
ENHANCING THE AUTOMATIC VERIFICATION OF CROPLAND  
IN HIGH-RESOLUTION SATELLITE IMAGERY  

 
 

P. Helmholza, b *, F. Rottensteinerb, C. Fraserb 

 
a Institute of Photogrammetry and Geoinformation, Leibnitz University Hannover, Nienburger Straße 1,  

D-30167 Hannover, Germany - helmholz@ipi.uni-hannover.de 
b Cooperative Research Centre for Spatial Information, Dept. of Geomatics, University of Melbourne,  

723 Swanston Street, Carlton VIC 3053, Australia – (petrah, franzr, c.fraser)@unimelb.edu.au 
 

Commission IV, WG IV/3 
 

 
KEY WORDS:  Segmentation, Grouping, Image Understanding, Feature Extraction 
 
 
ABSTRACT: 
 
Segmentation is one of the first steps in the field of image analyzing and image understanding. It is the basis for the interpretation of 
images, or it supports other techniques which is the motivation for the in this paper introduced segmentation algorithm. In this paper, 
a segmentation algorithm and its application to enhance an approach for the automatic verification of tilled cropland objects in a 
GIS. For this application, cropland objects in a GIS that may contain more than one field should be segmented into individual 
management units. The algorithm starts with a Watershed segmentation that results in a strong over-segmentation of the image. A 
region adjacency graph is generated, and neighbouring segments are merged based on similarity of grey levels, noise levels, and the 
significance of the boundary between the segments. After segmentation, the verification algorithm can be applied separately to the 
individual segments, and finally, these verification results have to be combined, taking into consideration the specifications of the 
GIS. Several examples show how the segmentation process can help to improve the verification of the cropland objects in the GIS 
from IKONOS images covering a test area in Germany, but also the limitations of the segmentation algorithm. 
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1. INTRODUCTION 

The goal of the project WiPKA-QS (Wissensbasierter 
Photogrammetrisch-Kartographischer Arbeitsplatz –  
Qualtitätssicherung; Knowledge-based photogrammetric-
cartographic workstation – Quality control) is the automatic 
verification of ATKIS (Amtlich topographisch-kartographisches 
Informatisonssystem – Authoritative Topographic-Cartographic 
Information System) or other comparable Geographic 
Information Systems (GIS) by comparing the GIS with high 
resolution satellite imagery (Busch et al, 2004). The main 
components of ATKIS are the object-based digital landscape 
models with a geometrical accuracy of up to ±3 m.  
 
In order to achieve this goal, a series of algorithms is being 
developed, each aiming at the verification of a specific object 
class defined in the GIS. One of the object classes of interest in 
this context is the class cropland. In Helmholz et al. (2007) an 
algorithm was introduced to verify tilled cropland objects using 
characteristic structural features (parallel straight lines) that are 
generated by agricultural machines during the cultivation. 
These features are observable in satellite images having a 
resolution of 1 m or better. The approach works in three steps. 
For any particular object of class cropland in the GIS, edges are 
detected in the image area enclosed by the boundary polygon of 
the object. Then, the edge image is transformed into the Hough 
space. Finally, after the determination of points of interest 
(POI) in Hough space, a histogram is calculated. The histogram 
represents the number of occurrences of POIs in Hough Space 
(equivalent to lines of interest in the image space) depending on 
the angle. If a significant orientation is determinate by a 
statistical analysis of the histogram, the cropland object is 

accepted. Otherwise, the cropland object is rejected by the 
system and highlighted as an object that has possibly changed 
in its land cover or use. The highlighted objects are to be 
checked by a human operator. 
 
One specification of ATKIS is that inside a cropland object the 
existence of more than one land cover class is tolerated if a size 
threshold is not exceeded. Several fields of the same land cover 
type (different management units) are also permitted inside a 
cropland object. The existence of more than one management 
unit negatively affects the edge detection process due to strong 
differences of the image properties in the different management 
units. As a consequence, the approach for the detection of 
parallel lines often fails on GIS objects that contain more than 
one management unit (Figure 1).   
 
In order to overcome these problems it is necessary to split the 
cropland object in the GIS into segments having homogeneous 
grey level properties before carrying out the actual verification 
process. The individual segments are likely to correspond to 
different management units provided they have a certain 
minimum size in object space. After the segmentation, the 
verification algorithm can be applied independently to the 
individual management units, which makes it more robust with 
respect to the automatic tuning of parameters. Afterwards, the 
verification results of all segments are merged and a final 
assessment of the GIS object is done; in addition, due to the fact 
that an individual classification of the homogeneous segments 
has been carried out, the areas of possible change (i.e., 
segments found no longer to be cropland objects) can also be 
highlighted.  



 

 
Figure 1. Left: A cropland object in Weiterstadt (Germany) in 

an orthorectified RGB IKONOS image with a 
resolution of 1 m (acquired 24/06/2003). Right: the 
edge image as a first step of the verification 
algorithm.  

 
It is the goal of this paper to present such a segmentation 
algorithm and first examples for how it can be used to improve 
the overall verification process. We start with a description of 
the segmentation algorithm. After that, the way the 
segmentation algorithm can be embedded into the verification 
process will be presented. This is followed by preliminary 
results achieved for images of different resolution and from 
different locations, which will be the basis for a discussion of 
the possibilities and the limitations of the segmentation 
algorithm for this specific application. The paper concludes 
with a summary and an outlook.  
 
 

2. REGION-BASED SEGMENTATION 

The segmentation of objects provides the basis for the 
interpretation of images for humans as well as for the fields of 
Image Analysis and Computer Vision. Compared to the human 
ability to segment objects directly from an image without great 
effort, the automatic extraction of objects in the field of image 
analyzing is difficult due to problems such as variable lighting 
conditions, poor contrast and the presence of noise. Whereas 
many segmentation approaches have been presented in the past 
(e.g. Gonzalez and Woods, 2002; Förstner, 1994), there is no 
generally accepted optimal approach for segmentation, 
especially if homogeneous regions are to be extracted. One the 
one hand, the extracted segments should represent the digital 
image as precisely as possible, even showing relatively small 
detectable features; on the other hand, a certain generalisation is 
required in order to reduce the impact of noise on the 
segmentation results. Furthermore, segmentation should only be 
based on a small number of control parameters that should be 
easily interpretable.  
 
The algorithm presented in this section starts with a Watershed 
segmentation (Gonzalez and Woods, 2002) that achieves a 
strong over-segmentation of the image. After that, neighbouring 
segments are merged on the basis of a statistical analysis of the 
properties of the initial segments and their shared boundary. 
The merging process should only require the setting of few 
control parameters and no training. In that regard it differs from 
existing grouping algorithms. For instance, Luo and Guo (2003) 
introduced a general grouping algorithm based on Markov 
random fields, using single segment properties such as area, 
convexity and colour variances, and pair-wise properties such 
as colour differences and edge strength along the shared 

boundary. The algorithm requires a training phase. Grote et al. 
(2007) used mean colour difference, edge strength of the shared 
borders and colour standard deviation to merge segments of 
road objects in an iterative way after generating an over 
segmented image using the Normalized Cut algorithm. Their 
algorithm requires a priori knowledge given by a GIS and the 
setting of several thresholds. 
 
2.1 General segmentation approach 

Let a multispectral image of N bands be represented by the grey 
level vectors g(x, y) = [g1(x, y), g2(x, y), …, gN(x, y)]T at 
position (x, y). It is the goal of region-based segmentation to 
partition that image into disjunct regions Ri of homogeneous 
grey level vectors and to determine the closed boundary 
polygons of these regions. Whereas in theory the boundaries 
separating these regions are infinitely thin, the reality of the 
imaging process will blur these boundaries, so that they have 
actually a certain extent in image space. Typically the region 
boundaries correspond to edges in the image that can be 
approximated by polygons. Förstner (1994) represents an image 
as the union of segment regions Ri, line regions Li, and point 
regions Pi, based on a classification of each pixel of the images 
as being either homogeneous, linear, or point-like. In Fuchs 
(1998), the symbolic representation was expanded by the 
neighbourhood relations of these regions to define a Feature 
Adjacency Graph (FAG). In order to distinguish homogeneous 
pixels from other pixels, a measure for homogeneity H can be 
used that is based on an analysis of the first derivatives of the 
grey values in a local neighbourhood (Förstner, 1994): 
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In Equation 1, Δgix and Δgiy are the first derivatives of the grey 
levels gi of band i by x and y, respectively. Gσ is a Gaussian 
smoothing filter with scale parameter σ, and σ’ni

2 is the 
variance of the smoothed grey level differences Gσ * Δgix and 
Gσ * Δgiy, which can be derived from an estimate of the noise 
variance σ2

ni of band i (Brügelmann and Förstner, 1992) by 
error propagation. The sum is to be taken over the N bands of 
the digital image. The scale parameter σ defines the size of the 
local neighbourhood that is taken into account. By normalising 
the smoothed grey level differences by their standard 
deviations, the selection of a threshold Hmax for H to distinguish 
homogeneous pixels from others can be reduced to the selection 
of a significance level α for a statistical test (Förstner, 1994).  
 
The image regions Ri could be determined as connected 
components of homogeneous pixels, thus of pixels whose 
homogeneity measure H is smaller than Hmax. However, small 
gaps within extracted line regions that occur due to poor local 
contrast often cause a spilling effect, i.e., the erroneous merging 
of regions that represent different object parts. Furthermore, it is 
not straightforward to obtain meaningful closed boundary 
polygons of the homogeneous segments. gives a typical result. 
The main edges of the image are represented well, although the 
edges information appears to be captured incompletely. The 
segments in the label image do not represent the image structure 
well due to small gaps in their boundaries. A considerable 
portion of the image is not assigned to any label.  
 
This problem can be overcome by Watershed segmentation, 
which often produces more stable segmentation results and 
continuous segment boundaries (Gonzalez and Woods, 2002). 



 

Watershed segmentation is based on the interpretation of a 
digital image as a topographic surface, with the grey values 
representing heights; the segmentation tries to determine image 
regions as the catchment areas of local image minima. The 
boundaries of these regions correspond to watersheds in the 
topographic surface. For a segmentation that delivers regions of 
homogeneous grey values, the actual watershed segmentation 
has to be applied to a gradient image, which has to be smoothed 
to achieve stable results (Gonzalez and Woods, 2002). As a 
matter of fact, an image representing the homogeneity value H 
as defined in Equation 1 can be used as the basis for 
segmentation, with the parameter σ of the Gaussian kernel 
defining the degree of smoothing.  
 

 
a) 

 
b) 

 
c) 

 
d) 

 
Figure 2. a) IKONOS RGB image of Bhutan with a resolution 

of 1 m; b) Homogeneity image H (inverted for 
readability), using σ = 1. c) Results of classification: 
homogeneous (red), edge (green); point-like (blue). 
d): Connected components of homogeneous pixels. 

 
Figure 3 shows the results achieved for a watershed 
segmentation of the image in Figure 2a using two different 
smoothing parameters σ. In both cases the advantage of 
watershed segmentation is obvious: it delivers segments with 
closed and relatively smooth boundaries. However, the left 
image shows a gross over-segmentation. The segment 
boundaries a human operator would choose are all there, but 
there are too many segments. On the other hand, in the 
segmentation on the right some important image structures have 
been merged due to the smoothing of the homogeneity image. 
In order to overcome these problems, we propose an iterative 
segmentation strategy. First, watershed segmentation is applied 
with a low degree of smoothing, which results in a strong over-
segmentation. Second, a region adjacency graph is generated, 
which represents the image on a symbolic level and also 
contains important attributes both of the image segments and 
their boundaries. Third, neighbouring regions are merged based 
on a similarity of attributes and the significance of their 
separation.  
 

2.2 Region adjacency graph 

After the initial watershed segmentation, a Region Adjacency 
Graph (RAG) is generated. The nodes of the RAG are the 
homogeneous segments, whereas its edges represent the 
neighbourhood relations: two segments Si and Sj with i  ≠ j are 
connected by an edge eij in the RAG if there is at least one 
boundary pixel in the segmentation that is neighbour both to Si 
and to Sj. 
 

 
a) σ = 3 

 
b) σ =8 

 
Figure 3. Watershed segmentation of the image in Figure 2a 

based on the homogeneity image H (Equation 1) for 
two values of the smoothing scale σ. 

 
When the RAG is constructed, the attributes of both its nodes 
(the segments) and its edges are determined. A segment Si has 
both geometric attributes, namely the number of pixels assigned 
to the segment, the minimum and maximum coordinates, and 
the centre of gravity of the segment, and radiometric attributes, 
namely the average grey level vector gi

avg = E(gi) and the 
covariance matrix Qi

gg of the grey levels. Finally, an overall 
measure vari of the noise level inside the segment is determined 
as the trace of Qi

gg: vari = trace(Qi
gg ). In order to make the 

computation of gi
avg and Qi

gg robust with respect to outliers next 
to the segment boundary, grey level vectors that are close to the 
segment boundary are excluded from the computation. 
However, all grey level vectors are used for the computation if 
a segment is so small that all its pixels are within such a 
distance from its boundary that they would thus be excluded.  
 
An edge eij in the RAG represents a neighbourhood relation 
between two segments Si and Sj and, thus, also the boundary 
between these regions. Note that the boundary between two 
segments may consist of one or more sequences of boundary 
pixels. That is why each edge in the RAG contains a set of 
connected boundary pixel chains that are extracted from the 
label image representing the segmentation results. Furthermore, 
the boundary pixels have a 2D extent in the digital image, i.e. 
the area covered by these pixels. Thus, an edge eij also has an 
average grey level vector and a covariance matrix of grey 
levels, computed from the grey levels of all the boundary pixels 
separating Si and Sj. Finally, a measure Tij for the strength of the 
boundary is determined as the percentage of boundary pixels 
for which the homogeneity measure H (Equation 1) is larger 
than the threshold Hmax that would be used for edge extraction. 
In this context, it is advisable to re-compute H using a relatively 
small value for the smoothing parameter σ, e.g. σ = 0.7. Tij can 
be interpreted as the percentage of edge pixels contained in the 
boundary separating the two segments Si and Sj. It will be large 
if the boundary corresponds to an image edge and thus to a real 
grey level discontinuity, whereas it will be small for edges that 
separate two segments of a similar distribution of grey values. 
 



 

2.3 Merging of regions having similar attributes 

The RAG and the attributes of both its nodes and its edges are 
the basis for merging neighbouring regions to improve the 
initial segmentation. It is the goal of this process to merge 
regions that have similar radiometric properties and noise 
levels, but that are not separated by a significant edge. First, a 
distance metric Dij is computed for each edge eij: 
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In Equation 2, the vector gi

avg – gi
avg is the difference vector 

between the average grey level vectors of the two regions, and 
 χ2

N,1-α is the 1-α quantile of a chi-square distribution with N 
degrees of freedom, where N is the number of image. Two 
regions Si and Sj are said to have similar attributes if the value 
of Dij is smaller than 1. This corresponds to a statistical test 
whether the difference between two grey level vectors having 
the covariance matrices Qi

gg and Qj
gg is significant, though it is 

not a test whether the difference between the average grey level 
vectors is significant. In any case, the selection of a threshold 
for the difference between grey level vectors is replaced by 
selecting a significance level α.  
 
However, the distance metric Dij is not the only indicator used 
for identifying similar homogeneous regions. Dij is small if the 
difference between the average grey level vectors is small or if 
the variances of the grey levels inside a region are large. This 
means that if one image segment is highly textured (e.g. 
because it contains trees), it might be merged with neighbouring 
segments that are quite homogeneous, because the grey level 
difference can be statistically explained by the variances of the 
grey levels in the highly textured segment. Thus, we restrict the 
set of regions that can be merged to those having a similar level 
of noise. We introduce a second metric, the variance factor Fv

ij 
that compares the two noise levels vari and varj of Si and Sj:  
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In Equation 3, it is assumed that vari > varj; FN⋅Pi, N⋅Pj, 1-α is the 
1-α quantile of a Fisher distribution with N⋅Pi and N⋅Pj degrees 
of freedom, where N is the number of image bands and Pi and 
Pj are the numbers of pixels assigned to Si and Sj. The segments 
may only be merged if Fv

ij is smaller than a threshold. Using a 
value of 1 for that threshold corresponds to a statistical test for 
the identity of the two noise levels.  
 
Finally, even if two segments have similar grey level 
distributions and a similar noise level, they still might be 
separated by a significant edge, e.g. by a small path between 
two fields, as it is the case in the upper corner in Figure 2a. As 
stated above, an edge in the RAG contains the vector of average 
grey levels and the covariance matrix of the grey levels of the 
boundary between the two neighbouring segments and a 
measure Tij for the strength of the boundary. Two segments may 
only be merged if the distance metric according to Equation 1 
between the merged segment and the boundary region is smaller 
than 1 and if Tij is smaller than 0.5, i.e. if less than 50% of the 
pixels separating Si and Sj are edge pixels. 
 
Thus, by applying the rules described in this section, a set of 
tuples of regions Si and Sj that may be merged can be 

constructed. This set is ordered by the distance metrics Dij; the 
first element thus corresponds to the two segments having the 
most similar grey level distributions while still having a similar 
noise level and not being separated by a significant edge. These 
segments are merged, including the boundary pixels that 
formerly separated them, and the RAG is updated. In this 
context, the segment label image has to be changed, the 
attributes of the new merged segment have to be determined, 
and the edges of the RAG have to be updated. This analysis is 
repeated iteratively until no more segments can be merged. 
Figure 4 shows the segment label image generated by grouping 
the original labels in Figure 3a.  
 

 
Figure 4. Segment label image generated by grouping the 

original labels in Figure 3a. 
 
 
3. USING THE SEGMENTATION ALGORITHM FOR 

THE VERIFICATION OF CROPLAND 

The segmentation algorithm presented in the previous section 
was implemented in the software system BARISTA (Barista, 
2008). In this section we will describe its integration into the 
WiPKA-QS verification process for cropland objects. We will 
show the individual stages of the process using the image 
shown in Figure 1 as an example. Figure 5a shows the initial 
segmentation of that image after Watershed segmentation using 
a smoothing scale of σ  = 1. Figure 5b shows the results of the 
merging process described in Section 2. 
 
The results shown in Figure 5b are not perfect. The main 
management units have been separated correctly, but there 
remains some noise in the form of small insular segments and 
especially at the region boundaries. As mentioned in section 1, 
several objects of the same land cover type are permitted inside 
an ATKIS cropland object, and the existence of small areas 
having a different land cover class is tolerated if a size 
threshold is not exceeded and if the actual land cover is similar 
to cropland (e.g. grassland). These definitions can be used to 
further improve the segmentation in Figure 5b. Regions that are 
surrounded by just one other region and are smaller than a 
given area threshold are merged with the surrounding segment. 
Figure 6 shows the results of merging small insular regions 
smaller than 1000 m2 with their surrounding larger segments. 
 
The segmentation results in Figure 6 represent the real cropland 
segments in the GIS object much better than those in Figure 5b. 
Most of the small disturbances could be eliminated. In the 
uppermost segment there are still a lot of disturbances caused 
by rows of trees that indicate a land use as a small orchard 
(class special cultures in ATKIS). Despite being small, these 
objects were not merged with their surrounding segments 
because they were bordered by more than one segment. In an 
ATKIS cropland object, special cultures objects are permitted 
as long as they not exceed a size threshold. For this reason it is 



 

important for the application not to merge such non-cropland 
objects with their surrounding cropland areas, because 
otherwise the next analysis step might reject the larger segment 
as a cropland object even though it is consistent with ATKIS 
specifications for that class. 
 

 
a) 

 
b) 

 

Figure 5. a) Watershed segmentation of the image in Figure 1 
using a smoothing scale of σ  = 1. b) Segmentation 
results after region merging.  

 

 
 

Figure 6. Segmentation results after removing segments having 
only one neighbour and being smaller than 1000 m2. 

 
Other disturbances are located near the object border due to a 
changing tilling direction. These structures caused by turning 
agricultural machines would disturb the verification algorithm 
and are thus excluded from the analysis of the predominant 
edge direction (Helmholz et al., 2007). For that reason, the 
segmentation can also be restricted not to consider areas close 
to the object boundaries. An example for the influence of this 
restriction on the segmentation results is shown in Figure 7.   
 
Most of the disturbances close to the object boundary could be 
eliminated. The few remaining ones have no influence on the 
next analysis step due to their small size. Of course, the small 
segments corresponding to the orchard in the uppermost part of 
the GIS object remain. The two management units at the lower 
end of the GIS object are both split into two parts. This is 
caused by slightly different reflectance properties of these areas 
due to different soil characteristics. However, all of these 
segments are large enough for the verification step to detect a 
sufficient number of parallel lines for success.  
 
The label image in Figure 7 is the basis for the analysis of 
parallel lines that is used for the verification of the original 
cropland object. The verification algorithm is applied to each of 
the segments in Figure 7 exceeding a certain size rather than to 
the whole area corresponding to the ATKIS cropland object. 
After that the individual results of verification are merged in a 

final analysis step taking into account the definitions of ATKIS 
for the representation of cropland objects. Compared to the 
original algorithm (Helmholz et al., 2007) this is expected to 
lead to better results because the smaller segments should be 
more uniform in their main tilling direction. 

 
Figure 7. Results of segmentation if regions near to the object 

border are not considered. 
 
Figure 8 and Figure 9 show two more examples for ATKIS 
cropland objects that are taken from the same IKONOS scene 
as Figure 1. Note that the ATKIS cropland object Figure 8 
consists of only one management unit, whereas both in Figure 1 
and in Figure 9 there are multiple units. It is obvious that the 
segmentation algorithm detects homogeneous image regions 
that do not necessarily coincide with management units, 
because the algorithm is affected by characteristics of the soil 
such as humidity or soil material. Typical examples are the field 
at the bottom of Figure 7, the area in the left of the field in 
Figure 8, and the field in the middle of Figure 9. The different 
reflectance properties of the soil are the main reason for 
remaining small disturbances. The number of these disturbances 
is of course higher when the smoothness parameter of the 
Watershed algorithm is lower (compare Figure 8b and c). If a 
field is thus split into segments that are large enough for the 
following analysis to succeed (bottom management unit in 
Figure 7), the appearance of different soil characteristic has no 
influence on the application. This is also true if the major part 
of a segment is correctly extracted and the remaining 
disturbances are small enough to be disregarded in the 
following analysis (the management units in the middle of 
Figure 7). However, the management unit in the middle of 
Figure 9 is split into too many small segments, which would 
prevent the verification algorithm from correctly classifying 
that region. Also the large segment in the left part of Figure 8c 
would not be verified correctly despite being too large for being 
discarded: no parallel straight lines are detected (cf. Figure 8d). 
However, in the case Figure 8c, the largest part of the ATKIS 
object would be verified correctly. The distance metric between 
the large segment and the disturbing object suggests that they 
could be merged, but the measure Tij for the strength of the 
boundary between them prevents the algorithm from merging 
them. It might be possible to consider this when the 
classification results of the individual are merged: if an object 
that could not be verified is surrounded entirely by a verified 
object of similar reflectance properties, it could be considered 
as verified, too, despite the absence of the structural indicators.  
 
Another idea to enhance the segmentation results is to use a 
priori knowledge about the typical shape of management units 
to introduce additional constraints. Using the information that 
the boundaries of management units usually consist of straight 
line segments that are orthogonal or nearly orthogonal could 
improve the results for the examples given in Figure 7 and 



 

Figure 8. Unfortunately, these geometrical constraints could 
hardly improve the segmentation result in Figure 9. 
 

a) b) 

c) 
 

d) 
Figure 8. a) Original image, taken from the same IKONOS 

scene as Figure 1a; b) Results of segmentation 
(smoothness for Watershed σ = 1); c) Results of 
segmentation (smoothness for Watershed σ = 5);  
d) white lines: segment boundaries from c), black 
lines: results of edge detection. 

 

   
Figure 9. RGB IKONOS image (left); grouping result with 

smoothness for watershed σ = 1 (middle); grouping 
result with smoothness for watershed σ = 5 (right) 

 
 

4. CONCLUSIONS AND OUTLOOK 

The goal of the presented segmentation algorithm was the 
enhancement of an algorithm for the verification of tilled 
cropland objects by splitting that object into homogenous 
regions. This is necessary because the verification algorithm 
does not work successfully with GIS objects containing more 
than one management unit. Despite disturbances caused by 
variations of the soil properties, the homogenous regions are to 
a large degree coherent with the different management units 
existing in a GIS object. The segmentation algorithm is still 
work in progress, but the preliminary results presented in this 
paper show the potential of the algorithm for the verification 

approach. Even though a complete segmentation of 
management units seems to be impossible, the segmentation 
algorithm enhances the automatic verification process of GIS 
object. The level of segmentation that could achieved is already 
an important improvement of the verification approach. 
 
Future work comprises an improvement of the segmentation 
algorithm, e.g. by introducing additional (geometrical) 
constraints, and the implementation of the synthesis of the 
verification results achieved for the individual segments: at this 
instance, segmentation errors could be compensated. 
Furthermore, a more detailed evaluation of the improvement 
achieved by the segmentation is to be carried out.  
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