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ABSTRACT: 
 
In the German Authoritative Topographic Cartographic Information System (ATKIS), the 2D positions and the heights of objects 
such as roads are stored separately in the digital landscape model (DLM) and digital terrain model (DTM), which is often acquired 
by airborne laser scanning (ALS). However, an increasing number of applications require a combined processing and visualization 
of these two data sets. Due to different kinds of acquisition, processing, and modelling discrepancies exist between the DTM and 
DLM and thus a simple integration may lead to semantically incorrect 3D objects. For example, roads may be situated on strongly 
tilted DTM parts and rivers sometimes flow uphill. In this paper we propose an algorithm for the adaptation of 2D road centrelines to 
ALS data by means of network snakes. Generally, the image energy for the snakes is defined based on ALS intensity and height 
information and derived products. Additionally, buildings and bridges as strong features in height data are exploited in order to 
support the road adaptation process. Extracted buildings as priors modified by a distance transform are used to create a force of 
repulsion for the road vectors integrated in the image energy. In contrast, bridges give strong evidence for the correct road position 
in the height data. Therefore, the image energy is adapted for the bridge points. For that purpose bridge detection in the DTM is 
performed starting from an approximate position using template matching. Examples are given which apply the concept of network-
snakes with new image energy for the adaptation of road networks to ALS data taking advantage of the prior known topology. 
 
 

1. INTRODUCTION 

1.1 Motivation 

The German Authoritative Topographic Cartographic 
Information System (ATKIS®) consists of the digital landscape 
model (DLM) and the digital terrain model (DTM). The DLM 
describes the objects on the earth’s surface using 2D vector data 
and additional attributes, whereas the DTM is a continuous 
2.5D representation of the surface modelled by terrain points in 
a regular grid or triangulated irregular network (TIN). For many 
applications, e.g. flood risk assessment, 3D modelling of the 
topographic objects is required. For this purpose an integration 
of the 2D vector data and the height information is necessary. 
However, there are discrepancies between the DLM and the 
DTM due to different methods of acquisition, processing, and 
modelling. As a consequence, integration without matching the 
data sets leads to semantically incorrect results, e.g. bodies of 
standing water having physically impossible height variations. 
Thus, the two data sets have to be adapted for accurate 
combined visualization and processing. 
 

The terrain data used in the paper are collected by the surveying 
authority of Schleswig-Holstein by Airborne Laserscanning 
(ALS). ALS delivers a digital surface model (DSM), from 
which the DTM is generated by filtering methods. The DSM 
also contains information about objects situated on the terrain. 
In addition, ALS data contain the intensity of the reflected 
signal. Vector data adapted to the ALS data should also match 
the DTM. We are mainly interested in roads, which typically 
have an accuracy of 3-5 m in ATKIS, with local deviations that 
may reach 10 m. It is the goal of this paper to present a new 
algorithm for improving 2D road vector data using ALS data. 
The method is based on our previous work in which we used 

network snakes (Butenuth, 2008) and a task-specific 
formulation of the image energies for that purpose (Goepfert & 
Rottensteiner, 2009). In this paper we improve the definition of 
the image energy, expanding it by terms considering 
information about bridges and buildings to make it more 
generally applicable. The new definition of the image energy 
terms is described, which includes the description of a new 
method for detecting bridges, and the method is evaluated for 
an area in Schleswig-Holstein, showing how the accuracy of the 
road centre lines can be improved. 
 
1.2 Related Work 

Pilouk (1996) and Lenk (2001) investigated the incorporation of 
the 2D geometry of the vector objects into a DTM modelled by 
a TIN, but the inconsistencies between the vector data and the 
DTM were not considered. Rousseaux and Bonin (2003) model 
2D linear objects such as roads and dikes as 2.5D surfaces by 
using attributes of the GIS data base and the DTM heights with 
the goal of generating an improved DTM. They use slopes and 
regularization constraints to check the semantic correctness of 
the objects, but they do not adapt the objects if this check fails. 
Koch (2006) extends the integration methods based on TIN 
structures by a least squares adjustment using equality and 
inequality constraints in order to incorporate the semantics of 
the objects. However, his approach is very sensitive to the 
definition of the weights if the position and the height 
observations are corrected simultaneously. Furthermore, the 
implicit information about the vector objects in the height data 
such as structure lines at road embankments is not considered. 
In this paper these deficits are tackled by using the ALS data as 
image energy for active contours in order to correct the position 
of the objects considering their height information. 
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Snakes or parametric active contours are a well-known concept 
for combining feature extraction and geometric object 
representation (Kass et al., 1988; Blake & Isard, 1998). They 
explicitly represent a curve with respect to its arc length. In the 
standard formulation they cannot handle changes in the 
topology such as splitting and merging of entities (McInerny & 
Terzopoulos, 1995). This is not a problem for the adaptation of 
the 2D vector data to ALS features, because the initial topology 
is taken from the GIS data base and should be held fixed during 
the process. For that reason the network-snake algorithm of 
Butenuth (2008) is used with new definitions of the image 
energy functions. The basic concept of snakes is widely used in 
image and point cloud analysis as well as GIS applications. For 
example, Burghardt and Meier (1997) suggest an active contour 
algorithm for feature displacement in automated map 
generalisation, and Cohen & Cohen (1993) introduce a finite 
elements method for 3D deformable surface models. Borkowski 
(2004) shows the capabilities of snakes for break line detection 
in the context of surface modelling. Laptev et al. (2001) extract 
roads using a combined scale space and snake strategy. 
 

In order to extract roads from ALS data, Rieger et al. (1999) 
propose twin snakes to model roads as parallel edges. This 
integration of model based knowledge stabilises the extraction 
and is able to bridge gaps in the structure lines in the vicinity of 
roads, which are often not continuous in nature. Road extraction 
can also be improved by fusing ALS and image data, e.g. (Zhu 
et al., 2004), as well as GIS data (Oude Elberink & Vosselman, 
2006). The ALS intensity values, assumed to be a by-product a 
few years ago, can also be exploited in the extraction process. 
Roads have usually small intensity values and can be 
distinguished well from other objects by this feature along with 
the fact that they are situated on the DTM (Alharthy & Bethel, 
2003; Clode et al., 2007). ALS data have also been used to 
detect bridges (Clode et al., 2005; Sithole & Vosselman, 2006).  
 

In our previous work we used network snakes (Butenuth, 2008) 
for adapting 2D road vector data to ALS intensity and height 
data (Goepfert & Rottensteiner, 2009). The image energies 
consisted of a combination of the ALS intensity, the DSM 
heights, and a smoothness term derived from the DSM. As 
roads are situated on the terrain, smoothness should be derived 
from a DTM. Furthermore, using the raw DSM heights for the 
image energy, the method cannot be applied to areas with 
undulating terrain. Another problem of the existing method is 
that it might be negatively affected by buildings and bridges. 
Buildings sometimes have similar ALS intensities as roads, 
which in densely built-up areas may cause the snake to be 
caught in a local minimum. Considering bridges is essential 
because they have a disturbing effect on the road that passes 
underneath the other one. By the new definition of the image 
energy our method should become more generally applicable.  
 
 

2. METHOD 

2.1 General Work Flow 

In this paper a top-down method using the concept of network 
snakes for adapting road networks from ATKIS data base to 
ALS data is proposed. The initialization of the snake and 
therefore the internal energy are obtained from the vector data, 
whereas the ALS information defines the new image energy 
forcing the snake to salient features (cf. section 2.3). Compared 
to our previous work (Goepfert & Rottensteiner, 2009), we 
improve the image energy by terms related to the smoothness of 
the DTM and by terms derived from building outlines and 

bridge positions. Extracted buildings are used to act as 
repulsion forces in the image energy, whereas bridge detection 
is performed in order to determine confident areas for the 
correct road position. After defining and weighting the different 
terms of internal and image energies the iterative optimisation 
process is started modifying the position of the network snake. 
The change of the position of the contour in the current iteration 
is used to determine the convergence of the algorithm. 
Afterwards, the new position of the contour should match the 
corresponding features for the road network in the ALS data. 
 
2.2 Snakes and network snakes 

It is the general idea of snakes that the position of the contour in 
an image is determined in an iterative energy optimisation 
process. An initialisation of the contour is required. Three 
energy terms are introduced by Kass et al. (1988). The internal 
energy Eint defines the elasticity and rigidity of the curve. The 
image energy Eimage should represent the features of the object 
of interest in an optimal manner in order to attract the contour 
step by step to the desired position. Additional terms (constraint 
energy Econ) can be integrated in the energy functional forcing 
the contour to fulfil predefined external constraints: 
 

(1) 
 
where ))(),(()( sysxsv = is the parametric curve with arc 
length s. In order to obtain the optimal position of the snake in 
the image, the energy functional in Equ. 1 has to be minimised, 
e.g. by variational calculus. The internal energy can be written 
as (Kass et al., 1988): 
 

 (2) 
 
 

where vs and vss are the derivatives of v with respect to s, and α 
and β are weights. The first order term, weighted by α, is 
responsible for the elasticity of the curve. Due to the arc length 
minimizing effect, high values of α result in very straight 
curves. The second order term, weighted by β, forces the snake 
to act like a thin plate and determines the rigidity of the curve. 
High values of β cause a smooth curve while contour parts with 
a small β are able to model the behaviour of corners. Using the 
idea of network snakes (Butenuth, 2008) allows exploiting the 
initial topology of a network of lines during the energy 
minimisation process. The individual lines of the network are 
connected via nodes of an order higher than two at the junctions 
of these lines. The internal energy has to be modified so that 
this initial topology is preserved in the resulting line network. 
This means that at junctions, the elasticity term in Equ. 2 is 
disregarded (α = 0), whereas there is one smoothness term 
(weighted by β) per line intersecting at the junction node 
(Butenuth, 2008). The image energy has to be defined in a way 
to ensure that the snake is attracted to image features that are 
characteristic for the object to be extracted. Thus, model 
knowledge is to a large degree incorporated into the image 
energy. Our new definition for the image energy, including the 
integration of a building mask, the extraction of bridges, and 
planar features in the DTM is explained in Section 2.3. We do 
not use any constraint energy terms in our method.  
 
2.3 Image energy 

The image energy Eimage consists of three different components, 
namely a general ALS energy EALS, a building term Ebuild that 
repulses the snakes from buildings, and a bridge term Ebridge 
attracting the snake to bridges detected in the ALS data: 
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Eimage = κI • [λ(x,y) • EALS + μ(x,y) • Ebuild + ν(x,y) • Ebridge]   (3) 
 

In Equ. 3, κI is a weight for the entire image energy term, and 
 λ(x,y), μ(x,y), and ν(x,y) are weight functions for the individual 
terms that may vary over the image. More specifically, our 
method requires the detection of buildings and bridges. Let 
Build(x,y) be a binary image that takes a value of 1 to indicate 
the presence of a building and 0 otherwise. Analogously, let 
Bridge(x,y) be a binary image indicating the presence of a 
bridge. Then we define  
 

 λ(x,y) = λ0 • [1 - Build(x,y)] • [1 - Bridge(x,y)]  
 μ(x,y) = μ0 • Build(x,y)     (4) 
 ν(x,y) = ν0 • Bridge(x,y) 
 

with λ0 = μ0 = ν0 = 1 = const. In other words, in regions 
classified as a building, only Ebuild is taken into account, in 
regions classified as a bridge only Ebridge is considered, and in 
all other areas only EALS is used. In the subsequent sections, we 
will describe the individual energy terms in more detail.  
 
2.3.1 General ALS Energy: The general ALS energy EALS 
requires an intensity image and a DTM, which have to be 
generated from the ALS point cloud in a pre-processing stage. 
The intensity image is interpolated by means of kriging 
(Cressie, 1990). Then it is smoothed by a median filter in order 
to remove outliers as well as decrease the noise while 
preserving the road edges. In order to determine a DTM, the 
ALS points have to be classified as terrain or off-terrain points. 
In order to achieve this classification, we estimate a plane for 
each point, taking into account its k (e.g., 9) nearest neighbours. 
Taking the RMS error of the weight unit of the planar fit as a 
measure for the local surface roughness, we search for 
connected segments of points that have a low surface 
roughness. Using a morphological opening filter, a coarse DTM 
is generated from the DSM (Weidner & Förstner, 1995), and 
each segment is classified according to its average height 
difference from the approximate DTM. An improved DTM can 
be generated from the points in segments classified as terrain 
segments, and the classification can be repeated taking 
advantage of the improved DTM from the first iteration. In 
order to also include terrain points that are characterised by a 
high surface roughness, a final classification of all ALS points 
is carried out based on their height differences from the 
improved DTM. The DTM grid is interpolated taking into 
account only the terrain points. It is important to note that this 
method will classify points on bridges as ground points, 
because the road will correspond to a large segment that is 
situated on the terrain everywhere except at the bridge.  
 
The general ALS energy EALS is composed of the weighted sum 
of the intensities and plane parameters in the DTM: 
 

(5) 
 

where EI is the energy from intensity image, EPlane is the energy 
from the plane parameters, and a, b are weights. Intensity 
values of the ALS data represent the reflectance properties of 
the illuminated objects according to the wavelength of the 
emitted beam (near infrared). Road surfaces such as asphalt 
generally appear dark due to the high absorption rate (Clode et 
al., 2007). Therefore, the pre-processed intensity image 
determines the first term EI in Equ. 5, forcing the snake to low 
grey values. However, some other objects such as building 
roofs show a similar behaviour and disturb the optimization 
process related to EI. The term EPlane in Equ. 5 exploits the fact 
that roads are usually situated on smooth and flat surfaces. 

Therefore, a plane is estimated in a 5 m x 5 m window for every 
grid point in the DTM, thus considering common values of the 
road width. The term EPlane is the sum of the absolute values of 
the plane slope in x- and y-direction. EPlane thus highlights 
strong slopes in every direction in the image energy. This 
energy part should prevent that roads represented by the snakes 
move to surface areas which have invalid height gradients. The 
weights (a, b) of the energy parts in Equ. 3 are determined 
empirically supported by the histograms of the images. 
 
2.3.2 Building Energy: The second component Ebuild in Equ. 3 
is dedicated to buildings. Due to different roof orientation and 
materials the appearance of buildings in the Lidar intensities 
varies considerably. This fact results in many undesired edges 
and local minima in the energy part derived from the intensity. 
Furthermore, buildings cause strong edges in the DSM and even 
in the DTM some artefacts remain, disturbing a suitable energy 
definition for the adaptation of roads using active contours. On 
the other hand buildings have strong relations to the adjacent 
road segments: they can be treated as forbidden areas for 
standard roads, acting as a repulsion force.  
 

In order to take advantage of building information for our 
purposes, the buildings have to be detected in the ALS data in a 
pre-processing stage. We use the method described in 
(Rottensteiner et al., 2007) for that purpose. For the definition 
of the energy term Ebuild, we only need a binary building mask. 
A distance transform is applied to the building mask, and the 
binary image Build(x,y) used to define the weight μ(x,y) of Ebuild 
(Equ. 4) is generated by thresholding the distance image at 4 m 
(8 pixels). Thus, Ebuild will be effective inside the building and 
within a distance of 4 m from the building boundary. The 
building energy Ebuild itself is based on a distance transform of 
the negation of the binary image Build(x,y). That is, Ebuild is 
zero outside the enlarged building area described by Build(x,y), 
whereas in the interior of a building it is identical to the 
distance to the nearest non-building pixel. The skeletons of the 
building areas act as decision boundaries. If the initialisation of 
the road network is situated on the correct side of the building 
skeleton the snake will slide to the sufficient urban “valley”. 
Fig. 1 visualises a part of the image energy without considering 
bridges, i.e. using Bridge(x,y) = 0 for all pixels. 
 

 
Figure 1. Image energy without bridges.  

 
2.3.3 Bridge energy: Due to the fact that bridges indicate the 
course of roads with high confidence, the information about this 
object class should guide the evolvement of the snake in the 
corresponding areas. Therefore, a method is proposed that 
estimates the width, length, direction, and the position of the 
bridge centre in the DTM and converts this information into a 
suitable image energy term for the related nodes of the road 
network. In this context, it is important that our DTM filtering 
method will assign the bridge to the terrain (cf. section 2.3.2).  



 

The approximate positions of bridges are usually stored in 
attributes of the corresponding ATKIS road objects. Otherwise, 
the approximate positions can be detemined by intersecting 
road segments with other objects (e.g., larger rivers or railways) 
or by finding road crossings without common nodes of the 
different road segments, assuming the topology of the ATKIS 
data to be correct. Our bridge detection method starts with the 
determination of the direction and the width of a bridge. We 
assume the terrain to be smooth because buildings, trees, and 
similar objects have already been removed. As a consequence, 
bridges will have the strongest edges in the DTM. An edge 
amplitude image is generated from the DTM in the vicinity of 
the approximate bridge position (e.g., 100 m x 100 m) by 
convolving it by a Sobel operator. We generate the histogram of 
this amplitude image and determine the largest amplitude 
corresponding to a local minimum in a smoothed version of the 
histogram. This amplitude is used as a threshold to mark edge 
pixels (Fig. 2a). They are assumed to belong to the bridge 
borderline and are transferred to the Hough space for straight 
lines. We determine the maximum in Hough space. It is 
supposed to correspond to one of the edges of the bridge, and its 
line direction thus corresponds to the direction of the bridge. 
The second edge of the bridge should correspond to a relative 
maximum in Hough space having the same direction, but a 
different offset (Fig. 2b). This relative maximum is searched 
for, using information about suitable bridge widths to restrict 
search space. If no relative maximum is found at this line 
direction, i.e. if the second highest entry in the Hough space is 
smaller than half the maximum, the procedure is abandoned and 
the bridge information is not taken into account. Otherwise, the 
offset difference between the two maxima should correspond to 
the bridge width. The width and the direction of the bridge are 
then used to design a template in order to determine the 
coordinates of the bridge centre in the DTM by area-based 
matching. The template models the bridge to connect two 
horizontal planes that are separated by a trapezoidal valley (Fig. 
2c). The length of the bridge is estimated by the maximum 
extent of the segmented edge pixels corresponding to the longer 
bridge borderline. The trapezoidal shape of the “valley” in the 
template should alleviate the fact that the length of the bridge 
thus determined is not very accurate. The bridge template is 
moved over the DTM, and the cross correlation coefficient is 
determined at each position. A small area around the maximum 
of the correlation image is segmented by thresholding (Fig. 2d), 
and this area is used for a distance transform (Fig. 2e). Ebridge is 
determined by shifting the results of the distance transform in 
the bridge direction. More precisely, for any node k on the 
bridge (according to the bridge length) having the coordinates 
(x,y), Ebridge is defined as 
 

Ebridge(x,y)= d[x + (k-c) • Δs • Δx, y0 + (k-c) • Δs • Δy]    (6) 
 

In Equ. 6, c is the node index of the pixel in the centre of the 
bridge, (Δx, Δy) is the (normalised) direction vector of the 
bridge, Δs is the nominal spacing of nodes in the snake and 
d(x,y) is the result of the distance transform. In case of two 
intersecting roads, for the underpass this energy is only used for 
the central node, i.e. for the node directly under the bridge. The 
binary image of bridge pixels Bridge(x,y) used to define the 
weights ν(x,y) (cf. Equ. 4) thus is zero everywhere except in a 
narrow band of a few pixels width to the left and to the right of 
the approximate position of the snake from the last snake node 
before the bridge to the first node after the bridge. This implies 
that Bridge(x,y) is updated after each iteration in the 
optimisation process. Although the inverse correlation image 
could already be used for Ebridge, the distance transform 

modifies this information to a more continuous and 
homogeneous force field. The extracted bridge points could also 
act as anchor points for spring forces attracting the snake to the 
desired position similar to the suggested strategy in (Kass et al., 
1988). However, such a strategy would introduce an additional 
constraint energy term and, thus, new weights, which make the 
fine-tuning of the parameters more complex. 
 

 (a) 

 
(b) 

 
(c) 

                                             
(d) 

                                             
(e) 

                                             
Figure 2.  (a) Bridge borderlines in the DTM; (b) search for the 

second parallel borderline in the Hough space (red: 
bridge direction); (c) bridge templates; (d) inverse 
correlation image (red: minimum); (e) Ebridge of the 
central bridge node after distance transform. 

 
 

3. EXPERIMENTS 

3.1 Data 

The ALS data set was acquired by the company TopScan 
during a countywide flight campaign of Schleswig-Holstein 
between 2005 and 2007. Flying at an altitude of 1000 m the 
system ALTM 3100 from Optech was used in the first and last 
echo mode to provide an overall point density of 3-4 points/m2 
and a required accuracy of 0.15 m (height) and 0.3 m (position). 
From the ALS data a DTM and an intensity grid of 0.5 m 
resolution are interpolated using the methods described in 
Section 2.3.1. The ATKIS vector data set (road network only) 
was manually adapted to orthophotos in order to create reliable 
ground truth. Afterwards the position was shifted by different 
distances in several directions to simulate the inconsistent 
ATKIS data base which is used for initialisation in our analysis. 
 
3.2 Results 

The first four examples adapt a small road network in the 
vicinity of one bridge both without and with the bridge energy 



 

Ebridge in order to show the benefits of using this information 
(Figs. 3). The weights used in this and all the following 
examples are given in Tab. 1; these values were determined 
empirically. Tab. 2 and 3 illustrate the RMS of the point to line 
distances of the results for the four examples shown in Fig. 3. 
Generally, if the initialisation is located within the borderline of 
the bridge the quality of the results without bridge information 
is similar to the other. However, the algorithm converges faster 
with the integration of the bridge detection method. If the initial 
position of the road network is situated outside the bridge due to 
large differences between the landscape model and the height 
data the snake is not able to jump across the strong edges along 
the bridge using only EALS and Ebuild and thus can not move to 
the correct position. However, in all examples in Fig. 3 the 
bridge energy supports the adaptation of the small road network 
in such a manner that the snake reaches a suitable position. 
 

parameter α β κI 

value 0.1 0.2 5 
 

Table 1: Weights for the different energy terms of the snakes 
for all illustrated examples.  

 

Bridge 1 Bridge 2 RMS of  
point to line 
distances (m) without with without with 

Initialisation 8.24 8.24 5.63 5.63 
Solution 6.00 0.61 3.95 1.87 

 

Table 2: Evaluation of the results in examples 1 and 2. 
 

Bridge 3 Bridge 4 RMS of  
point to line 
distances (m) without with without with 

Initialisation 4.84 4.84 5.11 5.11 
Solution 3.77 2.13 2.42 2.06 

 

Table 3: Evaluation of the results in examples 3 and 4. 
 
In the first example (Fig. 3a) a straight road is adapted. For the 
simulation of inconsistencies the initialisation was shifted by 
6 m both in x and y. The results without the bridge energy could 
be improved by larger weights for the internal energy terms in 
order to increase the smoothness of the contour. However, this 
means that other road parts with strong curvature can not be 
treated without defining different weights for special segments. 
This would make the algorithm more complex and the 
transferability to other data sets would suffer. With the bridge 
information it is much easier to define weights that can be 
applied to the entire road network. The second and the fourth 
examples (Figs. 3b and 3d) show a similar behaviour. Each 
initialisation was shifted by 5 m both in x and y. The integration 
of the bridge energy significantly improves the quality of the 
results. Obviously, the bridge energy affects only the network 
nodes in a certain vicinity. Therefore, the quality improvement 
in the example 2 is larger (2.08 m) than in example 4 (0.36 m). 
In the third test the underpass road is not located in the centre of 
the bridge (cf. DTM in the centre of Fig. 2(a)). Therefore, the 
assigned new image energy forces this road segment to the 
bridge centre, which is in this case not the correct position. 
Thus, a larger RMS difference to the reference (2.13 m) can be 
observed than in the other examples. For this situation the 
bridge detection method has to be extended by position and 
direction information of the underpass road. 
 

Fig. 4 visualises the adaptation of a larger road network 
including four bridges. The initialisation was again shifted by 
5 m in each coordinate axis, resulting in a RMS of the 

perpendicular point to line distances of 4.88 m. After the 
optimisation process this value decreases to 2.91 m.  
 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3. Adaptation of four small road networks to ALS data 

near single bridges (blue: initialisation; red: final 
position; left/right: without / with bridge energy. 

 

 
Figure 4. Adaptation of larger road networks (2199 nodes) to 

ALS data with bridge energy (blue: initialisation; 
red: final position). 

 

One of the main problems causing the remaining large 
differences to the reference is that road parts with strong 



 

curvature are straightened out by the original definition of the 
internal energy. For our application it would be desirable to 
modify this energy term in order to preserve the curvature of 
the initialisation. The current definition of the internal energy 
causes another drawback. At the moment the smoothness term 
does not affect road segments linked by a crossing node. Thus, 
especially at T-junctions the initial shape is inadvertently 
deformed. For that reason the DLM shape has to be exploited in 
order to penalise a strong change of the initial shape. 
 
 

4. CONCLUSION 

This paper is focused on the adaptation of road centrelines to 
ALS data by means of network snakes. The method described 
in our previous work (Goepfert & Rottensteiner, 2009) is 
extended in order to exploit building and bridge information. 
These two objects provide strong features in ALS data. A 
building mask is used to modify the image energy so that the 
snake is repulsed from the detected buildings. In order to use 
the information about bridges in the road adaptation procedure, 
we had to develop a technique for bridge detection. The bridge 
information enables the method to deal with poor initialisations 
situated completely outside the bridge borderlines. The 
evaluation of our method shows that it gives satisfactory results 
in the vicinity of strong features in the ALS data, such as 
buildings and bridges. However, in areas of strong road 
curvature and weak image energy the smoothing effect of the 
internal energies can not be compensated. Therefore, in our 
future work a modification of the internal energy should 
penalise the change of the initial curvature instead of the 
deviation from a smooth straight line in order to limit the shape 
variation. However, this strategy is associated with a higher 
confidence in the correctness of the initial shape in the ATKIS 
data base. The loss of the smoothness term at crossings and T-
junctions is also not suitable in each situation. In this case the 
exploitation of information from the initialisation, such as 
perpendicularity, can be useful, too. The proposed algorithm is 
only one step in the larger framework developed to solve the 
inconsistencies between the DLM and height information. All 
objects in the vector data represented by suitable features in the 
ALS data should be adapted. This process provides a dense 
network of shift vectors which can be used in addition to prior 
accuracy knowledge in order to improve the consistency of the 
DLM and ALS data. 
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