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ABSTRACT: 
 
A new method for roof plane detection using multiple aerial images and a point cloud is presented. It takes advantage of the fact that 
segmentation results for different views look different even if the same parameters are used for the original segmentation algorithm. 
The point cloud can be generated by image matching or by airborne laserscanning. Plane detection starts by a segmentation that is 
applied to each of the images. The point cloud is used to determine which image segments correspond to planes. The best plane 
according to a criterion is selected and matched with segments in the other images. Matching of segments requires a DSM generated 
from the point cloud, and it takes into account the occlusions in each image. This procedure is repeated until no more planes can be 
found. After that, planar segments are extracted based on region growing in the point cloud in areas of severe under-segmentation, 
and the multiple-image segmentation procedure is repeated. Finally, neighbouring regions found to be co-planar are merged. First 
results are presented for test site with up to nine-fold overlap. Our tests show that the method can deliver a good separation of roof 
planes under difficult circumstances, though the level of detail that can be achieved is limited by the resolution of the point cloud.    
 

1. INTRODUCTION 

1.1 Motivation and Goals 

The 3D reconstruction of buildings has been an important topic 
of research in photogrammetry for almost two decades. 
Buildings can be reconstructed by a combination of parametric 
primitives that are fitted to the data or by polyhedral models, 
e.g. (Vosselman & Dijkman, 2001). If the second strategy is 
applied, it is necessary to detect roof planes in the input data 
which are then combined to reconstruct the buildings. Airborne 
laserscanner (ALS) data have frequently been used for that 
purpose. In ALS data having a resolution of 0.5 m-1.0 m, small 
roof planes cannot be found in the segmentation process, which 
restricts the level of detail (LoD) of the models. Furthermore, 
the delineation of roof planes at step edges was found to be 
difficult and not very precise in planimetry, e.g. (Vosselman & 
Dijkman, 2001). These problems can be overcome by using 
ALS data having a better resolution (Dorninger & Nothegger, 
2007). The alternative is to extract the roof planes from digital 
aerial images based on a segmentation of these images. Aerial 
images are usually acquired at a higher spatial resolution than 
ALS data, so that more roof details are visible. Furthermore, the 
roof boundaries are represented better than in ALS data, so that 
the roof outlines should obtain a higher planimetric accuracy. 
However, image segmentation often does not perform very well 
in determining the roof planes in an aerial image. On the one 
hand, roof planes are often not separated correctly if the contrast 
between these planes is low, whereas on the other hand, roof 
planes are often split into several segments due to disturbances 
on the roof (Khoshelham, 2005; Song & Shan, 2008). Both 
phenomena, often referred to as under-segmentation and over-
segmentation, respectively, usually occur at the same time in 
real-world scenes. Even if it was possible to tune the parameters 
of a segmentation algorithm so that it delivered a perfect 
delineation of the roof planes in a particular scene, there would 
be no guarantee that these parameter values could be transferred 
to other scenes. One way to make segmentation more robust 
with respect to parameter selection is to use additional 

information. In the past this was done by combining the results 
of the segmentation of a single digital image with a 3D point 
cloud from ALS (Khoshelham, 2005) or image matching 
(Drauschke et al., 2009). In the latter case, multiple images were 
available, but they were only used for matching. In this paper 
we present a new method for roof plane detection that combines 
the segmentation results of multiple aerial images with a 3D 
point cloud. Using this method a good separation of roof planes 
can be achieved even if there is not a single aerial image in 
which all planes are separated properly by the original 
segmentation algorithm.  
 
1.2 Related Work 

Dorniger and Nothegger (2007) have shown how excellent 
segmentation results can be achieved based on point clouds 
alone if the point density is very high. However, a resolution of 
20 points / m2 is not standard for ALS point clouds today and 
requires considerable costs for data acquisition. If applied to 
high-resolution point clouds from matching, their method 
resulted in a lower LoD due to noise in the point cloud. Song 
and Shan (2008) proposed a method for the segmentation of 
single colour images. They used an active contour model for 
delineating buildings and then generate an image called the J-
image representing the local homogeneity of colour vectors 
inside the building regions. The J-image is used as the basis of a 
watershed segmentation to obtain the roof planes. This method 
can result in a very precise delineation of roof planes, but the 
separation of roof planes failed in case of poor contrast. 
Drauschke (2009) has shown how the results of watershed 
segmentation can be improved by integrating segmentation 
results at different scales based on an irregular pyramid. While 
maintaining the level of generalization that is the result of a 
higher degree of smoothing of the input image, the procedure 
results in a very precise delineation of the segment boundaries, 
obtained from the segmentation results achieved using a low 
degree of smoothing. However, selecting the regions 
corresponding to roof planes in the irregular pyramid has not yet 
been achieved (Drauschke, 2009).  



 

All the algorithms discussed so far use either image or height 
data. Of course, these data sources can be combined. Ameri and 
Fritsch (2000) determined seed regions for region growing 
based on a local curvature analysis in a Digital Surface Model 
(DSM). These seed regions were used for region growing in a 
digital aerial image. The segmentation results were affected by 
the fact that roof planes having similar grey levels could not be 
separated correctly. In our previous work (Rottensteiner et al., 
2004) we used region growing to detect roof planes in a DSM 
generated from ALS data. This was followed by a second region 
growing process taking into account multiple aerial images. 
Whereas the roof planes could be delineated more precisely 
thanks to using the images, the number of roof planes and thus 
the structure of the resulting building model were solely 
determined by the segmentation of the ALS data. Thus, the 
images did not add any new roof details to the model. 
Khoshelham (2005) also combined image and ALS data for roof 
plane segmentation. He carried out a watershed segmentation of 
a digital orthophoto and determined planes from the ALS data 
in each of the image segments using RANSAC. In order to deal 
with under-segmentation, image segments for which RANSAC 
delivered more than one plane were split into smaller parts, each 
representing a single roof plane. Neighbouring segments found 
to be co-planar were merged. RANSAC requires a relatively 
large number of points per roof plane to work, which limits the 
LoD that can be achieved by this method (Khoshelham, 2005). 
Drauschke et al. (2009) combined multiple aerial images for 
segmentation. Watershed segmentation was applied to one of 
the images, whereas the other images were merely used to 
obtain a point cloud from image matching. The point cloud was 
used to compute an adjusting plane for each segment, and 
neighbouring segments found to be co-planar were merged. 
Since no efforts are made to solve the under-segmentation 
problem, the method is not able to separate roof planes having a 
low contrast in the image used for watershed segmentation.  
 
In this paper we want to combine the results of watershed 
segmentations of multiple aerial images and a point cloud for 
the improved segmentation of roof planes. This is motivated by 
the fact that roof planes having a low contrast in one image 
might well show good contrast in another view. An obvious 
example is a roof plane separated from its neighbour by a step 
edge. If the two planes have similar colour, they might not be 
separable in a nadir view, but then a wall will be visible in the 
stereo partner, so that the planes are easily separated. The point 
cloud is needed to check whether a segment corresponds to a 
plane and to match segments from different images. The new 
method is presented in detail in this paper along with first 
results that show its potential for roof plane segmentation.  
 
1.3 Test Data 

The German Association for Photogrammetry and Remote 
Sensing (DGPF) has acquired a test data set over the town of 
Vaihingen (Germany) in order to evaluate digital aerial camera 
systems. It consists of several blocks of vertical images acquired 
by various digital aerial camera systems at two resolutions. 
There is also an ALS point cloud with a density of 4-
6 points / m2. A detailed description of the data can be found in 
(Cramer & Haala, 2009). We used one of the DMC blocks and 
the ALS point cloud. The images are 16 bit pan-sharpened 
colour infrared images with a ground sampling distance (GSD) 
of 8 cm (flying height: 800 m, focal length: 120 mm). The 
georeferencing accuracy without compensating for systematic 
errors is about 1 pixel. The nominal forward and side laps of the 
images are 65% and 60%, respectively. As a consequence, each 
building in the centre of Vaihingen is visible in 6-9 images. The 

ALS point cloud consists of several overlapping strips. Multiple 
pulses were recorded. The point cloud was pre-processed to 
compensate for systematic offsets between the strips (Haala et 
al., 2010).  
 
 

2. ROOF PLANE SEGMENTATION 

2.1 Overview 

The input for our method consists of at least two aerial images 
with their orientation parameters and a point cloud. The point 
cloud can be generated by image matching or by ALS. 
Typically, it will have a lower resolution than the aerial images. 
We assume the accuracy of the points, represented by the 
standard deviations σXY of the planimetric coordinates and σZ of 
the height, to be known. Finally, approximate building 
boundaries and heights are required to define regions of interest.  
 
In a pre-processing stage the point cloud is used to interpolate a 
DSM grid with a resolution corresponding to the GSD of the 
images. After that, an occlusion mask is derived for each image 
from its orientation parameters and the DSM. Each occlusion 
mask shows the areas in object space that are not visible in the 
corresponding image. Estimating the approximate floor height 
Zfloor as the 1% quantile of the point heights and using a pre-
defined threshold ΔZmin for the minimum building height above 
ground, an approximate digital terrain model (DTM) is 
interpolated from points with heights Z < Zfloor+ΔZmin.  
 

Multi-image segmentation starts with a watershed segmentation 
of each of the aerial images. The resulting label images are 
projected into object space, taking into account the occlusion 
masks. For each of the segments in each of the projected label 
images, an adjusting plane is determined from all the off-terrain 
points inside the segment, using robust estimation to eliminate 
outliers. The best plane according to a criterion taking into 
account the goodness of fit and the number of points inside the 
plane is selected as an initial roof plane segment. This roof 
plane segment is matched with segments from the other images 
in order to expand it as much as possible by overlapping co-
planar segments from other images. The resulting roof plane is 
represented by a segment in a “combined label image” defined 
in the (X,Y) plane of object space. The area covered by this 
segment is set to zero in the projected label images, and the 
procedure of computing planes, selecting the best segment and 
segment matching is repeated until no more planar segment 
with a minimum number NPmin of points can be found.  
 

After the combined segmentation, neighbouring segments found 
to be co-planar by a statistical test (Rottensteiner et al., 2005) 
are merged. At this stage, some roof planes may remain 
undetected due to very low contrast. The point cloud is analysed 
to detect new planar segments by region growing. As a 
consequence, image segments corresponding to multiple roof 
planes are split, so that a second multi-image segmentation 
procedure can be used to detect the remaining roof planes. 
Finally, small gaps between the detected roof planes are filled.  
 
2.2 Segmentation of the Individual Images 

We apply watershed segmentation to the original images in a 
similar way as Drauschke et al. (2009). The basis for watershed 
segmentation is given by a an image h(x,y) generated from the 
intensity image I(x,y) according to 
 

 h(x,y) = max(||∇I(x,y)||, k • σI) - k • σI    (1) 
 

where ||∇I(x,y)|| is the norm of the gradient of I(x,y), σI is the 
standard deviation of the intensity determined by the method 



 

described in (Brügelmann & Förstner, 1992), and k is a 
parameter that controls the degree to which noise effects are 
eliminated (Drauschke et al., 2009). The input function for the 
watershed segmentation is a smoothed version of h(x,y). 
Smoothing consists of Ns iterations of a convolution with a 3 x 3 
binomial filter. Thus, the main control parameters of the 
segmentation are k and Ns.  
 

The results of watershed segmentation are projected into object 
space. For that purpose, a grid having approximately the same 
GSD as the aerial images is defined in the (X,Y) plane in object 
space. The grid point heights are taken from the DSM, and each 
of the 3D points thus obtained is back-projected to the aerial 
image. The label found at the back-projected position in image 
space is written into the projected label image. After that, all 
pixels found to be occluded are set to zero. This procedure 
requires the occlusion masks generated from the DSM and the 
orientation parameters by ray tracing. After projecting the 
segmentation results to object space, an average height above 
the terrain is computed for each of the projected segments from 
the differences between the DSM and the DTM of all pixels 
inside the segment. Segments having an average height above 
the terrain smaller than the minimum building height ΔZmin are 
discarded. Fig. 1 presents an example for the segmentation 
process. The upper row shows a building of medium complexity 
in three images. In the second row, the segmentation results are 
shown. There is a considerable over-segmentation of the roof 
parts lit by direct sunlight, whereas the shaded half of the 
building is under-segmented. It consists of two planes that 
intersect at an obtuse angle and that both enclose a large 
dormer. The two main roof planes in the shadow are not 
separated in any of altogether eight views available for this 
particular building, nor are the two dormers separated correctly 
from their enclosing planes. Fig. 1 also indicates the problems 
related to tuning the segmentation parameters. To avoid the 
under-segmentation in the shadow areas, a lower degree of 
smoothing or noise suppression would be required, but this 
would result in a gross over-segmentation of the sun-lit parts. 
On the other hand, using a higher degree of smoothing would 
reduce the degree of over-segmentation, but it would also result 
in even more planes being merged due to poor contrast.  
 

By projecting the label images into object space, image 
segments corresponding to walls are nearly eliminated (cf. last 
row of Fig. 1). Additionally, some segments are split by the 
visibility analysis. For instance, in the original segmentation of 
the rightmost image (second row of Fig. 1), segment A covers 
both the shaded part of the roof and a shadow area on the 
ground. Projecting the segment to object space and setting the 
occluded areas to zero in the resulting label image separates the 
roof from the ground (segments A1 and A2 in the last row of 
Fig. 1). Fig. 1 also shows that the segmentation results achieved 
for several images are quite different. This is why, rather than 
tuning the segmentation algorithm so that the best possible 
segmentation is obtained in a “master” image, we combine the 
segmentation results achieved for multiple images, using a 
trade-off in the selection of the segmentation parameters.  
 
2.3 Iterative Generation of Roof Plane Segments 

The combination of the original segmentation results is an 
iterative process. In each iteration we try to find the most 
suitable planar segment among all the segments in all images. 
This planar segment is matched with segments from all the 
other images, and the combined segment is added to the list of 
planar segments. This process is repeated until no further planar 
segments segment can be found. 
 

 
 occlusion  

Figure 1. Upper row: original images; two dormers are 
indicated in one image. Second row: results of 
watershed segmentation using k = 2 and Ns = 5. Last 
row: segmentation results projected to object space. 
Two areas where occlusions occurred are marked.  

 

2.3.1 Finding the Best Plane: Each iteration starts with the 
determination of adjusting planes from the off-terrain points for 
all the segments in all projected label images. Off-terrain points 
are points being at least  ΔZmin above the DTM. In each 
projected label image, each off-terrain point is assigned to the 
segment it is situated in. An adjusting plane is computed for 
each segment by a least squares adjustment minimizing the 
square sum of the distances between the points and the planes. 
Robust estimation by reweighting the observations based on the 
size of the residuals (Förstner & Wrobel, 2004) is carried out in 
order to remove outliers (e.g. points on chimneys). Robust 
estimation proceeds until the maximum distance is found not to 
differ significantly from zero by a statistical test (Rottensteiner 
et al., 2005). However, it is also terminated when more than a 
predefined maximum number of outliers Outmax are eliminated 
or when there remain less than a predefined number NPmin of 
points in the segment. Any segment is accepted as a valid plane 
if it fulfils three criteria: (1) The plane contains at least NPmin 
points, (2) there are no more outliers (i.e., the largest residual 
does not differ significantly from zero), and (3) the points inside 
the segments all lie on a plane. The third criterion can also be 
formulated as a statistical test. As we know the accuracy of the 
point cloud, the r.m.s. error s0 of the weight unit of planar 
adjustment can be tested according to whether it can be 
“explained” by the uncertainty of the points. Representing the 
uncertainty of the points by the standard deviation σZ of the 
height, this corresponds to comparing s0 to a threshold smax:  
 

 2
max 1 ;αχ σ−= ⋅red Zs red     (2) 

 

In Equ. 2, red = NP – 3 is the redundancy, where NP is the 
number of points in the plane, and χ2

1-a; red is the (1-α) - quantile 
of the χ2

red distribution. Using Equ. 2 rather than a fixed 
threshold for s0 takes into account the fact that s0 is more 
uncertain for small NP. All valid planes are ranked according to 
a score function score(NP, s0):  
 

 score(NP, s0) = NP / max(s0, σZ/2)    (3) 
 

The score function favours planes that contain a large number 
NP of points while having a good planar fit as indicated by s0. 

dormers 

A

A1 
A2 B 



 

Dividing NP by max(s0, σZ/2) avoids a numerical overflow for 
very small values of s0 and means that planes with s0 < σZ/2 are 
effectively ranked by NP. The best plane is the plane achieving 
the highest value of the score function in Equ. 3. It is selected 
for further processing.  
 
2.3.2 Matching of Segments: The best plane was selected in 
one of the projected label images. Due to uncertainties of the 
DSM at step edges, the boundaries of the projected segment 
may not be represented well. Thus, the original image segment 
corresponding to the plane is again projected into object space, 
this time using the adjusting plane to obtain the heights, so that 
the segment boundaries should be more precise. After that, we 
check whether all parts of the projected image segment receive 
sufficient support from the point cloud. Fig. 2 shows a situation 
that should be avoided: the segment only contains points in its 
left half, whereas there are no points in the right part. This may 
happen if a segment covers both a roof plane and a part of the 
ground, but has a good planar fit because only off-terrain points 
are used for determining the adjusting plane. Each point 
assigned to the plane is supposed to be representative for a 
circular area in the (X,Y) plane whose radius r is chosen to be 
slightly (10%) larger than the average point spacing of the point 
cloud. Any pixel assigned to the segment that is further away 
than r from its nearest point is erased in the label image. This 
might split the segment into two or more parts; in this case, the 
largest part is maintained. Due to cutting off at a distance r from 
the nearest point, the boundary of the segment is not very well 
defined at the locations where it had to be cut off (Fig. 2). 
 

 
Figure 2. Left: A planar segment projected to object space. 

Red dots: points assigned to the plane. The circles 
are centred at the points and correspond to the area 
for which the point is representative. Right: the 
segment is cut off.  

 

Having thus improved the shape of the planar segment, the 
actual matching process is carried out. Matching candidates are 
searched for in each image except the one from which the 
segment was taken. Each valid plane found in any of these 
projected label images (cf. Section 2.3.1) that overlaps with the 
planar segment is considered to be a matching candidate. If a 
matching candidate and the segment to be matched are found 
not to be co-planar based on a statistical test, the matching 
candidate defines an area that should not be merged with the 
plane. All such areas are marked in a binary “non-co-planarity-
image”. Otherwise, the candidate is accepted if there are a 
sufficient number NOL of points that have been assigned to both 
planes; the latter criterion enforces that there are actually points 
that are co-incident with both planes. Once a candidate has been 
accepted, the original image label corresponding to the accepted 
candidate is re-projected to object space using the adjusting 
plane, and it is checked for support from the point cloud in the 
same way as the segment to be matched (Fig. 2). Matching is 
guided by an “overlap counter”, i.e. an image that counts the 
number of overlapping segments at any position, including the 
segment to be matched and the accepted matching candidates. 
This overlap counter is initialised by the segment to be matched, 
and it is incremented at all positions covered by any matching 
candidate after re-projection to the adjusting plane.  
 

The left part of Fig. 3 shows the overlap counter for the best 
segment (segment B) in Fig. 1. The total number of overlapping 
images in this case is eight. There is up to five-fold overlap, 
partly also with relatively small matching segments. In the 
centre of Fig. 3, the non-co-planarity-image is shown. From 
these two images, the final roof segment is generated. Firstly, 
all pixels covered by at least two segments are accepted (all 
except the red ones in Fig. 3). Pixels only covered by one 
segment (red pixels in Fig.  3) are only accepted if they do not 
belong to a non co-planar area (black pixels in the middle part 
of Fig. 3). Thus, multiple overlap can override the non-co-
planarity criterion. Finally, binary morphological opening using 
a small square structural element is used to smooth the 
boundaries of the resulting segment (right part of Fig. 3).  

 
Figure 3. Left: overlap count for the best planar segment 

(segment B) in Fig. 1. Red / yellow / green / blue / 
cyan: 1 / 2 / 3 / 4 / 5 overlapping segments. Centre: 
regions belonging to non-co-planar matching 
candidates (black). Right: final roof segment.  

 
2.3.3 Accepting the Matched Segment and Iteration: The 
segment generated in the way described above is added to the 
combined label image of planar segments, and the segment’s 
point list is updated to contain all points within the segment that 
are coincident with the adjusting plane. After that, the plane 
parameters are recomputed. Finally, the area covered by the 
new segment is set to zero in the projected label images (cf. 
Fig. 4, left). After that, the procedure of determining the best 
planar segment, matching of planes and adding the resulting 
segment is repeated until no more segments can be found. 
Erasing the accepted segment may change the structure of the 
projected label images. Most importantly, image segments that 
spanned several roof planes in some of the images (which 
would have resulted in a poor planar fit) may be separated in 
these images if the one of the roof planes could be detected 
based on another image at some stage in the iteration process. 
 
2.3.4 Merging Co-planar Segments: The generation of roof 
segments is terminated when no more planar segments having at 
least NPmin points can be found in the data. The results of multi-
image segmentation are represented by the combined label 
image of all roof segments. This label image is analysed for 
neighbourhood relations, and planes found to be co-planar 
based on a statistical test are merged. As the order of merging 
has a significant impact on the merging results, neighbouring 
planes are merged in the order of the combined r.m.s. error of 
the planar fit. The central part of Fig. 4 shows the combined 
label image for the building in Fig. 1. The rightmost label image 
in Fig. 4 shows the results after merging of co-planar segments. 
 
2.3.5 Region Growing and Completion of the Segmentation: 
In case of large contrast variations in the images, smoothing 
will have the effect that some larger roof planes may not be 
separable by multi-image segmentation. This is why we check 
the point cloud for any planes that have been missed. For each 
off-terrain point not yet assigned to any roof plane we get its Nnn 
nearest neighbours in the point cloud. If neither of these points 
has been assigned to a roof plane, we determine the adjusting 
plane through these points and check whether it can be accepted 
as a plane in the way described in Section 2.3.1. If no plane is 
accepted, the process is terminated. Otherwise, the plane having 



 

the best planar fit (indicated by s0) is accepted as a seed region 
for region growing. Points not yet assigned to any other plane 
are added to the seed region if they are found to be coincident to 
the plane based on a statistical test. The resulting point set is 
analysed whether it corresponds to a connected segment in 
object space. If it is split into several segments, the segment 
containing the largest number of the original Nnn nearest 
neighbours is maintained. The parameters of the adjusting plane 
are determined from all points contained in the segment, and the 
planar segment is added to the combined label image. This 
procedure is repeated until no new plane can be found.  
 

  
Figure 4. Left: the left projected label image from Fig. 1 

without the segment from Fig. 3 and without ground 
segments. Centre: multi-image segmentation. Right: 
results after merging co-planar segments.  

 

By erasing the segments generated by region growing in the 
projected label images, image segments corresponding to 
several roof planes may be separated. Thus it makes sense to 
repeat multi-image segmentation, this time using NPmin = 3 so 
that also very small segments can be detected. Finally, we try to 
close small gaps in the segmentation results by checking 
whether there are points that have not yet been assigned to any 
segment, but are coincident to one of the planar segments in 
their vicinity. These points are assigned to the nearest segment 
in terms of the point’s distance from the plane. Again, co-planar 
segments are merged. At this stage, the segmentation results 
may contain segments that correspond to roofs of neighbouring 
buildings if they are close together, or they may even contain 
segments on vegetation or other high objects in the vicinity of a 
building. We eliminate planes having an overlap smaller than 
Omin of the segment’s area with the region of interest defined by 
the approximation. No further classification is carried out.  
 

The left part of Fig. 5 shows the results of the region growing 
process for the building in Fig. 1. Three new planar segments 
were added by the region growing process, two corresponding 
to the dormers and one that merges two roof planes where they 
intersect at an obtuse angle. After that, the second multiple 
image segmentation process can find a few more roof planes, 
because they have been cut off from the large image segments 
in the shadow areas (central part of Fig. 5). The rightmost part 
in Fig. 5 shows the final segmentation results after filling small 
gaps and merging co-planar segments.  
 
 

3. RESULTS AND DISCUSSION 

In order to test the method described in this paper, it was used to 
detect the roof planes of seven buildings in the historic centre of 
Vaihingen, using the data described in Section 1.3. The 
approximate building outlines were generated by the building 
detection algorithm described in (Rottensteiner et al., 2004). 
The planimetric accuracy of these outlines is about ±2 m. The 
buildings in this area show medium to high complexity. The 
number of images a building was visible in varied between six 
and nine, because the buildings are situated in the overlapping 
area of three strips. Tab. 1 shows the parameter settings used in 
our experiments. The results of our method, one of the images 
used for achieving those results, and a reference segmentation 
based on photogrammetric plotting are shown in Fig. 6.  

 
Figure 5. Left: results after adding new segments based on the 

point cloud to the results in Fig. 4. Centre: results 
after the second segmentation. Right: results after 
merging co-planar segments and filling small gaps. 

 

 

 

 

Figure 6. Left: one of the aerial images. Centre: segmentation 
results. Right: reference. FP: False positives. TN: True 
negatives (missed planes). T: Topological errors. 

 

Fig. 6 shows that multi-image segmentation does a good job in 
separating the individual roof planes. This is confirmed by a 
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comparison of the results with the reference. The reference 
contains 85 segments. However, 15 of these segments represent 
chimneys and are smaller than 1 m2. None of these chimneys 
could be found, but of the remaining 70 planes, 58 (82.9%) are 
detected correctly (based on a visual inspection). Another 10 
planes (14.3%) are detected, but are split into two or more 
segments by our algorithm, and only three planes are missed. 
One of them is a small plane (1.5 m2) that belongs to a dormer, 
whereas the other two correspond to a small building structure 
that was missed in the detection and thus is outside the region of 
interest for segmentation. Eight planes are affected by 
topological errors in the sense that a part of one plane is 
erroneously added to another plane so that the neighbourhood 
relations are affected (the splitting of planes can also be 
considered a topological error). Most of them affect dormers 
that intersect the main roof plane: the part of the roof plane that 
separates the dormer from the ridge is assigned to the dormer. 
Most of these errors occur with the building used for 
Figures 1 – 5, which is the only building where planes had to be 
added to the segmentation based on the point cloud (cf. Section 
2.4). There are five false positive planes in the interior of the 
buildings. They are small structures at the transitions between 
several roof planes. There are four false positives outside the 
buildings. One of them is a parasol, the others are artefacts that 
correspond to vegetation and could possibly be removed based 
on their radiometric content. The delineation of the detected 
roof planes in Fig. 6 is not very precise yet. The deviations are 
in the order of magnitude of 3-5 image pixels and are clearly 
influenced by the resolution of the point cloud. In the future, the 
delineation of the roof planes shall be improved by integrating 
image edges in a way similar to (Rottensteiner et al., 2004).  
 

σXY σZ ΔZmin k Ns α NPmin Nnn NOL Omin 
0.15 m 0.075 m 2.0 m 2.0 5 1% 4 16 5% 33.3%
 

Table 1. Parameters used in the experiments. The symbols are 
explained in the text. NPmin is given for the first 
segmentation process. NOL is 5% of the number of 
points in either of the segments.  

 
 

4. CONCLUSIONS  

We have presented a new method for roof plane detection based 
on the segmentation of multiple aerial images and a point cloud. 
The method makes use of the observation that segmentation 
results differ over various images, so that a combination of 
several segmentations may result in a better separation of roof 
planes than a segmentation of a single image. The method was 
applied to detect the roofs of several complex buildings in a 
densely built-up historic town centre, based on images having a 
resolution of 8 cm and an ALS point cloud with an average 
point spacing of about 0.5 m. The results show that the method 
is capable of detecting most of the roof planes correctly with 
only a few false positives. The accuracy of the delineation 
corresponds to the average resolution of the point cloud and 
requires improvement for building reconstruction, e.g. by 
integrating image edges. The LoD of the segmentation is 
restricted by the resolution of the point cloud, because a 
minimum of three points is required for an image segment to be 
considered a candidate for a plane. This could be improved by 
integrating 3D edges derived from multiple-view matching, 
because only one further point (or an additional 3D edge) would 
be sufficient to support a plane hypothesis. It has to be noted 
that the current procedure essentially works in 2.5D because the 
projection of the segmentation results into the (X,Y) plane in 
object space is used for segment matching and because the 
combined segmentation is also represented in the (X,Y) plane. 

This restriction could be overcome by defining and matching 
the planar segments directly in image space, in which case the 
images would be connected via the object planes. However, this 
would require a specific visibility analysis for any pair of 
images involved in the process. Finally, the method still needs 
to be verified for point clouds generated by image matching.  
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