a dynamic fusion module. Fusion weights are conditioned on the input by using a

filter-generating convolutional network. Additionally, ACN utilises a generative adversarial net-

work (GAN) approach by assigning the cost aggregation and confidence estimation network as

adversarial partners, enabling boosting and improving of the respective other network. Similar to

RCN and UCN, a vast amount of training with dense ground truth is needed. Therefore training is

conducted in a semi- or unsupervised manner. GANs demonstrated considerable success at dealing

with training in this exact manner (Zhang et al., 2016).

In contrast to every other cost volume approach, CVA (Mehltretter and Heipke, 2019) learns fea-

tures directly from the raw volumetric data instead of pre-processing the cost volume first. This

approach confirms the discriminative power of raw cost volumes, therefore refuting the hypothesis

of Seki and Pollefeys (2016) and Kim et al. (2018, 2020) stating that raw cost volumes do not

allow confidence estimation. (Mehltretter and Heipke, 2019) further argued that pre-processing in

other cost volume CNN limits the information from the uncertainty estimation step and, subse-

quently, its potential. Nevertheless, central issues of CVA originate from the high computational

cost of 3D convolutions, the small receptive field, and only extracting features of a single modality.

The accuracy also depends on the characteristics of cost curves computed by the stereo matching

method.

3.4 Discussion

As demonstrated extensively by Poggi et al. (2021), three main properties are noticeable when

comparing current confidence estimation approaches:

� deep learning architecture,

� extended spatial context,
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� multi-modality.

Even though machine learning approaches, especially random forest, reach high accuracy, these

are limited to that particular dataset or closely related ones, therefore missing the ability to gen-

eralize. Deep learning approaches maintain high accuracy and are able to generalize better due

to also learning features. A distinct similarity of every deep learning network is the employment

of a CNN-architecture. This is due to the advantages given in Section 2.3. Cost-volume CNN

especially reaches high accuracy due to more information gained from the cost volume than the

disparity domain (Sec. 2.2). For this type of CNN, the strategy is to either use a given disparity

map and estimate its confidence (MPN, LAF, CVA) or to jointly learn and optimize the dispar-

ity map and its confidence (RCN, UCN, ACN). The latter strategy tends to be more accurate but

poses a considerably more complex task, therefore a vast amount of training parameters is required,

determinable only with a large training set.

Moreover, as stated by Poggi et al. (2021), both strategies’ accuracy depends on the method chosen

during cost computation. Especially when dealing with noisy cost volumes, disparity CNNs achieve

similar accuracy. An additional advantage of disparity CNNs compared to cost volume CNN is that

no resources are needed to compute and process cost volumes, therefore being less computationally

expensive.

The receptive field size highly impacts the final accuracy of the confidence estimation. Generally

spoken, a large receptive field implies better performance, which is already the case in ran-

dom forest approaches that steadily increased its window size by constructing features at varying

scales. However, extracting meaningful features of a large patch inevitably also leads to increased

computational complexity (Sec. 2.2). This trade-off of computational complexity, incorporation

of global information, and accuracy is illustrated in fig. 3.1, demonstrating that not every aspect

is achievable at any given time. A compromise is needed, aiming to maximize the exploitation of

every aspect.

For deep learning architectures, such as CNN, the receptive field correlates to the filter kernel size

(Sec. 2.3). Several strategies exist to incorporate more neighbouring pixels. In encoder-decoder

networks, information is preserved while spatial dimensions are decreased, making the computa-

tion more manageable. MMC, MPCN as well as ConfNet utilize this approach. However, since

encoder-decoder networks tend to be less accurate (Sec. 2.3), a combination with complementary,

local features in a fusion network enhances total accuracy (MPN, MC, ACN, LGC). In contrast,

UCN and LAF set locally optimal receptive fields according to spatial parameters, simultaneously

learned, subsequently increasing runtime.

Concerning modality usage, a trend is observable, showing that networks are able to process mul-

tiple modalities. While disparity CNNs, in general, are limited by using either a single (CCNN,

PBCP) or two modalities (LFN, MMC, LGC), the current state of the art cost volume CNNs ex-
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Figure 3.1: Scheme of the global information trade-off. This figure demonstrates the relationship of

three aspects when incorporating information from a large receptive field. Only the sat-

isfaction of two aspects is possible at any given time due to the increased computational

effort when including more pixels in computation. However, a small receptive field is

also less capable of dealing with texture-less regions, therefore being less accurate. A

compromise is desired, maximising the fulfilment of every aspect.

tend to a tri-modal input (LAF, ACN). This aspect confirms the value of using multiple features

from different domains, which stabilizes classification when dealing with various image conditions,

such as depth discontinuities, high-frequency patterns.





21

4 Methodology

In this chapter, a deep learning network is proposed, which uses multi-modal input to estimate the

correctness of a given disparity map. The chapter is introduced by detailing the problem of current

approaches (Sec. 4.1). A general overview of the proposed network structure is presented in Sec.

4.2. Further details regarding the network input, including a novel hand-crafted modality, as well

as specifications of the local and global branch and fusion network, are described in Section 4.2.2.

4.1 Problem statement

This thesis’s main objective includes the investigation of whether a combination of multiple modal-

ities in a CNN-approach is advantageous, questioning the type and quantity of modalities. Current

state of the art approaches suggest a tri-modal input, combining local and global features from the

cost volume, disparity map and RGB image domain with a fusion module. However, regarding the

type of modality it is noticeable that these approaches either preprocess the cost volume, therefore

losing information (Sec. 3.4) or limit its use to a local approach only. Thus, none of the proposed

methods fully utilizes raw cost volumes in a local-global approach.

Additionally, current networks are using a maximum of three modalities. However, no indication is

presented justifying this maximum. Following the example of random-forest approaches, carefully

chosen or crafted modalities exhibit the potential to pose a similar effect as confidence measures in

a random forest approach by exposing a particular image condition to the network.

For the presented approach, rectified stereo image pairs, the computed disparity maps, cost volumes

and the disparity ground truth are given. Since a measure of reliability is needed, the network

outputs a dense confidence map (Sec. 2.1), containing values, which represent the correctness of

a point match, ranging from 0 to 1 at every pixel. A high value corresponds to high confidence,

whereas a low value hints at low confidence of the disparity assignment.

4.2 Local-global CNN

The proposed network presents a combination of three or four input modalities, using a local-global

approach to estimate uncertainty. A local-global approach was chosen since it poses a valid method

to take advantage of the entire modality content, fusing complementary features in local and global
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context to stabilize classification (Tosi et al., 2018). The network consists of three subnetworks.

The local and global branch pose as stand-alone networks, outputting confidence maps, therefore

are interchangeable.

The selection of input modalities is based on their respective discriminative power in geometric

context, as highlighted in Chapter 2.2. Since the proposed network follows the general concept of

LGC (described in Sec. 2.3.3) but implements several significant changes to structural elements,

the network is further denoted as LGC+. An overview of the proposed architecture is shown in

Figure 4.1.

Figure 4.1: Overview of LGC+ in a tetra-modal configuration. The network consists of a local

and a global branch combined using a late-fusion strategy. In contrast to LGC (Tosi

et al., 2018), which uses a disparity-based CNN, LGC+ processes raw cost volumes

in its local branch by utilizing CVA-Net (a). RGB images, disparity maps, and WD

serve as the input for the global branch ConfNet (b), which utilises an encoder-decoder

architecture with a large receptive field. Both branches output a confidence prediction

combined with the disparity map and used to estimate the final confidence within the

fusion network (c).

Further detail regarding the input and the components of LGC+, more precisely the local, global

branch, and late fusion module is given in the following subsections.

4.2.1 Input

The input is composed of a disparity map, RGB image, cost volume, and the warped difference.

According to its respective advantages (Sec. 2.2), modalities are assigned to suit the respective
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subnetwork’s geometric context. An overview of all input modalities inserted into the network and

the final output is presented in Figure 4.2. Since the warped difference poses a novel modality,

more insight is given in the following paragraph.

Figure 4.2: Input and output of LGC+, based on images from the KITTI-15 dataset (Menze and

Geiger, 2015). The four modality input consists of the left RGB image, left disparity,

warped difference, and the cost volume, which is forwarded into LGC+. Since training

is supervised, disparity ground truth is given. The final output is a dense confidence

map.

Warped difference

Inspired by (Stucker and Schindler, 2020) a disparity-based modality, specifically crafted for this

thesis, is the so-called warped difference (WD). It shares the same idea as confidence measures

(Hu and Mordohai, 2012), which are designed to capture well-known stereo matching issues, namely

texture-less regions, occlusions, and depth discontinuities. Consequently, building on the assump-

tion that WD exposes these common failure cases, the network is able to relate these features to

assign the correct confidence at that pixel.

WD is computed by first warping the right image to the left image, using a disparity map, followed

by an absolute subtraction of the left and warped left image. Since colour information after sub-

traction is not useful and generally not representative of the real world, when comparing images

with different illuminations and aperture, the result is subsequently transformed to greyscale. The

entire procedure is demonstrated in Figure 4.3.

The intensity of WD refers to the discrepancies between the left and warped image, constructed

from the disparity map and right image. Consequently, high intensity corresponds to pixels, where

the stereo algorithm fails, which notably is the case at the occurrences of depth discontinuities. In

the unlikely event that the left and warped images are photo consistent, the intensity is low.
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Figure 4.3: Procedure to compute the warped difference. The left and right image (Geiger et al.,

2012), as well as the left disparity, are mandatory. Computation consists of three steps.

First, the right RGB image is warped to the left image coordinate system, using a

given left disparity map, resulting in the warped left image. During the second step,

the absolute difference of the left RGB image and warped left image is formed and

subsequently converted to greyscale. The result is denominated as warped difference.

To incorporate WD into the network, different strategies are available (Fig. 4.4). On the one hand,

an early fusion approach, by first concatenating WD with other modalities, followed by feature

extraction. On the other hand, late fusion, where every modality is forwarded into separate layers,

and only then the resulting feature maps are concatenated and classified (Fu et al., 2019).

As a proof of concept for WD’s effectiveness, only the global subnetwork is exposed to WD, using

both fusion strategies. This is justified by the assumption that the impact of WD is the highest in

that particular subnetwork, caused by being closely related to other input modalities.

4.2.2 Architecture

LGC+ consists of three subnetworks. Each of these networks is specified by its structure and

modality usage, designed to fit the respective task and geometric context. The following paragraphs

outline each subnetworks characteristics and justify the elected network structures.

Local Branch

The objective of the local branch is to deal with high-frequency patterns and extract detailed

features. Even though disparity-based CNN, such as PBCP (Seki and Pollefeys, 2016), CCNN
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Figure 4.4: Comparison of fusion strategies to incorporate the warped difference into a network,

based on ConfNet (Tosi et al., 2018). The result of either an early fusion or late fusion

serves as the input for the network (Fu et al., 2019). Early fusion (a) concatenates all

input modalities and forwards them to the network. In Late fusion (b), every input

is passed into separate branch networks. The resulting feature maps are concatenated

and state the output, simultaneously being the input for the following network.

(Poggi and Mattoccia, 2016c) or LFN (Fu et al., 2019) achieve good performance, even better

accuracy is reached with a cost volumes CNN as the local network. Especially raw cost volumes

provide valuable cues on local context and are proven to be beneficial due to extracting information

from the entire cost curve instead of a single disparity value (Mehltretter and Heipke, 2019).

Considering the high accuracy and the high potential if used in a local-global approach, CVA

(described in Sec. 2.3.3) depicts the chosen local network.

Global Branch

The global branch’s objective includes the extraction of features from farther regions of the image.

As described in Chapter 3.4 gathering global information without a proper strategy leads to high

computational complexity. For that reason, an encoder-decoder structure is used (Sec. 2.3), pro-

viding an appropriate compromise between accuracy and computational complexity. Confidence

estimation research presented several encoder-decoder architectures. However, the proposed meth-

ods are limited to a single modality input, focussing on either the disparity map (Kim et al., 2017a)

or cost volume (Kim et al., 2020).

Based on the findings of Mehltretter and Heipke (2019), a disparity-based CNN is chosen as the

global approach. They state that even though processing cost volumes is decisively more compu-

tational complex than processing disparities, no performance gain to due a larger receptive field is

achieved. Since also multi-modality is a highly desired characteristic, ConfNet Tosi et al. (2018) is

elected as the baseline global branch. In contrast to the aforementioned encoder-decoder architec-

tures, ConfNet is realized in a stand-alone manner, demonstrating respectable performance (Poggi

et al., 2021).

While the original input consists of disparity maps and RGB images, to enable a tri-modal input,
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as realised by (Kim et al., 2019, 2020), structural changes are applied, enabling the addition of WD.

For the rest of the thesis, this ConfNet-variant is referred to as ConfNet+. ConfNet+ is proposed

in an early fusion and late fusion configuration.

Fusion module

To take advantage of features from the highly accurate local approach and global approach, which

adds information from further cues, a fusion strategy is required. This fusion module combines

the resulting confidence estimation of both branches. Therefore, it is interpretable as a confidence

refinement. Considering that the local approach processes cost volumes and the global approach

disparity map, RGB images, and WD, the fusion module combines features from four different

modalities.

Several fusion strategies have been proposed Kim et al. (2017a); Tosi et al. (2018), which gener-

ally follow the same strategy by first extracting features in a late fusion manner and subsequently

classifying the concatenation of the resulting features maps of each branch, using fully-connected

layers. Since the late fusion module of LGC (Tosi et al., 2018) is easily expandable and is known

to interact well with ConfNet, it is elected as the used fusion strategy.
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5 Experiments

In this chapter, the experimental setup is presented, which is used to evaluate the proposed network

LGC+. The first Section 5.1 states the general objectives and the research questions. In Sec. 5.2

datasets are introduced, followed by a description of and training and testing parameter in Sec.

5.3. An overview of the chosen evaluation criteria is given in the final Sec. 5.4.

5.1 Objective

This thesis aims to estimate the uncertainty of a given disparity map. A multi-modal and local-

global network structure is proposed, inspired by two well-established CNN: LGC and CVA. For

evaluation, a general strategy is introduced by answering the following questions:

(1) What is the impact of a multi-modal Input? Does a higher quantity of modalities relate to

better performance? How are the modalities inserted into the network?

To assess the viability of jointly inserting features from an additional modality, the impact of

warped difference using two fusion strategies is evaluated. As a result of this, research regarding

the influence of WD in the global subnetwork is conducted. Further, the suitability of cost volumes

in a local-global approach and the total performance of the baseline network LGC with LGC+

using three and four input modalities is evaluated.

(2) Is the presented approach able to estimate the confidence of a given disparity map accurately?

What are the limitations and potential weaknesses? How does the approach perform on different

data sets?

The proposed network is compared with LGC, potentially unfolding its weaknesses and limitation.

Additionally, generalization is evaluated by testing on a distinctly different data domain.

5.2 Datasets

Three different real-world data sets are used to evaluate the proposed network. All of the data

sets provide rectified stereo image pairs taken by a calibrated stereo camera. The KITTI dataset

and for the purpose of cross-validation Middlebury v3 dataset are used. The following paragraphs

include a description of the mentioned datasets.
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KITTI benchmark

The KITTI dataset consists of outdoor scenes taken in an urban driving environment. Therefore,

generally, a low variability of objects is represented within the image, mainly vehicles of different

types and sizes, traffic signs, as well as bushes and trees. The KITTI-12 dataset (Geiger et al.,

2012) encompasses 194 stereo images in colour format. Groundtruth disparity is acquired from

post-processed LiDAR measurements while manually removing ambiguous disparity values. Due

to technical limitations of LiDAR, groundtruth does not cover the entire image and is therefore not

dense.

The KITTI-15 dataset (Menze and Geiger, 2015) is closely related to KITTI-12 but is emphasized

on the evaluation of scene flow. Also, groundtruth accuracy is improved by replacing moving objects

with a 3D CAD model, which is reprojected onto the image. It consists of 200 colour stereo pairs.

Middlebury v3

The Middlebury v3-dataset (Scharstein et al., 2014) includes 15 stereo images taken from an indoor

scene, therefore providing a challenge to most depth estimation applications due to its concise

difference to the outdoor KITTI-datasets. Common objects situated in these indoor scenes includes

household gadget and furniture, which is highly in contrast to the outdoor scenes provided by the

KITTI-set. Groundtruth disparity is highly accurate and based on an active stereo pipeline with

an available value at each pixel.

5.3 Training and testing setting

All subnetworks are implemented in TensorFlow 2.1. Network training and testing were carried out

on the cluster system at the Leibniz University of Hannover, Germany, computing on an Nvidia

Pascal V100. Every subnetwork is trained and tested separately. This allows for more efficient

experimenting because different network variants are trained simultaneously, while intermediate

results are evaluable.

Table 5.1 displays a summary of all hyperparameters of LGC+. It is to note that these are based

on the respective original publication, being Mehltretter and Heipke (2019) for CVA and Tosi et

al. (2018) for ConfNet+ as well as the Late Fusion module.

The following paragraphs outline network specifics during training and testing. Also, the decision

regarding the choice of specific hyperparameters is justified.

Training

To ensure comparable with other approaches, the KITTI12-dataset is utilized, more precisely 20

images and two images for validation. Disparity maps and cost volumes are obtained with cen-

sus matching, using the respective dataset’s left and right image. In contrast to jointly-learning

confidence and the disparity, only a small amount of input is necessary. This is due to the task
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Table 5.1: Hyperparameters of LGC+. Enumerated are the hyperparameter of all subnetworks of

LGC+.

CVA ConfNet+ Late Fusion module

Input cost volume extract disparity map, RGB-image, WD Local and Global Confidence, disparity map, WD

Maximum epochs 12 1600 14

patience p 2 4 2

patchsize [px] gt-centered, 13x13x256 randomly drawn, 256x512 gt-centered, 9x9

batchsize 256 1 128

learning rate 10−4 10−4 10−4

learning decay *10−1 after 3 epochs *10−1 after 3 epochs *10−1 after 3 epochs

loss function BCE BCE BCE

optimization function SGD+Momentum SGD+Momentum SGD+Momentum

being a relatively simple binary classification, more precisely finding errors in a disparity map. To

minimise overfitting, the input order is shuffled.

For CVA and the late fusion module, patches are only extracted if ground truth is available at

that point, unlike ConfNet, where a patch conforms to a random crop of the image. However,

if no groundtruth is given in that crop, network loss will not change. Another consequence of a

large image crop is high memory usage. Therefore the batch only consists of one image crop per

epoch. Consequently, maximum epochs for ConfNet are set to 1600 to ensure enough training.

Also, validation for ConfNet is applied on the entire upsampled reference image, countering poten-

tial overfitting.

For regularization and to decrease runtime, an early stop mechanism (Goodfellow et al., 2016) is

implemented, interrupting training if validation loss does not decrease over a predefined amount of

epochs, referred to as patience p. Due to noise occurring during beginning epochs of training, early

stop only triggers if training passes a minimal number of epochs, called grace period g. Through

observation and testing, g is set to 30% of maximum epochs given for each network.

Testing

Results are tested on 100 KITTI15-images and for cross-validation on 15 images from the Mid-

dlebury v3-dataset. The objective of testing is to obtain an image of the same dimension as the

reference input. However, since some networks rely on a particular input dimension, applying a

sampling technique is necessary, assuring testing of every pixel. Exemplary, for ConfNet, the size of

the network input must be equal to a number that is divisible by 16 without remainder. Therefore

the input is first upsampled by applying either padding or via interpolation and forwarded into the

network. After computing the confidence map, downsampling is applied by either removing the

border in case of padding or by interpolating back to the original size.
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5.4 Evaluation strategy and criteria

A widely-used measurement to evaluate the performance of classification tasks is based on the

analysis of the receiver operating characteristic (ROC) curve. In particular, by using the area

under curve (AUC) measure on the ROC curve, the network’s ability to differentiate between

correct and incorrect matches is established. For confidence estimation, this metric was proposed

by (Hu and Mordohai, 2012). More precisely, all pixels in a disparity map are ordered by their

confidence in a decreasing manner. Afterwards, the error rate of those pixels with the lowest

uncertainty is gradually computed with the percentage of pixel sampled p at a given percentage

step size (for example, first 5%, then 10%, and so on). At full density, the error corresponds to the

overall error ε of the disparity estimation. Plotting ε leads to the ROC curve as mentioned above.

To evaluate the performance of classification, the AUC of that curve is used. The optimal AUC

underlies the assumption that all correct matches are detected first. Therefore it can directly be

computed using the following Eq. 5.1:

AUCopt =

∫ 1

1−ε

p− (1− ε)
p

dp = ε+ (1− ε)ln(1− ε). (5.1)

An accurate result is achieved if the AUC is close to the optimal AUC. The closer, the better.

The decision of whether an assignment is correct or incorrect depends on the guidelines of the

given dataset, in case it is not self-defined. For the KITTI-dataset, a pixel is classified as correct if

the absolute difference between the estimated disparity assignment dest and the given groundtruth

disparity dgt is less than the error threshold τ of 3 pixels, as demonstrated in eq.5.2.

|dest − dgt| ≤ τ (5.2)

Originally, the Middlebury-dataset predefined τ to 1 pixel. However, to ensure consistency and

comparability with the KITTI-dataset results, the threshold is set to 3 pixels.
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6 Results

This chapter presents and discusses the results of the proposed network LGC+. Section 6.1 deals

with the performance of ConfNet, when additionally inserting warped difference into the network.

The next Section 6.2 includes the results LGC and LGC+. Cross-validation is presented in Sec.

6.3.

6.1 Influence of warped difference

Expanding the idea of multi-modality Table 6.1 contains the quantitative results of ConfNet (Tosi

et al., 2018) and three fusion variants, inserting WD, more precisely, early fusion (EF), late fusion

(LF), and late fusion with batch normalisation (BN). Three independently trained models for

every variant were computed to receive statistical conciseness. For further evaluation, the average

is compared.

Table 6.1: Comparison of ConfNet (Tosi et al., 2018) with three fusion configurations on the KITTI-

15 dataset (Menze and Geiger, 2015). All entries represent the average AUC x 10−2 over

all images. The theoretically optimal value (Opt.) is shown in the second column. Values

closer to the opt. AUC corresponds to higher accuracy. The most accurate result of the

respective network is underlined. The best average result is highlighted in bolt.

Comp. Opt. ConfNet ConfNet+, EF ConfNet+, LF ConfNet+, LF and BN

1 9.300 10.922 11.144 10.880 10.964

2 9.300 11.014 11.281 10.923 10.917

3 9.300 10.936 11.017 11.034 10.862

avg. AUC 9.300 10.957 11.147 10.946 10.914

Results suggest that both LF variants perform best, having a slightly better AUC than standard

ConfNet. The most accurate result is achieved by the LF variant with batch normalisation. EF is

strictly worse, which confirms the research findings of Fu et al. (2019). For further evaluation, the

EF-variant is therefore not considered.

Late fusion with batch normalisation
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ConfNet limits the application of batch normalisation (BN) to its encoder module. However, based

on general accuracy increase (Ioffe and Szegedy, 2015) and in comparison to other encoder-decoder

networks (Stucker and Schindler, 2020), a slight structural adaption is applied by adding BN to

the decoder. Comparing ConfNet+ with LF and ConfNet+ with LF and BN, a small performance

increase is gained, therefore for the rest of the evaluation, only the ConfNet variant with LF and

BN is considered and further denoted as ConfNet+LF .

Impact of WD

Based on the quantitate results given in Table 6.1, ConfNet is only marginally worse than ConfNet+LF .

This suggests that the impact of LF is small. Qualitative results in Figure 6.1 demonstrate that

WD’s insertion reduces false confidence assignments around the pole and the trunk of the car.

Figure 6.1: Qualitative evaluation of the impact of WD on the KITTI 2015 dataset (Menze and

Geiger, 2015). Presented are two cases of depth discontinuities, including the respective

RGB image, disparity map, warped difference, and a qualitative measure of confidence

for ConfNet and ConfNet+ with WD in a late fusion approach. Green is assigned if

either the assigned disparity is right and the confidence c = 0.5 or if the disparity

assignment is incorrect and c < 0.5. Red pixels highlight an erroneous confidence

prediction. ConfNet+LF produces fewer errors due to visible cues provided by WD

(marked by the white arrow).

The edge between trees and the sky in the background is also very distinct and noticeable. In

general, ConfNet+LF estimates objects in the background substantially more often as correct than

ConfNet (Fig. 6.2).

This happens because WD and the RGB images provide cues at intensity jumps in the background,

whereas disparity maps tend to be smooth, characterized by little to no intensity jumps. Subse-
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Figure 6.2: Qualitative evaluation of both ConfNet-variants. For details on colour coding and the

dataset, please refer to Figure 6.1. The left-hand site demonstrates that fine details, for

example, at cars, have a higher probability of becoming assigned correctly in ConfNet

than with ConfNet+LF . However, ConfNet+LF is better at detecting the background

of the image, detailing the edge to the sky, which can be seen in the warped difference.

ConfNet again is more confident when assigning regions with fine detail, for example,

electricity lines.

quently, since ConfNet+ uses overlapping features from WD and RGB-images, coarse errors are

reduced at that image condition, while ConfNet is basing its decisions solely on features from the

RBG-image domain in this particular case.

Another finding is that with WD, the confidence is more likely to be correct in noisy regions of

the disparity map, which is especially observable when examining the top row of Figure 6.1. Even

though the disparity map is noisy between the poles, ConfNet+LF assigns the correct confidence.

From both figures it is also noticeable, that details in ConfNet for example at cars, partly due to

reflections, are more likely to be correct. Electricity lines, which are only visible in confidence maps

of ConfNet support this finding.

All in all, in ConfNet+LF a trade-off between the correct assignment of coarse errors, due to inten-

sity gaps as well as noisy disparity maps and detailed regions is observable. This is probably due to

WD outweighing the decision in those cases, conforming to its purpose. However, this consequently

also weakens the classification of detail, where a combination of features from the disparity and
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RGB-image are better suited.

Subsequently, based on the claim that the occurrence of intensity gaps and detail regions are dis-

tributed about evenly, the marginal difference between the AUC values of ConfNet and ConfNet+LF

in the quantitative results is explained.

Though until this point, this evaluation also poses ConfNet+LF as a stand-alone network. Consid-

ering ConfNet+LF as the global branch, it is more important to provide meaningful global infor-

mation instead of being able to deal with detail. ConfNet+LF provides valuable cues at intensity

gaps and in the case of noisy disparity maps.

6.2 Comparison with LGC

The results given in Table 6.2 present the performance of the original LGC and two variants of

LGC+. Both LGC+ variants use CVA as their local approach, whereas LGC utilizes LFN. LGC+

has a tri-modal input, further denoted as LGC+3M . The other LGC+ variant inserts the confidence

estimation from ConfNet+LF , therefore posing a tetra-modal input, denoted as LGC+4M . Similar

to Section 6.1 for statistical purposes, three computations are carried out.

Table 6.2: Comparison of LGC (Tosi et al., 2018) and LGC+ on the KITTI-15 dataset (Menze and

Geiger, 2015). For details on AUC and table structure evaluation, please refer to Table

6.1.

Comp. Opt. LGC LGC+3M LGC+4M

1 9.300 10.897 10.221 10.296

2 9.300 10.711 10.248 10.414

3 9.300 10.835 10.211 10.540

avg. AUC 9.300 10.814 10.227 10.417

The outcome demonstrates the significant performance gain of LGC+, achieving an avg. AUC,

which is 0.6 lower than LGC. Both LGC+ variants prove their capabilities, whereas LGC+3M

achieves peak accuracy, outperforming LGC+4M by a respectable margin.

Impact of multimodality on LGC

The quantitative results are given in Table 6.2 highly suggest the effectiveness of the chosen ap-

proach. Both LGC+ variants perform substantially better than bi-modal LGC, underlining the

findings of Kim et al. (2019, 2020), regarding the higher accuracy of using tri-modal input.

This is due to complementary information supporting classification at a broader range of failure

cases than a single or bi-modal input. Especially on detailed objects, such as cars, this is observ-

able. In Figure 6.3 this aspect is emphasized.
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Figure 6.3: Qualitative evaluation of all LGC variants. For details on colour coding and the dataset,

please refer to Figure 6.1. Both image series demonstrate that LGC+ contains less

erroneous confidence assignments at complex objects, such as cars.

However, a direct comparison of both LGC+ variants reveal that tri-modal input, thus a combina-

tion of features from the RGB-image, disparity maps, and cost volume achieves distinctively better

accuracy than LGC+4M .

To demonstrate this finding, the qualitative comparison of LGC+ and both subnetworks is illus-

trated in Figure 6.4. Both ConfNet variants show more erroneous assignments on the car, while

CVA shows fewer. Additionally, ConfNet+LF and CVA are both equally capable of dealing with

the depth discontinuities around the pole. It follows that ConfNet+LF provides similar cues as

CVA. In total, LGC+ performs best, merging correct assignments at the pole and fine detail on

the car.

Additionally, it is noticeable that LGC+3M seems to prefer the confidence estimation of CVA,

whereas LGC+4M favours the confidence estimation of ConfNet+LF . This is also proven by similar
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Figure 6.4: Qualitative evaluation of all subnetworks as well as LGC+. For details on colour coding

and the dataset, please refer to Figure 6.1. A comparison of the branch network in

the top row of the figure demonstrates that both CVA and ConfNet+LF are capable

of dealing with the intensity jumps around the pole. The bottom row reveals that

LGC+3M inhibits a strong resemblance with CVA, whereas LGC+4M is more related

to ConfNet+LF .

patterns of confidence values in the background and the distribution of erroneous assignments.

Since CVA is generally more accurate than ConfNet+LF , the performance of LGC+3M is superior

to LGC+4M (Tab. 6.2).

Probably another influencing factor is the diversity and balance of features. Due to a certain feature

similarity of CVA and ConfNet+LF , tetra-modal LGC+4M has a decreased ability to deal with a

wide range of cases, like tri-modal LGC+3M . This proves that complementary and diverse features

highly affect performance.

A possible solution would include an adaption of the training process. LGC+ is currently trained

in a cascaded manner, therefore every network optimises independently. However, instead of three

stand-alone subnetworks with three local optimisations, a joint global optimization goal for the

entire network compound is defined with end-to-end learning. This allows LGC to adapt weights

in all subnetworks, including ConfNet and CVA, choosing the globally optimal solution. However,

this needs further investigations and is part of future work.
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6.3 Crossvalidation

Table 6.3 contains the quantitative results of cross-validation on the Middlebury v3 dataset. While

generalization of all networks is decently accurate and relatively similar, LGC+3M poses as the most

accurate variant. This further confirms the good overall performance of LGC+3M as examined in

Section 6.2.

Table 6.3: Quantitative results of LGC and LGC+ on the Middlebury-v3 dataset (Scharstein et al.,

2014). For details on AUC and table structure evaluation, please refer to Table 6.1.

Opt. LGC LGC+3M LGC+4M

6.419 9.217 9.042 9.307

Qualitative results (Fig. 6.5), suggest the same. LGC+3M shows the least amount of erroneous

assignments, whereas LGC+4M has visible issues at the bottom and the front wheel fork of the

motorcycle. This presumable is an issue caused by the difference between data domains. As

Figure 6.5: Qualitative evaluation regarding the generalization capabilities on the Middlebury v3

dataset (Scharstein et al., 2014). For details on colour coding, please refer to Figure 6.1.

LGC+4M shows the least amount of incorrect assignments, while LGC and LGC+3M

are about equal.

demonstrated in Figure 6.2, the network most likely relates low intensity (black) in WD with

correct disparity assignments within the confidence map (white) and distinct intensity difference
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caused by varying textures. This is problematic for the Middlebury-v3 dataset since it contains

more cases of low-textured regions and, therefore, less distinct intensity differences. This theory is

supported by the fact that most of the erroneous assignments of LGC+4M have a low intensity in

WD.
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7 Conclusion and outlook

This thesis proposed a multi-modal CNN architecture named LGC+, which predicts the uncer-

tainty of a given depth map. To incorporate cues from further regions and fine detail, therefore

fully exploiting complementary features, a local-global approach, modelled after a well-established

architecture, was chosen. Two LGC+ variants were proposed, using either a tri or tetra-modal

input. The selection of modalities is based on current research, including features from the RGB

image, disparity map, and raw cost volume domain, considering its respective effectiveness in a

geometric context.

To achieve tetra-modal input, a novel modality named warped difference was carefully crafted,

aiming to improve pixel classification at intensity gaps. Two fusion strategies on the originally

bi-modal global subnetwork were tested. Based on the global subnetwork results, only a marginal

performance increase of the Late fusion variant in comparison to the baseline network is notice-

able, while EF is strictly worse. However, the usage of warped difference influences the network as

expected by improving classification at intensity gaps. Though this comes with a reduced ability

to classify correctly in regions with high-frequency patterns.

Consequently, further studies were undertaken by comparing baseline bi-modal LGC with tri-modal

LGC+ and tetra-modal LGC+. A significant increase in performance of both LGC+ variants is

achieved, confirming the general effectiveness of multi-modal input. However, due to lack of feature

diversity, caused by the resemblances of features from raw cost volumes and the warped difference,

the tri-modal LGC+ variant performs more accurately. Results of cross-validation also suggest the

generalization ability of tri-modal LGC+.

In summary, this thesis’s findings demonstrated that hand-crafted modalities pose a valid strategy

to direct a deep learning network’s attention to a specific failure case or image condition.

Additionally and more importantly, it has been shown that the type and quantity of input modal-

ities highly influence network performance. While an increased quantity of modalities raises the

robustness to more failure cases, since this increases the chance of finding a correct relation, if

modalities are too similar, this inevitably also leads to overlapping features, potentially outweigh-

ing the required feature for a correct assignment.

This research illustrates the superior performance of multi-modality in a deep learning approach,

but it also leaves room for further improvement.

From a structural perspective, a mechanism is needed, which enables the network to focus on rel-
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evant features, depending on the local image condition. An idea was mentioned by switching to

training in an end-to-end manner, therefore adapting weights according to feature relevancy. Inter-

estingly, this could also solve the feature diversity issue since features from modalities are preferred,

which provide meaningful information for classification.

To better understand the implications of WD, future studies could address the network integration

and the construction of the modality itself. The current approach inserts WD with a late fusion.

However, only one convolutional layer is used, raising the question of whether one layer is enough to

extract distinct features. Additionally, considering that experiments on WD were only conducted

in a global approach, the impact of WD in local context is unclear.

Regarding the construction of WD, an open question includes the benefit of transforming to

greyscale. Even if the colours after subtraction do not represent the real world, potentially features

can be extracted off that information as well.

Finally, it is to note that characteristics of WD change depending on the used stereo matching

methods. Further research is needed to confirm the observation, regarding the relation of feature

diversity and quantity, in the context of other methods than ad-census block matching.
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