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ABSTRACT:

The usefulness and acceptance of spatial information systems are mainly dependent on the quality of the underlying geodata. This
paper describes a system for semiautomatic quality control of existing geospatial data via automatic image analysis using aerial images,
high-resolution satellite imagery (IKONOS and RapidEye) and low-resolution satellite imagery (Disaster Monitoring Constellation,
DMC) with mono- and multi-temporal approaches focusing on objects which cover most of the area of the topographic dataset. The goal
of the developed system is to reduce the manual efforts to a minimum. We shortly review the system design and then we focus on the
automatic components and their integration in a semiautomatic workflow for verification and update. A prototype of the system has
been in use for several years. From the experience gained during this time we give a detailed report on the system performance in its
application as well as an evaluation of the results.

1 INTRODUCTION

Today, many public and private decisions rely on geospatial infor-
mation. Geospatial data are stored and managed in Geoinforma-
tion Systems (GIS). In order for a GIS to be generally accepted,
the underlying data need to be consistent and up-to-date. As a
consequence, quality control has become increasingly important.
In the European Norm DIN EN ISO 8402 (1995), quality is de-
fined as the “Totality of characteristics of an entity that bear on
its ability to satisfy stated and implied needs”. In the context of
GIS this means that the data model must represent the real world
with sufficient detail and without any contradictions (quality of
the model). Secondly, the data must conform to the model speci-
fication (quality of the data). There are four important measures
for quality of geodata: consistency, completeness, correctness,
and accuracy (Joos, 2000). Only the consistency can be checked
without any comparison of the data to the real world. The other
three quality measures can be derived by comparing the GIS data
to the real world, as it is represented in aerial or satellite images.
We call this step verification or quality assessment. In the last step
of quality control, the actual update, the GIS data are changed
to conform with the real world as represented in the images (a
more detailed discussion of the related terminology is described in
(Gerke and Heipke, 2008)). In order to reduce the amount of man-
ual work required for quality control, a high degree of automation
is desirable.

In this paper, we describe a system for the quality control of
GIS called WIPKA-QS (Wissensbasierter Photogrammetrisch-
Kartographischer Arbeitsplatz zur Qualitätssicherung -
Knowledge-based photogrammetric-cartographic workstation
for quality control). The project WIPKA-QS was initiated by the
German Federal Agency for Cartography and Geodesy (BKG)
together with the Institute of Photogrammetry und GeoInforma-
tion (IPI) and the Institut für Informationsverarbeitung (TNT),
both at the Leibniz Universität Hannover. The first version of
WIPKA-QS was installed at BKG in 2003 (Busch et al., 2004).
Since that time the system has been permanently enhanced. This
paper gives an up-to-date overview about this system. After

introducing the strategy and the workflow in section 2, section 3
describes the used GIS and image data. Section 4 deals with
the components of the systems. An evaluation using different
sets of image data and GIS is presented in section 5. The paper
concludes with a summery and an outlook.

2 STRATEGY AND WORKFLOW

Strategy The goal of WIPKA-QS is an efficient quality con-
trol of GIS data with respect to the aforementioned quality mea-
sures completeness, correctness and accuracy. Verification and
update are realized in combination with an automated indication
of changes in the landscape compared to current GIS data. In WI-
PKA-QS we verify and update GIS data automatically comparing
them with the real world in terms of remote sensing images.

Figure 1: Workflow of WIPKA-QS

Workflow Input data into the system WIPKA-QS are orthopho-
tos and a GIS. The system verifies and updates the objects using
automatic image analysis tools (see section 4.3) integrated into
a knowledge-based image interpretation system (see section 4.2)
including all necessary pre-processing and post-processing steps
(see 4.1). The results of the automatic procedures of WIPKA-QS
are passed to the human operator. These results consist of veri-
fication and update information about each GIS object attached



Country GIS Imagery Objects of Interest

Brazil Local
the-
matic
data

IKONOS pan,
Landsat 5+7

residential, forest, indus-
trial, agriculture

Germany ATKIS Aerial pan. RGB
0.4m, IKONOS
pan. ms. 1m

roads, residential, indus-
trial, forest, agriculture
(cropland/grassland)

CLC RapidEye ms. 5m,
DMC ms. 32m

residential, industrial,
forest, agriculture (crop-
land/grassland)

Japan NTIS ALOS PRISM,
pan 2.5m

roads

Kosovo Self
gener-
ated

IKONOS pan. ms.
1m

roads

Netherlands NWB Aerial RGB 0.5m roads

North
Africa
(Algeria,
Tunisia)

MGCP IKONOS pan. ms.
1m

roads, residential, indus-
trial, forest, agriculture

Saudi
Arabia

Local
cadas-
tral
data

Aerial RGB 0.1m roads, residential, vegeta-
tion, desert

Switzerland Self
gener-
ated

Aerial RGB 0.5m roads

USA Self
gener-
ated

DOQQ, pan. 1m,
SAR 2.5m

roads

Table 1: Data already processed with WIPKA-QS
(pan: pan-sharpend, ms: multispectral)

to the initial GIS data that was used as input for the system. In
case the verification of an object is successful the system labels
this object as accepted (green); otherwise the object is labelled as
rejected (red). For all rejected objects the final decision is taken by
a human operator. He decides if the automatic rejection of a GIS
object is correct, and if so he edits the GIS object. Additionally
the human operator receives update information about the scene,
i.e. objects not contained in the database.

Thus, WIPKA-QS is a semi-automatic system. Its workflow is
sketched in Figure 1.

3 DATA

The system WIPKA-QS can handle different sources of image
data as well as GIS types. An overview about the data already
processed with WIPKA-QS is given in Table 1.

In this paper we focus on four datasets covering a wide range of
images with different resolutions, and three different kinds of GIS
to verify the objects of interest namely residential areas, forest,
industrial areas, agriculture areas and roads. The sets are shown
in Table 2.

GIS data We used a national GIS dataset, a European GIS
dataset and an international GIS dataset - more specificly the Ger-
man Authoritative Topographic Cartographic Information System
(ATKIS), data from the European CORINE Land Cover (CLC) and
the international Multinational Geospatial Co-production Program
(MGCP).

ATKIS is a trademark of the Working Committee of the Surveying
Authorities of the States of the Federal Republic of Germany
(AdV). The geodata for ATKIS is collected by every of the sixteen

Set GIS Imagery Lo-
ca-
tion

km2/ objects Objects of In-
terest

1 ATKIS Aerial
(2000-06-17)

Ger-
many

56 / 5299 residential,
forest, in-
dustrial,
agriculture,
roads

2 ATKIS IKONOS
(2003-06-24)

Ger-
many

85/ 3247 residential,
forest, in-
dustrial,
agriculture,
roads

3 MGCP IKONOS
(2008-04-24)

North
Africa

170 / 2943 residential,
forest, in-
dustrial,
agriculture,
thicket, roads

4 CLC RapidEye
(2009-08-20),
DMC
(2009-04-24,
2009-08-24)

Ger-
many

328 / 3803 residential,
forest, in-
dustrial,
cropland,
grassland

Table 2: Sets with GIS and Imagery

Images Bands Resolution

Aerial R, G, B 0.4 m
IKONOS NIR, R, G, B 1 m
RapidEye NIR, RE, R, G, B 5 m
DMC NIR, R, G 32 m

Table 3: Overview of Image Data

federal states of Germany. Among other sources ATKIS data are
collected using aerial photography with a resolution of 20cm or
40cm supported by ground truth data, and set to be used in scale
between 1:10.000 and 1:25.000. Objects of interest are point, line
and area based objects listed at (AdV, 1997) with a minimum
mapping unit of 0.1 ha to 1 ha. The traditional update cycle is
5 years, however an update of objects with high relevance is to
be completed in 3 (e.g. roads), 6 (e.g. airports) or 12 (e.g. wind
power stations) months. The geometry accuracy is 3m.

The European CLC dataset is managed and coordinated by the
European Environment Agency (EEA), assisted by the European
Topic Centre for Land Use and Spatial Information (ETC-LUSI).
In Germany the UBA (Umweltbundesamt – Federal Environmen-
tal Agency) is the national reference centre (NRC), acts as the
contact point for the EEA and is responsible for the management
and coordination of CLC which is derived from the ATKIS dataset
(Arnold, 2009). The data model was set up to be used in the scale
of 1:100.000; its minimum mapping unit is 25 ha for new polygons
and 5 ha for changes on existing polygons.

The international MGCP is a coalition of 28 countries around the
world participating in the production of a global high-resolution
GIS, established and maintained by the United States National
Geospatial-Intelligence Agency (NGA). The production of the
MGCP dataset is still work in process and is scheduled to be
completed by December 31, 2011. The MGCP dataset is set up
to be used globally at the 1:50 000 or 1:100 000 scales. All data
collected will reflect 25 meter accuracy.

Image data All used images are orthorectified. Detailed infor-
mation is given in Table 3. The DMC images mentioned in this
table are images of the Disaster Monitoring Constellation oper-
ated by the company DMC International Imaging (DMCii). To
describe the bands available from the different data sources the
common abbreviations are used (red: R, green: G, blue: B, near
infrared: NIR, red edge: RE).



4 COMPONENTS OF THE SYSTEM

GIS

Images

GIS
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Configuration
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SVM ClassificationGRF Classification

Figure 2: Components of WIPKA-QS

As circumstances change over the years, mainly due to technical
progress the whole system consists of components which can
easily be adapted to altering constraints. Figure 2 shows how
the data ist processed by WIPKA-QS. On the left side we see
the input data, i.e. there are GIS data to be verified and updated
and some image data which is used to accomplish this task. As a
result of the process we obtain updated GIS data. This might be
some attributes added to the original GIS data or new GIS data.
In the middle of figure 2 we see components of the WIPKA-QS
system. It is divided into the controling interface which is seen by
the user, the framework for the image interpretation called GEO-
AIDA, and a number of operators doing the image processing,
here ’Gibbs Random Field (GRF) Classification’, ’Support Vector
Machine (SVM) Classification’, ’Building Detection’ and ’Road
Detection’.

4.1 WIPKA-CONTROL

To adapt the system to constantly changing input data and output
formats, we have developed a highly configurable GUI framework
called WIPKA-CONTROL. WIPKA-CONTROL uses a config-
uration file to configure what should be done before and after
the knowledge-based image interpretation. We call those tasks
pre- and post-processors. Pre-processing can be used to carry out
coordinate transformations, to adapt image resolution for specific
image operators or to perform training for e.g. the SVM. The
particular configuration of pre-processors is chosen accordingly
to the available input data. Post-processors are responsible for the
preparation of the raw results coming out of the knowledge-based
image interpretation, e.g. labelling of the input data with the au-
tomatic verification results. All processing steps can be executed
via a graphical user interface or run in batch mode.

4.2 GEOAIDA

To develop a powerful, highly flexible and easily configurable
quality control system we use the knowledge-based image in-
terpretation system GEOAIDA. Figure 3 shows the design of
GEOAIDA (Liedtke et. al., 2001). The individual components are
described in the following paragraphs.

The database provides all input information available for the scene
interpretation. This includes images of different sensors, like opti-
cal images, laserscans, or SAR data, as well as GIS information.
GEOAIDA itself is not limited to any kind of input data – restric-
tions are only imposed by the attached external image processing
operators, which work on their dedicated input data.

The a priori knowledge about the scene under investigation is
stored in a model net. The nodes of the net are ordered strictly
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Figure 3: GEOAIDA Design

hierarchical, i.e. each node has exactly one parent node. Thus, it
can be represented as a tree structure. The topmost node is the
scene node. Attributes can be assigned to each node. Common
attributes are name, class and the associated top-down and bottom-
up operators. Top-down and bottom-up operators are external
image processing operators with a common interface.

A top-down operator is capable of detecting objects of its node
class in the given input data. For each detected object a hypoth-
esis node is generated. The bottom-up operator investigates the
relationship between the sub-nodes and groups them into objects
of the node class. These objects are then represented by instance
nodes. Top-down and bottom-up operators can also be configured
according to additional attributes, that are operator specific. Hy-
pothesis and instance nodes are symbolic descriptions of objects.
Geometrical position and form are defined in corresponding label
images.

The main task of GEOAIDA itself is system control. The analysis
is accomplished in two major steps. First a top-down pass through
the model net is carried out, calling the attached image processing
operators to generate hypotheses about the objects in the scene.
According to the model net these hypotheses are structured in
the hypothesis net. The second step is a bottom-up progression
through the model net. During this pass an instance net is gener-
ated from the hypothesis nodes on the basis of object properties
like size or structural relationship between complementary hy-
potheses.

The structure of the model net and attached top-down and bottom-
up operators define the performed analysis strategy. Although
details highly depend on the specific analysis task, a general as-
signment of objectives can often be observed: On the one hand,
leaf nodes of the model net process image data in a top-down-
operation. Top-down operations use knowledge and algorithms
to segment specific object classes in the image. On the other
hand, nodes other than leaf nodes tend to deal with more abstract
object class relations. Their top-down-operators often trigger var-
ious complementary or competing hypotheses, based on prior
knowledge and image processing. When performing the bottom-
up-operation, results from the hypotheses are evaluated.

4.3 Image Analysis

The automatic image analysis operators constitute the basis of
our system. For different GIS data and remote sensing images
appropriate operators have been developed and tested in the past.
These operators consist of pixel-wise classification operators like



the Gibbs Random Field classification and the Support Vector
Machine as well as object extraction operators for roads and build-
ings. The operators developed in the project are described in the
following paragraphs.

Gibbs Random Field Classification The Gibbs Random Field
classification operator uses a supervised texture based segmen-
tation algorithm described in (Gimelfarb, 1996). The algorithm
was extended to a multiresolution technique. The classification
algorithm has to learn the properties of the classes from training
regions. The learning steps are:

• Learning of texture with the training areas in four subsam-
pling resolution levels resulting in four parameter files.

• Segmentation of the input image in all resolution levels based
on the parameter files.

• Evaluation of the segmentation for each class in all resolu-
tions.

• Calculation of an evaluation matrix.

As a result of the learning process four parameter files and an
evaluation matrix are derived. The segmentation is done by a top-
down operator that begins with the lowest resolution and proceeds
to the higher resolutions level by level. The steps of the top-down
texture operator are:

• Segmentation of the input image in all resolution levels using
the parameter files.

• Calculation of a resulting segmentation using the segmen-
tations in the different resolution levels and the evaluation
matrix.

The learning step determines the resolution level on which a class
gains significant signatures. The resolution with the best sepa-
ration characteristic may differ from one class to another; the
classification of inhabited areas is, for example, significantly bet-
ter suited for lower resolutions. The learning step is a crucial part
for the efficiency and correctness of the derived results. This step
is preferably done by a human operator, who manually defines
training areas for the desired classes. Nevertheless the automatic
generation of training areas by the use of GIS data is possible.
This has to be done for a few areas and the resulting classification
definitions can be used for similar images, e.g. the complete set of
images of a flight. Since the fully automatic derivation of training
areas sometimes leads to training areas containing a mixture of
classes, the separability of the classes is not as good as it is with
manually defined areas.

Support Vector Machine Classification The Support Vector
Machine (SVM) (Vapnik, 1998) classifier can be divided into two
main parts, the feature extraction and the classification by using
an SVM.
Per channel features are extracted for each pixel within a local
neighbourhood. Features used for this paper are the mean value
and the variance of the gradient magnitude image. After extraction,
feature vectors are passed to a SVM. The SVM (in (Burges, 1998)
a comprehensive tutorial is given) is a large margin classifier that
allows classification of non-linearly separable data by using kernel
functions (Hofmann et al., 2008).

The application of the SVM classifier partly overlaps with that of
the Gibbs Random Field classifier described before: it also offers
a pixel-wise area classification. Thus, training and calculation of
an evaluation matrix is done in an analogous manner.
A resolution pyramid is built up, too, for all available input chan-
nels. However, compared to the Gibbs Random Field classifier,

features from different levels are processed simultaneously within
the same feature vector.
The SVM classifier is also used for processing of multitemporal
data as different epochs are considered as different channels.

Road Detection For verification and update of the road network
we primarily use a single road extraction algorithm as top-down
operator. The road extraction algorithm, presented in (Wiedemann
and Ebner, 2000) and (Wiedemann, 2002) models roads as linear
objects in aerial or satellite imagery with a resolution of about
1 to 2m. The underlying line extractor is introduced in (Steger,
1998). The approach is restricted to the open landscape area since
a homogeneous surrounding of the road is a precondition. The
initially extracted lines are evaluated by fuzzy values according to
attributes, such as length, straightness, constancy in width and in
gray value. The final step is the grouping of the individual lines in
order to derive topologically connected and geometrically optimal
paths. The decision whether extracted and evaluated lines are
grouped into one road object is based on a collinearity criterion,
allowing for a maximum gap length and a maximum direction
difference.

Each step of the extraction is controlled by parameters. According
to this, the multifaceted usage of the single algorithm is achieved
by adapted parameter sets. The selection of reasonable parameter
sets is realized by two strategies. The first one concentrates on
radiometric parameters, e.g. contrast, homogeneity and brightness.
This group is sensitive to image exposure and to the reflectance
properties of the surrounding surface. Therefore, the underlying
training algorithm, which is described in (Ziems et al., 2007), uses
radiometric properties of known GIS roads for local parameter
adaption. The second parameter group is justified on the basis
of global context information, which is introduced by the model
net architecture in GEOAIDA. The instance nodes are controlled
from the input GIS and the classification result. Thus, predefined
parameter sets are applied for a number of possible context regions,
e.g. desert, hilly rural area or scrubland. A more comprehensive
description of this task is given in (Becker et. al., 2008).

The comparison of the extraction result and the existing database
is carried out by separate bottom-up operators, the so called road
verification module and road update module.

The verification module checks explicitly geometry, shape and
attributes of each database road. If its calculated evidence for the
correctness is high enough the GIS information is assumed to be
correct, i.e. it is accepted, otherwise it is rejected and marked for
manual checking. For the assessment, also topological relations
to other extracted objects, e.g. local context objects like rows of
trees are considered, see also (Gerke and Heipke, 2008).

The update module detects commission errors. For this purpose,
each newly detected road candidate is validated by its relation
to the already verified road network and other line objects in
the database. Only if a plausible relation to the existing road
network could be found the road candidate is forwarded to a
human interpreter for possible introduction into the database.

Building Detection The building detection operator was de-
veloped to detect single buildings in the input images that are
used within the system as an indication for settlement areas. The
approach is divided into a low-level and a high-level image pro-
cessing step. The low-level step includes image segmentation
and post-processing: first, the input image is transformed to HSI
and the intensity channel is taken as input for a region growing
segmentation. The seed points are set in a regular grid, except for
areas of vegetation and shadow.



Gibbs Random Field SVM Roads Buildings

Set 1 X - X X
Set 2 X - X -
Set 3 X - X -
Set 4 - X - -

Table 4: Datasets and used Image Analysis Operators

The segmentation result is post-processed to compensate effects
like holes in the regions and to merge roof regions which are split
into several parts. The regions are taken as building hypotheses in
the following step.

The high-level step includes feature extraction and classification.
First, implausible hypotheses are rejected by region area and
colour. Afterwards, features are calculated for each hypothesis
like:

• geometric features

– object size: area, circumference

– object form: roundness, compactness, length, angles

• radiometric features:

– most frequent and mean hue

– mean NDVI

• structural features

– shadow

– neighborhood

Furthermore, the main axes of the hypothesis are calculated. They
define a hexagon describing the region’s contour. The classifica-
tion works as follows: First, all building hypotheses are assigned
an evaluation value of 1. For each feature an expected value range
is defined for valid building hypotheses. All features are consid-
ered sequentially and hypotheses with feature values outside the
value range are multiplied with a weight less than 1. Hypotheses
without neighbours get a reduction of 0.1 at the end. The final
decision, if a building hypothesis is taken as a correct building
is done by a thresholding. The building detection algorithm was
developed for airborne imagery. Further details are available in
(Müller and Zaum, 2005).

5 RESULTS

In this section confusion matrices for the verification process of
the datasets defined in Table 2 are used to evaluate the system
WIPKA-QS. Table 4 shows an overview of which image analysis
operator was used in combination with which dataset.

The result of the verification process using set 1 is shown in
Table 5. The efficiency is satisfying with about 72% (sum of left
column, 67.9% + 3.8%), i.e. 72% of the objects of interest do not
need to be inspected by the human operator because these objects
were accepted automatically. On the other hand the system does
only a somewhat disappointing job when detecting errors in the
GIS. A rate of only 128 out of 331 errors, a reduction of the wrong
objects in the GIS dataset by 39%, is not satisfying.

The confusion matrix in Table 6, showing the result of the ver-
ification process using set 2, is more satisfying. In this set the
system does a reasonably good job: 178 out of 244 errors could
be detected; so, the number of wrong objects of interest could be
reduced by 73%. The efficiency is also satisfying with again about
72%, and even better compared to all other sets.

XXXXXXXXXReference
System

Accepted Rejected

Accepted 3596 (67.9%) 1372 (25.9%)

Rejected 203 (3.8%) 128 (2.4%)

Table 5: Confusion Matrix for Set 1 (number and percentage of
objects)

XXXXXXXXXReference
System

Accepted Rejected

Accepted 2280 (70.2%) 723 (22.3%)

Rejected 66 (2.0%) 178 (5.5%)

Table 6: Confusion Matrix for Set 2 (number and percentage of
objects)

The result for the verification using the MGCP data of set 3 is
shown in Table 7. The efficiency of the system for this set is
satisfying, too, with 68%. Even when the efficiency of the system
is a bit lower compared to sets 1 and 2, the system does a better
job in detecting the errors. 62 out of 80 errors could be detected;
so, the number of wrong objects of interest could be reduced by
78%.

In contrast to all other sets, a separation of the agriculture class
into cropland and grassland is done in set 4, for this task we use
multi-temporal image data. The result of this set is shown in Table
8. The efficiency of our system is satisfying again with about
75%. In addition, the system does a good job in detecting errors
in the GIS, too. A rate of 55 out of 61 errors (a reduction of the
number the wrong objects in the GIS by 90%) is even better than
the results achieved for set 3.

Figure 4 shows an example for an error in the GIS, a false grassland
object which could be automatically rejected by the system during
the verification process. The RapidEye image shown on the left in
the figure, was used in the SVM classification together with two
DMC images from different dates. For comparison the orthophoto
shown in the figure gives a better visual impression.

In total, the system WIPKA-QS is a reliable semi-automatic tool
for the quality control of GIS datasets. As mentioned before, the
main focus of our approach is the verification of the GIS objects. It
is embedded in a semi-automatic workflow that uses the automatic
tool to focus the attention of the human operator to possible errors
in the GIS. Thus, time is saved largely due to the fact that the
operator needs no longer to check any object that was accepted by
the automatic module. This goal was achieved with our system
with an efficiency of at least 68%.

However, given the fact that quality control is essentially carried
out to remove errors in the data base, classification errors that
cause errors in the GIS to remain undetected, i.e. the erroneous
acceptance of a wrong object, are to be avoided. This goal could
not be achieved in dataset 1, but in all other datasets. Between
73% and 90% of the errors could be detected successfully.

XXXXXXXXXReference
System

Accepted Rejected

Accepted 1984 (67.4%) 879 (29.9%)

Rejected 18 (0.6%) 62 (2.1%)

Table 7: Confusion Matrix for Set 3 (number and percentage of
objects)



XXXXXXXXXReference
System

Accepted Rejected

Accepted 2836 (74.5%) 906 (23.6%)

Rejected 6 (0.2%) 55 (1.4%)

Table 8: Confusion Matrix for Set 4 (number and percentage of
objects)

Figure 4: Example for a false grassland GIS object. Left: Rapid-
Eye image ( c© 2009 RapidEye AG, Germany. All rights re-
served.), Right: Orthophoto (only used for visual interpretation,
c© GeoBasis-DE / BKG 2010).

6 CONCLUSIONS AND OUTLOOK

As the evaluation results show, the system WIPKA-QS is a useful
tool for quality control of GIS datasets. The main goal of WI-
PKA-QS is the reduction of the amount of manual work required
for the verification process.

The most salient land cover types can be automatically distin-
guished within the present system. Current tasks include to en-
hance the system for use of new images (Quickbird, TerraSAR-X)
and to increase the overall degree of automation. Ongoing re-
search focuses on new strategies to increase the functionality of
the image analysis tools, described in section 4. In this manner
we currently extend the road detection tool to deal with settlement
area (Ziems et al., 2010).

In future we also plan to enhance the landcover classification by
including a knowledge base of seasonal characteristics of different
vegetation classes. First results for the discrimination of crop- and
grassland objects could be achieved with the approach published
in (Helmholz et. al., 2010). We also hope to be able to detect
other object classes with similar features using this approach, e.g.
vineyards. Additionally, WIPKA-QS should distinguish between
different crop types using multi-temporal imagery in the future.
First results can be found in (Müller et al., 2010). Another field of
current work is the detection of plantations as important type of
cultivation in some areas. Furthermore automation of the training
of the applied image analysis operators is under development.
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