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Abstract 

TerraSAR-X is capable of acquiring imagery of one meter resolution. In data of such kind man-made objects be-

come visible and typical land cover classification classes appear in high detail. Our aim is to find out if Ter-

raSAR-X imagery may complement optical images for automatic land cover classification. Thus, we classify im-

agery of both data types into classes settlement, agriculture, streets, and forested areas and compare classification 

performances. We use Markov Random Fields (MRF) as learning based probabilistic framework to classify opti-

cal and SAR data. In case of the TerraSAR-X amplitude data we model the likelihood function with Fisher distri-

butions, whereas texture measures are evaluated using Gibbs probability distributions for the optical images. First 

results show that high-resolution TerraSAR-X imagery may complement land cover classification.     

 

1 Introduction 

State-of-the-art space borne high-resolution SAR sen-

sors like TerraSAR-X and Cosmo-SkyMed acquire 

imagery with a geometric resolution of one meter. Due 

to the sensor principle of actively emitting pulses in 

the microwave domain, they are nearly independent of 

cloud coverage and daylight. Additionally, they image 

different properties of objects on the ground compared 

to optical sensors due to the principle of measuring 

slant-ranges in side-looking viewing geometry and the 

signal in the microwave domain. Various approaches 

for land cover classification using SAR data [1], In-

SAR data [2], or a combination of SAR and optical 

data [3,4,5] have been proposed. Multiple probabilis-

tic and non-probabilistic classification techniques may 

be applied; Lu and Weng [6] provide an overview.  

Our aim is to investigate whether certain object 

classes may be better detected or distinguished  in 

high-resolution SAR data than in optical imagery. We 

use Markov Random Fields (MRF) as classification 

framework for several reasons. First, we want to 

achieve probabilities instead of just decisions (as e.g., 

Support Vector Machines) in order to allow for later 

combination of multi-sensor data during post-

processing in a probabilistic way. Second, we need to 

learn as many parameters as possible in order to avoid 

manual parameter settings for each new scene. Third, 

context-knowledge may support automatic scene 

analysis particularly if dealing with high-resolution 

data containing urban scenes. It may be integrated 

through the MRF prior term. Therefore, we use MRFs 

for classifying both the optical and the SAR data. 

For the classification of the TerraSAR-X images we 

use an approach proposed by Tison et al. [7], which 

models the likelihood term using Fisher distributions. 

The optical data is classified with a texture-based ap-

proach applying Gibbs distributions proposed by Gi-

mel’farb [8]. They have the advantage of being par-

ticularly adapted to the statistics of high-resolution 

SAR data (intensity and amplitude).  

 

2 Classification 

For the classification of the high-resolution spotlight 

TerraSAR-X images we use an approach developed by 

Tison et al. [7], which models the likelihood distribu-

tion for intensity and amplitude SAR values with 

Fisher distributions. Due to the very high resolution of 

the data, the return signal is often governed by a single 

dominant scatterer, particularly in urban areas. Fisher 

distributions are capable of modelling heavy tails of 

distributions occurring particularly in urban areas with 

lots of bright scatterers. Additionally, they are highly 

flexible and may thus model various data distributions 

that had to be modelled with different functions be-

forehand. So far, this approach has only been applied 

to classify objects in urban areas. Nonetheless, we 

show that it may also be used more generally for land 

cover classification. 

A texture classification approach described by Gi-

mel’farb [8] is applied to classify the optical images. 

It models image textures with a Markov random field 

using Gibbs probability distributions. The approach 

models a local pixel neighbourhood only with pair-

wise pixel interactions and shows good results in 

modelling natural textures. To classify textures of dif-

ferent spatial resolutions, like appearing in aerial im-

ages, the approach is extended with a resolution 

pyramid.    
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2.1 TerraSAR-X 

This section provides an overview of the classification 

applied to the TerraSAR-X data. MRFs have the ad-

vantage of assigning probabilities to the final labelling 

instead of only providing final decisions, like all 

graphical models. Those probabilities can be exploited 

for post-processing or decision making. MRFs are ge-

nerative models and can be viewed as an extension of 

Naïve Bayes. They estimate the joint distribution 

P(x,y) of data x and labels y, which can be decom-

posed into a product of factors P(x|y)P(y). In the 

Bayesian context the first term in Equation 1 can be 

viewed as the likelihood term, whereas the second one 

is a prior over labels y. 
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i is an image site out of the set of all image sites S of a 

single image, j is an image site of the 8-connectivity 

neighborhood Ni of site i. In our case a site i 

corresponds to a window centered on the pixel of 

interest. This window is shifted across the entire 

image. β is the weight of the Potts model [10]. 

Weighting parameter α balances the influence of the 

likelihood term and the prior term on the posterior 

probability P(y|x). Z(x) is the partition function and 

can be interpreted as the distribution P(x) of data x in 

the Bayesian framework. It acts as a normalization 

constant (for a given data set) and can be expressed as 

sum over all possible label configurations of the 

product P(x|y)P(y). The data likelihood Pi(xi|yi) uses 

data from a single site i, while the prior term 

introduces local interactions between adjacent labels 

yj and yi within a local neighborhood.  

Fisher distributions well approximate SAR amplitude 

data. Thus they are used for the likelihood term 

Pi(xi|yj) (Equation 2).  

 

 
( ) 2

|
( ) ( )

i i i

i i i i

y y y

i i i

y y y y

L M L
P x y

L M M 

 

 

             (2)                                                        

 

2 1
2

1

Lyi y yi i

i i

i i i i

L M

y yi i

y y y y

L Lx x

M M 

 

    
    

    
    

 

µy, Ly, and My are the parameters of the Fisher 

distribution of class y and Γ represents the gamma 

distribution. The Fisher parameters are estimated 

making use of the second-kind statistics based on the 

Mellin-Transformation (see more details in [7]). The 

posterior probabilities P(y|x) are computed with the 

Metropolis algorithm in combination with simulated 

annealing.  

2.2 Optical imagery 

The texture classification approach is derived from the 

texture segmentation approach described in [8]. A de-

tailed description of the used Markov random field 

model is given in [9]. Each different texture in the im-

age represents an image class during classification. 

The classification approach is extended to use a multi-

resolution technique in order to represent textures of 

different resolutions. This is done by first calculating a 

resolution pyramid of the optical input image and 

classifying each resolution level separately. Then, an 

over-all classification is conducted. The supervised 

approach learns the properties of the texture classes 

with training samples. The developed learning proce-

dure determines the resolution level on which a tex-

ture class gains significant signatures. The resolution 

with the best separation characteristic may differ from 

one class to another; the classification of inhabited 

areas is, for example, significantly better in the lower 

resolutions and therefore preferably used. The learn-

ing step is a crucial part for the effectiveness and cor-

rectness of the derived results. 

 

3 Results 

We apply the previously described classification 

methods to two test data sets and show first results. 

The first set contains a multi-spectral orthophoto of 

0.4 m resolution (Figure 1(a)) and a TerraSAR-X im-

age (Figure 1(b)) of the Fuhrberger Feld, a rural area 

north of the city of Hannover, Germany. The Ter-

raSAR-X image was acquired in single polarized 

(HH) spotlight mode with 1 m resolution in range and 

2 m resolution in azimuth.  

Our second test scene is located close to the airport of 

Algiers, Algeria. We took one IKONOS image (1 m 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1 Test scene Fuhrberg (a) Optical aerial image, 

(b) TerraSAR-X image (slant-range geometry, range 

from left to right), (c) optical classification result, (d) 

SAR classification result. 
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panchromatic resolution, Figure 2(a)) and one Ter-

raSAR-X image (Figure 2(b)). The TerraSAR-X im-

age was taken in single polarized (HH) high-

resolution spotlight mode leading to resolutions of 0.6 

m in range and 1.1 m in azimuth. 

We initialize the MRFs of the TerraSAR-X images 

with a label image obtained from a pixel-wise classifi-

cation with Support Vector Machines (SVM). Radial 

basis functions are used for kernel mapping. Three 

different features are computed as input to the SVM: 

one image filtered with the Frost operator [11], the 

coefficient of variation, and the probability image 

generated with the ratio line detector of Tupin et al. 

[12]. The latter is a characteristic hint of urban areas.  

Long bright lines often occur where building walls 

meet the ground due to double-bounce effects of the 

radar signal (see [13] for further details).  

Classification results are shown in Figures 1(c,d) and 

2(c,d). The overall true positive rates (TPR) and false 

positive rates (FPR) are summarized in Table 1. The 

overall TPRs of the optical data are slightly higher 

than those of the SAR data and FPRs are lower.  The 

confusion matrices shown in Table 2 allow for a more 

detailed interpretation. The left number always repre-

sents TerraSAR-X results while the right refers to 

classification results of the optical data. The elements 

on the matrix diagonals indicate how many pixels of a 

class have been correctly classified. For example, the 

central element of Table 2(a) shows that 73% of all 

TerraSAR-X pixels of the Fuhrberg scene belonging 

to class "agriculture" have been correctly classified as 

such. All non-diagonal elements indicate the percent-

age of pixels that have erroneously been assigned to 

another class. For instance, 15% of forest pixels in the 

TerraSAR-X image of Fuhrberg have erroneously 

been classified as "agriculture" (see bottom-centre 

element in Table 2(a)). TerraSAR-X imagery provides 

much better results for the classification of smooth 

asphalt and concrete surfaces than the optical classifi-

cation based on texture measures. Streets and the air-

port runway in the Algiers scene (Figure 2(a,b)) could 

not be detected at all in Algiers scene using the IKO-

NOS image. Thus, this class was left away and the 

IKONOS image of the Algiers scene was classified 

into settlement and agricultural areas.   

     

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2 Test scene Algiers (a) IKONOS image, (b) 

TerraSAR-X image (slant-range geometry, range 

from left to right), (c) optical classification result, 

(d) SAR classification result. 

 

 

Table 1 Overall true positive rate (TPR) and 

false positive rate (FPR) on per-pixel level of 

the TerraSAR-X and of the optical classifica-

tion results in percent 

 

      Scene 

 

Sensor 

 

Fuhrberg 

 

Algiers 

 TPR FPR TPR FPR 

TerraSAR-X 67 33 78 22 

Optical 

sensor 
72 28 93 7 

 

Table 2 Confusion matrices of the classifica-

tion results (a) test scene Fuhrberg, (b) test 

scene Algiers in percent; the left number in 

each cell refers to the TerraSAR-X data 

whereas the right one refers to the optical 

data. 
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Settlement 59 | 54 18 | 22 23 | 24 

Agriculture 12 | 8 73 | 87  15 | 5 

Forest 32 | 11 15 | 34 53 | 55 

(a) 

 

          Classification 
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Settlement 42 | 58 50 | 42 8 | - 

Agriculture 4 | 3 88 | 97 9 | - 

Street 6 | - 22 | - 72 | - 

(b) 
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The TerraSAR-X data however allows to detect 

smooth surfaces. Those areas that are smooth relative 

to the radar wavelength reflect the radar signal away 

from the sensor and thus appear dark in the SAR im-

age. Thus, streets as one class of land cover could be 

detected with the support of high-resolution SAR data.  

Classification of forests and settlement areas may also 

be supported with high-resolution SAR data. Concern-

ing the Fuhrberg scene the 59% of the settlement area 

was classified as such based on the TerraSAR-X im-

age, whereas only 54% was detected based on the opt-

ical data. The Algiers scene however shows inverse 

results with the limitation that only two classes were 

classified in the optical data. Classification result of 

the classes forest and settlement could be further im-

proved by post-processing steps or the integration of 

additional features. A closer look at Table 2(a) reveals 

that a large percentage of the misclassifications of 

those classes is due to forested areas being classified 

as settlements (32%). This effect is mainly caused by 

the layover of the forest (cf. Figure 1(b,d)) being er-

roneously classified as settlement due to its similar 

amplitude distribution. If we neglect those layover 

areas 62% of the forests and 64% of the settlements 

are detected (which outperforms the optical results).     

 

4 Conclusions and Outlook 

First results show that MRFs using Fisher distributions 

as likelihood may be used for land cover classification 

of high-resolution TerraSAR-X amplitude  data. Some 

object classes that cannot be distinguished based on 

optical data are detectable in TerraSAR-X data (e.g., 

rural streets).   

One drawback of the current state of the SAR classifi-

cation approach is the limitation of the likelihood term 

to only one feature (i.e., the SAR amplitude in our 

case). Future work will comprise the extension to a 

multi-dimensional feature space in order to enable the 

incorporation of additional features directly (instead 

of taking the detour via SVMs), for example the coef-

ficient of variation and various moments.  

The source code of the TerraSAR-X classification us-

ing MRFs and the estimation of the Fisher distribu-

tions with second kind statistics will soon be available 

within the open source library Orfeo Toolbox (OTB). 

It may be downloaded at http://www.orfeo-

toolbox.org/otb/. 
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