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Abstract

Pedestrian tracking finds several applications in surveillance, autonomous driving, secu-

rity and many more. When monocular tracking is a widely discussed and researched area

in computer vision with several algorithms and frameworks in existence, combining infor-

mation from multiple viewing angles and retrieving relevant 3D information of the tracked

pedestrians still remains a challenging task. In view of this, the thesis aims at tackling

the problem of multi-view pedestrian tracking by tracking pedestrians in 3D using a pair

of stereo images. Pedestrians in each frame of a sequence are detected using the popular

Mask-RCNN framework which detects the target in a frame and regresses the coordinates

of a bounding box which is then fit tightly around it and finally gives a “mask” for the

entity using pixel-wise segmentation. Leveraging the possibilities (like the disparity map)

of the geometrical constraints inherent in the scene set-up, in addition to the well estab-

lished data driven approaches using neural networks, allows the shifting of the observed

scene from the 2D image plane to a 3D coordinate system. Drawing inspiration from the

popular “tracking-by-matching” paradigm, given a set of detections (in the form of masks

and 2D bounding boxes) for a frame, under favorable circumstances (like the absence of

occlusions), each detection is matched to its instance in the subsequent frame to form a

track (and predict the 2D bounding boxes) using the concept of optical flow. The issue

of identity switches among the tracked pedestrians is dealt with a re-identification algo-

rithm. The tracking algorithm was tested on the KITTI dataset and its evaluation using

some of the most common evaluation metrics (like MOTA, MOTP and IDF1) shows that

even when the proposed methodology provides promising results, the tracks obtained still

suffer from issues like identity switches and in some cases, the separation of one long track

to form two shorter tracks, which raises questions about the reliability and robustness of

the re-identification and tracking strategies in complicated scenarios, including partial or

complete occlusions of pedestrians and the inability to accurately localize a pedestrian

with increase in “depth” from the camera pair. With the limitations aside, the proposed

methodology was successful in implementing the tracking of pedestrians in a 3D object

space by producing trajectories. The thesis analyzes the different algorithms and results

for their achievements and shortcomings and concludes by putting forth ideas for improv-

ing the obtained results and their possible outcomes.
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1 Introduction

Multi-object tracking is one of the most actively researched topics in computer vision.

Pedestrian tracking is of particular interest since human beings are often the most inter-

esting entities in images especially for applications like understanding human behaviours

or social activities (X. Liu 2016), autonomous driving (Galvao et al. 2021) and traffic

surveillance (Gawande et al. 2020), to state a few. The challenges that are most preva-

lent in any tracking algorithm include occlusions within the scene, identity switches and

target interactions. The concept of multi-object tracking has found several upgrades over

the years and to date is still an active topic of research with several benchmarks like the

MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking (L. Leal-Taixé

et al. 2015), MOT16: A Benchmark for Multi-Object Tracking (Milan et al. 2016) and

the KITTI Vision Benchmark Suite (Geiger et al. 2012).

Tracking algorithms can be classified based on their initialization methods as “Detection-

Based Tracking” (DBT) and “Detection-Free Tracking” (DFT) (Luo et al. 2021). DBT

strategies rely on object detectors to localize targets in every frame and then link each

detection in subsequent frames to obtain tracks, whereas DFT methods require manual

initialization the targets followed by the their localization in subsequent frames. DBT

approaches therefore allow the smooth integration of tracks for new detections to the

existing ones but at the cost of a pre-trained detector, while DFT approaches fail to ini-

tialize tracks for objects that were not included in the initialization but runs without a

pre-trained detector.

Detecting the pedestrians in a given frame can be achieved, for example, by fitting a

bounding box around them. 2D (Two Dimensional) bounding boxes obtained from a single

view severely limit the potential of the tracking paradigm in 3D scenarios. Obtaining 3D

(Three Dimensional) information from a scene is challenging and often an impossible task

from single view geometry. Since humans live in a 3D world, the understanding and

perception of a scene in 3D is imperative for several real life applications. Stereo cameras

provide crucial information that can shift the whole tracking environment from 2D to 3D.

Tracking in 3D can be further enhanced by dealing with missed or false detections due

to occlusions with multiple viewing angles thus enabling a more robust reconstruction of

the scene (Iguernaissi et al. 2019; X. Liu 2016).

Frameworks like the Faster-RCNN (Ren et al. 2017) are used for object detection on

the image plane using 2D bounding boxes. Bounding boxes, however, come with some

obvious ambiguities and disadvantages like the inclusion of background pixels and partially

occluded parts of neighbouring pedestrians or other entities. This can be reduced to a

large extent by obtaining segmented masks of the pedestrians from frameworks like the

Mask-RCNN (He et al. 2017) thus providing a per-pixel classification of the scene and

its background along with bounding boxes. A stereo set-up, formed by a pair of cameras

separated by a “baseline”, observing a scene from two different view points producing

two images (a reference image and a matching image or equivalently, the “left image”

and the “right image”) of the scene can be used for shifting of the scene from the 2D
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image plane to a 3D space defined by the parameters of the cameras involved. Tracking

in such an environment has huge advantages like the localization of pedestrians in the 3D

space and the knowledge of their “depth” from the baseline of the stereo system. This is

done by finding correspondences between the targets in the reference image and matching

image. A special case of such an image pair simplifies the matching process by reducing

the search space for target pixels in the reference image to the corresponding rows in the

matching image using a method called “planar rectification”. In the context of tracking

pedestrians in 3D, generating the disparity image of each image pair in a given sequence

can be used to establish matches between the left and right images, which can then be

used together with the camera parameters of the stereo set-up to obtain the 3D positions

of the matched pedestrians using the principle of triangulation (Scharstein et al. 2001;

McGlone 2013; Förstner et al. 2016).

Tracking using single view geometry has seen extensive research over the years while

tracking in 3D from multiple views has not yet acquired its true potential (Luo et al.

2021). With rapid advancements in the areas of autonomous driving and robotics, a

three dimensional perception of the world is imperative. When there is the possibility

of capturing a scene from different viewing angles, retrieving only 2D information limits

the capabilities of the multi-view geometry which can otherwise enhance the scene under-

standing. These tasks and the challenges related to them are investigated and explored in

this work. While monocular tracking tries to achieve tracks within 2D space of the image,

this thesis proposes a methodology which results in the formation of tracks of pedestrians

on the 2D image plane and in addition, produces tracks in a 3D model coordinate system

formed by the stereo camera pair.

1.1 Problem Statement

Tracking of pedestrians is of great importance in several applications like autonomous

driving and human-robot interaction where humans beings and robot systems function in

a shared space. Being able to localize and track the movements of people is essential in

such an environment to ensure safety. Improvements in the fields of photogrammetry and

computer vision have produced significant improvements not only in tracking, but also

in anticipating their moving directions and behaviours. While most of the advancements

in the tracking domain has been made on monocular image sequences, the limitations

associated with it makes tracking in 3D a relevant research topic.

Taking the limitations of monocular tracking algorithms into consideration, the objec-

tive of this thesis is to develop a deep learning based method to track pedestrians in the

3D object space using stereo images of the same scene. The set-up assumes that the

cameras are time synchronized and the orientation parameters of the cameras are known

and kept constant. Given such a scene and camera set-up, the main tasks of this thesis

are defined as follows:

1. A 3D trajectory per pedestrian, where each trajectory is defined with respect to a

reference camera.
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2. A suitable representation (for example, the foot positions obtained by projecting a

bounding box or pixel-wise segmentation mask onto the ground) of the position of

each tracked pedestrian per frame.

3. A practical implementation of the developed methodology and its evaluation on

publicly available datasets.

1.2 Contributions

The thesis puts forward a methodology for tracking pedestrians on the 2D image plane

and in addition, producing trajectories in the 3D object space using stereo image pairs

in each frame of a sequence. The thesis also explores the possibilities of using disparity

images for reconstructing the ground plane of a scene which can be used to find the foot

positions of the tracked pedestrians in the 3D space. These points can be projected back

on to the 2D image plane to obtain tracks of the pedestrians on the ground, even in case

of partial occlusions. A re-identification strategy, which relies on the visual resemblances

of the tracked pedestrians to begin, join, break and end tracks when identity switches are

encountered, has been experimented with. Based on the analyzes of the results obtained

from the different approaches and evaluation metrics, the thesis tries to draw conclusions

on how comprehensive the methodology is, what its advantages and limitations are and

based on the inferences, proposes new research directions in the 3D multi-view tracking

domain.

1.3 Outline of the Thesis

Chapter 2 reviews the existing literature and research papers published in the areas of

object detection and tracking. The fundamental concepts and mathematical backgrounds

of the different methods implemented in the thesis are discussed in Chapter 3. The

proposed methodology and the steps involved in its implementation are described in

Chapter 4. The experimental setup is given in Chapter 5. Chapter 6 does the visualization

of the results and their evaluation based on several evaluation metrics. Chapter 7 draws

some conclusions in light of the results obtained and proposes scopes for future works in

the domain of tracking in 3D.
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2 Related Works

2.1 Detection

Most state of the art tracking algorithms use deep learning based frameworks for detection,

like the Faster-RCNN (Ren et al. 2017) which fits bounding boxes around the targets

or by masking them out using the Mask R-CNN (He et al. 2017). The Faster-RCNN

was introduced as an upgrade to the Fast-RCNN (Girshick 2015) in terms of speed and

accuracy which, in turn, was itself an upgrade to the RCNN (Girshick et al. 2014a). Apart

from the RCNN family there are other methods in existence like YOLO (Redmon et al.

2016) and SDP (F. Yang et al. 2016) for object detection. (Tian et al. 2015) developed

a deep learning framework for addressing occlusions called DeepParts using strategies

like parts selection and bounding box shifts. (Cai et al. 2015) deal with false positives

and partial occlusions by combining hand crafted-features and fine-tuned deep CNNs

using a network called CompACT-Deep. (J. Liu et al. 2016) use yet another deep neural

network called multispectral DNN which detects pedestrians by combining complementary

information from both color and thermal images.

In addition to fitting 2D bounding boxes, (Mousavian et al. 2017) propose a method

relying on the fact that the perspective projection of a 3D bounding box should fit tightly

within its 2D detection window by assuming that the training of the 2D detector produces

boxes that correspond to the bounding box of the projected 3D box. (Chen et al. 2016)

assume a flat ground plane constraint and sample 3D boxes in the physical world with

the boxes being scored depending on contextual, shape and categorical features.

2.2 Tracking

Bayesian filters: Bayesian filters using various types of probabilistic inference models

have been used for tracking objects in space (Luo et al. 2021; Fortmann et al. 1983; Kratz

et al. 2012). Filters like the Kalman Filters (Kalman 1960); Rodriguez et al. 2011), the

Extended Kalman Filters as in (Reich et al. 2021; Mitzel et al. 2011) and Particle Filter

implementations by (H. Li et al. 2016; Fen et al. 2010 and Y. Jin et al. 2007) are different

Bayesian filter implementations of monocular multi-object and pedestrian tracking, in

particular, before the advent of data driven approaches using artificial neural networks.

Over the last several years, methods using neural networks have proven to outperform all

other methods making them the backbone of all the state of the art tracking algorithms

(Krizhevsky et al. 2012 ; Chavdarova et al. 2017).

Tracking as a graph problem: Tracking or data association can be represented as a

graph problem, where each node of the graph indicates a detection and each edge indicates

a possible link (Ess et al. 2008; J. Berclaz et al. 2006), thereby modelling the tracking

problem as a bipartite graph matching solved using bipartite assignment algorithms (Shu

et al. 2012; Breitenstein et al. 2011) or the famous Hungarian algorithm (Huang et al.

2008; Qin et al. 2012 and Reilly et al. 2010). Other works include the use of linear-

programming (Jiang et al. 2007; Jérôme Berclaz et al. 2009), K-shortest paths (Jerome
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Berclaz et al. 2011), maximum multi-clique (Dehghan et al. 2015) and conditional random

field models (B. Yang et al. 2012; Le et al. 2016) for solving the data association problem

using graphical methods.

Crowd handling: Identity preservation and crowd handling can be controlled by con-

sidering factors like speed and direction of objects and modelling their interactions. (Yu

et al. 2016) implement a “mutual force model” in crowded scenes wherein one pedestrian

is subject to a so called “force” from other pedestrians and/or entities. This approach

is based on the intuition that pedestrians are expected to change their speeds and di-

rections to prevent collisions and when walking across streets they are expected to guide

and follow one another. Also, for pedestrians especially, there exist “social-force mod-

els” (Helbing et al. 1995) and “crowd motion pattern models” (M. Hu et al. 2008) which

model the movements and interactions pedestrians within a crowd. Social-force models

consider pedestrians to be dependent on each other and on the environment based on

several factors like velocity, acceleration and destination, allowing interactions to be mod-

elled by minimizing an energy objective, for example, by modeling social force as energy

terms (Maksai et al. 2019). Crowd motion pattern models were introduced to improve

performance of tracking in densely crowded scenes where detections are often inaccurate

due to parial occlusions and appearance features are unreliable. Such motion patterns

are learned using several methods, for example, by considering scene structures (Ali et al.

2008), using ND tensor voting (Zhao et al. 2012) or Hidden-Markov-Models (Kratz et al.

2012). However, such methods can also suffer from inaccuracies when observed from sin-

gle viewing angle due to occlusions and lead to the formation of false trajectories, for

example, when the neighbours are occluded for a significantly large number of frames and

then re-introduced as belonging to fresh tracks.

Artificial Neural Networks: Tracking based on artificial neural networks has been

used widely in recent years (Pal et al. 2021). (Kim et al. 2015 and Tang et al. 2016)

use features learned using CNNs, replacing the conventional hand-crafted features and

(Wojke et al. 2017 and Tang et al. 2017) train CNNs on labelled datasets for models like

ImageNet (Krizhevsky et al. 2012) and person re-identification datasets like CUHKO3

(W. Li et al. 2014) and MARS (L. Zheng et al. 2016). Researchers have also employed

attention mechanisms (Zhu et al. 2019) and Long Short-Term Memory (LSTM) neural

networks (Kim et al. 2018) for solving the tracking problem. (G. Wang et al. 2018) propose

a CNN architecture called “multi-scale TrackletNet” which measures the connectivity of

two tracklets by combining temporal and appearance information. (Bergmann et al. 2019)

suggest the “Tracktor” algorithm, which performs tracking by using only a detection step

and estimating the position of a pedestrian in each frame by regressing its position in

the previous frame. Neural network architectures, siamese networks in particlaur, have

also greatly improved the performance of person re-identification strategies (Khamis et

al. 2014; S. Ding et al. 2015; Paisitkriangkrai et al. 2015). A popular example of such a

framework is FaceNet (Schroff et al. 2015) which is trained using the so called “triplet

loss” introduced by (Weinberger et al. 2005). (Hermans et al. 2017) propose a framework
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that uses a triplet model to generate embeddings of the input pedestrians which are

then clustered using an unsupervised clustering algorithm for trajectory modification. A

siamese architecture is implemeted by (Shuai et al. 2020) with a network consisting of

a backbone that is shared among the detection, tracking and re-identification branches

capable of performing both detection and association in a single forward pass. Tracking

using neural networks has also been used jointly with other computer vision tasks like

human pose estimation (S. Jin et al. 2019; Raaj et al. 2019; Andriluka et al. 2014) and

action recognition (Choi et al. 2012). A major limitation of such data driven approaches is

that they may make false assumptions when subject to scenes that they were not exposed

to while training.

Optical Flow: In addition to the popular paradigm of “tracking-by-detection”, optical

flow can be used for mapping objects from one frame to another by determining a “flow

vector” (Kale et al. 2015). Since the concept of optical flow is related to movement of

objects on the image plane, it can be utilized to encode motion information (Walk et

al. 2010). (Rodriguez et al. 2009 and Izadinia et al. 2012) link detection responses into

short tracklets using optical flow. (Choi 2015) determines the movement pattern of pixels

corresponding to the target enclosed by bounding boxes in adjacent frames. (Ali et al.

2008 and Rodriguez et al. 2011) use optical flow for discovering crowd motion patterns

in densely crowded scenarios. An obvious disadvantage of local methods for determining

optical flow is their heavy dependence on the success of extracting reliable features for

tracking. This dependency can lead to major inaccuracies in several cases, depending on

the light conditions and the distance of the pedestrian from the camera(s). Apart from

local methods, CNNs have been used to create dense flow maps of sequences like the

FlowNet (Fischer et al. 2015), DeepFlow (Weinzaepfel et al. 2013 and the work of (Sun

et al. 2017).

Multi-view: In the multi-view domain, more complex models include multi-camera

sequence reconstruction (Laura Leal-Taixé et al. 2012). (Chavdarova et al. 2017) initially

train a CNN on monocular pedestrian classification and retain d of its layers to create

an embedding. A concatenation of such embeddings is created, on top of which a binary

classifier is trained, which they argue, can discriminate features that are similar across

views (like colors) and features that differ across views (for example the lateral inversion

of curves resulting from multiple viewing angles). (Peng et al. 2015) employ a Bayesian

Network for handling occlusions per view and use ground locations and geometric con-

straints to combine the networks to form a multi-view network. (U. Nguyen et al. 2019)

use the disparity image of a stereo image pair to determine the ground plane of the scene

to determine the positions of the foot points of the pedestrians. This strategy has also

been implemented in this thesis to obtain the positions of tracked pedestrians on the

ground plane. The accuracy of most of the methods discussed above relies heavily on the

quality of the detections. This thesis tries to incorporate the additional 3D information

to the tracking workflow, combined with optical flow, to improve the bounding boxes

predicted by the object detection framework.
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3 Theoretical Background

3.1 Deep Learning

3.1.1 Artificial Neural Networks (ANNs)

As it was previously mentioned, the use of deep neural networks have improved the state-

of-the-art in several computer vision and artificial intelligence tasks like object detection,

speech recognition and machine translation (Yann LeCun et al. 2015). At the most funda-

mental level, the design of artificial neural networks are inspired from the interactions of

neurons in the nervous system of a human body and human brain. The way these neurons

fire and trigger other neurons learning neural pathways for performing a particular task

is similar to how artificial neural networks work by learning weights that influence their

outputs by showing them labelled data. In 1958, Frank Rosenblatt introduced the per-

ceptron, which was shown to have the ability to learn in accordance with associationism

(Rosenblatt 1958). Figure 1 shows an example of one such perceptron that uses only a

single neuron with weights wji, bias jb and an activation function f producing the output

yj.

Figure 1: Perceptron using a single neuron

It accepts the inputs xi and calculates the weighted sum:

zj =
∑

wji · xj + bj = wT
j · x+ wjb (1)

This is then used as the input for the activation function to give the output yj of the

neuron j:

yj = f(zj) = f(wT
j · x+ wjb) (2)

Such a perceptron can, for example, be used as a binary classifier creating a linear
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decision boundary. Their inability to perform more complex problems were seen as huge

limitations leading to a slow fading of the amount of research that was being done on

neural networks for a long time. The perceptron was proven to work better by stacking one

layer of neurons after another (creating intermediate layers are called “hidden layers”) to

form a multi-layer neural network called as Multi-Layer Perceptrons (MLPs) (Kawaguchi

2000). Since then shallow networks have been replaced by “deeper” neural networks with

hundreds of thousands (or even millions) of parameters that are learned enabling much

higher levels of abstraction.

Training of a neural network involves determining or “learning” the weights by using

labelled data. The entire dataset is often split into “train”, “test” and/or “validation”

data. During the training phase, the network is shown only the training samples and

once the network has been trained, it is evaluated using the test/validation samples.

The whole training process is often carried out in epochs with random batches of the

input data. Training a neural network is often done using an algorithm called “back-

propagation”, originally a method used to determine the gradient of parameters during

the implementation of the gradient descent algorithm (Hecht-Nielsen 1989), by minimizing

what is called a “loss function”. The loss function measures the error in the output of the

network using the labelled training samples. The idea of back-propagation is to measure

the error at the output layer and propagate the error term back to the layer where the

parameters need to be updated. Update is done using the gradient descent method. The

process is also called “stochastic gradient descent” due to the random sampling of training

data in each epoch. The gradient of a function shows the direction of its maximum increase

and hence, the minimum can be searched for by moving in the negative direction. The

rate at which the algorithm updates the parameters is controlled by an important hyper-

parameter called the “learning rate” (Bishop et al. 2006; Yann LeCun et al. 2015).

The realm of deep learning found a new wave of interest and research applications with

the success of Convolutional Neural Networks (CNNs) (Y. LeCun et al. 1989; Krizhevsky

et al. 2012). CNNs typically contain many layers (deep networks) forming blocks each

of which contain a combination of convolutional layers, activations, pooling and batch

normalization followed by one or a series of fully connected layers producing an output that

can be considered to be a high level interpretation of a certain part of the input. Weights

are shared among the convolutional layers and can be interpreted as the coefficients of

linear filters.

Convolution is a mathematical operation that measures the overlap of one function

over another. Convolution of a function f with another function g can be written as

f ∗ g, where ∗ denotes the convolution operator. Convolutions are often calculated using

matrices called “kernels”. Convolutions are carried out by sliding the kernel over the input

to perform element wise multiplication and summation of the products of overlapping

elements. Figure 2 shows an example of 2D convolution, where the leftmost matrix

represents an input image and the matrix in the middle represents the kernel. Convolution

the two gives the output matrix on the right.
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Figure 2: Example of 2D convolution (H. Wang et al. 2017)

Training neural networks often involves the learning of complex decision boundaries

and mapping of highly non-linear functions. To this end, activation functions are used

to introduce non-linearities into the model. Popular activation functions include tanh,

sigmoid and the ReLu (B. Ding et al. 2018; Nair et al. 2010). Pooling operations are

carried out for sub-sampling allowing the network to be invariant to small transformations

and distortions in an input image. It breaks the input representations into smaller and

manageable embeddings. Different pooling methods include max-pooling, average-pooling

and probabilistic-pooling. Batch normalization is carried out to reduce the effects of noisy

gradients by averaging the gradients over all samples in a batch (Lee et al. 2009). Methods

to eliminate over-fitting in neural networks include weight decay (Xie et al. 2020), dropout

(Srivastava et al. 2014), regularization methods (Szabo et al. 2004) and data augmentation

(B. Li et al. 2022). Popular CNN based architectures include AlexNet (Krizhevsky et al.

2012), VGGNet (Simonyan et al. 2014), GoogLeNet (Szegedy et al. 2015) and ResNet (He

et al. 2015b). The methodology proposed in this thesis relies on artificial neural networks

during different stages of its implementation like object detection (Section 4.1), tracking

on the image plane (Section 4.3) and re-identification (Section 4.4).

3.1.2 ResNet

With the general trend of designing deep networks, the networks also became increasingly

more difficult to train. Increase in depth also lead to the issue of vanishing gradients

(Glorot et al. 2010) and the saturation of accuracy followed by degradation when the

networks start to converge (He et al. 2015a). (He et al. 2015b) introduced the ResNet

architecture in 2015 taking such factors into account and showed better accuracy in image

classification tasks like the ILSVRC 2015 (Russakovsky et al. 2015) as compared to other

existing networks at the time. ResNet addresses the degradation problem using a deep

residual learning framework. The authors show that for any desired mapping denoted as

H(x), the non-linear layers stacked in ResNet fit another mapping F (x) := H(x)− x and

the original mapping is recast into F (x) + x. They argue that the optimization of the

residual mapping is much easier than the original mapping.
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Figure 3: Residual learning: A building block (He et al. 2015b)

Feed forward neural networks are used to realize the aforementioned residual formula-

tion with the so called “shortcut connections” (Ripley 1996). Shortcut connections refer

to the skipping of one or more layers. Figure 3 shows one such network used in the ResNet

architecture for residual learning using identity mapping and ReLu as the activation. The

outputs of the identity mapping are added to the outputs of the stacked layers. Such a

model can be trained in the conventional way using stochastic gradient descent with back-

propagation.

The plain (without residual learning) network of ResNet is inspired from the VGGNet

(Simonyan et al. 2014) having convolutional layers of mostly 3x3 filters. Downsampling is

done using convolutional layers of stride 2. Global average pooling is done at the end of

the network and contains a 1000-way fully connected layer with softmax activation. The

network includes 34 weighted layers. Based on this plain network, the residual network

is designed by inserting the identity shortcut connections when the input and the output

are of the same dimension.

Using an ensemble of the residuals, the authors were able to achieve superior results

on the ImageNet (Krizhevsky et al. 2012) and COCO (Lin et al. 2014) object detection

datasets. With the success of the architecture, ResNet has been widely used especially in

research and for developing frameworks that uses it as the backbone. It also serves as the

backbone for the detection and re-identification networks implemented in this thesis.

3.1.3 Mask-RCNN

Mask-RCNN (He et al. 2017) is a popular framework for performing instance segmenta-

tion in many computer vision tasks. For an application like pedestrian tracking, exact

localization of pedestrians in each frame is crucial for accurate outcomes. Frameworks like

Faster-RCNN (Ren et al. 2017) achieve this by confining the targets within rectangular

bounding boxes. Mask-RCNN can be seen as an extension to the Faster-RCNN by adding

to the classification and regression branches, a “mask branch” which is a Fully Convolu-

tional Network or FCN (Long et al. 2015) applied to each Region of Interest (RoI) for
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predicting a segmentation mask. FCNs are commonly used for pixel-wise classification

tasks and are capable of operating on input images of any given size and producing out-

puts of corresponding (possibly re-sampled) spatial dimensions. The Mask-RCNN along

with bounding boxes, also generates a segmentation mask for the detected object. This

results in a pixel-wise classification of the targets separating them from other entities

and the scene background. Such segmentation masks have several advantages over con-

ventional 2D bounding boxes. The bounding boxes, for example, in most cases include

several pixels belonging to the background of a scene. This pollutes the inputs given to

appearance based models. Such problems also exist in cases of bounding boxes enclosing

pixels belonging to neighbouring pedestrians or other entities present in the scene due to

occlusions.

The Region based-CNN (Girshick et al. 2014a) implements object detection by produc-

ing object proposal regions from an input image which are then given to the classification

and regression heads. The classification head checks for the “objectness” of the region

by assigning a confidence score to each proposal measuring the probability of the pro-

posal to belong a particular class. The regression head improves the coordinates of the

bounding boxes to make them fit tighter around the target. (Girshick 2015) improved

this approach by using several layers of convolutions and max-pooling on the input im-

age to form a feature map. A RoI pooling layer is then used to extract a fixed length

feature vector from the feature map and feed it into a sequence of fully connected layers

which eventually branch into the classification and regression heads. This framework was

proven to be much faster and more accurate than its predecessor. Faster-RCNN intro-

duced another stage called the Region Proposal Network (RPN) on top of the features

produced by the convolutional layers of the Fast-RCNN by building additional layers of

convolutions that simultaneously regress the box proposals and confidence scores. For

the purpose of unification of RPNs with the Fast-RCNN object detection networks, the

authors suggest a training procedure that alternates between the fine-tuning for the re-

gion proposal task followed by the fine tuning for detection, while keeping the proposals

fixed. The convolutional layers are shared at test time, thus minimizing the marginal cost

of computing proposals. At test time, the proposals created by RPNs might have high

overlaps. Therefore, these proposals are subject to non-maximum suppression (Girshick

et al. 2014b) based on their confidence scores. Following this, only the top-N ranked

proposals are used for detection.
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Figure 4: Faster-RCNN network (Ren et al. 2017)

Figure 4 shows the implementation of the Faster-RCNN as given in the original pa-

per which consists of a fully convolutional layer called the Region Proposal Network for

producing region proposals as the first module and a Fast-RCNN detector as the second

module, thus creating a unified network for object detection.

As already mentioned, the Mask-RCNN was an extension to the Faster-RCNN which

was not designed for pixel-wise classification with its inherent pixel-to-pixel misalignment

due to the RoI pooling. The “RoIAlign” layer of Mask-RCNN fixes this misalignment

issue by preserving the exact spatial locations. Misalignment or loss of information arises

due to quantization involved in the RoI pooling operation. RoIAlign deals with this issue

by avoiding quantization and in each RoI bin, bi-linear interpolation (Jaderberg et al.

2016) is used compute the values of the input features at four regularly sampled locations

and the results are aggregated. Another aspect of the Mask-RCNN is to let the RoI branch

to predict the classifications so as to eliminate competition from other classes leading to

a decoupling of the mask and prediction steps as opposed to the per-pixel multi-class

categorization using a fully convolutional network. Figure 5 shows the basic framework

of the Mask-RCNN.
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Figure 5: Mask-RCNN framework (He et al. 2018)

A multi-task loss is defined during training on each RoI as:

L = Lcls + Lbox + Lmask (3)

where Lcls, Lbox and Lmask represent the losses for classification, bounding box and

segmentation mask respectively. Lcls and Lbox are defined similar to how they are for

the Fast-RCNN. For each of the K classes, the mask branch has a Km2-dimensional

output for each RoI encoding K binary masks of resolution m x m. A per-pixel sigmoid

is applied to this, defining Lmask as the average binary cross-entropy loss. Contributions

to the loss from other mask outputs are avoided by defining Lmask only on the k-th mask

for an RoI associated with the ground-truth class k. Similar to the Fast-RCNN, a RoI

is accepted only if it has an Intersection over Union (IoU) value larger than a threshold

with the ground-truth box and only the positive RoIs are used for defining the mask loss,

Lmask. The target mask is obtained as the intersection between RoI and its corresponding

ground-truth mask.

At test time, the box prediction branch is run on the proposals obtained from the

backbone network followed by non-maximum suppression. Masks are computed only for

the top 100 detection boxes and the mask branch predicts K masks per RoI, but only

the k-th mask is retained, k being the class predicted by the classification branch. The

floating number mask of size m x m is then resized to the RoI size and binarized at a

threshold of 0.5.

The authors recommend backbones like ResNet and Feature Pyramid Network (Lin et

al. 2017) for feature extraction as they provide superior accuracy and speed. Mask-RCNN

outperforms other state-of-the-art frameworks in segmentation and was the winner of the

COCO segmentation challenges of 2015 and 2016. The Mask-RCNN framework has been

used in this thesis for detecting pedestrians on the images (Section 4.1). Figure 6 give

some examples of the results obtained using the Mask-RCNN for object detection and

segmentation on the COCO dataset based on ResNet-101. Results include masks (given

in colors), bounding boxes, category and confidences.
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Figure 6: Mask-RCNN detections (He et al. 2018)

3.1.4 Siamese Networks for Similarity Learning

A really useful application of deep learning frameworks in the tracking domain is its

ability to use distance-based methods which consists of learning a similarity metric from

data. Such a similarity metric can be used for comparing samples that the model had not

“seen” during training. This is particularly useful in a classification problem where the

number of categories is high and/or not all categories are available during the training

phase. (Chopra et al. 2005) propose such a framework that tries to map input images to

points in a low dimensional space (like the Euclidean space) where the distance between

these points is small if the images belong to the same category and large if they do not.

This can be expressed as finding a function that maps input images into a target space,

such that a simple distance measure like the Euclidean distance can approximate their

semantic distance in the input space. To put it more mathematically, a similarity metric

defined as:

EW (X1, X2) = ||GW (X1)−GW (X2)|| (4)

given a family of functions GW (X) parameterized by W and two categories X1 and

X2 (for example, a pair of input images), the goal is to find a value for W such that

EW (X1, X2) is small if X1 and X2 are from the same category and large if they are not.

An architecture of neural networks that is designed following such an approach is called

a “siamese architecture” because both inputs are processed by the same function G with

the same parameter W . Figure 7 is an example of such a siamese architecture that accepts

a pair of input images X1 and X2 which are then passed on to a network consisting of two
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identical convolutional layers. An important factor of such convolutional layers is that

their weights are shared.

Figure 7: The siamese architecture (Chopra et al. 2005)

During training, the network tries to find W that minimizes a loss function that is

evaluated over a training set. The loss function includes a contrastive term to make sure

that not only is the energy (distance) for a similar input pair small, but also that the

energy for a pair of dissimilar is large. Following this idea, (Schroff et al. 2015) employ

what is called a “triplet loss” for better performance.

A triplet consists of a pair of matching entities (called “anchor” and “positive” re-

spectively) and a non-matching entity (called “negative”) and the loss function tries to

separate the matching pair from the negative by a predefined margin, α. An input image,

x is passed through a deep neural network to obtain an embedding, f(x) such that the

squared distance between the identical objects is small in the feature space and that of

non-identical objects is large with the loss function trying to bring the anchors, xa
i of a

specific person closer to the positives, xp
i than to the negatives, xn

i . This is visualized in

Figure 8.
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Figure 8: Triplet loss interpretation (Schroff et al. 2015)

It can be expressed mathematically as follows:

∥f(xa
i )− f(xp

i )∥
2 + α < ∥f(xa

i )− f(xn
i )∥

2, ∀(f(xa
i ), f(x

p
i ), f(x

n
i )) ∈ T (5)

where T is the set of all possible triplets in the training set and has a cardinality of N .

The loss function can then be defined as:

L =
N
∑

i

[∥f(xa
i )− f(xp

i )∥
2 − ∥f(xa

i )− f(xn
i )∥

2 + α] (6)

Siamese networks can be trained end-to-end using the standard stochastic gradient de-

scent approach with back-propagation. Such a siamese triplet models is used, for example,

for face recognition tasks and is implemented in this thesis for pedestrian-re-identification

(Section 4.4) and for improving the annotations predicted using optical flow in certain

“key-frames” (Section 4.3).

3.2 Geometry of an Image Pair

3.2.1 Camera Parameters

Given a pair of cameras, separated by a baseline (distance between their projection cen-

ters), observing a scene from different viewing angles and points of the target on their

image planes, the geometry of such a pair, known as a “stereo image pair”, describes the

relation between the scene, the cameras and the image points. The orientation of two

individual cameras can be described using their interior and exterior orientation parame-

ters. The exterior orientation or extrinsics include the three coordinates of the projection

center (X0) or the translation, given by a translation vector (T ) describing the transla-

tion of the camera from the origin to its position during exposure and a 3 × 3 rotation

matrix (R) describing the rotation of the camera in the form of rotation angles around

the camera axes. The camera axes refer to the three axes (Xc, Y c and Zc) of a coor-

dinate system centered at the projection center X0 of a camera. In order to simplify

the mapping (object into image space) relations, Xc and Y c are chosen to be parallel to

the image plane and Zc is chosen to be perpendicular to the image plane. The intrinsic

parameters or intrinsics include the focal length (c) of the camera which is the distance
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of the projection center to the image plane and the coordinates of the principle point (x0,

y0), which is the point on the image plane closest to the projection center or the foot of

the perpendicular dropped from the projection, the scale difference, m and the shear s.

The intrinsics also often include distortion parameters to undo the radial and tangential

distortion that might pollute an image (Förstner et al. 2016).

There is an obvious loss in dimension as a 3D point from a scene is converted to a

2D point on a camera’s image plane. The image point x can be considered as a central

projection of the object point X. It can be described using the projection matrix, P as:

x ∼ P ·X (7)

where ∼ means that the two quantities are identical only upto a scale. It is used to

represent the homogeneity of a quantity. A point x can have a homogeneous representation

consisting of a Euclidean part and a homogeneous part as shown:

x ∼











u

v

−

w











(8)

where u and v belong to the Euclidean part and w belongs to the homogeneous part.

Such a representation is useful in several contexts of photogrammetry.

P is a 3 × 4 matrix and has 11 degrees of freedom, meaning it depends only on 11

parameters, namely the five parameters of the camera intrinsics and the six parameters

of the camera extrinsics (translation and rotation). Therefore, the P matrix can be

determined from the camera extrinsics and intrinsics as given below:

P = K ·RT · [Id | −X0] (9)

where T indicates the transpose operation of a matrix, Id represents a 3 × 3 identity

matrix and K represents the camera calibration matrix given by:

K =







−c −c · s x0

0 −c ·m y0

0 0 1






(10)

3.2.2 Epipolar Geometry

Reconstruction of an object point from a single image is not possible due to the loss in

3D information as stated earlier. It is, however, possible to find the 3D coordinates of an

object point from a stereo pair by intersecting the projection rays to the point from the

two images. This needs the location of the image points of the object in both images.

Given a pair of cameras separated by a baseline, the coordinates of the image point (x′)
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of an object point X in one image (say the left image), the concept of epipolar geometry

can be used to reduce the search space for finding its corresponding point x′′ (or conjugate

point) in the other image to a line, as explained below.

Figure 9: Epipolar geometry of a stereo image pair

The visualization of such a set-up is given in Figure 9. The projection ray from the left

camera, given by its projection center X
′

0 and directional vector, r′ and the projection

center of the right camera (X ′′) define the epipolar plane. Epipolar lines k′ and k′′ are

formed by the intersection of the two image planes with the epipolar planes and the

epipolar lines intersect at the epipoles e′ and e′′. If an image point is given for the

left image, such a set up reduces the search space for finding the corresponding image

point in the right image to its epipolar line. A special case of such a set is called the

“normal case” or a pair of “rectified stereo images”, where the viewing directions are

parallel and orthogonal to the baseline making the image points, the projection centers

and the scene point planar leading to parallel image coordinate systems. In computer

vision applications, given such a pair of normalized or rectified stereo images and the

image point of an object in the left image, the conjugate point in the right image can be

determined as:

x′′ = x′ + d, y′′ = y′ (11)

This means that the conjugate point is shifted only along the x-axis and the amount of

shift is given as the disparity (d) or parallax. Disparity can be considered as the inverse

of depth or height of the object from the baseline. Therefore, if the image point of an

object point is known in one such stereo pair along with its disparity value, the conjugate

point on the other image can be determined (Förstner et al. 2016; Scharstein et al. 2001).
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3.2.3 Triangulation

Reconstructing an object point in 3D from a pair of stereo images is possible using a

method called triangulation. According to (Förstner et al. 2016), the optimal solution of

triangulation requires two steps:

• correction of the image rays guaranteeing that they are co-planar.

• intersection of the two rays in 3D

Given a pair of stereo rectified images with an image point x′ of an object X in the

reference image and its conjugate point x′′ in the matching image and their projection

matrices are P ′ and P ′′ respectively, the following relations can be formulated in accor-

dance with equation 7:

x′ ∼ P ′ ·X (12)

x′′ ∼ P ′′ ·X (13)

The equations above can be modified by introducing a scale factor, α as:

x′ = α1 · P
′ ·X (14)

x′′ = α2 · P
′′ ·X (15)

On multiplying both sides of the two equations using the axiator, S(x) they can be

modified as:

S(x′) · x′ = α1 · S(x
′) · P ′ ·X (16)

S(x′′) · x′′ = α2 · S(x
′′) · P ′′ ·X (17)

where the axiator is a skew-symmetric matrix defined for a point x with homogeneous

coordinates u, v and w as:

S(x) =







0 −w v

w 0 −u

−v u 0






(18)

Multiplication of a vector with the axiator is, in effect, the cross product (Khropov

et al. 2011). The cross product of a vector with itself is a null vector and therefore, the

left hand sides of both equation 16 and 17 are reduced to 0. Since the scale factors α1

and α2 cannot be 0s, the equations can be modified as:

S(x′) · P ′ ·X = 0 (19)

S(x′′) · P ′′ ·X = 0 (20)

The equations above can be reduced to a single equation by collecting the products of

the axiators and the projection matrices in a 6× 4 matrix, A as:
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A
6×4

·X = 0 (21)

The optimal point can now be calculated as the singular vector of A, corresponding

to its smallest singular value by applying a singular value decomposition (Förstner et al.

2016). This concept is used for finding the 3D positions of the tracked pedestrians in the

object space as explained in Section 4.1.

3.3 Dense Stereo Matching

Dense stereo matching is the method of estimating the disparity value for each pixel (of

a reference image) in a stereo image pair, hence creating a dense disparity map d(x, y).

To this end, the concept of a disparity space d(x, y, d) is introduced. The x and y coor-

dinates of the disparity space coincide with the pixel coordinates of the reference image

and therefore, for every pixel in the reference image, one obtains along with the x and

y-coordinates, also the disparity (d) of the pixel which can then be used to find the coor-

dinates of the conjugate point in the matching image using equation 11. Stereo matching

algorithms use the concept of disparity space image (DSI), which is a function or image

defined over the disparity space representing the “cost” for a match given by the dispar-

ity map. A surface embedded in the DSI is obtained that follows an optimum criterion

based on cost and smoothness constraints (see Section 3.3.1) to obtain a disparity map

as the output. Figure 10 shows an example of a reference image in a stereo pair and its

ground-truth disparities taken from the famous Middlebury Stereo Dataset (Scharstein

et al. 2001).

Figure 10: Left: Reference image; Right: True disparities (Scharstein et al. 2001)

3.3.1 Semi-Global Matching

Semi-global matching uses the idea of matching a pixel in the reference image to its

pair using its pixel intensity, subject to the constraint expressed in equation 11 and

combining multiple 1D constraints to approximate a global 2D smoothness constraint,

assuming normalized stereo images. Algorithms that are based on an implicit assumption

about constant disparity inside an area that is considered for matching gets violated at

sharp discontinuities leading to poor results. Therefore, such an assumption is discarded.

(Hirschmüller 2005) describes a rigorous workflow for determining the matching cost in
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his paper, in which calculating the matching cost is based on Mutual Information (Viola

et al. 1995) between two images (I1 and I2) defined as:

MII1,I2 = HI1 +HI2 −HI1,I2 (22)

where H gives the entropy of the images (meaning, their information content) and the

third term gives their joint entropy calculated from the probability distributions of the

intensities of the images. For further simplifications and derivations of the matching cost,

the reader can refer to the work of (Hirschmüller 2005).

Pixel-wise cost can lead to errors if wrong matches have equal or lower costs than

correct ones, for example, due to texture-less areas or due to noise. To eliminate such

errors, in his paper (Hirschmüller 2005) defines an energy function E(D) that depends on

the disparity image D for a pixel p in the base image and a “suspected” correspondence

at pixel q in its pair given as:

E(D) =
∑

p

C(p,Dp) +
∑

q∈Np

P1T [|Dp −Dq| = 1] +
∑

q∈Np

P2T [|Dp −Dq| > 1] (23)

where the first term corresponds to the sum of all matching costs, the second term

consists of a penalty P1 for pixels in the neighbourhood Np of p for which disparity

change is small (i.e 1 pixel) for permitting an adaptation to slanted or curved surfaces in

the scene, the third term introduces a larger constant penalty P2 for disparity changes

that are larger for preserving discontinuities, which are visible as intensity changes. The

T [] operator defines the probability distributions of matching intensities.

Stereo matching is now possible by finding the disparity image D that minimizes E(D)

as given in equation 23. One approach for such a solution is using dynamic programming

(Baker et al. 1981), however such a solution suffers from streaking artefacts. This is

due to the utilization of 1D optimization of image rows being related to each other in

a 2D image and in effect, combining strong constraints along the image rows and none

along the image columns. Semi-global matching circumvents this problem by aggregating

costs from all directions equally. This implies that for any pixel, the aggregated cost is

calculated by summing up the costs along all the minimum cost paths that end in that

pixel at disparity d as visualized in Figure 11. Following this method, the disparity d is

selected for every pixel p in the base image which corresponds to the minimum cost and

hence the disparity image is determined.
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Figure 11: Aggregation of costs from all directions (Hirschmüller 2005)

3.4 RANSAC

(Fischler et al. 1987) introduced the paradigm, Random Sample Consensus (RANSAC)

as a way to fit a model to experimental data. Methods for model fitting like least squares

optimize the fit of a functional model to all of the available data and has no internal

mechanism for detecting and removing gross errors. RANSAC on the other hand, can be

used to fit a model using data that contain a significant amount of errors. It has been

implemented in this thesis (Section 4.2) as part of extracting the ground plane of a scene

for tracking the foot positions of pedestrians.

The algorithm of RANSAC randomly samples an initial set from the data and sets

it as feasible and enlarges this data consistently when possible. (Fischler et al. 1987)

explains the implementation using an example of fitting a circle to a given set of 2D

points. Since any circle is defined by three parameters (x and y-coordinates of its center

and the radius), three points are randomly chosen and the center and radius of a circle

is determined. Then, the number of points close enough to the circle is determined so

as to see the compatibility of the fit with the rest of the data. This is defined using a

predefined threshold (called “error tolerance”). If the result is satisfactory, the “inliers”

are used to perform a smoothing technique like least-squares to improve the estimated

parameters. If not, the process is iterated. Another important hyper-parameter is the

lower bound for the size of an acceptable consensus set. Depending on the problem at

hand, this has to be chosen such that the consensus set is large enough to accommodate

sufficient number of points for the smoothing procedure and to ensure that the correct

model has been found for the data. The iterative process in the algoirthm is carried out

for a predefined number of trials or iterations. The proposed way of choosing the number

of iterations N for a problem involving s unknowns, w percentage of inliers with a desired

probability p of finding the consensus set is given by:

N >
log(1− p)

log(1− ws)
(24)
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3.5 Optical Flow

The concept of optical flow has been implemented in this thesis to predict the position

of pedestrians on the image plane by estimating a “flow vector” that connects them in

adjacent frames. Optical flow can be defined as a motion field of points in an image

(Vedula et al. 1999). Methods to determine optical flow has been widely discussed with

the works of (Lucas et al. 1981 and Horn et al. 1981) laying the foundations. The strategies

proposed in their work has inspired the implementation of determining the flow vectors

between image frames in a given sequence for this thesis.

3.5.1 Flow Determination

The determination of optical flow depends on the brightness patterns of pixels in images.

Consider a point (x, y) (on an object) in an image at time t. The brightness of this point

is given by E(x, y, t). Suppose the object moves during a small time interval dt and the

movement of the point on the image plane is given by (dx, dy). The implicit assumption

is that, given a very high frame rate, the brightness, E has not changed. Following the

mathematical derivations as given in the paper by (Horn et al. 1981), this constraint can

be formulated as:

E(x, y, t) = E(x+ dx, y + dy, t+ dt) (25)

On expanding the right hand side of equation 25 about the point (x, y, t) (Taylor series

expansion) :

E(x, y, t) = E(x, y, t) + dx
∂E

∂x
+ dy

∂E

∂y
+ dt

∂E

∂t
+ ϵ (26)

ϵ contains the higher order differentials of dx, dy and dt. On subtracting E(x, y, t) on

both sides of equation 26, dividing through by dt and considering ϵ to be negligible, it

can be modified as:

∂E

∂x

dx

dt
+

∂E

∂y

dy

dt
+

∂E

∂t
= 0 (27)

Using u and v to denote the unknowns in equation 27, dx
dt

and dy

dt
, the Optical Flow

equation can be given as:

Exu+ Eyv + Et = 0 (28)

The problem now boils down to estimating the unknowns u and v. In order to make

the optimization feasible, an additional constraint is required. This can be made possible

by assuming that for the point (x, y), its neighbouring points also show similar movement

pattern and hence establishing a constant flow constraint within the local neighbourhood.

Thus, for n neighbouring pixels, n equations can be formulated and the unknown vector
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[u, v]T (T indicates the transpose operation) can be determined using the least squares

method with the observation vector l:

l =





















Et(x1, y1)

Et(x2, y2)

.

.

.

Et(xn, yn)





















(29)

and the design matrix A:

A =





















Ex(x1, y1) Ey(x1, y1)

Ex(x2, y2) Ey(x2, y2)

.

.

.

Ex(xn, yn) Ey(xn, yn)





















(30)

The least squares solution for the unknown vector is then:

[

u

v

]

= (ATA)−1 · AT · l (31)

3.5.2 Feature Selection

A key aspect in the success of tracking using optical flow is to identify reliable features

of the targets involved in the scene. (Shi et al. 1994) developed an algorithm to detect

“good” features crucial for tracking. This was based on the Harris detector (Harris et al.

1988). Following the approach put forward by (Moravec 1980), consider a local window

w (which is 1 within a specified rectangular region and 0 elsewhere) around a point (x, y)

with intensity E, shifting it by (u, v) in various directions could lead to three cases:

• Constant intensities within the patch leads to small changes in all directions.

• Edge leads to large changes when shifted perpendicular to the edge and small change

when shifted along the edge.

• Corner leads to large changes in all directions.

This can be expressed mathematically as the local autocorrelation function, S as given

in equation 32

S(u, v) = ΣxΣyw(x, y)[E(x+ u, y + v)− E(x, y)]2 (32)

On approximating [E(x+ u, y + v)] using a first order Taylor expansion as:

[E(x+ u, y + v)] ≈ E(x, y) + Eu(x, y)u+ Ev(x, y)v (33)

24



equation 32 can be modified as:

S(u, v) ≈ ΣxΣyw(x, y)[Eu(x, y)u+ Ev(x, y)v]
2 (34)

which can be further simplified as:

S(u, v) ≈
[

u v
]

·M ·

[

u

v

]

(35)

where M is the structural tensor defined as:

M = ΣxΣyw(x, y)

[

Eu(x, y)
2 Eu(x, y)Ev(x, y)

Eu(x, y)Ev(x, y) Ev(x, y)
2

]

(36)

Once M has been determined its eigenvalues λ1 and λ2 can be analyzed to make con-

clusions as follows:

• If λ1 and λ2 ≈ 0, then the point has no features of interest.

• If λ1 ≈ 0 and λ2 has a large positive value, the point is part of an edge.

• If both λ1 and λ2 have large positive values, the point is part of a corner.

(Shi et al. 1994) suggest selecting a window if the following condition is satisfied:

min(λ1, λ2) > λ (37)

where λ being a predefined threshold.

(Harris et al. 1988) circumvent the computational expensiveness of the eigen value

decomposition of M by calculating only the determinant (det) and trace of M to evaluate

the corner response, R given as:

R = det(M)− k · trace2(M) (38)

where k is a tunable parameter. For flat regions, R gives a small value. It gives negative

values for edges and positive values for corners.
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4 Methodology

The proposed methodology accepts planar rectified stereo image sequences of a scene,

assuming a high frame rate. The projection matrices of the stereo cameras P1 and P2 are

used for triangulation in each frame. The expected results include tracks of the detected

pedestrians on the image planes of the left and right stereo images and their corresponding

trajectories in the 3D object space. Tracks on the image planes are visualized using 2D

bounding boxes around the tracked pedestrians with identities assigned to them. Their

positions on the ground plane, giving rise to “ground tracks” are also obtained. In the

3D space, both the ground tracks and trajectories following the centers of gravity of

the tracked pedestrians with their corresponding identities from the image planes are

obtained.

Detecting the pedestrians to be tracked is the first step and the experiments carried

out as part of the thesis use the Mask-RCNN as the object detector (Section 4.1) in the

first frame to get masks and bounding boxes around the detected pedestrian to initialize

their tracks. The disparity values obtained using semi-global matching (Section 3.3.1) are

used to match pedestrians in the left and right images and triangulation (Section 3.2.3)

is done to determine their positions in the 3D object space. These points are projected

on to the ground plane extracted using the process explained in Section 4.2.

The concept of optical flow is used for linking the detections on the image plane from one

frame to the next (Section 4.3). The pedestrians are assumed to move only horizontally

over the ground and hence are assumed to have displacements only along the x direction

while making predictions using the flow vector. The object detector is re-introduced

in certain “key-frames” to check for possible new detections to create fresh tracks, to

improve the bounding box coordinates of current ones predicted using optical flow and to

end tracks of pedestrians who may have left the scene to suppress false positives. After the

tracks over all the frames have been obtained following the aforementioned steps, it may

still contain identity switches and incorrectly broken or merged tracks. To improve these

results, a dedicated pedestrian re-identification algorithm (Section 4.4) is implemented.

This algorithm checks the tracks obtained from the previous step for possible identity

switches or wrong assignment of identities to pedestrians and tries to merge broken tracks

back together and break tracks that were falsely merged together. The re-identification

step implements this using the TriNet architecture (Hermans et al. 2017) followed by a

clustering algorithm.

4.1 Detection and 3D Localization

The objects of interest on images in the proposed tracking algorithm are pedestrians. The

algorithm begins by detecting and localizing pedestrians on the 2D image plane using the

Mask-RCNN framework as explained in Section 3.1.3. For each detected pedestrian, the

Mask-RCNN provides:

• the coordinates of the 2D bounding boxes used to localize the pedestrians as [x1, y1,
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w, h], where x1 and y1 represent the x and y coordinates of the top-left corner and

w and h represent the width and height of the boxes

• an instance segmentation mask for each detected pedestrian within the bounding

box separating each pedestrian from each other and from the background

• a confidence score, ρ measuring the probability of the detection as being a correct

one

These results are obtained for every frame in a sequence for both the left and right cam-

eras. This results in individual detections that can be used for tracking, stereo matching

and triangulation in the subsequent steps. The availability of the segmentation masks in

addition to the 2D bounding boxes minimizes the errors in localizing pedestrians partially

occluded by other pedestrians or other entities. Even when their bounding boxes may

overlap, the masks allows a pixel-wise separation of every detected pedestrian. Figure 12

shows an example of how the Mask-RCNN produces distinct segments in crowded scenar-

ios even when the bounding boxes of neighbouring pedestrians have considerable overlaps.

Figure 12: Mask-RCNN detections for a crowded scene.

The results include bounding boxes, segmentation masks, identified class name and confidence

scores for each detection.

The next step is to determine the disparity images of every image pair in the sequence.

This is done using the semi global matching algorithm described in Section 3.3.1, taking

the left image in every frame as the reference image. Once the disparity images have been

obtained, the instance of each detected pedestrian in the left image can be matched to its

corresponding instance in the right image using the disparity values. The segmentation

mask for each detected pedestrian allows the matching of only those pixels that belong

to the pedestrian excluding pixels that may belong to the background or to another

partially occluding pedestrian, a typical error possible when using only bounding boxes

for localization and using one pixel (for example, the center of the bounding box) to

represent the detection.

Once the detected pedestrians have been matched between the left and right image pairs,

the projection matrices of both the cameras can be used to find the coordinates of the

27



matched pixels in the 3D model coordinate system as explained in Section 3.2.3. Since

points belonging to the segmentation masks of the pedestrians are used, triangulation

results in a 3D point cloud. The z-coordinates of each point in this 3D point cloud gives

the distance or depth of the point to the baseline of the stereo set-up. Since a collection of

points is now available in the 3D object space, a 3D point can be determined to represent

the pedestrian in the 3D space by finding the center of gravity of the point cloud. This

is done by averaging the x, y and z coordinates of the points in the cloud. Such a 3D

point representing the detected pedestrian can be considered to be a position along its 3D

trajectory in the object space. This process is repeated for every frame in the sequence.

4.2 Ground Extraction

The disparity map obtained using the dense stereo matching algorithm can be used to

distinguish between the pixels belonging to the ground and to other obstacles. Extracting

the ground from a scene provides a better visualization of the tracks obtained from the

tracking algorithm by projecting the center of gravity of the point cloud obtained by

triangulation onto the ground plane. This is especially valid in crowded scenarios where

bounding boxes overlap highly with those of neighbouring pedestrians and very little can

be understood without a visualization that localizes each pedestrian better. The back-

projection of a point projected onto the ground plane in the 3D space from a partially

occluded pair of segmented masks back on to the image plane gives the position of the

foot of the pedestrian. This also improves the dimensions of the bounding boxes given by

the detector. The foot positions so obtained can be used to form ground tracks on the

image plane and also in the 3D object space.

The extraction of the ground plane within the scene assumes that the ground is horizon-

tal almost everywhere. This is particularly valid for urban scenes where vertical structures

could belong to objects like buildings, traffic lights or lamp posts. (Z. Hu et al. 2005 and

Zhang et al. 2010) propose ways to use the disparity image (Db) of a stereo pair to gener-

ate the so called “U-disparity” and “V-disparity” maps which are projections on column

and row directions respectively. For example, the number of rows in the V-disparity map

is equal to the number of rows of the original disparity image and the number of columns

correspond to the maximum disparity value. Each column in the V-disparity map is a

disparity histogram of the corresponding column in Db. And conversely, for a U-disparity

map, the number of columns equal to the number of columns of the disparity image and

number of rows equals the maximum disparity. The ground is projected as a diagonal line

in the V-disparity map and obstacles as horizontal lines in the U-disparity map. These

projections of the obstacles and ground can be used to find pixels on the image plane

corresponding to the two categories. Figure 13 shows a test environment and its disparity

image and Figure 14 shows the corresponding V and U-disparity maps.
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Figure 13: Left: Test environment Right: Disparity map (Zhang et al. 2010)

Figure 14: Left: V-disparity map Right: U-disparity map (Zhang et al. 2010)

Following the ideas put forward by (Z. Hu et al. 2005), obstacles in an image are

considered to be regions with normal vector approximately parallel to the ground and

regions within a disparity image containing obstacles can be seen as regions with same

disparity value along the columns. Each pixel (u, v) in the V-disparity image contains a

value corresponding to the number of pixels in column v of Db with disparity u. A binary

mask Mobstacle can hence be obtained by collecting pixels in Db corresponding to pixels in

the V-disparity map with values larger than a threshold. These pixels can be considered

as pixels belonging to the obstacles in the scene. Small obstacle regions can be joined

using morphological closing. Since the pixels belonging to the obstacles have now been

collected in the obstacle mask, the remaining pixels in Db mostly belong to the ground

plane. They can be collected to form a ground mask, Mground.

Since the left image was used as the reference image for dense stereo matching, the
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pixels in Mground correspond to ground pixels in the left image. The disparities of these

pixels can be used for finding pixels belonging to the ground in the right image. Once

the ground pixels have been matched, they can be subject to triangulation to obtain the

3D coordinates of the ground plane in the object space. Given such a collection of points

in the 3D object system, any point P (x, y, z) that lies on the ground plane has to satisfy

the equation of a plane given as:

ax+ by + cz + d = 0 (39)

where (a, b, c) is the normal vector of the plane and d is the distance of the plane from the

origin. The ground plane can now be extracted using RANSAC with the points inMground

subject to the constraint given in equation 39 using the steps described in Section 3.4.

This also removes possible outliers due to pixels that may have been incorrectly included

in Mground, for example, pixels belonging to other horizontal surfaces (like flat roofs of

cars, buildings and so on).

With the 3D pedestrian points and the ground plane set up, the 3D foot position of the

pedestrian on the ground plane can be obtained. This can be done by determining the

projection of the 3D pedestrian point on the ground plane. An example of projecting a

3D pedestrian point onto the ground plane obtained using RANSAC is shown in Figure

15. The origin of such a coordinate system corresponds to the projection center of the

left camera in the stereo set-up, as defined by the projection matrices.

Figure 15: Visualization of a 3D pedestrian point in object space and its projection on the
ground plane
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These 3D foot positions of pedestrians can be back-projected onto the image plane using

the projection matrix (equation 12). This helps in tracking the movement of pedestrians

along the ground and for improving the coordinates of the bounding box on the image

plane even in cases of partial occlusions as shown in Figure 16.

Figure 16: Left: Bounding boxes around partially occluded targets; Right: Bounding boxes
corrected by back-projecting the foot positions in 3D onto the image planes

(U. D.-X. Nguyen 2020)

4.3 Tracking

Given a set of n pedestrian detections DLt0 = {DLt0
1 , DLt0

2 , ... DLt0
n } and DRt0 = {DRt0

1 ,

DRt0
2 , ... DRt0

n } for a frame t0, for the left and right images respectively from the Mask-

RCNN, dense stereo matching and ground plane extraction are carried out as explained

previously. Each pedestrian is cropped out to determine the points that are reliable for

tracking based on the approach described in Section 3.5.2. Once the points have been

determined, the image for frame t1 is used to determine the optical flow of the selected

points of each detection in DLt0 and DRt0 following the steps explained in Section 3.5.1.

The magnitude of the flow vector gives the displacement of the selected points and the

sign gives the direction (left or right) of the displacement. Given the high frame rate of

the KITTI dataset and considering the fact that pedestrians move horizontally on the

ground, the displacements of the selected points in the vertical direction is assumed to be

negligible and discarded. The displacements in the horizontal direction are averaged over

the selected points of each detection to obtain the mean displacement of each pedestrian

between the two frames and predict the bounding boxes of the detections in t1. The

mean displacement can can also be used to predict the foot points of the pedestrians in

t1, given their foot positions in t0. Using the segmentation mask of the previous frame

and the predicted foot positions in t1 the height of the bounding box predicted for t1 can

be approximated. The y-coordinate of the predicted foot is assigned as the y-coordinate

of the bottom-right corner of the bounding box. This allows the box to go no lower than

the foot position and the width is calculated by assuming that the height of a box is

three times its width. The detections for frame t1 can hence be obtained for the left

and right images forming tracks and can be assigned unique identities. For each detected

pedestrian, the quantities passed on to the next frame includes the frame number, x and

y coordinates of the top left corner of the predicted box, x coordinate of the bottom

right corner, y coordinate of the foot position and the identity assigned to the track. The
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detections predicted for t1 can be used similarly for predicting the labels of the pedestrians

in t2, and so on. The identities of same pedestrians detected in the left and right images

are always identical and hence can be used to form tracks with the same identities in the

3D object space using triangulation.

One caveat with such an approach relying on several strong assumptions is that a

pedestrian who was fully occluded in t0 or who entered the scene in frame t1 will remain

undetected. It can also happen that a pedestrian occluded partially in the left image in t0,

for example, was tracked successfully, but the same pedestrian was completely occluded

and hence undetected in the right image. This would lead to a missed position in the

3D trajectory, because triangulation cannot be implemented in such a situation. Since

the success of determining the flow vector relies on detecting reliable points for tracking,

failure in doing so inevitably leads to wrong approximations of the flow vector and the

predicted box may fall over the background or a over neighbouring pedestrian leading to

false positives or identity switches. The accuracy of the stereo matching algorithm might

also start to reduce with increase in depths, leading to poor results for triangulation.

These issues can be dealt with by introducing the detections produced by the Mask-

RCNN at regular intervals. This allows the algorithm to check for new tracks in case of

new detections, end false tracks and improve the bounding box coordinates of the existing

detections predicted using optical flow.

Figure 17 shows a flowchart of the steps involved in predicting the labels for the frame

ti+1, given the labels, the left and right images at frame ti, which are then used to calculate

the disparity map. Once the predictions have been made, the frame ti+1 is checked for a

key frame update (not shown in the Figure for the ease of visualization). In case of an

update step, the predictions are refined before they are used to make predictions for the

upcoming frame.

Figure 17: Workflow of the tracking algorithm in 2D

During such a “key-frame update”, the detections given by the Mask-RCNN need to

be assigned correctly to each set of predictions from the previous frame. Such an assign-

ment also includes the foot positions of the pedestrians detected. A match between each
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detected and predicted pedestrian is attempted for one-to-one assignments. A strategy

involving three steps is proposed for this:

• Use a siamese triplet model to predict the similarity of each pedestrian detection to

the predictions from the previous frame. The cosine similarity (Unde et al. 2021;

Wojke et al. 2018) of the embeddings obtained from the siamese model is determined

to give a measure of similarity between two pedestrians. Such a score is often

unreliable especially when two pedestrians similar in appearance, leading to similar

features, are under consideration or if the boxes in question also includes parts of

other entities or neighbouring pedestrians. Such a score can, however, be used to

select m good matches based on appearance by defining a threshold.

• Use the 3D coordinates of the predictions and detections in the object space obtained

using triangulation to calculate the Euclidean distance. Assuming that the pair that

gives smallest distance to be the correct match could lead to false assignments in

case of crowded scenes. But, by using a threshold, this too can be used to filter out

improbable matches based on their spatial proximity in the 3D space.

• Take the best matches obtained from the previous steps and use the segmentation

mask of each detection to look over overlaps within the area enclosed by the predicted

bounding boxes. The bounding box obtained from Mask-RCNN corresponding to

the mask with maximum overlap has to correspond to the prediction.

Given a small frequency between such updates, the third step provides an accurate

match but at the cost of an exhaustive search. This can be alleviated to an extend using

the first two steps. Once the labels have been updated they can be used for making

predictions for the subsequent frame using optical flow as mentioned before. In case of

no suitable matches, it can be assumed that the detection belongs to pedestrian who had

entered the scene since the last update or was occluded until the current update and

can therefore be assigned new tracks. Predictions using optical flow can also be used to

end tracks if the predicted corners of the bounding boxes exceeds the boundaries of the

image plane. Depth of the pedestrians from the baseline of the stereo cameras can also

be used to start or end tracks based on the reliability of the matching algorithm and the

complexity of the tracking environment.

Another possibility of identity switches and wrong flow estimation while using such a

method arises if two pedestrians cross each other or one is being overtaken by another.

This could lead to the identity of one pedestrian being carried over to the other and

hence, lead to the creation a new track. Such a situation cannot be avoided without ad-

ditional constraints or dedicated modeling for such scenarios and hence makes pedestrian

re-identification a crucial aspect in the success of such a tracking algorithm.

The tracks over all frames obtained from the tracking algorithm given above are subject

to the re-identification algorithm described in Section 4.4. Once the 2D tracks on the left

and right image sequences have been refined using re-identification, the 3D trajectories can
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be determined using the triangulation method as described in Section 3.2.3 and Section

4.1. Each tracked pedestrian now has a unique identity and belongs to a track on the

left and right image sequences. Corresponding pedestrians on the left and right images

are given the same identities. This allows in creating 3D trajectories in the object space

tracking both the centers of gravity and the foot positions of the pedestrians. An overview

of these steps is given as a flowchart in Figure 18

Figure 18: Workflow of the tracking algorithm in 3D

4.4 Re-identification

Once the tracks have been obtained for the left and right image sequences, they are

searched for possible identity switches by classifying them as being “stable” or “unstable”

tracks based on their number of occurrences of their identities. The identities of stable

tracks are used as “references” for tracks that may have been broken away from them.

The “loss” of an identity followed by the introduction of a new identity suggests the

possibility of a switch or an occlusion accompanied by a new pedestrian entering the

scene. But such cases could often be signs of identity switches due to any of the scenarios

mentioned in the previous section and hence, the pedestrians belonging to the tracks that

were deemed unstable until that point, the reference identities, the pedestrians belonging

to the missed identities and the ones belonging to the new one are subject to the re-

identification process.

The TriNet architecture using a siamese triplet model implemented in the work of

(Hermans et al. 2017) is used for the purpose pedestrian re-identification as it can be

used independent of the tracking procedure described in the previous section and can be

integrated to the workflow as a post processing step to merge broken tracks together and

to split incorrectly joined tracks.

This is done by cropping the pedestrians from the images around their bounding boxes

34



and feeding them to the TriNet model, which produces embeddings for each input pedes-

trian. These embeddings are then be subjected to a clustering algorithm. Being a popular

clustering mechanism, the K-means clustering algorithm has been used for this purpose

as it is highly effective in mining patterns involved in the data with a relatively high

convergence speed (Y. Li et al. 2012; Bishop et al. 2006). K-means is an unsupervised

method for recognizing patterns and works by clustering the input data based on a crite-

rion of distance between the cluster centers. It is an iterative process that starts with a

random cluster center but iteratively updates the clusters based on the distance of similar

or dissimilar samples from the cluster centers.

The clustering algorithm is expected to converge and brings together instances of the

reference tracks that may have broken away from it. It also separates two falsely joined

pedestrian tracks that had formed a single track. A pedestrian who is not identified as

belonging to any of the reference identities is left with its current identity and observed

in the further frames for possible merges or splits.

Such an algorithm that takes into account only the appearance cues could often result

in mismatches due to the pedestrian reappearing in the scene after a prolonged occlusion

rendering the clustering algorithm unable to find a suitable match for it. This could

be understood by considering a situation where a pedestrian belonging to an identity

that was considered to be stable, walking towards the camera (or conversely, away from

the camera), who gets detected after a large number of frames due to an occlusion (for

example, detected in the 20th frame and occluded until the 100th frame). The pedestrian

gets a new identity and might appear different due to an enlargement (or shrinkage) in the

dimensions of the bounding box in the recent detection. The cropped version of reference

identity that was obtained in the previous detection and the cropped image of the new

identity may not necessarily belong to the same cluster during the clustering process due

to differences in embeddings produced by the siamese model, even though they belong

to the same pedestrian. Differences in appearances due to different lighting conditions

between the two observed instances of the same pedestrian in two distant frames could

also lead to wrong clustering results (for example, a person detected under sunlight gets

occluded for a large number of frames and reappears in shades or shadows giving rise

to different emeddings leading to different clusters). Different viewing angles could also

lead to mismatches in the identities due to same pedestrians appearing differently when

viewed from different viewpoints and in some cases, different pedestrians producing similar

embeddings. Figure 19 shows some results of the re-identification procedure. It can be

seen how two different identities when viewed from different angles were identified as one

due to extremely similar appearances.
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Figure 19: The query image is given in the leftmost column. This is followed by three images
that were re-identified as matches to the query. The last two columns show the

ground-truth matches. Correctly re-identified images are given green borders while
wrong matches are given red borders. (Hermans et al. 2017)

It can also happen that due to highly similar embeddings, the clustering algorithm

found more than one match for an embedding leading to two or more instances of the

same identity for a single frame. This calls for a dedicated subroutine that checks for

“imposters”, who should be reassigned to their original identity or given new identities.

This can, once again, be done using the TriNet model followed by clustering by taking the

duplicates and instances of other existing tracks in the subsequent and previous frames

as inputs.

Having to employ such mechanisms only after the initial tracks have been obtained

on the image planes for every frame of the left and right sequences, limits the real-time

capabilities of the methodology. The sole dependence on visual cues to prevent switches

in identities could inevitably lead to errors that can be dealt with by using additional

geometrical constraints or by modelling the behaviour of pedestrians in a scene.
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5 Experimental Setup

5.1 Datasets

COCO: The Mask-RCNN model for detecting pedestrians was trained on the COCO

(Common Objects in Context) dataset (Lin et al. 2014). The COCO dataset has 90

different annotated classes of objects along with the “background” class leading to a total

of 91 classes. It is a prominent dataset used for training models for object detection and

instance segmentation. The annotated data consists of 2D bounding boxes and instance

segmentation masks for detecting and localizing the object categories on images. The

dataset consists of 328k images with 2.8 million labelled instances. The advantage of

the COCO dataset over other popular datasets like the ImageNet (Krizhevsky et al.

2012) dataset is that even when it has fewer categories, it provides more instances of the

categories for training. With nearly 270k instances of people, a model trained on the

COCO dataset is a suitable choice for detecting pedestrians in a tracking scenario.

Market-1501: The pedestrian re-identification network (TriNet) using the siamese

triplet loss was trained on the Market-1501 dataset (L. Zheng et al. 2015). This dataset is

an attractive option for training a re-identification model that learns a similarity metric

due its use of six cameras recording people in a campus supermarket from six different

view points. The creators claim the dataset to be the largest person re-identification

dataset at the time of its release in terms of the number of query images and identities

of people cropped out using bounding boxes. The dataset consists of 751 identities for

training with each person having, on average, 3.6 images at each viewpoint. The dataset

also includes samples with visually similar appearance with different identities, which is

an ideal choice for training a siamese network to learn similarities and dissimilarities.

Figure 20 shows examples of samples included in the Market-1501 dataset.

Figure 20: Top: Samples of 3 identities with distinctive appearance. Bottom: Samples of 3
identities with similar appearance. (L. Zheng et al. 2015)

KITTI: Training of the siamese triplet network for matching predictions obtained using

optical flow and the detections obtained from the Mask-RCNN and testing of the entire

tracking methodology has been carried out on the “mulit-object” tracking dataset of the

KITTI vision benchmark (Geiger et al. 2012). The KITTI dataset contains street view

scenes obtained by a stereo camera mounted on a car. The dataset includes RGB images

for the left and right stereo cameras separated by a baseline of 0.54 m, obtained at a

frame rate of 10 FPS (frames per second). Since the purpose of the KITTI dataset being
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the investigation of autonomous driving applications, it focuses primarily on vehicles and

pedestrians. The training set consists of 21 labelled sequences out of which 5 include

pedestrians, namely sequences 13, 15, 16, 17 and 19. The ground-truth includes the 2D

bounding boxes coordinates and 3D positions of the pedestrians in the object space with

respect to the left camera. Since the tracking methodology implemented as part of this

thesis includes the extraction of the ground plane, only the sequences (16 and 17) captured

by the cameras when the car on which the they were mounted was stationary, has been

used for testing and evaluating the results of the implementation.

Since the COCO dataset includes a “Person” class and “Bicycle” class, it does not make

a distinction between a “Pedestrian” class and “Cyclist” class. Therefore, implementing

a detection model trained on the COCO dataset on the KITTI dataset leads also to

the detection of cyclists as “persons” and hence will be included as a valid detection

for tracking. The evaluation criteria for the KITTI dataset, however, does not consider

objects belonging to neighbouring classes of pedestrians like cyclists or people who are

seated as false positives.

5.2 Training and Hyper-parameter Settings

Mask-RCNN: The Mask-RCNN model for detecting pedestrians was built on FPN and

ResNet-101 and hyper-parameters were tuned as suggested by (He et al. 2017 and Abdulla

2017). The model was trained with the number of steps per epoch set to 1000 and the

number of validation steps set to 50 for optimal training times. Training was done on

mini-batches of 16 images. The threshold for non-maximum suppression to filter the RPN

proposals was set to 0.7 and 256 anchors were used per image during training. The number

of maximum final detections was set to 100 with a detection being accepted only if it has

a minimum confidence of 0.7. The non-maximum suppression threshold for a detection

was set to 0.3. The model was trained with a learning rate of 0.001 and momentum of

0.9 with a weight decay of 0.0001 for regularization.

Siamese triplet models: The siamese triplet model used for matching the detections

of the Mask-RCNN with the predictions obtained using optical flow was trained on the

KITTI dataset using a network with ResNet-50 as the base (discarding the last layer)

followed by three fully connected layers, the first layer consisting of 512 units and the last

two containing 256 units each. The fully connected layers have ReLu non-linearities with

intermediate layers of batch normalization. The model uses weights pre-trained on the

ImageNet dataset for faster convergence. Training samples were generated by cropping

out pedestrians based on their labelled bounding box coordinates and identities to form

“anchors”, “positives” and “negatives” to learn the similarity metric. The size of the

input pedestrians images were scaled to (64, 64) pixels. The batch size was set to 32 and

the triplet loss was defined with a margin set to 1 based on the accuracy on the validation

set. The model was trained using the Adam optimizer for 60 epochs with a learning rate

of 0.0001.

The architecture and hyper-parameters of the TriNet model for pedestrian re-identification
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were in accordance with the implementations of (Hermans et al. 2017). The TriNet model

also uses the ResNet-50 as the base architecture removing the last layer and adding two

fully connected layers consisting of 1024 units and 128 units respectively and the ReLu

non-linearity. The input images fed into the network were resized to have a height of

256 pixels and width of 128 pixels. The batch size was limited to 72 due to the size of

the network (consisting of 25.74 million parameters). The network was trained using the

Adam optimizer with momentum and used a learning rate of 0.0003 and has 20k training

iterations. A margin of 0.2 was used in the triplet loss for separating the similar identities

and non-similar identities.

An important hyper-parameter to consider while tracking on the image plane using

optical flow is the frequency in update of the labels. The frequency of such an update

in “key frames” highly depends on the complexity of the tracking problem. For cameras

spanning a wide area with pedestrians moving not only across the image, but also towards

and away from the cameras would mean gradually shrinking or expanding bounding boxes

resulting in incorrect dimensions of the boxes and in turn, wrong predictions for the

subsequent frames without timely updates. Detections could be missed if the scene is

expected to have new pedestrians entering frequently, as is in the case of surveillance

cameras. Pedestrians moving in small clusters with varying speeds, thus going past other

groups could also lead to errors unless such movements are also modelled.

Assigning a small frequency for a key-frame update, to the tracking algorithm for a scene

where the number of pedestrians to be tracked is not expected to change dramatically or

even allowing the predictions for every frame to be followed by a key-frame update, leads

to results not much different from those predicted by optical flow and can be avoided

considering the computational and time costs of such an update as described in Section

4.3. A small frequency (for example, every 5 frames or less) assumes that the bounding

box dimensions of the tracked pedestrians are expected to change significantly within that

time frame and should be updated accordingly. Assigning a large frequency (for example,

after every 10 frames) given a scene where new pedestrians are expected to enter quite

frequently could lead to false negatives or missed detections. A still larger frequency for a

scene, where pedestrians are expected to enter and exit within a shorter period of time, in

effect, leads to missing out completely on several tracks giving incomplete results for the

tracking algorithm. Given the density of the pedestrians in each frame and the changes in

bounding box dimensions for the tracked pedestrians between frames and experimenting

and evaluating the results with several frequencies, it was decided to update the predicted

labels after every 3 frames for the test sequences used in this thesis. As it was mentioned

earlier, depth of the pedestrians can, in addition, be used for ending tracks predicted by

optical flow. A minimum depth of 2m from the baseline was chosen to end tracks for both

the test sequences, in addition to the boundaries of the image plane. This is to prevent

inaccurate flow estimation given the fact that objects show larger displacements on the

image plane at smaller depths.
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5.3 Evaluation Metrics

IoU or Intersection over Union is a measure that determines if a detection is correct by

comparing the bounding box detected with its ground-truth. It measures the overlap of a

detected bounding box with the ground-truth box and divides it by the area of the union

between them as shown in Figure 21.

Figure 21: Determination of the IoU between the detected bounding box and its ground-truth
(Padilla et al. 2020)

While evaluating the results of an object detector, a True Positive (TP) is defined as

a correct detection of an object given in the ground-truth. A False Positive (FP) is an

incorrect detection of an object that does not exist and a False Negative (FN) is defined

as a ground-truth box that is undetected. True Negatives (TN) do not apply in the

context of object detection because one can imagine infinite number of boxes in a scene

that should not be detected. A detection can be considered to be True Positive if the IoU

of its bounding box with the ground-truth box is greater than a threshold. The KITTI

evaluation criteria specifies a threshold of 0.5 for declaring a detection a TP.

Such a classification of the detections can be used to calculate two evaluation metrics:

precision and recall. Precision gives a measure of the ability of the detector to detect only

the relevant objects. Hence it measures the “correctness” of the detector. It is defined as:

precision =
TP

TP + FP
(40)

Recall on the other hand measures the “completeness” of a detector by measuring its

ability to detect all ground-truth boxes. It is defined as:

recall =
TP

TP + FN
(41)

The precision and recall values can be used to plot a precision x recall curve. For

different confidence values given by the object detection framework, the plot can be seen

as a trade-off between precision and recall. A good object detector can be defined as

one that detects all the boxes given in the ground-truth while at the same time detecting

only the relevant ones, which means the precision of the detector should stay high as its

recall increases. This can be visualized using the precision x recall curve. The area under
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the curve (AUC) is determined to estimate the average precision (AP) of the detector.

The curve obtained typically has a zig-zag shape and can be summarized by averaging

the maximum precision values observed at each recall level. Such a method has been

carried out as per the interpolation method given by (Padilla et al. 2020). The APs of

all object categories are averaged to determine the mean average precision (mAP). Since

the tracking algorithm focuses only on pedestrians, the number of object categories for

detection is 1, thereby making the mAP mathematically equal to the AP.

MOTA and MOTP are two popular metrics for evaluating the the results of a tracking

algorithm (Bernardin et al. 2008). MOTP measures the accuracy of the algorithm in

localizing the pedestrian using bounding boxes by calculating the average IoU between

the detections and the ground-truth boxes. For every detection i in frame t, MOTP is

determined as:

MOTP =
Σi,tIoU

i
t

Σtct
(42)

where ct is the number of matches between the ground-truth and detections in frame t.

MOTA measures the accuracy of both the tracking and detection algorithms by taking

into account, for frame t, the identity switches ID along with the FP s and FNs which

are added up and divided by the number of objects present at t, given by gt, to get the

total Error rate Etot given as:

Etot = 1−
Σt(FNt + FPt + IDSt)

Σtgt
(43)

MOTA is then defined as:

MOTA = 1− Etot (44)

IDF1 is a metric that measures the consistency of tracks obtained by the tracking algo-

rithm by comparing the obtained identities to the ground-truth tracks. An overlap with

the ground-truth track greater than a threshold leads to IDTPs (identity true positives),

IDFPs (identity false positives) are non-overlapping tracks and unmatched tracks become

IDFNs (identity false negatives) (Luiten et al. 2021). The values can then be used to

determine IDF1 as given in the equation below:

IDF1 =
IDTP

IDTP + 0.5 · IDFN + 0.5 · IDFP
(45)

The predicted trajectories can be evaluated by comparing them with the ground-truth.

Since the predicted trajectories in the 3D space vary from those given by the ground-truth

along the y direction, due to different ways of choosing representative tracking points in

the 3D space (a small deviation only along the y direction still corresponds to the same

pedestrian), the comparisons are made along the x-z plane. The z axis of such a system

is parallel to the optical axes of the cameras.

For every frame including the predicted trajectory, the Euclidean distance between the

predicted point and the point given by the ground-truth can be determined on the x-z
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plane. This gives the offset of the predicted position from the ground-truth for that frame.

This is visualized in Figure 22.

Figure 22: Example of a predicted position and the ground-truth of a pedestrian on the x-z
plane.

Averaging the offsets over all the tracked frames gives an approximation for the de-

viation of the triangulation results from the ground-truth in terms of the 2D Euclidean

distance. In addition, the root mean square error (RMSE) can be determined for the x

and z coordinates using the values given in the ground-truth for these coordinates. Based

on the definition of (Chai et al. 2014), for a total of N tracked frames, the RMSE for the

x and z coordinates are given as follows:

xRMSE =

√

ΣN
n=1(xp − xgt)2

N
(46)

zRMSE =

√

ΣN
n=1(zp − zgt)2

N
(47)

where xp and zp correspond to the predicted x and z coordinates and xgt and zgt

correspond respectively to their ground-truth coordinates.
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6 Results

The results obtained during the different stages of implementation of the methodology

tested on the KITTI dataset for the sequences mentioned in Section 5 are visualized and

analyzed in this section. This includes the results of the Mask-RCNN detections, semi

global matching, ground extraction and triangulation, in addition to the final results of

the tracking algorithm. The section also includes a discussion of the evaluation metrics

(discussed in Section 5) determined for the methodology. The shortcomings of certain

implementations and reasons for such eventualities are also pointed out in this section

with adequate visualizations. The results obtained in each subsection are interpreted

and critically analyzed to form conclusions of the proposed algorithms. Unless otherwise

stated, every image presented to show the results of the detection and tracking algorithms

belongs to the left camera.

6.1 Detection

The detection of pedestrians on the image plane using Mask-RCNN is the first step in

the proposed methodology. The quality of its detections, therefore affects the success

of all the subsequent stages. As mentioned earlier, the ability of the framework to form

segmentation masks of pedestrians even in most cases of overlapping bounding boxes with

neighbouring pedestrians is highly advantageous to the matching and tracking algorithms.

Figure 23 show the results including the bounding boxes and segmented masks of the

Mask-RCNN framework for one frame each from the two test sequences.

Figure 23: Top: Detection results for a frame in sequence 16. Bottom: Detection results for a
frame in sequence 17
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From the figures it can be seen how the Mask-RCNN detects and masks out pedestrians

in a scene. In some cases, however, it assumes a pedestrian being partially or almost

completely occluded by another one as belonging to a single detection as show in Figure

24.

Figure 24: Three cases where two pedestrians were detected as being one due to occlusions

Detection results are also differ due to occlusions between the left and right images in

case of large disparities as shown in Figure 25.

Figure 25: Left: Detections for the left frame. Right: Detection for the right frame (frame
number: 28, sequence: 16)
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It can be seen that when the detector identified the two pedestrians as belonging two

distinct instances in the left image, even when one of them was partially occluded behind

the other, it produced a single detection for the two in the right image. Such discrepancies

between the left and right images lead to wrong results or no results during triangulation

for those identities and in effect, lead to breaks and/or switches in the 3D trajectories.

6.2 Dense Stereo Matching and Triangulation

The disparity images for the left and right image pairs determined using semi-global

matching are used for triangulation and the ground extraction for each frame in a se-

quence. Figure 26 shows an example of a disparity image obtained for a frame in the test

sequence 16.

Figure 26: Top: Left and right images of a frame. Bottom: The disparity image for the stereo
pair. Pixels with large disparities are given in green color, whereas small disparities

are shown in red.

It can be seen that the disparity image is smooth in all areas except where there are

sharp discontinuities or boundaries. Such effects are the result of possible occlusions or the

algorithm not being not able to deal with sharp changes in disparities across boundaries

and regions of discontinuities. This could lead to wrong matches of pedestrians in the left

images with their conjugates in the right image leading to errors in triangulation, which

ultimately give 3D coordinates that are incorrect.

Figure 27 shows two such cases where a pedestrian enclosed by a bounding box on

the left image is matched to its conjugate in the right image. Only the disparities of

those pixels corresponding to the segmented mask of the pedestrian is used for matching.

Matched pixels in the right image are shown as red dots. It can be seen that when the

first example produced matches that lay only over the pedestrian in the right image, the
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second example shows some pixels that were matched to several background pixels or

pixels belonging to other pedestrians.

Figure 27: Top: Case in which most pixels on the mask were successfully matched from the left
image to the right. Bottom: Case in which stereo matching resulted in points

outside the pedestrian.

The triangulation of points matched in the left and right images results in a point cloud

in the 3D object space. Figure 28 shows an example of such a reconstruction of a matched

pedestrian.

Figure 28: 3D point cloud of a pedestrian obtained after triangulation.

It can be seen that there were several points that were matched to pixels outside the

pedestrian leading to outliers. But a high density of points in the region of the pedestrian
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leads to an accurate estimate of the representative point, which is used for building the

3D trajectory.

6.3 Ground Extraction

Following the steps for extracting the ground plane as explained in Section 4.2, the foot

positions of the tracked pedestrians can be determined. The U-disparity and V-disparity

images of a disparity image are used for this purpose. Figure 29 shows the V and U-

disparity images generated for the disparity image shown in Figure 26.

Figure 29: Left: V-disparity image. Right U-disparity image

Using the obstacle mask calculated from these images, the ground pixels of the left

image can be identified. Figure 30 shows the ground pixels identified for the left image.

It can be seen how only pixels corresponding to the ground at smaller depths have been

identified. A consequence of this is that even though a sufficiently large number of points

can be obtained in 3D for a consensus set approximating a plane using RANSAC, the

lack of ground points identified further away from the stereo system produces incorrect

results for the foot positions of pedestrians when they are at larger depths (around values

greater than 20m for the test sequences used).
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Figure 30: Ground pixels (given in white) identified for the left image

Reconstruction of these pixels in 3D and fitting the points to a plane using RANSAC al-

lows the projection of the 3D pedestrian points on to it, which can then be back-projected

on to the image plane to locate the foot positions of the tracked pedestrians. Figure 31

shows pedestrians detected using bounding boxes with the back-projected point indicated

as a red dot at the bottom of each box locating the foot positions of the pedestrians.

Figure 31: Foot positions identified for each detected pedestrian indicated using red dots.

Predicting the boxes for the next frame using optical flow in combination with this

technique allows the refinement of the bounding boxes to enclose the feet of pedestrians

a detector may have failed to fit accurately. Figure 32 shows two such cases where the

use of the foot positions could improve the bounding boxes.

48



Figure 32: Left column: Bounding boxes obtained using the Mask-RCNN. Right column:
Bounding boxes predicted while tracking.

Even when the detector failed to confine the pedestrians tightly within the bounding

boxes due to partial occlusions, the foot positions detected during the tracking algorithm

improved the bounding box coordinates.

As it was mentioned earlier the dense matching algorithm and in effect triangulation,

have the potential to produce errors with increasing depth from the baseline of the stereo

cameras. This in turn also affects the ground extraction and leads to wrong foot positions

leading to the bounding boxes not being able to wrap the pedestrian completely or the

box enlarging itself beyond the necessary dimensions. Figure 33 shows two such cases

where wrong foot positions were back-projected from the 3D object space to produce

wrong bounding boxes.
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Figure 33: Two cases of pedestrians being incorrectly fit by bounding boxes predicted during
tracking due to wrong foot positions.

6.4 Optical Flow

The prediction of labels for the upcoming frame using optical flow starts with the detection

of reliable points for tracking using the method described in Section 3.5.2. Once the

reliable tracking points have been selected for the detected pedestrians, the displacement

and direction of their movement between frames can be determined. Figure 34 shows an

example of the points suitable for tracking using optical flow selected for a pedestrian.

Figure 34: Points (marked in red) selected for tracking the detected pedestrian using optical
flow

Since the region enclosed by a bounding box was used as the search space for this

process, the search algorithm is prone to detect points not belonging to the pedestrian

if the bounding box does not fit the pedestrian well. This can be seen in Figure 34
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where a point on the car that was part of the region enclosed by the box was detected

a feature suitable for tracking. Selection of such points on other pedestrians or other

entities (including the background) can lead to incorrect flow estimation.

Determining the optical flow as described in Section 3.5 gives the magnitude and di-

rection of the displacement of the selected points between two adjacent frames. Figure

35 visualizes the points detected for the pedestrian shown in Figure 34 for frame t1 and

Figure 36 shows the positions of these points predicted in frame t2 using optical flow by

calculating how much and in which direction they were displaced in between frames.

Figure 35: Reliable points for tracking selected in frame t1

Figure 36: Predictions of the points in frame t2

This can be used to predict the bounding box coordinates for the pedestrian in frame t2,

given his bounding box in t1. During the key-frame update, the bounding box coordinates

are refined, for example, the width of the boxes are adjusted to accommodate the flow of

pedestrians. This step also checks for new detections and assigns new tracks for them.

Figure 37 and Figure 38 show two cases where the bounding box coordinates have been

updated during a key-frame update.
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Figure 37: Left: Bounding box predicted from the previous frame using optical flow. Right:
Bounding box refined after the key-frame update.

Figure 38: Left: Bounding box predicted from the previous frame using optical flow. Right:
Bounding box refined after the key-frame update.

The foot positions of the tracked pedestrians can be used to form “ground tracks” of

pedestrians on the 2D image plane. Figure 39 shows examples of such ground tracks.

Each color given to the tracks in the figure corresponds to a different pedestrian.

Figure 39: Examples of ground tracks obtained for tracked pedestrians

6.5 Re-identification

The re-identification process is crucial for keeping the consistency of the identities of

the tracks under check. Major reasons of missed or switched identities include occlusions,

incorrect assignment during the key frame update or change in identity as two pedestrians

cross each other or one walks past another. Re-identification using the TriNet model
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followed by K-means clustering has been able to fix these problems in several cases. But

the resulting tracks still suffer from identity switches. Figure 40 shows a pedestrian who

was given an identity of 2 in frame number 5, being occluded behind a cyclist from frame

6 and re-emerging in frame 9 with a new identity of 15. Figure 41 shows how this switch

in identity was spotted and the two tracks were merged together and 15 was given as the

identity of the track, as it was declared stable by analyzing the later frames.

Figure 40: A pedestrian getting assigned a wrong identity in a later frame due to a missed
detection between frames.

Figure 41: The re-identification algorithm resolving the aforementioned switch in identity.

Figure 42 shows, on the other hand, a case where the re-identification method failed to

re-identify a pedestrian who was detected before being occluded by a group of two people

and detected several frames later with a different identity.
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Figure 42: The re-identification algorithm failing to resolve a switch in identity.

It is worth noting that in case of such a scenario, the bounding box enclosing the pedes-

trian in frame 27, before he was missed includes also the parts of another pedestrian due

to a partial occlusion. This results in the inputs being fed to the re-identification model

misleading it to make wrong assumptions by forming dissimilar embeddings, eventually

leading to different clusters for pedestrians who actually belong to the same identity.

6.6 Predicted Trajectories

The tracks obtained from the tracking algorithm on the 2D image plane and the 3D

points obtained from triangulation can be used to form 3D trajectories of the tracked

pedestrians. Two cases of tracked (for most of the frames) pedestrians, one each from

the two test sequences, are discussed in this section. Figure 44 shows the 3D trajectories

of a pedestrian from the test sequence 16, with identity 15, obtained using the proposed

methodology. Figure 43 shows the pedestrian in frame 0 and later in frame 122 of the

sequence for reference. The trajectories shown in Figure 44 follow the centers of gravity

obtained for the 3D point clouds and the corresponding foot positions, in every tracked

frame.

54



Figure 43: Top: Pedestrian 15 in frame 0. Bottom: Pedestrian 15 in frame 122

Figure 44: The 3D trajectories for pedestrian 15 following the centers of gravity of the 3D
point clouds and the foot positions projected on to the ground plane for every

successfully tracked frame.

The origin indicates the position of the projection center of the left camera, based on

the definition of the calibration parameters of the stereo system. It can be seen from

Figure 44 that the foot positions follow the centers of gravity for every detection. A few

outliers can be spotted, especially at larger depths (greater than 20m) suggesting how

triangulation failed due to inaccuracies in the dense stereo matching algorithm.

The trajectories can be compared to the ground-truths for the same pedestrian along

the x-z plane. Figure 45 shows the comparison of the tracking results with the ground-

truth tracks on the x-z plane. As mentioned earlier, the z axis of the coordinate system

in the figure is parallel to the optical axes of the stereo cameras.
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Figure 45: Comparison of the trajectory predicted for pedestrian 15 with the ground-truth
positions on the x-z plane.

Figure 45 shows that the tracking results agree with the ground-truth for most of the

frames. Missed detections were due to occlusions as shown in Figure 40 and for smaller z

values, due to the fact that the tracking algorithm was tuned to end tracks when the depth

of the tracked pedestrians was less than 2m. The outliers mentioned for the trajectories

shown in Figure 44 are also reflected here.

For similar visualizations of another pedestrian from test sequence 17, Figure 46 shows

a pedestrian with identity 32 in frame 15 and later in frame 135. Figure 47 shows the

trajectories of the centers of gravity and foot positions of the pedestrian in each tracked

frame.

Figure 46: Top: Pedestrian 32 in frame 15. Bottom: Pedestrian 32 in frame 135
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Figure 47: The 3D trajectories for the pedestrian 32 following the centers of gravity of the 3D
point clouds and the foot positions projected on to the ground plane for every

successfully tracked frame.

Figure 47 shows results of the tracking algorithm in the 3D object space. During the

initial frames (when the pedestrian was the furthest away from the stereo cameras), it

can be seen that the trajectories of the foot positions and centers of gravity show a strong

disagreement (especially along the y-axis). This disagreement in the trajectories can be

attributed to the fact that the ground plane that was fitted using RANSAC was unable

to accommodate the foot positions of the pedestrian at depths close to 20m and above.

The inlier set obtained from RANSAC approximated a plane which was more suited for

pixels at smaller depth values. The absence of pixels identified in the reference image

corresponding to the ground, as already mentioned in Section 6.3 and visualized in Figure

30, severely affects the accuracy of the trajectories at such large depth values.

The trajectories are visualized again in Figure 48 and Figure 49 from two different

viewing angles, along with the ground plane extracted for the scene. Figure 48 shows

how the foot positions followed the centers of gravity of the pedestrian along the ground

plane. Figure 49 shows that due to the inaccuracies in stereo matching at larger depths

and the fact that the consensus set obtained from RANSAC approximated the plane

considering pixels closer to the stereo cameras, the projections of the centers of gravity

of the pedestrian at large depths lead to inaccurate results. The centers of gravity falling

below the ground plane for several detections at large depth values is a consequence of

this problem. It can also be seen how the plane is better approximated for the centers of

gravity as the pedestrian walks closer to the cameras.
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Figure 48: The 3D trajectories for pedestrian 32 following the centers of gravity of the 3D
point clouds and the foot positions along the ground plane that was fitted using

RANSAC.

Figure 49: The 3D trajectories for pedestrian 32 and the ground plane viewed from a different
angle.

The pedestrian gets missed in several frames due to occlusions from other pedestrians

who are closer (and hence appear larger on the image) walking across the scene. The

increase and decrease in the positions of the centers of gravity along the y-axis show how

the density of the 3D point cloud varies as the pedestrian moves throughout the sequence.

Figure 50 shows how the tracking algorithm predicted the tracks for pedestrian 32 when

compared with the ground-truth positions on the x-z plane. Gaps in the trajectories can

once again be observed for depths greater than and around 20m. This is be due to

reasons like occlusions from other pedestrians detected closer to the cameras and the

tracking algorithm failing at such large depths with limited light conditions during the

initial frames of the sequence, as it can be observed from Figure 46.
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Figure 50: Comparison of the trajectory predicted for pedestrian 32 with the ground-truth
positions on the x-z plane.

6.7 Evaluation Metrics

The evaluation metrics mentioned in Section 5.3 were determined to evaluate the efficiency

of the detection and tracking algorithms. The metrics for evaluating the pedestrian de-

tections are tabulated in Table 1 for the test sequence 16 and in Table 2 for sequence 17.

Precision 78.36%

Recall 61.51%

Table 1: Metrics evaluating the detections for sequence 16

Precision 66.43%

Recall 73.96%

Table 2: Metrics evaluating the detections for sequence 17

The evaluation indicates a relatively higher precision for the detections in sequence 16

indicating a lower number of FPs as compared to sequence 17. The higher recall value

for sequence 17 shows larger number of positives in comparison to sequence 16 leading to

a lower precision due to the possibilities of more FPs.

The precision x recall curves of both the sequences were plotted to determine the average

precision AP (area under the curve) of the detection framework. Figure 51 and Figure 52

show the precision x recall curves for the detections in sequence 16 and 17 respectively.
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Figure 51: Precision x recall curve for the detections in sequence 16.

Figure 52: Precision x recall curve for the detections in sequence 17.

The determination of the area under the curve for estimating the average precision

(AP ) resulted in a value of 63.82% for sequence 16 and 75.29% for sequence 17. This

indicates better results considering both precision and recall for the latter. The curve in

Figure 51 shows a downward trend indicating a decrease in recall values with increasing

precision values. This indicates a large number of positive values that have been missed

for the sequence. The large number of misses for this sequence could be due to occlusions

within small crowds and the fact the tracks for several pedestrians were ended due to the

minimum depth (2m) constraint. The curve in Figure 52 shows more stability with high

recall values for high precision values, exhibiting a good sign of an object detector, but

then has a sharp dip in precision indicating large number of FNs. The detections, which

showed better performance in terms of average precision still suffered from problems like

pedestrians entering the scene at large depths and under poor light conditions.

It is also worth noting that a careful analysis of the ground-truth provided in the KITTI

dataset shows inaccuracies in some frames. Figure 53 shows one such case where the same

pedestrian was annotated with two bounding boxes and the neighbouring pedestrian not

assigned any. The object detector, however, was able to detect and localize both of
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them. Such inaccuracies in annotations can also influence the calculation of the evaluation

metrics.

Figure 53: Left: Wrong annotations given in the ground-truth. Right: Boxes obtained by the
detection algorithm (frame number: 98, sequence 16)

The tracking algoithm was evaluated by determining MOTA, MOTP and IDF1 scores.

These results are tabulated in Table 3 and Table 4 for the sequences 16 and 17 respectively,

where an arrow pointing upwards indicates that larger values are desirable, whereas a

downward pointing arrow indicates a good performance with lower values.

↑ MOTA 41.36%

↓ MOTP 0.28

↓ IDF1 57.60%

Table 3: MOT metrics for sequence 16

↑ MOTA 34.66%

↓ MOTP 0.24

↓ IDF1 60%

Table 4: MOT metrics for sequence 17

MOTP measures the ability of the algorithm in estimating the position of the objects by

comparing the IoU of the detected boxes and the ground-truth averaged over all detections.

It therefore, depends on the detection framework involved and not directly on the tracking

algorithm. A smaller value of MOTP for sequence 17 shows the relatively larger quantity

of error in the detections made for sequence 16.

MOTA gives a measure of the number of missed detections, mismatches in identities

and FPs in the tracking algorithm. It can be seen that both sequences suffer from all three

issues with the implementation for sequence 17 showing the worst performance of the two.

This can be attributed to the relatively larger number of pedestrians entering and leaving
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the scene when compared to sequence 16, rendering the tracking and re-identification

algorithms incapable of maintaining and re-identifying tracks satisfactorily.

The consistencies of the tracks are measured using the IDF1 score. The value of this

metric also points out the improvements that need to be done to the methodology to

preserve the identities of tracks and to prevent mismatches or identity switches. The

quantitative analysis of the results of the tracking and re-identification algorithms raises

the limitations and shortcomings of the proposed methodology which has to be subject

to further modifications like the integration of the re-identification scheme to the orig-

inal tracking workflow or modelling the neighbouring relationships between the tracked

pedestrians.

For evaluating the quality of the trajectories obtained, for every frame including the

trajectory, the mean deviation of the predicted positions from the ground-truth on the x-z

plane was determined as described in Section 5. For the trajectory obtained for pedestrian

15 in the test sequence 16 (Figure 45) a mean offset of 0.35 m was obtained. This shows

that the triangulation results agreed very well with the ground-truth for most frames,

despite the outliers. The RMSE for the x and z coordinates are given in Table 5.

RMSE [m]

x 0.22

z 0.36

Table 5: RMSE of the x and z-coordinates obtained for pedestrian 15

Table 5 shows that both the x and z coordinates suffered only minor deviations from

the ground-truth values. The z coordinates, giving the depth of the tracked pedestrians

suffered slightly larger inaccuracies when compared to the x coordinates due to inaccura-

cies in the dense stereo matching algorithm.

Similarly, for pedestrian 32 in the test sequence 17 (with trajectories given in Figure

50), an average deviation of 0.41 m was obtained. This is a slightly worse result when

compared to the trajectory obtained for pedestrian 15, showing the difference in the

triangulation accuracies for the two sequences as discussed in Section 6.6. The RMSE for

the x and z coordinates of the trajectory are given in Table 6.

RMSE [m]

x 0.09

z 0.47

Table 6: RMSE of the x and z-coordinates obtained for pedestrian 32

The RMSE values for pedestrian 32, also show values that agree fairly well with the

ground-truth coordinates with only minor deviations. Similar to the previous case, the

determination of the depth, given by the z coordinate shows the largest deviation. This,

again indicates the lower performance of the dense matching and in turn, the triangulation

algorithms at larger depths.
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7 Conclusions and Future Work

The experiments carried out as part of this thesis explores several aspects of photogram-

metry and computer vision with the help deep-learning frameworks, to track pedestrians

in 3D using stereo images. The competences and flaws of the proposed methodology have

been described, visualized and evaluated comprehensively in the different sections. The

tracking methodology was tested on the sequences provided in the KITTI dataset and

evaluation metrics like MOTA, MOTP and IDF1 were determined. Based on the research

going into the proposal of the methodology as well as the experiments carried out on the

test data and the analysis and evaluation of the results, several conclusions are drawn and

possible extensions and modifications of the proposed methodology and potential research

directions in the 3D pedestrian tracking paradigm are described in this section. As far as

the objectives of the thesis are concerned, given accurate results on the image plane, the

lifting of the tracking mechanism from 2D to 3D was mostly successful with the evalu-

ation showing only minor deviations from the ground-truth whereas, the MOT tracking

metrics still showed several possibilities for improvement. Extraction of the ground plane

of the scene in combination with the tracking algorithm reliant on optical flow has also

proven to improve the localization capabilities of bounding boxes on the images obtained

from conventional object detection frameworks, given accurate disparity values. It was

also seen how the results of the Mask-RCNN framework and predictions made during

tracking complimented each other, with the bounding boxes predicted using optical flow

being refined during the key-frame update and the coordinates of the boxes given by the

detection stage getting updated by the foot positions of the tracked pedestrians. The

inter-dependability of the different stages in the methodology leaves very little margin for

error in the final results, as errors in the intermediate steps are inevitably carried over to

the subsequent stages.

The results were also highly sensitive to several assumptions and hyper-parameters,

like the minimum depth constraint to end tracks, which is something that can be avoided

given reliable flow estimations on the image plane, providing more consistent and complete

tracks. The availability of segmentation masks for each detected pedestrian can be further

utilized in stages like matching pedestrians from the reference image to the matching

image, which has shown to produce outliers as given in Section 6.2. These outliers are

also carried over to the 3D space after triangulation. Once the segmentation mask of the

pedestrian in the matching image has been determined (this can be done, for example, by

counting the number of matched pixels that fall into each segmentation mask giving the

amount of overlap for each pedestrian and selecting the mask with the maximum overlap

as the right mask), each matched pixel can be checked to see if it belongs the mask. The

pixels that fall outside the mask can be considered as outliers and can hence, be discarded.

This minimizes the selection of wrong points, especially around boundaries, that are used

for triangulation.

Another intermediate step that plays a vital role in the accuracy of the final results is

dense stereo matching. As it was discussed, the matching algorithm was prone to errors
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with increase in depth of the pedestrians from the baseline of the stereo cameras. The

accuracy of disparity estimation has proven to improve when using sub-pixel estimation

methods. (Hirschmüller 2005 and Kordelas et al. 2014) propose a quadratic curve fitting

method for sub-pixel accuracy in dense stereo matching. The disparity values are calcu-

lated based on optimization methods that minimize a cost constraint for possible matches

between the left and right images. Sub-pixel estimation involves the fitting of a quadratic

curve through the neighbouring costs (given by the next higher or lower disparity) and

calculating the minimum. The minimum of this curve gives a disparity estimate with

sub-pixel accuracy. Such an estimation can approximate the disparity values in case of

large depths and provide better results for triangulation. This enables a more accurate

back-projection of the 3D foot positions of the tracked pedestrians on to the image plane

improving the 2D bounding boxes.

Even though the technique of extracting the ground plane within a scene using dispar-

ity maps has shown to produce results that, in some cases, are better than those given

by the object detection algorithm and provides a visualization for the trajectories of the

pedestrians following their foot positions, the current methodology is limited to applica-

tions where the stereo cameras are stationary, making the ground plane common for every

frame. This limits the utilization of the methodology in its present form for applications

like autonomous driving, where the cameras are in motion giving rise to a different ground

plane for every frame. Although such a scenario, by design, eliminates the possibility of

determining ground tracks of tracked pedestrians on a common ground plane using the

steps followed in this thesis, further research and experiments can be carried out to modify

the method to integrate the ground plane extracted for each new frame into the tracking

workflow. This enables the back-projection of the 3D foot position obtained for every

pedestrian from a different ground plane in each frame on to the image plane.

It was seen how the use of a pair of stereo cameras enables the lifting of object tracking

from the 2D image plane to a 3D object space. The results of the experiments carried

out in this thesis show how the determination stereo correspondences followed by ray

intersection could refine the 2D detections in case of partial occlusions, when the detections

where projected on to the ground plane extracted from the scene. Missed detections due

to complete occlusions, however, still persist as a source of error. The possibilities of

stereo vision can be extended to multiple views by capturing the scene using multiple

pairs of stereo cameras observing from different viewing angles. The detections from

each view can be used to form one-to-one matches for all detected pedestrians across all

the views using appearance cues and geometrical constraints. Trajectories in 3D can be

obtained for a coordinate system with respect to a chosen reference stereo pair or in a

common coordinate system obtained for all the pairs. Such a set-up would mean that

even when one pair of the cameras failed to detect a particular pedestrian due to complete

occlusion behind other pedestrians or obstacles, it is likely to have been captured by at

least one of the other pairs observing the scene from another angle, thus contributing

to the tracks. (U. D.-X. Nguyen 2020) used a similar approach in her work following
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the tracking-by-detection paradigm. Another potential research direction would be to

experiment with the sparse reconstruction strategies of the scene with the help of bundle

adjustment methods using several partially overlapping images of the scene as described

in the works of (Snavely et al. 2008) and (Schönberger 2018). Such a reconstruction of

the scene in each frame could provide redundant information for tracking from multiple

viewing directions and also help in situations of occlusions as mentioned earlier.

The results shown in Section 6.5 and the calculation of evaluation metrics given in

Section 6.7 revealed the existence of identity switches and track inconsistencies using the

current implementation. The tracking process also lacks (near) real time capabilities with

the current re-identification approach. The possible improvements in tracking results

along with better computational times by integrating the re-identification process to the

workflow given in Section 4.3 can be investigated. The re-identification method itself

can be updated by re-identifying pedestrians in 3D. This is possible, for instance, using

the concept of 3D person models to re-identify pedestrians in the 3D space as described

by (Z. Zheng et al. 2021). A deep learning model is proposed in the method, which is

capable of combining 2D appearance with 3D geometric structure. The model assumes

that human beings are rigid 3D objects. Such a human geometry in the 3D space enables

the learning of a depth-aware model more robust to real world scenarios. Such a method

does not rely solely on 2D information obtained from the image planes, but also shifts

the re-identification algorithm to the 3D space. This allows a better utilization of the

information that additional viewing directions provide. The involvement of a 3D space

also makes the method free of limiting factors like scale and viewpoint. With a stronger

re-identification mechanism, the current tracking methodology is expected to produce

better results.
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