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Abstract

In remote sensing, thermal anomaly detection plays a crucial role. In this work, thermal

anomaly detection is formulated as a salient region detection, which is motivated by

the assumption that a hot region often attracts attention of the human eye in thermal

infrared images(TIR). Using TIR and optical images(RGB) together, our working hy-

pothesis is defined in the following manner: a hot region that appears as a salient region

only in the TIR image and not in the optical image is a thermal anomaly. By utiliz-

ing co-saliency technique, RGB images are used to reduce the number of false alarms

that may occur when detecting thermal anomalies from TIR images alone. Recently,

deep learning have been widely adopted to tackle this task. Initially in this thesis, the

anomaly detection is done by adopting a Multi Interactive Dual Decoder(MIDD) ap-

proach and the problem is framed as a multi-class problem. In context, MIDD approach

uses separate decoders and encoders for both modalities(RGB and TIR) to obtain the

final saliency map. Subsequently, a simplified MIDD approach is presented to handle

the same scenario, based on dual encoder and single fusion decoder. Moreover, a new

dataset is generated established from orthomosics of RGB and TIR images. Further,

obtained results are evaluated both on pixel level and object level using various metrics.

Despite some limitations outlined in the thesis, the proposed method to identify the

thermal anomaly has achieved up to 90 percent of recall for the large objects.

Keywords: thermal anomaly, saliency map, deep learning, encoder-decoder
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1 Introduction

1 Introduction

During recent decades, as a reliable and economical way to transport energy, pipeline

networks have become increasingly popular in recent decades. In light of the current

energy requirements and environmental impacts, it becomes imperative to ensure en-

ergy resources are secured in an efficient way. Across the globe, the rising gas prices

threaten livelihoods and social stability. In Germany, for example, the gas prices have

been doubled in just a few months due to the Russia-Ukraine conflict. Meanwhile,

poorly insulated roofs or leaks in the heating pipeline such as small cracks or pinholes

can go unnoticed for long periods of time, causing irreversible environmental damage

and energy waste. Therefore, ensuring the functioning of these pipelines is imperative

to avert excessive financial losses due to the interruption of heating supply and, most

importantly, to eliminate any potential threat to human lives and the ensuing detri-

mental aftermath on the environment.

Several conventional approaches were proposed to tackle with such problems. More

recently, following the fourth Industrial revolution, Machine Learning data-driven ap-

proaches have gained popularity due to their high accuracy compared to other con-

ventional methods and their efficient implementation due to recent advancements in

tensor multiplication dedicated GPUs. In this vein, Deep Learning is widely employed

to perform anomaly detection, it is the process of identifying conspicuous components,

events, or observations that raise concerns because these elements differ significantly

from the majority of data or expected behavior. Subsequently, the purpose of ther-

mal anomaly detection is to localize the unusually temperatures those differ from their

surroundings. In fact, thermal anomalies could be hot or cold anomalies depending

upon high or low distinctiveness of the temperature than it’s surroundings. In remote

sensing, thermal anomaly detection plays a crucial role to capture abnormal heat signa-

tures in a non-destructive manner. Due to its ability to capture heat signatures in the
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1 Introduction

infrared portion of the electromagnetic spectrum, a Thermal Infrared (TIR) camera is

one of the most extensively used equipment for this purpose. Thermal images can deal

with complex conditions such as insufficient illumination, low contrast, noise as well as

can also help to detect occluded heat signatures such as underground leakages. This

technology have been widely used in many applications such as local surveillance, fire

detection, and human inspections.

The primary goal of saliency analysis is to determine how distinct a certain region in

an image is in relation to its surroundings. Initial saliency models were developed using

image processing techniques, while current advances in deep learning approaches are

showing great promise in this field. The scientific community has demonstrated that

it is feasible to merge the complimentary information of visible and thermal modalities

in order to correctly capture salient regions, in a method known as RGB-T saliency

detection. Current developments in RGB-T saliency detection are mainly exploring the

detection of common conspicuous objects in both modalities. However, this thesis will

be focused on thermal anomaly detection based on co-saliency analysis.

In this study, thermal anomaly detection is formulated as a salient region detection,

which is motivated by the assumption that a hot region often attracts attention of the

human eye in thermal infrared images. Using TIR and RGB together, the working

hypothesis is defined in the following manner: a hot region that appears as a salient

region only in the TIR image and not in the RGB image is a thermal anomaly. The

three channel RGB images contain more spatial information compared to of thermal

images as RGB camera operates in the visible region (0.4-0.7 um). Colors and textures

extracted from RGB images can be applied to identify individual objects which is not

possible with TIR images, because TIR operates operates in the infra-red band, specif-

ically in this work, the used dataset was acquired with a Long Wave Infra-Red (LWIR)

band (7-14 um) camera. LWIR band enables the camera to capture heat signatures

2



1 Introduction

from the surface. Integrating RGB and TIR data have several advantages, as every hot

item has the potential to be identified as a thermal anomaly, the purpose of utilising

RGB images is to reduce on the amount of false alarms that occur throughout the

process of detecting thermal anomalies from TIR images only. RGB images are quite

helpful in this situation since they may make it possible to differentiate between hot

items and other thermal abnormalities. On the other side, a cold object has the poten-

tial to induce false alarms as well, which manifest themselves as a high gradient on its

borders. The used dataset is established from the orthomosic of RGB and TIR images,

this dataset includes RGB and TIR images, as well as ground truth (GT). GT consists

four classes: Background(BG), Thermal Anomalies(AN), Hot Objects(HO) and Cold

objects(CO).

1.1 Thesis Objective

The main hypothesis proposed here is the detection of thermal anomalies, which are

salient only in thermal images, but not in RGB images. In contrast, objects which are

visible in both images should also be salient and these salient objects either could be

a hot object or it could be cold object, i.e. objects that are salient in both modalities

can not be thermal anomalies. In this way, the fusion of RGB-T modalities lead to

reduction in false alarm rate.

Thesis goals are threefold as, examination of several RGB-T saliency detection meth-

ods in order to decide which one will be more adaptable to the main hypothesis of

this study; instead of binary ground truth datasets, a multiclass ground truth dataset

is generated from thermal and RGB orthomosaics, as SOD tasks only deal with fore-

ground vs background classification but in this work a multiclass(BG, AN, HO and CO)

problem is considered; deep learning model implementation using existing frameworks

for deep learning such as Keras or Tensorflow. The evaluation criteria will be set by the

3



1 Introduction

commonly known methods in machine learning field, such as accuracy, precision and

F1-score as well.

1.2 Thesis Contribution

Considering aforementioned problems, contributions of this work are as follow,

• Initially for the multi-class adaptation multi-interactive dual decoder (MIDD)

proposed by Tu et al. (2021) (Chapter 4) is utilized. Instead of capturing common

salient objects, MIDD network is adopted to detect thermal anomalies, which are

not visible in RGB images as well as the hot and cold objects. The original MIDD

model was proposed to detect common salient objects visible in both RGB-T pairs,

i.e. they had considered the whole problem as a binary classification(background

vs foreground).

• Secondly, a modified version of MIDD is purposed (Chapter 6). Instead of dual-

decoders, a single multi-interactive decoder is inaugurate to speed-up and decrease

the unnecessary parameters of the decoding network. Even the comparison of the

evaluation results show that proposed network achieves slightly better results than

MIDD, as well as reduced the size of the network.

• The evaluation for both the networks is carried out on both pixel and region

level, as well as the comparison of the MIDD and proposed network is demon-

strated(Chapter 6.4)).

1.3 Thesis Outline

Altogether, this work is organized as follow,

• Chapter 2 will present current and state of the art methods for Saliency Object
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2 Literature Survey

Detection(SOD), including RGB-T fusion based saliency detection approaches.

• Chapter 3 provides the theoretical background information about the specialized

topic related to deep learning, such as loss function, optimization algorithms,

Convolutional Neural networks(CNN) etc.

• Chapter 4 is the detailed discussion of the MIDD network, comprising all the

components of this network as well as the adopted loss function for the multi-class

classification.

• Chapter 5 will provide the information about the experimental setup, including

the information from the used dataset to training and from training to evaluation

of the results.

• Chapter 6 demonstrates the purposed version of MIDD network, and also presents

the outcomes this network in respect to the original MIDD network.

• Chapter 7 is the final part of this thesis, which sums up whole work and also

enlighten all the successes and failures of the outcomes. At the end, it will discuss

the future possible future developments, which should deal with the disadvantages

discussed earlier.

2 Literature Survey

Saliency model analyses is the distinctiveness of image regions with respect to their

local neighbourhood (Borji et al. (2015)). Over the past decades, different theories and

methods have been proposed for describing and creating saliency maps. Traditional

salient object detection methods used low-level hand-crafted features such as color,

contrast, and object prior. In the 1990s, Itti et al. (1998) developed the first saliency
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2 Literature Survey

computational model, by implementing local centre-surround operations across multi-

scale image features. As this method was based on re-scaling images few times, which

probably turns into the loss of frequency content. Further Achanta et al. (2008) pro-

posed a salient detection method using low-level features of luminance and color, that

defines pixel saliency, based on the color differences from the average color of the whole

image. Subsequently, Achanta et al. (2009), compares five state-of-the-art salient re-

gion detection methods proposed by Achanta et al. (2008); Harel et al. (2006); Hou and

Zhang (2007); Itti et al. (1998), and Ma and Zhang (2003) from a frequency domain

perspective. In addition to low level features several approaches were proposed by inte-

grating higher-level prior knowledge, such as Yang et al. (2013) instead of considering

the contrast between the salient objects and their surrounding regions, they consider

both foreground and background cues on the bases of rank of the similarity of the image

elements (pixels or regions) with foreground cues or background cues via graph-based

manifold ranking and Shen and Wu (2012) used as the center or semantic prior, for

detecting salient objects.

Stemming from the conventional methods, incorporation of deep neural networks took

saliency object detection to next level and deep learning based methods have yielded

a qualitative leap in performances as compared to state of art models. As in 2015,

Kümmerer et al. (2014) proposed DeepGaze-I , one of the earliest deep learning based

saliency detection approach, it outperforms state-of-the-art models, by increasing the

amount of “information gain explained” to 56% compared to 34% for state of the art

models. “Information gain explained” relates the model’s information gain to the gold

standard information gain(Kümmerer et al. (2016)), here information gain is the infor-

mation difference between baseline and image based saliency-model. DeepGaze-I used

the well known deep network of Krizhevsky et al. (2012) to generate a high-dimensional

feature space. The success of convolutional neural networks (CNN), has brought along
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2 Literature Survey

a revolution for saliency models and the focus was shifted to CNN than handcrafted fea-

tures. To further improve the performace, SALICON proposed by Huang et al. (2015)

and DeepFix proposed by Kruthiventi et al. (2017) used much deep networks instead

of using 5 layer network as Used in DeepGaze-I. DeepFix used VGG-16 as a back-

bone network, while SALICON was proposed with three different networks, AlexNet,

VGG-16, and GoogLeNet networks, even these networks integrated transfer learning

for further advancement in saliency detection. Subsequently, following the achievement

of DeepGaze-I, Kümmerer et al. (2016) proposed DeepGaze-II and also DeepGaze-

IIE(Linardos et al. (2021)). DeepGaze-II used the features from the VGG-19 deep

neural network, trained to identify objects in images.Further by replacing the VGG19

with ResNet50 in DeepGaze II, it improve the performance on saliency prediction to

5%. On the other hand, DeepGaze-IIE proposed by combining multiple backbones in

a principled manner, increased the information gain explained to 93%. On the other

hand, Borji (2019) explores the landscape of the field emphasizing on new deep saliency

models, benchmarks, and datasets. Additionaly, this paper addressed various question

such as, in what ways current models fail, how to remedy them, what can be learned

from cognitive studies of attention, how explicit saliency judgments relate to fixations,

how to conduct fair model comparison, and what are the emerging applications of

saliency models (Borji (2019)). Despite significant progress, visual saliency detection

using visible spectrum camera remains a very challenging task in some complex sce-

narios, such as low illumination, background clutters, as well as bad weathers (rain,

haze, smog, etc.). Li et al. (2018) proposed one of the earliest approaches using fusion

of two modalities for saliency detection in the context of graph learning problem, but

this approach was not time efficient. Further advancement was made by Zhang et al.

(2020) using a intermediate module ADAC (Adjacent Depth Feature Combination) to

integrate the multi-level features of single-modal images. While, Xu et al. (2022) pro-
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3 Theoretical Background

posed the first two-stream encoder-decoder network was designed to fuse the multilevel

feature and as the low-level features contain more detailed saliency cues, and they grad-

ually fade in the encoding process and to mitigate this fading Global Attention(GA)

module was introduced. In the same stream, Tu et al. (2021) introduced multi interac-

tive dual-decoder for the saliency detection which is discussed in details in Chapter 4

and in this work same network approach is adopted for the thermal anomaly detection.

Specifically, in the context of thermal anomaly detection, Zhong et al. (2019) present a

saliency-based District Heating System(DHS) leakage detection approach, an infrared

saliency map is created to enhance the leakage targets, while the pipeline location in-

tegrated from a Geographic Information System (GIS). In 2020, Sledz et al. (2020)

presented thermal anomaly detection for District Heating System(DHS) using image

analysis techniques, in which they utilized TIR images for anomaly detection and lo-

calize their positions using Geographic Information System. Further, Sledz and Heipke

(2021) proposed an update version of anomaly detection approach using multi-modal

image sources, in which thermal anomaly detection was handled using information fu-

sion of saliency maps derived from both, TIR and optical images. To the best of my

knowledge, besides my work nobody has focused on using RGB-T saliency as a tool for

thermal anomaly detection.

3 Theoretical Background

In this study, deep learning-based techniques are adopted for achieving the goal of ther-

mal anomalies detecting and it is the recent adaptation in the context of Saliency Object

Detetction(SOD). Deep learning includes various types of networks such as Recursive

Neural Networks (RvNN), Recurrent Neural Network (RNN), and Convoulutional Neu-

ral Networks(CNN) etc. The structure of neural network was inspired by neural con-
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3 Theoretical Background

nections in human and animal brains. The idea of such networks was evaluated from a

perceptron(Rosenblatt (1963)) a or single neuron(shown in Figure 2), which is a basic

unit of computation in a neural network.

Figure 2: Basic model of Neurons

However, perceptrons are linear classifier and are limited to solving two-class problems.

For more difficult problems, Multi-Layer Perceptrons (MLP)(Werbos (1974)) are used,

which consist of distinct layers of perceptrons. There are mainly three types of layers:

a single input layer, any number of hidden layers and a single output layer. MLP

uses backpropagation as a supervised learning technique, where MLP tries to model

the correlation between the input data and the ground truth by adjusting the weights

and biases, by minimizing the error. Initially, this chapter will enlighten the basic

concepts of neural networks and further it will explore some more relevant terms of

computational neural networks(CNN) training such as loss functions, Optimization

algorithms and Regularization.
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3 Theoretical Background

3.1 Activation Function

The activation function means to producing the input to non-linear output, it gives

the ability to the network to learn extra-complicated things. There are numerous of

activation functions available and the most commonly implemented activation functions

are,

Sigmoid receives real numbers as inputs, and its output ranges from zeros to ones.

Mathematically,

f(x)sigmoid =
1

1 + e−x
(1)

In the classification task, sigmoid outputs can be treated as normalized probabilistic

interpretations,but it causes the gradient to become zero when it saturates at 0 or 1

and results into the gradient vanishing problem.

Rectified Linear Unit (ReLU), simply converts the whole values of the input to

positive numbers and it lower computational load of the network. Occasionally, a few

significant issues may occur during the use of ReLU.

f(x)ReLU = max(0, x) (2)

Leaky ReLU is an alternative for ReLU, it down-scale the negative inputs, this acti-

vation function ensures these inputs are never ignored. Leaky ReLU can be represented

mathematically as,

f(x)LeakyReLU =


x if x>0

αx if x≤0
(3)

where α is a constant value(0 < α < 1), which is used to down-scale the negative inputs.
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3 Theoretical Background

3.2 Loss Function

An error in prediction is computed by means of a loss function, which measures the

deviation between the predicted output and the ground truth. The main aim is to

obtain a set of parameters that minimize the difference between the prediction and the

training dataset. There are various loss functions are available, but it is important to

choose a loss function respective to the problem following an activation function. For

example, In regression problem, where it is required to predict the value of a variable,

the output layer has only one node and a linear activation is applied in the output,

usually mean squared error(MSE) is implemented in this case. Let y are the actual

values and ŷ are the predicted, and mathematically MSE can be given as,

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (4)

On the other hand, In a binary classification problem, the output layer has one node

and a sigmoid activation function(equation 1) is used in the output layer. In this case,

the binary cross entropy(log loss) or logarithmic loss function is most suitable. Binary

cross entropy(BCE) loss Jadon (2020) can be given as,

LBSC(y, ŷ) = −ylog(ŷ) + (1− y)log(1− ŷ) (5)

In a multiple-class classification problem, the output layer has nodes equal to the num-

ber of classes and the activation function used in the output layer is softmax and

cross-entropy loss can be utilized. Other than classes, the type of training data should

also be considered, whethere it is a balanced dataset or not. In these cases, some spe-

cific loss needs to be utilized such as weighted cross entropy, Dice loss(DL), or focal
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3 Theoretical Background

loss etc. Mathematically, dice loss can be give as,

DL = − 2yŷ + 1

y + ŷ + 1
(6)

where, 1 is added in numerator and denominator to ensure that the function is not

undefined in edge case scenarios such as when y = ŷ = 0.

3.3 Optimization Algorithm

An optimizer is a function or an algorithm that modifies the attributes of the neural

network, such as weights and learning rate. Thus, it helps in reducing the overall loss

and improve the performance. The main task of the neural network is to map a set of

inputs to a set of outputs by iteratively adjusting the parameters. It is not possible to

find the perfect set of parameters, since in neural networks there are usually millions of

parameters to solve for, therefore the main focus here is to find the best set of param-

eters by using optimization algorithms. However, choosing the best optimizer depends

upon the application.Usually, the gradient-based learning techniques are appear to be

the standard selection and the network parameters should always update though all

training epochs. The learning rate is defined as the step size of the parameter updat-

ing.

To update the parameters Gradient Descent or gradient-based learning algorithm, it

needs to compute the objective function gradient (slope) by applying a first-order deriva-

tive with respect to the network parameters. Next, the parameter is updated in the

reverse direction of the gradient to reduce the error. The parameter updating process is

performed though network back-propagation, in which the gradient at every neuron is

back-propagated to all neurons in the preceding layer. Backpropagation is the essence of

neural network training. It is the method of fine-tuning the weights of a neural network

12



3 Theoretical Background

based on the error rate obtained in the previous epoch (i.e., iteration). Proper tuning

of the weights allows you to reduce error rates and make the model reliable by increas-

ing its generalization. The Backpropagation algorithm in neural network computes the

gradient of the loss function for a single weight by the chain rule. As suggested by

Alzubaidi et al. (2021) final weight(wijt) with gradient decent can be represented as,

wijt = wijt−1 −∆wijt , (7)

∆wijt = η
∂E

∂wij

(8)

where, the weight in the preceding (t-1) training epoch is denoted wijt−1 . Different

alternatives of the gradient-based learning algorithm are available and commonly em-

ployed, such as Batch Gradient Descent, Mini-batch Gradient Descent, and Stochastic

Gradient Descent(SGD). The learning rate is (step size) and the prediction error is E.

In stochastic gradient descent, instead of taking the whole dataset for each iteration, it

randomly select the batches of data. That means we only take few arbitrary samples

from the dataset and the parameters are updated at each training sample in this tech-

nique. For a large-sized training dataset, this technique is more memory-effective and

faster.

3.4 Convolutional Neural Network

Convolutional Neural Network (CNN) is the most famous and commonly employed al-

gorithm in a range of different fields, including computer vision. A commonly used type

of CNN, which is similar to the multi-layer perceptron (MLP), consists of numerous con-

volution layers preceding sub-sampling (pooling) layers, while the ending layers are FC

layers. An example of CNN architecture for image classification is illustrated in figure 3.
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Figure 3: An example of CNN architecture for image classification with different
layers (Alzubaidi et al. (2021))

Convolutional layer is the most significant component of CNN architecture. It con-

sists of a collection of convolutional filters (kernels). The input image, is convolved

with these filters using 2-dimensional convolution to generate the output feature map.

Next, in ReLu layer the non-linearity or an activation function implemented to the

convolution-layer output. Nonlinear activation functions are preferred as they allow

the nodes to learn more complex structures in the data.

Pooling layer is primarily responsible for subsampling feature maps. In other words,

this approach shrinks large-size feature maps to create smaller feature maps, but through-

out the pooling stage, the majority of dominant information is maintained. Several

types of pooling methods are available for utilization in various pooling layers such as

average pooling, min pooling, max pooling, global average pooling, and global max

pooling etc. In Fully Connected (FC) layer each neuron in this layer is connected to

all neurons in the previous layer. It is the same as a traditional multilayer perceptron

neural network (MLP). The flattened matrix goes through a fully connected layer to

classify the images.
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3.5 VGG16 Architecture

VGG16 is a one of the most commonly used convolutional neural network model pro-

posed by Simonyan and Zisserman (2015). In this paper, VGG(Visual Geometry Group)

was proposed with different depths(layers), in which VGG16 refers to 16 layers that have

weights. In VGG16 there are thirteen convolutional layers, five Max Pooling layers, and

three Dense layers which sum up to 21 layers but it has only sixteen weight layers i.e.,

learnable parameters layer. The most unique feature about VGG16 is that instead of

using a large number of hyperparameters, they used convolution layers of 2x2 filter with

stride 1 and padding and maxpool layers of 2x3 filter with stride 2. Throughout the

architecture, convolution and max pool layers are consistently arranged.

Figure 4: Architecture of VGG16

The overall structure includes 5 sets of convolutional layers, Conv-1 Layer has 64 number

of filters, Conv-2 has 128 filters, Conv-3 has 256 filters, Conv 4 and Conv 5 has 512

filters. At the end of convolution layers, three Fully-Connected (FC) layers follow a

stack of convolutional layers.

3.6 Evaluation Metrics

An evaluation metric is used to quantifies the performance of a predictive model, the

most commonly used metrics are described through Chapters 3.6.1 to 3.6.4.
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3.6.1 Accuracy

Accuracy also known as Rand index or pixel accuracy, is one or even the most known

evaluation metric. It is defined as the number of correct predictions, consisting correct

positive and negative predictions, compared to the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where,

TP: True Positive, TN:True Negative, FP: False Positive, FN:False Negative

3.6.2 Intersection over Union(IoU)

The Intersection-over-Union (IoU), also known as Jaccard index or Jaccard similarity

coefficient. IoU is essentially a method to quantify the percent overlap between the

target mask and our prediction output. In general, the IoU metric measures the number

of pixels common between the target and prediction masks divided by the total number

of pixels present across both masks.

IoU =
GT ∩ S
GT ∪ S

(10)

Where GT ∩ S represents the intersection between ground truth(GT) and predicted

saliency map(S), while GT ∪ S represents the union of both. In terms of pixel-wise

predictions IoU canbe expressed as,

IoU =
TP

TP + FP + FN
(11)
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3.6.3 Precision & Recall

The Precision(P) is the fraction of True Positive elements divided by the total number

of positively predicted units.

P =
TP

TP + FP
(12)

Precision is the indicator of the the quality of the positive predictions made by the

model.On the other hand, recall(R)measures how many of the actual positive instances

we were able to correctly predict (or recall). Mathematically, recall(R) canbe expressed

as,

R =
TP

TP + FN
(13)

3.6.4 F1 Score

F1 score also know as dice score, can also be used to evaluate the model, it combines

both prediction and recall by taking their harmonic mean.

F1 =
2.P recision.Recall

Precision+Recall
=

2TP

2TP + FP + FN
(14)

F1 score gives same weightage to precision and recall, while Fβ(see equation 15) can

be used to give additional weightage to recall or precision.If β is selected below 1, it

will give more weightage to recall and if it is more than 1 it will prioritise recall. The

selection of β depends on the task. For example, if true positive are more important

and we don’t want to miss any of them then β should be greater than 1, usually for

recall prioritization β = 2 is selected.

Fβ =
(1 + β2).P recision.Recall

β2.P recision+Recall
(15)
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4 Multi-Interactive Dual-Decoder(MIDD)

4 Multi-Interactive Dual-Decoder(MIDD)

Early SOD methods work well in informative visible images, but they can’t deal with the

images with deficiency, semantic ambiguity or small objects. Basically, SOD tasks are

used to differentiate between foreground and background. But Tu et al. (2021) shows

that MIDD withstands with different challenges by combining two modalties(RGB and

TIR), such as big salient object (BSO), bad weather (BW), cross image boundary

(CIB), image clutter (IC), low illumination (LI), multiple salient object (MSO), small

salient object (SSO), out of focus (OF), center bias (CB), similar appearance (SA), and

thermal crossover (TC).

Figure 5: Framework of MIDD Network. RGB- encoders are painted in green and the
thermal-decoder are painted in red.(Tu et al. (2021))

Figure 5 shows the MIDD network proposed by Tu et al. (2021). In order to extract

features from RGB and thermal infrared images, this network uses two independent

encoders. In addition, the global information(GI) module is prosposed to combine the

highest-level features from two modalities(RGB and thermal) to find the global features

that can be used to locate salient regions accurately using various receptive fields.

18



4 Multi-Interactive Dual-Decoder(MIDD)

To fuse both the modalties a Multi-Interaction Block (MIB) is designed. Following

subsections will provide specifics on each component of this network.

4.1 Encoder Network

In MIDD, VGG16 (Chapter 3.5) is proposed to use as an encoder, since using the more

deep network had not shown any significant improvement in the performance. Further,

Tu et al. (2021) had done an extensive research using different encoders and decided

to stick to VGG16, because choosing deep networks like ResNet50 did not make any

noticeable difference. So, to keep the network simple and as suggested by Tu et al.

(2021), VGG16 is used as an encoder to extract hierarchical features from the input

RGB-T pairs and the last pooling layer and two fully connected layers in VGG16 are

removed. The features from the shallowest layer(R1 and T1) of the encoder are also not

utilized, because these features contains high spatial information rather than semantic

information, which are not conductive for saliency detection. The remaining features

T2-T5 and R2-R5 extracted from RGB and TIR images,respectively, are considered for

global information and decoder module.

4.2 Global Information Module

The Global Information(GI) module extract the coattention feature from the encoders.

Global context, output from GI, assists to locate the regions in RGB-T Salient Object

Detection(SOD) tasks by combining the highest-level features from two modalities. GI

module is the modified version of Convolutional Block Attention Module (CBAM)(Woo

et al. (2018)). As shown in figure 6, Channel Attention(CA) mechanism is used for

selective recombination of the two features and is applied in the same way as proposed

in CBAM(Woo et al. (2018)). while ,the Pyramid Pooling Module (PPM)(Zhao and

Wu (2019)) embed into GI module for capturing multiple region contexts, instead of

19



4 Multi-Interactive Dual-Decoder(MIDD)

using Spatial Attention Module(SAM) used in CBAM and the multiple perceptrons in

CBAM are replaced by 1× 1 convolution layer.

GI module take top encoded features(R5 and T5) of RGB and TIR modalities as an

input and then concatenate them in a channel-wise way. Then CA mechanism is used

for combining these features. Mathematically, CA can be written as,

CA = σ(f1(AvgPooling(X)) + f1(MaxPooling(X))) ∗X (16)

Where f1, AvgPooling and MaxPooling are respectively represent 1 × 1 convolution

layer, global average pooling and global max pooling. Top encoded features(R5,T5) are

channel-wise concatenated and used as input as X. The σis sigmoid function that maps

the value to the range of 0 to 1.

Figure 6: Global Information module(Tu et al. (2021))

The Conv block in GI module(figure 6) is the combination of convolution layer, batch

normalization (Ioffe and Szegedy (2015)) and Relu (Nair and Hinton (2010)), and adopt

this block to decrease the channel number to 256. The output from CA is processed
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through this Conv block as,

F = Conv(CA([R5, T5])) (17)

(a) RGB image (b) TIR image (c) GI outputs

Figure 7: Visualisation of global context,where column (a) represents rgb image,(b)
represents TIR image and (c), represents GI outputs

Further F (equation 17) is used as an input for the PPM part in GI, which is done

using four operations of adaptive global max pooling with sizes of n=[1, 5, 9, 13],

subsequently, these outputs go through four convolution blocks and up-sampling(UP).

F ′i = UP (Conv(MaxPoolingn(F ))) (18)

G = Conv([F ′i ]) (19)
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Finally, again a convolutional layer(equation 19) is used to the concatenated features

and generate the reconstructed features (G) which contain the information from the

global receptive field. Figure 7 visualize the global context, in the column (c), it shows

randomly chosen 9 channels out of 512 channels of global context. Visualisation of the

global context(Figure 7) shows how it helps to guide the decoder, as in shown outputs

it shows various feature, some of them only shows the outline (borders) of the objects,

some give only impression to the background, while some of them only highlight the

objects. So, for each channel global context gives some specific information to the

decoder, which further fused with RGB and TIR modalities using multi-interactive

block(MIB).

4.3 Dual-Decoder Network

As shown in figure 5, MIDD network uses individual decoder for each RGB and ther-

mal modalities. Multi-Interactive Block(MIB) is designed for getting the interactions

between both modalities and embed it into the decoder in a cascade way, which can

achieve the interactions of dual modalities, hierarchical features and global context.

Figure 8: Multi-Interactive Block(MIB)(Tu et al. (2021))
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Figure 8 shows the architecture of MIB, and it shows that MIB takes three fea-

tures(Local detail features, Modalities Integrated features and Global context) as an

input. Local detail features(A) are the inputs from the respective RGB and T encoder

layer,

Ai = Conv(CA(Zi)), i = 2, 3, 4 (20)

Where, Zi are the local features for Ri and Ti, CA is used to emphasize the more useful

features, and then decrease the number of channels to 128. Subsequently, Modalities

Integrated features(M) are the concatenated outputs(CMIB) from the previous MIB

output from both modalities,

Mi = Conv(UP (CA(CMIBi
))), i = 2, 3, 4 (21)

Here, up-sampling(UP) is needed to reconstruct the features to match with the size with

Ai and adopt a convolutional block to reduce the number of channels of reconstructed

features to 128. Last input to MIB is Global context(G),

G′i = Conv(UP (G)), i = 2, 3, 4 (22)

Same as last input(Mi), GI needs to be upsampled to match the size with Ai and

convolutional block to decrease the number of channels to 128. At the end, after pro-

cessing all these three inputs are summed up and reconstructed fused features through

a convolutional block as the output of MIB,

MIBi = Conv(Ai +Mi +G′), i = 2, 3, 4 (23)
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Figure 9: Visualisation of MIB3, where first row represents the output for rgb,and
second row represents thermal

Finally, final features are fused from MIBs in dual-decoder by the concatenation and

a simple channel-wise attention to predict the final saliency map(Sf ). Figure 9 shows

the randomly selected outputs for MIB3(last MIB in the decoder) for individual RGB

and TIR outputs. Similar to global context visualization, MIB3 also shows specific

information in each channel output, these channel include the visualization of the out-

line(borders) of the objects, some give only impression to the background, while some of

them only highlight the objects. But if we compare visualization of global context(figure

7) and MIB outputs (figure 9), MIB output are much rich in the information as it shows
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much clear object and background information, because MIB3 fused the information

of global context and shallower layers from RGB and TIR encoders.

4.4 Loss Function

In MIDD, total loss Lt (equation 29) is the calculated as a combined loss of four

losses,final loss Lf (equation 24), global loss Lg (equation 26), decoder loss Ld (equation

25), and smoothing loss Ls (equation 27). The Binary Cross Entropy (BCE) loss is used

in this approach for calculating the losses, because in MIDD whole problem is consid-

ered as binary classification for differentiating foreground objects with respect to the

background. The final loss Lf can be calculated comparing the predicted output(S={Si

|i = 1, ..., T}) from the MIDD network and ground truth(GT={GTi |i = 1, ..., T}) and

formulated as,

Lf = −
T∑
i=1

(GTi ∗ log(Si) + (1−GTi) ∗ log(1− Si)) (24)

While the individual predicted output from each decoder(SRGB and ST ) are used to

calculate the decoder loss as,

Ld = BCE(SRGB, GT ) +BCE(ST , GT ) (25)

To make the global information module be learned better, saliency map Sg from the

global context(G) is also predicted. First size of GT is down-sampled to the size of

global context(G). Then, a BCE loss is used,

Lg = −
Tg∑
i=1

(GTgi ∗ log(Sgi) + (1−GTgi) ∗ log(1− Sgi)) (26)
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The output(global context) from the from GI, consists 512 channels with reduced size of

factor 16 as compared to input size of images, instead of a single channel channel with

orignal GT size. So, to find the loss first it reduced to the single channel output(Sg)

using the 1 × 1 convolution, on the other hand, the spatial dimensions of the binarised

GT(GTb) are reduced by the factor of 16 using nearest interpolation to match with the

dimensions of (Sg). In equation 26, Tg is the number of total pixels of Sg. Furthermore,

the smoothness loss proposed by Godard et al. (2017) is used as a constraint to achieve

region consistency and obtain clearer edges. Smoothness loss is calculated as,

Ls =
T∑
i=1

∑
d ∈←−x ,←−y

ψ(|∂dSfi |e−α|∂dYi|) (27)

ψ(s) =
√
s2 + 1e−6 (28)

where ∂d represents the partial derivatives on ←−x and ←−y directions and α = 10 as Ye

et al. (2021) does. Finally, all these losses are summed up to get the total loss as,

Lt = Lf + Ld + Lg + βLs (29)

where, β empirically set to 0.5 to balance the effect of smoothness, and further details

can be found in Tu et al. (2021) loss.

4.5 Thermal Anomaly Detection Based on MIDD

In MIDD, the entire problem was viewed as a binary classification (Salient object vs

background), but, in this work, Loss function for MIDD is modified to tackle multiclass

problem, so, instead of using BCE, Generalized DiceLoss (GDL) proposed by Sudre

et al. (2017) is utilized for Ld and Lf . As Dice loss is commonly used for unbalanced

datasets and the dataset used in this work is also highly unbalanced(discussed in Chap-

26



4 Multi-Interactive Dual-Decoder(MIDD)

ter 5.1). But dice loss can be overly sensitive to incorrect classifications of small objects,

i.e., mislabelling a few pixels of a small object would produce a large loss. So, instead

of dice loss, Generaliszed Dice Loss (GDL) is consideed is this work. GDL helps to mit-

igates the limitation of dice loss by considering the weighting strategy for each class.

On the other hand, for global loss (Lg) binary dice loss is considered. The reason behind

using a binary loss for Lg is that, as Global Information(GI) module helps to guide the

decoder in terms of locating the salient information. So, the output from GI, global

context gives this salient information irrespective to the class of the region. Due to

this reason binary loss is considered for Lg. To do so, first global context is reduced to

single channel using 1 × 1 convolution and then, GT is down-sampled by factor of 16

as compared to input size to match with size of global context(G). This down-sampled

GT further reduced to binary class dataset, in which all the objects (from classes AN,

HO and CO) represents the foreground, while BG is considered as background. So, the

global loss can be calculated as,

Lg = DL2(Sg, GTb) (30)

where (GTb) is binarised ground truth and Binary Diceloss(DL2) canbe calculated as,

DL2 = 1− 2

∑N
i=1 yip̂i + ϵ∑N

i=1 yi +
∑N

i=1 p̂i + ϵ
(31)

Where y and p̂ represent the GTb and predicted pixels, respectively, and sum runs over

all the pixels from 1 to N(total number of pixels). To make it a decreasing function,

it is subtracted from 1 and to handle the scenarios as p̂=y=0, ϵ = 1e−14 is added to

both numerator and denominator.

Dual decoders give us two saliency maps for RGB and T decoder, and loss for the
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decoder canbe calculated as,

Ld =
GDL(SRGB, GT ) +GDL(ST , GT )

2
(32)

Generalized Dice loss(GDL) is used as proposed by Sudre et al. (2017),

GDL = 1− 2

∑L
n=1wn

∑N
i=1 ynip̂ni + ϵ∑L

n=1wn

∑N
i=1(yni + p̂ni) + ϵ

(33)

Where wn (Equation 34) is the assigned weight to each class(n represents the class

number), is calculated using weighting strategies called as Inverse Frequency Weighting

as proposed by Sudre et al. (2017). The weights are inversely proportional to the sum

of the pixels for each batch of the respective label.

wn =
1

(
∑N

i=1 yni)
2

(34)

In equation 33, n represents the number of class (wn = {wn|n = 1, ..., L}), in our

case L=4,as we have 4 labels(BG,AN, HO and CO). Figure 10 shows, how weights

are distributed for each class in each batch for the training process, where median of

each class weight shown with an ’orange line’, box shows the actual distribution and

’o’ shows the outliers. As it can be clearly seen weights for the background(BG) are

extremely low as compared to rest of the classes and remained in very skewed range

under 10−10, while weights for AN and HO class ranges between a wide range. As

these weights(equation 34) depend upon the presence of each class, if a class have high

number of pixels, weights will be low or vice-versa. Outliers are basically small weight

values as compared to the median, it shows if a batch have very small amount of pixels

of a specific class.
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Figure 10: weight(wn) distribution for each class

The final saliency loss(Sf ) can be calculated as,

Lf = GDL(Sf , GT ) (35)

where, total loss can be calculated using equations 30, 32 and 35, as,

Ltotal =
Lg + Ld + Lf

3
(36)

As compared to the original loss(equation 29) used in MIDD implementation, softness

loss(equation 27) is dropped in the loss(equation 36) used in this work. The reason

behind this is that dataset used in this work is created from co-registered orthomosaic

images(RGB and TIR) with the patch size of 192 × 192, but the co-registration of

the RGB and TIR images in orthomosaic may consist some errors, especially around

the borders of the objects(further details can be found in Chapter 5.1). So, due to

some inaccuracy around the borders of the objects use softness loss may worsen the
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situation. Moreover, there are only a few approaches are proposed to predict fine object

boundaries, as proposed by Xu et al. (2022).

5 Experimental Setup

MIDD is implemented based on Pytorch and trained on Google colaboratory with Tesla-

16GB GPU, using the stochastic gradient descent (SGD) to optimize parameters with

the weight decay of 5e-4 and the momentum of 0.9 and trained it for 50 epochs with

batch size of 4. For the inputs, image size of 192 x 192 is considered for both RGB and

TIR.

5.1 Dataset

The data utilized in this study was acquired by Sledz et al. (2020). Specifically, this

dataset includes 6772 pairs of RGB-T images which are prepared from the orthomosaic

of TIR and RGB with the patch size of 192 x 192. But, the registration process

has limitations, which result in errors. Further detail related to data acquisition and

photogrammetric processing can be found in Sledz et al. (2020). Addition to the pairs

of RGB-T, round truth(GT) dataset is also considered. Classes(Ci) in the GT can be

defined with frame of discernment(Θ),

Θ = {C1, C2, ....CN} 1 ≤ i ≤ N (37)

In the current work, N is equal to four and Θ is described by:

• BG: class that represents the background candidates

• AN: class that represents the thermal anomalies
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• HO: class that represents the Hot objects

• CO: class that represents the Cold objects

This dataset contains different type of challenges such as different size of objects(big

salient objects(BSO) & small salient objects(SSO)), multiple salient objects(MSO),

clustered objects(one class consists another) etc. As per our main objective the most

important challenge is to tackle with thermal anomalies.

Class combination Overall count Training count

BG 502 0

BG and HO 534 371

BG and CO 1205 824

BG and AN 136 91

BG and HO and CO 1540 1061

BG and HO and AN 321 217

BG and CO and AN 830 566

BG and HO and CO and AN 1704 1070

All other class combinations 0 0

Total 6772 4200

Table 1: Count of different Class combinations in Ground-truth(GT) dataset

Table 1 shows the number of images consisting objects from different classes. As it

can be seen from in the second column (overall count) of table 1 , only 2991 images

include an anomaly class out of total 6772 images. Subsequently, table 2 shows the

number of pixels for each class in the whole dataset, and it clearly depicts that the size

(number of pixels) of the BG class as compared to others is unbalanced, as it alone

contains the 93 % of the total labelled pixels. Firstly, to mitigate this problem, the
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training dataset is manually selected i.e. the appearance of the BG is down-sampled.

For this purpose, images are sorted with respect to the number of pixels acquired by

BG-class, with the top 10 percent(with the high number of BG-pixels) of images are

eliminated and rest of the randomly select 70% data for training and rest of the data

used for tesing and validation. This strategy helped to reduce the acquisition of BG

class pixels by 4% for training as shown in table 2 and table 1 training counts(column 3)

in shows the number of images with different combinations used for training. In total,

training dataset contains 4200 image pairs, while, test and validation are performed on

the remaining image pairs using 0.5:0.5 ratio.

Class Total Pixel count Training Pixel count

Background(BG) 231491270(92.73%) 137329392(88.70%)

Anomalies(AN) 4316206(1.73%) 4245755(2.74%)

Hot Objects(HO) 3529607(1.41%) 3208290(2.07%)

Cold Objects(CO) 10305925(4.13%) 10045363(6.49%)

Table 2: Number of labeled pixels for each class in GT

This down-sampling approach did not significantly reduce the acquisition of BG class,

but it helped to increase the possession of each class(AN, HO and CO) by approxi-

mately 1.5 times in the training dataset as compared to the whole dataset. However,

evaluation of training and test process shows that BG class is dominating the results,

further detailed discussion can be found in Chapter 5.2(Training & Validation) and in

Chapter 5.3 (Results).

32



5 Experimental Setup

5.2 Training & Validation

As discussed above in chapter 5.1, the model is trained with 4200 pairs of images for

50 epochs and validation is performed on 900 images. Initially, to analyse the training

and validation process accuracy metric is employed, the plot for both training and

validation is shown in Figure 11a. From this plot, it can be clearly depicted that

accuracy increases rapidly above 90%, and after about 10th epochs, accuracy remains

stable around 95-98% over the next epochs.

(a) Overall accuracy (b) Loss

Figure 11: Overall accuracy and loss for training and validation

The reason behind this is that, as we discussed in chapter 5.1 the ratio of background

pixels is 88% in training dataset, so, this class can alone outweighs the overall accuracy.

However, it is not a good evaluation metric for analysing unbalance dataset because

one class can outweigh the overall performance. As region of interest for this work is

thermal anomaly, which takes only a small percentage(∼ 2%) of pixels in the image,

whereas the ∼ 88% image is all annotated as background. Because of the true negative

inclusion, the accuracy metric will always result in an illegitimate high scoring. Even

predicting the segmentation of an entire image as background class, accuracy scores are

often higher around 90% or even sometime close to 100%.
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Subsequently, Figure 11b shows the loss plot for training and validation processes, the

training loss indicates how well the model is fitting the training data, while the valida-

tion loss indicates how well the model fits new data. Despite the fact that validation

loss is slightly higher than training loss, but Figure 11b shows validation loss follows the

training loss for the whole training process, and it shows no sign of under or over-fitting,

so it shows that model is learning effectively. As discussed in chapter 4.4, generalized

dice loss is used for calculating the loss, which means it gives high weight to the classes

which have small size, as in this work the size thermal anomaly class is very small as

compared to background class, so with respect to the equation 34, much higher weight

will be assigned to thermal anomaly class as compared to background class .

(a) Total loss vs decoders loss(mean) (b) Individual IoU

Figure 12: Loss and IoU comparision

For better understanding about the learning process of the individual decoder outputs,

loss for the each decoder is also analysed as shown in figure 12a the plot of the losses

for RGB and thermal decoders(for the both parts of the equation 25). It shows decoder

loss and total loss follows the same trend and after the initial 10 epochs, both remained

indiscriminable from each others. Further evaluation is done using IoU score (Intersec-

tion over Union) and Fβ score. Both of these metrics are used for class-wise evaluation.
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Figure 12b shows the plot of intersection over union, calculated with equation 11 for

each class, it shows BG class outperforms all classes as it reaches above 0.90 just in few

epochs while rest of the classes just managed to touch 0.80 after about 30 epochs and

are remained stable around this score for the rest of the epochs.

Figure 13: Individual F2-Score

Figure 13 shows the F2 score for the training with respect to each class using equation

(15), where β2=2 is used to emphasizes the importance of recall as discussed in chapter

3.6.4. Motive behind this is that, this work is focused on thermal anomalies(AN) detec-

tion and cost of missing AN is consider higher than predicting preciously, i.e recall(R)

utilizes(equation 13) false negatives(FN) instead of false positives as precision(P) do.

Same as IoU score, BG class again outweighs all other classes in F2 score, for BG class

F2 score is nearly hitting 1.0, while F2 score for all other classes(AN,HO and CO) is

ranging approximately between 0.80 to 0.90.
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5.3 Results

After training the model, testing is performed on the set of 900 images. Below table

5 shows the confusion matrix for tested images and it depicts that all the four classes

achieves true predictions above 80%, but if we compare the performance of BG class,

same as training it again outperforming all the classes.

BG AN HO CO

BG 29590230 (98.75%) 72308 (0.24%) 75193 (0.25%) 227102 (0.76%)

AN 89584 (12.12%) 643075 (87.01%) 819 (0.11%) 5633 (0.76%)

HO 72912 (12.04%) 507 (0.08%) 513595 (84.81%) 18580 (3.07%)

CO 193384 (10.35%) 6106 (0.33%) 6793 (0.36%) 1661779(88.96%)

Table 3: Confusion matrix, where vertical axis shows true labels and horizontal axis
shows predicted results, brackets show percentages of each prediction

Moreover, if we closely analyze the confusion matrix then it shows the majority of failed

predictions(false predictions) for AN, HO and CO gone to BG class, as around 10-12%

of each class labeled as BG. Below figure 14 and 15 show some of the best and worst

predictions. Figure 14 shows the top 4 results, with input images(RGB and TIR),

ground truth(GT), prediction and the differnece between GT and prediction as well as

the outputs from both decoders(RGB and TIR).

In Figure 14 and Figure 15, row (e) shows the binary difference between GT and

predictions, where 0 (black color) represents the correct class prediction, and 1 (white

color) represents the incorrect one. Both of these shows that generally predictions are

not accurate around the borders of the objects, as nearly all the difference images(row

e) show an outline around the objects. For this outcome there are two reasons, first

used ground truth dataset is prepared using co-registered RGB and TIR orthomosaic
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images, which consists error because of the registration and secondly, specifically no

precaution was implemented to preserve the edges of the objects. However, this work

is intended to accomplish a specific objective, the primary objective of our analysis is

to detect thermal anomalies on the object level but not on the pixel level. In the event,

if predictions are getting an overlap of 70% with GT for thermal anomalies, that is

enough for locating anomalies.

For the failed predictions in the figure 15, most of these cases arise for the very tiny

objects, as discussed before predictions are not accurate enough around the borders.

For instance, if a prediction for a small object losses just a few pixels around the border,

the recall will be very low as it will lose high number of true predictions as compared to

total size of the ground truth, as shown in 3rd image(column 3) in figure 15. Secondly,

in figure 15, 2nd image(column 2) shows some good prediction with respect to the each

label, but if we closely analyze thermal anomaly(AN, yellow color) prediction it shows

some discontinuity in the outcome, because very thin parts of the object are eroded.

Predictions are also somehow failed to differentiate between two objects of same class

if both the objects are placed very close to each other as shown in 4rd image(column

4) in figure 15 areas of two different objects are merged with each others. Further, in

figure 15, 1st image (column 1), it was failed to maintain the complexity of the object,

as a result complex object is dilated. Moreover, small details can also not be preserved

as shown in 1st image.
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Figure 14: Successful predictions based on Recall value
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Figure 15: Failed predictions based on visual analyses
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(a) occurrences of training objects

(b) occurrences of test objects

Figure 16: occurrences of training and test objects with respect to the size, numbers
on the bars are the counts of objects of their respective class and size
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So far, the training and testing have been evaluated based on pixel-wise analysis but as

discussed before we are interested in the thermal anomalies on object level not on pixel

level, so now instead of pixels evaluation, region based evaluation will be adopted. The

used dataset have high occurrence of small sized objects(area < 250 pixels) as shown

in figure 16, further as discussed in chapter 5.1, 10% of the total images were dropped

from the whole dataset which have very high number of BG pixels or had very tiny

objects and this approach of dropping 10% of images did not affected the number of

objects. Figure 16a and figure 16b show the occurrences of the objects for training and

test,respectively. The y-axis shows the ratio for each class for each object size segment

individually. In addition, numeric values on bars shows the number of objects for each

object size segment.

Class:1(AN) Class:2 (CO) Class:3 (HO)

Precision(pixel) 87.73% 88.39% 83.41%

Precision(object) 77.02% 76.91% 75.06%

Recall(pixel) 85.76% 85.36% 85.28%

Recall(object) 76.16% 80.35% 72.45%

Table 4: Precision and recall based on pixel and object analyses

For the object-wise evaluation, recall and precision are utilized as main metrics. Table

4 shows the comparison of the object vs pixel evaluation with respect to each class.

But these results also include the small objects as shown in figure 16a, so, these minor

object affects the overall outcome. In this table it can be noted that, the precision and

recall for the objects is much lower(approximately by 10%) as compared to the pixel

level. The reason behind such a behaviour is that, the test dataset contains very high

number of small objects(> 250) as shown in Figure 16b, so if the prediction fails to

predict only few pixels for a small object recall will be very low, On the other hand for
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the large objects it would not not affect much.To get the more clear view, below figure

17 shows how the recall is affected by the size of objects. As it can be seen that for the

very tiny objects recall is low, and as the object size increases recall also gets higher.

(a) for all classes (b) For thermal anomaly class

Figure 17: Recall vs Object size

As per the objective of this work, recalling objects with the overlap of more than 70%

can be considered as a success, as in this work main interest is to locate anomalies

instead of predicting them precisely. Figure 17a shows the recall vs object size for

the all classes, it depicts that if the objects below 250 are discarded(yellow points),

and setting a threshold for 70%, it shows that 95%(green points) of the objects are lies

above this threshold. Further, as per the main objective of this work thermal anomalies

are also evaluated solely, figure 17b shows the recall for the AN class in comparison to

object size, it shows if the objects below area of 250 are neglected, 90% of the objects

crosses the threshold limit. Further, figure 18 shows some of the events which have

recall below 50% for thermal anomalies(AN). As it is clear from the visual inspection

of figure 18 that most of these cases(below 50%) occurs, when an object lies along the

edge or corner of the image. The reason for this behaviour is that, for the thermal

anomaly detection it needs to be salient from all directions, but around the corners or

along the edges it misses the surrounding from these sides.
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Figure 18: Thermal anomalies with less than 50% Recall for MIDD
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6 Modified MIDD

MIDD (Tu et al. (2021)) performed as expected on the given dataset and objective, but

if we analyse the outputs from the both decoders, then it arise attention, as both the

decoders gives approximately same output maps. To validate this point, let’s consider

top outcomes from MIDD with individual outputs of both(RGB and TIR) decoders

(figure 19).

In figure 19, row (e) shows the binary difference between both RGB and TIR decoder,

where 0 (black color) represents correct class prediction, 1 (white color) represents

incorrect one. This difference do not shows any significant disparities, it only shows

negligible variations around the predicted objects and difference(denoted by diff on

Figure 19) shows very minute values. So, in this experiment we modified the MIDD

network, in which instead of using two separate decoders we will use a single decoder in

order to simplify the overall architecture. To do so, decoder and the multi-interactive

block (MIB) are modified, while the encoder and global information (GI) are kept

same as MIDD, i.e. VGG16 is used for the encoder. In overall, a simplified network

is proposed, which reduces the size of decoder network by half, as it only uses three

Modified MIBs(MMIB), unlike MIDD which uses six MIBs(3 for each decoder).

44



6 Modified MIDD

Figure 19: Differnce between RGB-TIR decoders,(a)RGB Image (b) TIR image (c)
RGB-Decoder(d) Thermal-Decoder (e) difference between RGB decoder and TIR

Decoder outputs
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Overall architecture of the proposed network is shown below in figure 20, which take

pair of RGB-TIR images as inputs. Then, from both of these inputs, features are

extracted using VGG16 as backbone network. Same as MIDD, last convolution is used

to get global context using global information module (shown in figure 6), and same GI

module was adoted as disussed in chapter 4.2. In figure 20,marked with R1-R5(yellow)

shows extracted RGB features, T1- T5(green) shows TIR encoded features, GI is global

information(red) and multi-interactive block is marked with MMIB(orange).

Figure 20: Modified MIDD

As discussed in chapter 4.2, GI module take top encoded features(R5 and T5) of RGB

and thermal modalities as an input and then concatenate them in a channel-wise way.

Considering all the parameters as Global Information module as in MIDD(chapter 4.2),

mathematically, global context(G) from the GI can be written same as equation 19,

G = Conv([F ′i ]) (38)
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6.1 Modified Decoder Network

Modified MIDD network uses a single decoder instead of using individual decoder for

each RGB and thermal modalities as shown in figure 20. For the interactions be-

tween both modalities modified multi-interactive block(MMIB) is designed to achieve

the interactions of dual modalities, hierarchical features of MIBB and global contexts.

Figure 21 shows the architecture of MIB, and it shows that MMIB takes four input fea-

tures(RGB and TIR features, Modalities Integrated features and Global context). The

main idea of using MMIB here is to use direct interaction of both modalities instead of

first going through separate MIBs and then interact.

Figure 21: Modified MIB

Initially,features from both RGB (Rj)and TIR(Tj)modalities are taken as the inputs

from the respective RGB and T encoder layer,

R1i = Conv(CA(Rj)), i = 2, 3, 4 and j = 4, 3, 2 (39)

R2i = Conv(CA(Tj)), i = 2, 3, 4 and j = 4, 3, 2 (40)
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Where, channel attention (CA) is used to emphasize the more useful features, and

then decrease the number of channels to 128. Subsequently, Modalities Integrated

features(M) are the outputs from the previous MMIB,

Mi = Conv(UP (CA(MIBi))), i = 2, 3, 4 (41)

Here, up-sampling the reconstructed features is needed to match the size with Rj and

adopt a convolutional block to reduce the number of channels of reconstructed features

to 128. Global context(G) is taken as a final input to MMIB,

G′i = Conv(UP (G)), i = 2, 3, 4 (42)

To match the size with R1i, G also needs to be upsampled and convolution block to

decrease the number of channels to 128. At the end, after processing all these three

inputs are summed up and reconstructed fused features through a convolution block as

the output of MIB,

MIBi = Conv(R1i +R2i +Mi +G′), i = 2, 3, 4 (43)

In the Decoder network, output from the last MMIB(MMIB4) used to get final saliency

map(Sf ) after processing it through CA and reducing the channels to 4 using a 2D

convolution layer.

Sf = Conv2D(CA(MIB4)) (44)
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6.2 Adopted Loss Function

Adopting generalized dice loss(GDL) and dice loss(DL) as discussed in chapter 4.4,

here only final and global loss are considered, this network don’t have any intermediate

outputs unlike MIDD which also considers the individual losses from both decoders.

So, using binary dice loss (equation 31)the global loss(Lg) can be calculated as,

Lg = DL2(Sg, GTb) (45)

Sg is the global context reduced to single channel and GTb is the binarised ground truth.

Final saliency loss is,

Lf = GDL(Sf , GT ) (46)

And the total loss(Ltotal) can be calculated using Lg and Lf ,

Ltotal =
Lg + Lf

2
(47)

6.3 Modified MIDD Training & Validation

For comparing and analysing the results, the modified model is also trained with same

4200 pairs of images and validation is performed on 900 images for 50 epochs as done

in MIDD(Chapter 5.2). Again, to analyse the training and validation process for the

initial stage accuracy metric is employed, the plot for both training and validation is

shown in figure 22a. Similar to MIDD, accuracy reaches accuracy increases rapidly

above 90% in just 10 epochs, and after around 25th epochs, accuracy remains stable

between 95-98% over the remaining training process. While, the loss for the training
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and validation(Figure 22b) shows a gap as validation is the set of unseen data, but still

both the losses are moving along each other, so there is no sign of over-fitting.

(a) Overall accuracy (b) Loss

Figure 22: Overall accuracy and loss for training and validation

To analyse how this modified MIDD network behaves on different classes, evaluation is

done using IoU score (Intersection over Union) and Fβ score. Both of these metrics are

used for class-wise evaluation.

(a) IoU score (b) Individual F2-Score

Figure 23: IoU and F2 score

Figure 23a shows the individual IoU score for each class, it shows the dominance of the

BG class with just under 1 while other classes hardly touches 0.80. Similarly, figure 23
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shows the F2 score with respect to the each class, for the initial few epochs BG was

trailing, with a rapid gain BG again shows it’s dominance.Figure 23b and 23a show the

F2 score and IoU for the training with respect to each class. As per the training, both

of these plot shows compatible results to MIDD but this network is again biased to BG

class as per the pixel level analyses.

6.4 Modified MIDD Results

After training the model, testing is performed on the set of 900 images. Below table

5 shows the confusion matrix for tested images and it depicts that all the four classes

archives true predictions above 85%.

BG AN HO CO

BG 98.39% 0.36% 0.39% 0.85%

AN 11.69% 87.53% 0.21% 0.57%

HO 10.01% 0.21% 86.97% 2.81%

CO 11.50% 0.57% 1.03% 86.90%

Table 5: Confusion matrix, where vertical axis shows true labels and horizontal axis
shows predicted results, brackets show percentages of each prediction

In comparison to MIDD, modified MIDD shows minor variation, it improves the true

predictions for AN,CO and HO by minute margin, as well as the percentage of misclas-

sification for all classes as BG also decreased relative to MIDD . But similar to MIDD,

most of the false prediction are assigned to BG class, and BG is again dominating other

classes with highest number of true predictions with 98.39%. Now, instead of using

pixel-based analyses, evaluation will be done using region based analyses. Same testing

dataset used shown above in bar graph(figure 16b). For the object-wise evaluation,
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Class:1(AN) Class:2 (CO) Class:3 (HO)

MIDD MMIDD MIDD MMIDD MIDD MMIDD

Precision(pixel) 87.73% 85.70% 88.39% 84.66% 83.41% 83.86%

Precision(object) 77.02% 77.62% 76.91% 77.29% 75.06% 71.06%

Recall(pixel) 85.76% 85.14% 85.36% 84.70% 85.25% 83.94%

Recall(object) 76.16% 76.70% 80.35% 83.20% 72.45% 79.33%

Table 6: Comparision of MIDD & MMIDD on the bases of Precision and Recall for
both pixel-wise and object-wise

recall and precision are utilized. Table 6 shows the comparison MIDD & MMIDD on

the bases of Precision and Recall for both pixel-wise and object-wise. But these results

also include the small objects as shown in figure 16a, so, these minor object affects the

overall outcome. Considering all the different sized objects both MIDD and MMIDD

shows some good predictions, but on the object level our proposed MMIDD network

shows better results in comparison to MIDD. While to make these results look more

clear, very tiny objects are dropped and subsequently, figure 24 below visualize the

affect of object size on the predicted recall. It can be seen that as the object size in-

creases, the recall value also increases.

Class:AN

MIDD MMIDD

Recall (for all objects) 77.02% 77.62%

Recall(for object above area of 250) 89.69% 91.22%%

Table 7: Comparision of MIDD & MMIDD for thermal anomalies(AN) on the bases of
object size using Recall values
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As discussed above in MIDD chapter, recalling objects with an overlap of more than

70% can be considered as a success, as in this work main interest is to locate anomalies

instead of predicting them precisely. Further, as per the main objective of this work

thermal anomalies are also evaluated solely, figure 24 shows the recall for the AN class

in comparison to object size, it shows if the objects below area of 250 are neglected,

91.22% of the objects crosses the threshold limit, for MIDD it was 89.69%. Below table

7 shows the comparison of MMIDD and MIDD for thermal anomaly(AN) detection, as

it clearly shows that, MMIDD performs better than MIDD for both instances, i.e for

for all sized objects and for object below area of 250 pixels.

Figure 24: For thermal anomaly class

Further, in figure 25, detected thermal anomalies for MMIDD below 50% recall are

analyzed. Similar to MIDD these predictions shows same problem, as approximately

all these cases (below 50% recall) arises for the objects, which are either on the edges

of the images or on the corners.
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Figure 25: Thermal anomalies with less than 50% Recall for MMIDD
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With respect to the evaluation of results, MMIDD do not make any significant improve-

ment in the performance. But, if we compare the size of the both networks(MIDD and

MMIDD), by simplifying the decoder of MIDD, MMIDD also reduced the number of

trainable parameters. MIDD had 52429197 trainable parameters but MMIDD reduced

these numbers to 37567237. i.e. MMIDD reduced the number of trainable parameters

by 28.34% as comapred to MIDD. Consisting much smaller size of the network MMIDD

still getting the compatible results to MIDD, in other words, MMIDD successfully re-

duced the complexity of the network.
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7 Summary

The objective of this study is to detect thermal anomalies using a combination of

thermal and optical images. Thermal anomalies are not discernible in RGB images, but

only in thermal images. For this purpose, initially MIDD proposed by Tu et al. (2021)

is adopted, except some specific cases discussed in 5.3 this approach helped to achieve

good results. In order to further improve the results for the thermal anomaly detection,

Modified-MIDD(MMIDD) is proposed. The proposed network simultaneously combines

the information of two modalities directly from the encoder, and secondly, attempted to

reduces the complexity of the network as dense connectivity requires significant amounts

of GPU memory. Results show that the MMIDD gives compatible output to MIDD

and significantly reduced the size of the trainable parameters. As per the results, after

ignoring the small objects, both models show that nearly 90% of the detected objects

for AN class, have an overlap of 70% or more with the ground truth.

Future research should be focused on the solution for imbalance in the training. As the

predictions for MIDD and MMIDD are biased towards BG class. Next, to improving

the pixel-wise performance of the network, as tiny object fades away and complex object

are merged with each other in current predictions. Doing so, it will be easy to detect

anomalies at initial stage of heat leakage. In addition, maybe inclusion of R1 and T1,

which present high-frequency details, may lead to a better performance. Further we

are also interested in taking measures to detect salient objects with fine boundaries,

as it is also a active topic of research. Moreover, using large patch size could be solve

the problem of failed predictions on the borders of images, as currently we are using

relatively small patches of size 196x196. Subsequently, analysis should be focused on

temperature analysis, as it maybe the case that failed results are coming from the low

temperature difference between thermal anomalies and their surroundings.
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