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Abstract  

State-of-the-art satellite SAR sensors (e.g., TerraSAR-X, CosmoSkyMed) provide imagery of one meter resolu-

tion and airborne SAR sensors achieve even higher resolutions. In those data objects in urban areas become visi-

ble in high detail. However, SAR-typical effects like layover, shadowing, and interfering backscatter of multiple 

objects complicate interpretability. Thus, additional information about those objects may be obtained from opti-

cal imagery. In this work we combine features of high-resolution airborne interferometric SAR (InSAR) data with 

features of an orthophoto in order to detect buildings. A Conditional Random Field (CRF) is set up in order to 

integrate context-knowledge. We show that CRFs are a suitable method for integration of both context-

knowledge and multi-sensor features for building extraction.   

 

1 Introduction 

Modern space borne and airborne SAR sensors are 

capable of mapping urban areas with high detail. They 

may acquire imagery at night or through cloud cover-

age due to their active sensor principle and the dielec-

tric properties of the used microwave signal. Those 

properties make them a valuable tool for many appli-

cations, for example for rapid hazard response after 

natural disasters. However, interpretability in urban 

areas is complicated by occlusions and interfering 

backscatter of multiple objects. Therefore, automatic 

scene analysis may be facilitated by additional data 

like optical images.   

Xiao et al. [1] and Hepner et al. [2] detect and recon-

struct building blocks combining InSAR data with 

high-resolution multi-spectral images or hyper-

spectral images, respectively. Tupin and Roux [3] rep-

resent segments of an aerial photo in a region adja-

cency graph, which is then used within a Markov 

Random Field framework to regularize building 

heights determined by means of radargrammetry. Pou-

lain et al. [4] combine high-resolution optical and 

SAR data with vector data with the goal of change de-

tection using Dempster-Shafer evidential theory. Spor-

touche et al. [5] detect and three-dimensionally recon-

struct large industrial buildings semi-automatically 

based on features of Quickbird imagery and Terra-

SAR-X data. We recently proposed a segment-based 

approach for building detection [6]. Segments of an 

orthophoto are classified into building and non-

building segments based on features of an orthophoto 

and InSAR double-bounce lines.  

In order to exploit context-knowledge we use a Condi-

tional Random Field (CRF) framework [7]. CRFs 

have already been successfully applied to various 

computer vision tasks [8,9], whereas they have only 

rarely been applied to remote sensing data [10,11], 

yet.  

In the following we will first explain the building fea-

tures in the orthophoto and the InSAR data. Then, 

CRFs are described. Finally, we present some experi-

mental results and evaluate the overall contribution of 

the InSAR double-bounce lines to the detection per-

formance.    

2 Features 

In order to detect buildings we have to first discover 

features that discriminate them from their environ-

ment. We use high-resolution InSAR data (Figure 

1(a,b)) and an orthophoto as input (Figure 1(c,d)) and 

thus we have to first investigate the typical appearance 

of buildings in such data. In very high-resolution ae-

rial imagery details of buildings like superstructures 

on the roof become visible. Additionally, facades may 

be partially visible due to the central perspective of 

the camera (and since we are not dealing with a true 

orthophoto). High-resolution SAR data provides com-

plementary information. A flat-roofed building is usu-

ally characterized by layover, a double-bounce line 

where the building wall facing the SAR sensor meets 
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the ground, direct backscatter from the roof (depend-

ing on the width of the building in range direction), 

and a shadow area. Particularly the double-bounce 

line is a reliable building hint in urban areas [12].  

We subdivide the images into patches and generate 

rather simple feature vectors for each patch since our 

current focus is on the overall suitability of CRFs for 

combining high-resolution optical and SAR data for 

building detection. Feature selection is accomplished 

empirically by testing various features and feature 

combinations. 

 

2.1 Orthophoto features 

The most discriminative orthophoto features are found 

to be based on colour, intensity, and gradient. We take 

mean and standard deviation of red and green channel 

normalized by the length of the RGB vector as well as 

mean and standard deviation of the hue channel as 

features. In addition, variance and skewness of the 

gradient orientation histogram proved to be discrimi-

native. We generate all those features in multiple 

scales [13] in order to mitigate shortcomings due to 

instable features of very small patches. Features of 

large patches integrate over bigger areas thus exclud-

ing, for example forests or agricultural areas, whereas 

small patches provide details. We tested various num-

bers of scales and scale combinations. Three different 

scales with sizes 10x10, 15x15, and 20x20 pixels were 

found to be appropriate in our case.  

 

2.2 InSAR features 

Buildings in InSAR data appear differently than in 

traditional optical data (cf. Figure 1 (a,b) and (c,d)). 

Although layover and shadowing effects carry valu-

able geometric and radiometric information about the 

object of interest, they often complicate automatic 

analysis of urban areas because of multiple backscat-

ter interferences. Therefore, we utilize double-bounce 

lines as characteristic building hints. They are the 

most reliable feature in urban areas [12] because they 

show high coherence in InSAR data indicating high 

signal-to-noise-ratio. In addition, the distribution of 

the interferometric heights around those lines facili-

tates distinguishing between building lines and bright 

lines caused by other effects.  

We segment double-bounce lines in the InSAR data 

applying the technique we developed in [6]. Those 

lines are then projected from slant range to the coor-

dinate system of the orthophoto using the local mean 

interferometric height at each line position. Next, we 

smooth the intensity channel of the orthophoto with an 

edge preserving anisotropic diffusion filter, segment 

the smoothed image into homogenous regions using 

watershed segmentation, and overlay the double-

bounce lines to the those segments. Intersecting seg-

ments are set to one (all others to zero) and a distance 

map is generated (Figure 2(a,b)).  

3 Conditional Random Fields 

CRFs have been widely used in several fields of 

applications, particularly in computer vision [9,13]. 

As discriminative models they directly estimate the 

posterior distribution P(y|x) of class labels y given the 

data x without wasting resources on modelling the 

joint probability, which is  mostly not of interest. This 

paper applies a functional form of CRFs as proposed 

for example in [13] given by Equation 1:  
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where the association potential Ai(x,yi) and the interac-

tion potential Iij(x,yi,yj) define the capabilities of the 

CRF. The partition function Z(x) is merely a normali-

zation constant (depending only on data x). The image 

x is assumed to consist of a set of label sites S (the 

image patches in our case), and the indices i and j de-

note an arbitrarily label site in S and a label site in the 

set Ni of all available adjacent label sites, respectively. 

Although the association potential Ai(x,yi) (Equation 

2) measures the probability of a certain class label at 

site i given the feature vector hi(x) of this site, it does 

not have to be a probability by itself. 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 1 Test regions of the Dorsten scene: (a,b)  

orthorectified SAR magnitude images of the Aes-1 

interferometric image pair (range from right to 

left), (c,d) corresponding regions of the ortho-

photo. 
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Note that hi(x) depends on all available data x and can 

therefore potentially use other parts of the data than 

those of the current label site. We use features calcu-

lated over three different scales to capture scale de-

pendent characteristics, which are expected to be dis-

tinguishable between buildings and non-buildings. 

The weight vector w contains the first set of free pa-

rameters, which have to be adjusted during training. 

As proposed in [13] a quadratic expansion is applied 

during calculation of hi(x) generating a non-linear de-

cision surface. 

The interaction potential Iij(x,yi,yj) (Equation 3) 

measures the cost of assigning different labels to two 

adjacent label sites. 

 

          
    , , expij i j i jI y y y y T

ijx v μ x
      (3) 

 

In contrary to standard MRFs it is data dependent by 

μij(x) = gi(x) - gj(x), where gi(x) is the feature vector 

for label site i, which again could potentially use the 

whole data set x. Note that different functionals are 

used to calculate feature vectors in Ai(x,yi) and 

Iij(x,yi,yj). Therefore, different features can be used in 

both potentials. Our current implementation defines 

the interaction potential only in terms of single scale 

features and no quadratic expansion is used. The 

weight vector v of the interaction potential completes 

the set of system parameters, which have to be opti-

mized during training. 

Various training and inference methods were investi-

gated. The Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) [14] method and Loopy Belief Propagation 

(LBP) [15] were found to lead to the most promising 

results. 

4 Experiment 

The InSAR data we use was acquired with the AeS-1 

sensor of Intermap Technologies. The spatial resolu-

tion is about 0.38 m in range and 0.16 m in azimuth. 

The effective baseline between both X-band sensors 

was set to approximately 2.4 m. The optical image  

was taken with an analogue aerial camera Zeiss RMK 

and scanned leading to a pixel size of 0.31 m on the 

ground.  

In order to assess the impact of the InSAR double-

bounce lines on the overall building detection per-

formance we compare CRF results based on merely 

the orthophoto features (Figure 2(c,d) and Table 1 

left) with those exploiting the combination with In-

SAR double-bounce lines (Figure 2(e,f) and Table 1 

right). For testing purposes we define four test regions 

and accomplish 4-fold cross validation. The true posi-

tive rate (TPR) on a per-pixel level of both results is 

85%. However, the InSAR double-bounce lines de-

crease the false positive rate (FPR) from 30% to 27%. 

Those relatively high FPRs are due to over-smoothing 

caused by the standard interaction potential. Small 

gaps between adjacent buildings are misclassified as 

buildings.  

 

Table 1 CRF building detection results using only 

orthophoto features versus a combination of or-

thophoto and InSAR features: Mean and standard 

deviation of true positive rate (TPR) and false 

positive rate (FPR) evaluated on a per-pixel level. 

 

Orthophoto Orthophoto+InSAR 

TPR FPR TPR FPR 

μ σ μ σ μ σ μ σ 

85% 6% 30% 13% 85% 7% 27% 8% 

 

 
(a) 

 
(b) 

 

 
(c) 

 

 

 
(d) 

 
(e) 

 
(f) 

Figure 2 Test regions of the Dorsten scene as 

shown in Fig. 1: (a,b) distance maps of the seg-

ments that intersect with double-bounce line, (c,d) 

CRF building detection results using only ortho-

photo features, (e,f) CRF building detection re-

sults based on combined orthophoto and InSAR 

features. 
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5 Conclusions and future work 

In conclusion, CRFs are suitable for building detec-

tion using multi-sensor data and the overall detection 

performance benefits from the use of complementary 

optical and InSAR features. However, the current 

standard interaction potential function needs im-

provements. It is appropriate for usual computer vi-

sion tasks where a single relatively large object has to 

be detected in an image (since it is more or less a 

smoothing term) but inconvenient for our task of de-

tecting multiple densely distributed small objects. Our 

next efforts will thus go into the introduction of so-

phisticated discontinuity constraints. Furthermore, we 

will investigate the benefits of setting up the CRF on 

irregularly distributed segments generated by, for ex-

ample Normalized Cuts or Mean Shift.         
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