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KurzfassungDas Ziel dieser Arbeit ist die Entwicklung und Implementierung generischer, vom Modellwis-sen weitgehend unabhängiger Lösungsstrategien zur texturierten 3D Rekonstruktion urbanerGebiete aus Videosequenzen. Solche Videosequenzen können sowohl mit einer Tageslicht- alsauch Infrarotkamera aufgenommen werden; in unseren Anwendungen handelt es sich über-wiegend um luftgetragene Aufnahmen. Die zahlreichen zivilen aber auch militärischen An-wendungsfelder der 3D Erschlieÿung der Szene mit minimalem Aufwand verlangen von denzu entwickelnden Verfahren besondere Robustheit gegenüber Videosequenzen suboptimalerQualität und kritischen Sensorbewegungen. Auch spielen ein einschätzbarer, parallelisier-barer Rechenaufwand und die Eignung der Verfahren, mit einem theoretisch unendlichenDatenstrom annähernd schritthaltend fertig zu werden, eine wichtige Rolle.In dieser Arbeit wird vorausgesetzt, dass eine Euklidische Rekonstruktion durch Kame-ramatrizen (Orientierungen) sowie eine dünne Punktwolke vorliegt. Die entwickelten Metho-den sind also in den Forschungsgebieten Rekonstruktion dichter 3D Punktwolken aus Mehr-kamerasystemen sowie Kompression dieser Punktwolken in Dreiecksvermaschungen ange-siedelt.Um eine dichte Punktwolke aus einem Bildverbund zu erhalten, müssen Korresponden-zen einer dichten Menge der Pixel eines sogenannten Referenzframes in anderen Bildernwiedergefunden werden. Formeln zur schnellen Berechnung der vom Referenzframe in andereBilder projizierten Punkte sind unentbehrlich; die schnellste Möglichkeit ist durch die Dis-paritätensuche in epipolar rekti�zierten Bildern gegeben. Danach werden die Kostenfunktio-nen (auch Datenkosten genannt) zur e�ektiven Suche der Punktkorrespondenzen aggregiert.Da diese Datenkostenterme allein auch bei Mehrkamerasystemen nicht ausreichen, um dieTiefenwerte in schwach texturierten Bereichen sowie Bereichen von Verdeckungen und sichwiederholender Muster zu rekonstruieren, muss ein zusätzlicher Glattheitsterm eingeführtwerden, der sich auf die Annahme stützt, dass die Tiefen eines überwiegenden Anteils derPixel ungefähr gleich sind wie die Tiefen ihrer Nachbarn. Da das Finden eines exakten Mini-mums einer Gesamtkostenfunktion, die aus einem Datenterm, einem 2D Glattheitsterm undeinem zusätzlichen, zwecks Ausgleichung von (insbesondere bei Schrägsichtaufnahmen typis-chen) Diskretisierungsartefakten eingeführten Dreiecksterm besteht, in der Praxis unmöglichist, werden Approximationsverfahren angewandt. Die Verallgemeinerung des semiglobalenAlgorithmus auf Multi-view Systemen und die Benutzung sowie Evaluierung der Dreiecksver-maschungen aus den bereits detektierten Punkten stellen den wissenschaftlichen Hauptbeitragzum bildbasierten Teil der Funktionsbibliothek dar.Unter der Annahme, dass sich die Gebäudeober�ächen anhand von Dreiecksvermaschun-gen zu texturierten Flächensegmenten aggregieren lassen, wurden im Rahmen dieser Dis-sertation zahlreiche Verfahren zur Rekonstruktion der Ober�ächen aus Punktwolken unter-sucht, weiterentwickelt und bewertet. Am robustesten gegenüber sehr variabler Punktdichte,Rauschen und Ausreiÿern (weit von der Ober�äche entfernt liegende Punkte, die beispiel-sweise durch Spiegelungen, Verdeckungen und kleine bewegte Objekte entstehen) hat sich



die auf L1-Splines basierender Algorithmus gezeigt, der den Hauptbeitrag des punktbasiertenTeils der Arbeit darstellt. Hier kann sowohl die Rekonstruktion einer skalaren Funktionals auch der Übergang zu einer automatisch parametrisierten 3D Ober�äche statt�nden.Im letzten Schritt solcher globalen Verfahren wird zu jedem Dreieck der Vermaschung einReferenzframe gewählt, in dem das Dreieck vollständig sichtbar ist (Texturierung).Zur Visualisierung der Ergebnisse wurden zahlreiche Datensätze getestet, die zum Teilanspruchsvolle historische Gebäude darstellen, zum anderen Teil aber zerstörte Gebiete,deren genaue Rekonstruktion mit Hilfe modellbasierter Verfahren kaum möglich ist. Zurquantitativen Bewertung der Verfahren wurde für einen synthetischen und einen realen, miteiner sehr dichten Laserpunktwolke als Ground Truth gegebenen Datensatz die Hausdor�-Distanz als Maÿ für Vollständigkeit und Korrektheit einbezogen.Im letzten Teil der Arbeit wird zusammenfassend auf die Stärken und Schwächen dervorgestellten Verfahren eingegangen und mögliche Ansätze zur Behebung dieser Schwächenwerden erläutert.Zusammenfassend wird aus der Arbeit ersichtlich, dass sich das vorgestellte Konzeptzur qualitativ ansprechenden Rekonstruktion von Gebäuden und urbanem Gelände ausLuftvideos hervorragend eignet.



SummaryThe goal of this thesis is development and implementation of a generic procedure for tex-tured 3D reconstruction of urban terrain from video sequences. These video sequences canbe recorded by daylight or infrared cameras; in our applications these cameras are mostlymounted onboard airborne sensor platforms. There are numerous civil and military applica-tions of 3D reconstruction from videos obtained from cheap, miniaturized cameras withoutany other information, but the reconstruction algorithms must be robust enough to processvideo sequences of limited quality and cope with critical motions and scenes. The paral-lelizable computation costs, which can be estimated, as well as adequacy of reconstructionprocedures to keep step with a theoretically endless data stream play an important role inour considerations.We assume in this work that an Euclidean Reconstruction is given by a set of extrinsicand intrinsic camera parameters (orientations) corresponding to frames of the given videosequence as well as several 3D points. Two main directions of research will be obtaining dense3D point clouds from multi-view systems and compressing these point clouds into triangularmeshes.To extract a dense point cloud from an image sequence, one must be able to performmatching of a dense set of pixels within the so-called reference image of this sequence. Wederive fast equations for point projection in other images and obtain initial information bycomparing intensities of projected points (data terms). The fastest way to project pointsis given by considering disparity values from epipolarly recti�ed image pairs. Alternatively,depth values can be used. In the next step of the matching process, data cost aggregation iscarried out over all images. Unfortunately, even for multi-view systems, the data term aloneis not su�cient for assigning correct depth values in areas of homogeneous color distribution,repetitive patterns of texture, and near occlusions, so a smoothness term, which encouragesneighboring pixels to have similar depth values, must be introduced. Computationally ef-�cient methods must be applied for total energy minimization of a functional consisting ofthe data term, the 2D smoothness term and an additional triangulation-based smoothnessterm whose main task consists of reducing discretization artifacts typical for slanted sur-faces by biasing depth values towards the triangular mesh from already available points.The generalization of a semi-global algorithm for energy minimization to the multi-camerasystems as well as application and evaluation of triangular meshes from already detectedpoints represent the principal innovations of the image-based part of this thesis.A reasonable assumption that the surface of buildings can be aggregated to polygonalmeshes motivated us to investigate, modify and evaluate numerous algorithms for shapereconstruction from point clouds. The best results with respect to varying point density,data noise and a considerable number of outliers (points far away from the surface resulting,for instance, from re�ections, occlusions or small moving objects) were obtained with the
L1-spline-based procedure for geometric reconstruction which is the principal contribution ofthe shape reconstruction portion of our reconstruction pipeline. This can include either a



reconstruction of a scalar function representing a 2.5D surface or a real 3D surface in anautomatically generated parameter domain. The last step of all these methods consists ofassigning to every polygon (triangle) in the resulting mesh a reference camera which com-pletely observes it (texturing). Reconstruction results from numerous data sets representingcomplex historical buildings as well as destroyed structures, which can hardly be modeledwith non-generic approaches, demonstrate the e�ectiveness of our algorithms. As a measureof completeness and correctness for quantitative evaluation of algorithms on a synthetic dataset and a simple real data set with a dense laser point cloud as ground truth, the Hausdor�distance was used.The last part of the dissertation summarizes the advantages and disadvantages of thealgorithms and introduces concepts for future work for coping for remaining problems.It becomes clear that the reconstruction procedure presented in this work can be usedfor obtaining excellent textured 3D models for buildings and surrounding terrain from aerialand UAV-videos.



11
Chapter 1Introduction1.1 Motivation, sensors and requirementsBecause of their ability to cover large parts of the scenery, aerial images have always beenan extraordinarily attractive tool to gain information. In the past decade, it has becomeattractive to utilize unmanned aerial vehicles (UAVs) because of their low cost and easyuse. The application areas for videos captured by UAV can vary from civil engineeringand urban planning to surveillance, automatic navigation, and defense research. Althoughin the course of this work, external references for sensor platforms are not required, thetechnical equipment of the miniaturized aerial vehicles has experienced rapid progress inthe most recent couple of years: historically, UAVs were simple remotely piloted drones, butautonomous control and capability to carry out pre-programmed �ight plans is increasinglybeing employed in UAVs. Figure 1.1 shows several unmanned sensor platforms used for dataacquisition in our work.From the mathematical point of view, the applications of these videos can be divided intoessentially two main categories. On the one hand, the spatial depth is negligible for manyapplications, such as video stabilization, image-mosaicking, image-based 2D geo-referencing,detection of moving objects and annotation of space-oriented information into the videosequence, see [121]. Real-time algorithms play an indispensable role here because potentialthreats and targets must be detected in time to take action. For these applications, the(bijective) mapping from view to view can be described by a transformation of the plane, orthe so called 2D homography, which is given by a regular 3×3 matrix, and the 3D characterof scenes only interferes in the results of the performance wherefore e�orts must be taken toexclude its negative e�ects from consideration (see Fig. 1.2).On the other hand, algorithms for 3D reconstruction require �ights at relatively small al-titudes and with slowly �ying platforms. Although there are also quasi-3D methods, such asimage morphing described in [32], where, given an optical �ow function between two or moreimages, intermediate images can be rendered without explicit computation of the 3D struc-ture of the scenery, an accurate 3D reconstruction from a general con�guration of camerascan be achieved only by obtaining structure and motion followed by dense reconstruction.However, because of the need to open up the third dimension out of two-dimensionalimages, the algorithms for 3D reconstruction are time-consuming, and, since our area ofapplications always lies in the margin zone between 2D and 3D, they are less numericallystable. The lightweight equipment that such aerial vehicles may carry and the local insta-bility that characterizes the paths of these small vehicles result in considerable uncertaintyin reconstruction and texturing of terrain. When external references such as GPS are not



Chapter 1. Introduction 12available, the uncertainty is larger still, because the drift errors in camera position and ori-entation negatively in�uence the results. In addition, the quality of data acquired by small,instable, unmanned sensors is usually much worse than that of typical high-resolution aerialimages because of interlacing e�ects, lens distortions, motion blur and a rather low spatialresolution.
a. c.b.

Figure 1.1: a. Piper cup plane is able to carry onboard a unit consisting of a daylight cameraand an infrared camera. Since it can achieve a height of up to 100 meters and a velocityof up to 15m/s, it is suitable mainly for 2D applications. b. The md4-quadrocopter is ableto store the video data onboard and perform automatic �ights. Therefore the data can beevaluated after the mission is completed. c. The m3d-UAV can be operated in hovering andcruising modes.The majority of the current state-of-the-art object reconstruction methods �rst retrievesthe camera trajectory and the object contours (given by sparse point clouds) and thengenerates a dense reconstruction with texturing. Although there are several possibilitiesfor visualization, for example, voxels, level-sets, depth maps and polygonal meshes (seeFig. 1.3), we decided to represent our objects by triangular meshes since they provide amore comfortable way for many relevant applications, such as visibility calculation. Thisis important for automatic navigation while textured models are important for visual im-pression as well as mission planning to ease user's orientation in the unknown terrain. Theother three possibilities will either be mentioned in Chapter 3 (related work) or or will serveas intermediate results in the course of this work. In urban areas, an additional challengeis created by the need for replacement of traditional 2.5D "terrain skins" (representationsof height as a univalent function of latitude and longitude) by a fully 3D terrain represen-tation with multivalent height (vertical walls, balconies, overhanging roofs etc.). In manyapplications, model generation must be performed in a reasonable time, which justi�es us toprefer � sometimes � one algorithm because it is faster than another algorithm, even thoughits performance is slightly worse. Moreover, we will classify our algorithms into local, orclose-to-real-time ones, i. e. those that can process the video sequence either frame by frameor using "short" sub-sequences, and global ones that can be applied only after the whole se-quence has been captured and processed by local algorithms. Application of global methodsfor shape-reconstruction on 3D point sets obtained from local methods makes up the mostimportant scienti�c contribution of our work.



13 1.1. Motivation, sensors and requirements

Figure 1.2: Examples of 2D applications: Top left: In almost-planar scenes, detection ofmoving objects can reliably be performed by means of homographies. In urban scenes, the3D character of the terrain causes parallaxes which are the main reason for false alarms(e. g. the church tower top right). These false alarms can be successfully eliminated if thevideo stream is geo-referenced onto the orthophoto (bottom, see also [121]). In this case, itis also possible to estimate the velocities and heading directions of moving objects.



Chapter 1. Introduction 14

Figure 1.3: Four possibilities for scene (black curve) representation: Voxel grid (top left),level-sets (top right), a triangular mesh, which is the desired output of our work (bottomleft) and a depth-map representation (bottom right) (Fig. courtesy of C. Strecha).1.2 Reconstruction pipeline and organization of this workAs described in the previous section, our goal is to obtain a textured surface from a videosequence. We describe in the two following subsections the outline of the reconstructionprocedure and the organization of this work.1.2.1 Reconstruction pipelineOne popular framework for 3D reconstruction from video sequences in a reasonable time,possibly proportional to the speed of video rendering, consists of three main steps 1) obtain-ing camera poses and 3D points by means of detecting and tracking characteristic points,2) creating dense 3D point clouds from several (reference) images, 3) geometric model gen-eration and texturing (see Alg. 1.1)The �rst step will not be in the focus of this thesis. For the main references aboutmethods needed to obtain the camera trajectory and a sparse point cloud from (calibratedor uncalibrated) image sequences, we refer to [9, 22, 105]. The second step includes image-based methods and will be performed incrementally for several reference frames. Togetherwith Step 3.1 of local tessellations, it has a concept of a real-time oriented model generation.The main function of Step 2.1 � sparse tracking and triangulation � consists of regularizingthe density of points (a process also called enriching) since the original point cloud hasextremely low density in untextured regions. A coarse visibility information can be gener-ated by a triangular mesh from point sets. To improve and further enhance this visibilityinformation, Step 2.2 is applied. The task of this dense reconstruction module is to to pro-vide exact (apart from discretization errors) depth values for every pixel in every (reference)image. Local tessellations are needed if there is no time to apply a global method for post-processing. In this case, the reconstruction terminates after Step 3.1. Otherwise, the wholeavailable information � point sets, camera matrices and visibility information � is used inglobal approaches, which make up Step 3.2 of our pipeline. This step consists of retrieving



15 1.3. Main contributionsInput: video sequenceStep 1: Relative orientation % see [9, 22, 105]Step 2 Image-based reconstructionStep 2.1: Sparse tracking and triangulation % see Sec. 4.4Step 2.2: Dense reconstruction % see Sec. 4.5Step 3: Shape reconstructionStep 3.1: Local tessellations % see Sec. 5.1Step 3.2: Global surf. extraction and texturing % Global approach, see e. g. Sec. 5.2Output: triangular meshAlgorithm 1.1: Three main steps of the reconstruction pipeline.triangulated surfaces, (optional) mesh manipulation and texturing triangles that make upthe mesh.1.2.2 Organization of this workAs indicated in Alg. 1.1, we cover the image-based methods and those for shape reconstruc-tion in Chapters 4 and 5, respectively. These steps require quite di�erent technologies.While during enriching, information from video frames, and, consequently image-processingmethods will be used, the stage of post-processing presupposes application of shape recon-struction methods and color or intensity information will not be considered before texturing.The related work, preceding these sections will be grouped into an image-based Sec. 3.1 anda point-based Sec. 3.2, followed by a short Sec. 3.3, which describes several already exist-ing reconstruction procedures. For reasons of completeness, Chapter 2 will show the mostimportant concepts for point matching and shape reconstruction. The evaluation of thereconstruction algorithms will be demonstrated for several data sets in Chapter 6. Finally,conclusions and directions of future research are given in Chapter 7.1.3 Main contributionsSeveral new ideas will be developed in this work.1. Most state-of-the-art approaches do not consider points already reconstructed duringStep 1 of the reconstruction pipeline in the course of computation of depth maps.However, these points can propagate the depth information to neighboring pixels; asa consequence, local triangular networks, also called tessellations, are used in thiswork. The starting point is usually the Delaunay triangulation of points in the im-ages. These triangles do not always coincide, not even approximately, with the objectsurface. Therefore, we introduce novel ideas to evaluate the triangles as consistentand inconsistent with the surface, to try to correct the depth values of the inconsis-tent triangles using color information and to support the pixel costs to be low at thedisparity values given by triangles consistent with the surface. A triangulation-basedsmoothness term will be the topic of Sec. 4.5 while the necessary theoretic backgroundis provided in Sec. 4.1 and Sec. 4.3.2. Applying non-local algorithms for multi-view con�gurations and not for stereo imagepairs has become attractive only in the recent years. A relatively fast and easily-



Chapter 1. Introduction 16implementable approach of semi-global optimization was �rst introduced by Hirsch-müller in [67] for recti�ed image pairs. Few generalizations of this approach exist,like for example for the case of three cameras in a special trinocular con�guration[62]. The principal innovation of our work, described in Sec. 4.5.3, is to apply thisalgorithm for an arbitrary number of not necessarily recti�ed images after a localapproach, supported by triangular meshes, assigns a cost value to every pixel and everydepth label. An important contribution concerns the automatic choice of smoothnessparameters (Sec. 4.5.4).3. Point clouds reconstructed by passive sensors with small, uncalibrated cameras oftenhave rather dramatic negative properties of varying density, Gaussian noise and out-liers (points far away from the surface, which can result, for example, from shadows,re�ections and moving objects). A broad, detailed analysis of the performance of meth-ods for shape reconstruction applied on these point clouds has, to our knowledge, notyet been carried out. It will thus be important to investigate how the state-of-the-artmethods for shape reconstruction � being applied on the original and enriched pointcloud � can cope with the negative properties mentioned above. Section 3.2, dedi-cated to already existing methods of surface reconstruction, is therefore covered witha higher level of detail. We will see that the L1-splines-based procedure of Sec. 5.2,which represents the most important contribution of this work, provides the most ac-curate reconstruction. The high computing time of this procedure can be explained inpart by some technical limitations of the current implementation and in part becausecomputation of an L1-spline requires solving a linear program. In Chapter 7, we willdiscuss how the computing time can be reduced.Beside these three main contributions, we also care about1. Fast and point projection equations that allow simultaneous processing of large pointsets. A compact closed-form representation of depth and disparity values as well as3D points is given in Sec. 4.1.2. Sparse tracking with the search space for correspondences reduced to a line segmentbecause we are given camera matrices and disparity ranges from the already availablepoints. These points also provide initial values for two iterative algorithms, namelyepipolar and simultaneous tracking, described in Sec. 4.4.2. The cost function andminimization procedure are then similar to the already existing methods of [94].3. Binocular stereo reconstruction, since there is a large amount of software with di�erentconceptional advantages available in the Internet. Since we must exploit the redundantinformation from many images, the algorithm ofmedian-depth maps was developed andis described in Sec. 4.5.2.4. Reducing and homogenizing the number of triangle vertices in the images by applyingrestricted top-down quadtree triangulations results in surfaces without cracks. Thistopic, described in Sec. 5.1.1, is an essential step to prepare the shape reconstruction ontriangular grids, which have certain advantages compared with tensor-product surfacesconsidered in Sec. 3.2.4 and 5.2.1.5. Incremental reconstruction, which ideally must be close to real time and which can becarried out without computationally challenging iterative or non-local methods. Theevaluation of triangles is performed by a local method (LIFT, see [22] and Sec. 5.1.2)and can be incrementally updated.



17 1.4. Some notation1.4 Some notationBesides elementary knowledge of linear algebra and numerical analysis, the reader of thisdissertation is presumed to have basic knowledge of computer vision. For detailed clari�-cation of terms homography, fundamental matrix, etc. we refer to the book due to Hartleyand Zisserman, [61]. The most important parameters which can be found in more than onechapter of this work are included in the list below:x,y,p,X points
X point list
π plane in space, given by a 1× 4 vector
I images
P camera matrices
d/j depth value / discrete depth or disparity label
D depth or disparity map
T triangle (a triple of integer numbers)
U ,V ,W local barycentric coordinates of the triangle
T triangular mesh
F surfacen normal vector
·x, ·y, ·u·v etc. partial derivatives ∂ · /∂x etc.
c, E,J cost, energy function, Jacobian (matrix)
‖ · ‖p Lp vector norm ‖x‖p = (

∑

i |x|
p
i )

1/p, p = 2 if nothing else is stateddst Euclidean distance function, dst(x,y) = ‖x− y‖
c+/c− max(c, 0)/max(−c, 0)

(·)T /(·)−1 matrix transpose / inverse
0w, Iw zero-vector of length w, w × w identity matrix
U U(a) = 1 if a is true and 0 otherwiseRemarks: Frames of a video sequence taken at time k will be denoted by Ik and corre-sponding camera matrices by Pk.Generally, we denote 2D and 3D points and vectors by bold variables (x,y,X). Lettersin lower case (e. g. x,y) will usually denote points/pixels in images; upper case is reserved� especially if ambiguous representations are possible � for 3D points. Also ·̌ stands forhomogeneous coordinates and ' denotes equality up-to-scale.We will denote incidence relations with "∈". For example, x ∈ I means that x lieswithin the rectangular domain of image I and x ∈ T means that x lies in the triangle.The constraint on barycentric coordinates of x is in this latter case U + V + W = 1 and

U ,V ,W > 0. The inequalities in terms of x, y (coordinates of x) from the height and widthof I in the �rst, coordinates of vertices of T in the second case can be easily established.
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Chapter 2Theoretical backgroundThis chapter summarizes the most important basics and tools for computer vision andshape reconstruction. Image pair recti�cation to epipolar geometry is an important toolto accelerate computations and also to make window-based matching algorithms invariantagainst rotation. Therefore we will consider this topic separately in Sec. 2.1. Then, two mainideas of matching � the photo-consistency terms (Sec. 2.2) and the smoothness assumptions(Sec. 2.3) � are presented. Finally, a short introduction to approximation of surfaces fromtriangular irregular networks (TINs) is given in Sec. 2.4.2.1 Image recti�cationImage recti�cation is an elegant way to perform a search for correspondences in one constantdirection and thus computationally optimize matching algorithms. We will now brie�yreview implementation details, advantages, and disadvantages of binocular (Sec. 2.1.1) andtrinocular recti�cation algorithms (Sec. 2.1.2).2.1.1 Image pair recti�cationGiven a fundamental matrix F , searching for correspondences can take place along epipolarlines in the binocular case. For reasons of speed and in order to compensate for rotationaldeviations in the orientation of windows around corresponding pixels, recti�cation transfor-mations are applied on images. All epipolar lines in the recti�ed images are parallel, forexample, to the x-axis. The computation of the fundamental matrix for two cameras1 P1, P2is carried out according to:

F = (P2 · Č1)× (P2 · P †
1 ), (2.1)(see Eq. 9.1 in [61]) where C1 is the location of the �rst camera given by the one-dimensionalnull-space of the 3 × 4-matrix P1 and P †

1 is pseudo-inverse of P1. If the epipole is insidethe image domain, one possibility for recti�cation is to extract epipolar lines directly andto orient them by means of polar coordinates (r, φ), where r is the distance to the epipoleand φ is the inclination angle of an epipolar line (see [110]). Otherwise, one can �nd twohomographies HR
1 and HR

2 that transform the epipole to the point at in�nity [1 0 0]T andthus make epipolar lines lie horizontally in the images. There are nine degrees of freedom2which can regulate HR
1 and HR

2 in the way such that images look like original images after1Throughout this work, camera will be an abbreviation for camera matrix. We use monocular imagesequences in our data sets, so there will be no possibility for misinterpretations.2The fundamental matrix has 7 degrees of freedom and each of two homographies has 8. Since thefundamental matrix must be �xed, we have 2 · 8− 7 = 9 degrees of freedom.



19 2.1. Image recti�cationtransformation; in other words, projective and a�ne components of HR
1 , HR

2 are minimized.Such a pair of homographies can be obtained by some simple method (e. g. [110], p. 66) andthen optimized using some meaningful criterion [96]. In this work, explicit minimization ofprojective and a�ne components of the transformed images was chosen and is carried outby the method of Loop and Zhang [90], which extracts �rst one parameter λ responsible forthe projective transformation of images by means of a standard optimization problem. Thecost function for this optimization uses the fact that a projective transformation minimizingimage loss should be as close as possible to an a�ne one. After λ is extracted, the choice ofother parameters is rather trivial.We show the results of recti�cation by this method in Fig. 2.1 and also Fig. 4.7 (see p. 55)3and conclude that projective image distortion of the recti�ed images is rather small sinceimage transformations are very similar to rotations.

Figure 2.1: Top: Two frames from the sequence House recti�ed to epipolar geometry. Bot-tom: Two frames from the sequence Gottesaue recti�ed to epipolar geometry. Several hor-izontal epipolar lines are depicted in red. The parameters of rectifying homographies arechosen by means of [90] and as a result, the projective distortion of images is almost negli-gible.2.1.2 Trinocular recti�cationSince our sequences are not restricted to pairs of images, it is important to mention theexisting ways to rectify also triplets of images. Given images I1, I2, I3, there is a possibilityto rectify the images in a way that IR
1 , IR

2 are aligned horizontally, IR
2 , IR

3 vertically and
IR
1 , IR

3 diagonally (i. e. for (x1, y1) ∈ IR
1 , (x3, y3) ∈ IR

3 , the relation y3−y1 = λ(x3−x1) where3a detailed description of data sets is given in Sec. 6.1.
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Figure 2.2: Left: Three images from the well-known benchmark data set Tsukuba [115]in a trinocular con�guration; Right: for a general video stream taken from approximatelythe same altitude, trinocular recti�cation of images without signi�cant distortion is hardlypossible.
λ a scalar preferably ±1 holds). The advantage of this kind of recti�cation is its robustnessand elegance, since it can be performed linearly [137]. But it has one big disadvantage: Itcan be performed only for several special cases, for example, for the camera con�gurationof the kind of Fig. 2.2 right, mounted on a robot in [62]. For the general case, it is alreadydi�cult to ful�ll two �rst conditions: Given that the epipole e12 is transformed to [1 0 0]T ,and, at the same time, e23 is transformed to [0 1 0]T , then new line at in�nity resultsfrom the straight line connecting prototypes of e21 and e23. But if this line intersects theimage domain of I2 or just passes nearby, then there is no possibility of recti�cation withoutsigni�cant distortion (see Fig. 2.2, right). The problem of a straight line intersecting animage domain arises more often (at least, in our applications, where the images were takenfrom approximately the same height) than a single point lying inside it. For this reason, wewill create sequences of recti�ed image pairs, as described in Sec. 4.1, instead of performingmulti-image recti�cation for depth estimation.2.2 Image-based methods � data cost functionsThe basic task of 3D reconstruction is to obtain the spatial coordinates and color/intensityvalues of a point given its color/intensity values of pixels in the images. If we use thereference image I0 to color the 3D points, then, for another image Ik we are interested in ageometric transformation Gk and a radiometric transformation Rk such that

I0(x) = Rk (Ik (Gk(x))) + r(x, k), (2.2)where the residual term r(x, k) is zero in the ideal case and can be supposed to be smallfor practical situations. The geometric transformation Gk depends on the camera model.For example, if the depth of the scene is negligible (see [121]), an (image-to-image) homog-raphy x̌k = Hkx̌ can be used. For a classical pinhole camera, which stands in focus of ourapplications, the relations can be expressed in terms of depth for multi-view con�gurations(or, equivalently, disparity for binocular con�gurations). The essential goal of matchingproblematic is to select the unknown values of depth (or disparity) parameters to minimize
r given a suitable radiometric relation Rk of color/intensity information between I0(x) and
Ik(xk), which are our data-cost values. Hence in this section, we will present several ideasfor choosing Rk and we consider, for the sake of simplicity, only gray images. However, it isimportant to note that in the general case, I, r can be also vectors and R a multi-dimensionalmap.



21 2.2. Image-based methods � data cost functionsThere are many other di�erent cost functions mentioned in [69] to which interestedreaders can refer, but here we only want to give a short overview about cost functions wework with in order to perform robust depth estimation from a video sequence.2.2.1 Lp-based functionsThe simplest assumption, namely I0(x) and Ik(xk) are approximately the same, means thatthe cost function c(x)
c(x) = ‖Ik(ω(xk))− I0(ω(x))‖p , where p ≥ 1 (2.3)must be small. Here ω is a small correlation window ω around points of interest neededto cope with rounding errors. Note that with increasing value of p, more weight will begiven to outliers in the correlation window, which can deteriorate results for pixels nearocclusions or dead pixels in infrared images (pixels with constant luminance values, similarto salt-and-pepper-noise). These are clearly undesired e�ects and this is why usually p = 1or p = 2 are used. The cost functions corresponding to p = 1 and p = 2 are Sum of AbsoluteDi�erences and Sum of Squared Di�erences, abbreviated by SAD and SSD, respectively. Inorder not to give too much importance to non-plausible changes of luminance, one can usetruncated cost functions, therefore e. g. , for SAD, we will use

c(x) = ( 1

εmax

)
∑y∈ω(x)min (|I0(y)− Ik(yk)|, εmax) (2.4)instead of (2.3) in Chapter 4. Here εmax is a real-valued scalar, and by division by εmax,the cost function is scaled between 0 and 1. This cost function is sampling-sensitive becausefor non-integer coordinates of yk, the value Ik(yk) depends on the rounding procedure, soe�orts can be made to make (2.4) sampling-insensitive (see [13]).2.2.2 Other parametric cost functionsDue to the di�erent viewing angles of P0 and Pk onto the object's surface, there are lumi-nance gain a > 0 and o�set b in the intensity of the both images, in other words:

Ik(y) = aI0(y) + b. (2.5)This equation can be explained by considering the Phong lighting model (see [33], pp. 306-311) when the total intensity is expressed in terms of two summands4: ambient term Laand di�usion term Ld, which is proportional to the intensity of the re�ected light emanatingfrom the common source Ld as well as to the angle between the surface normal and theviewing direction. From the relations I0(y) = La + b(y)Ld, Ik(y) = La + bk(y)Ld, weobtain (2.5). In order to achieve invariance with respect to linear transformations withoutknowledge of a and b, one can apply the function of Normalized Cross Correlation, denotedalso by (Zero-mean) NCC or (Z)NNC:
c̃(x) = ∑y∈ω(x) (I0(y)− Ī0(y)) · (Ik(yk)− Īk(yk)

)

√
∑y∈ω(x) (I0(y)− Ī0(y))2 ·∑y∈ω(x) (Ik(yk)− Īk(yk)

)2
,

c(x) = 1− c̃(x)
2

(2.6)4We omit here the Non-Lambertian specular component.



Chapter 2. Theoretical background 22Here ·̄ is the averaging operator. In order to avoid calculation of square roots, c(x) from(2.6) can be replaced by:
1− c̃(x)|c̃(x)|

2
, (2.7)which is also scaled between 0 and 1. This kind of correlation is quite sensitive to outlierssince a local Taylor series expansion around zero describes a quadratic polynomial.2.2.3 Nonparametric cost functionsIn the case of complex radiometric relationships, one can still use assumptions about intensityordering of gray values or even formulate implicit functions of probabilities of assigning grayvalues (mutual information).Intensity-ordering-based functionsIf not the magnitude but rather the order of intensities in quadratic windows is of interest,the Census �lter [136] around a pixel can be considered. It de�nes a logical vector variablewhere each entry corresponds to a certain pixel y ∈ ω(x). This entry is true if and only if

I0(y) < Ik(yk). Thus, Census not only stores the intensity ordering, but also the spatialstructure of the local neighborhood. The computation of dissimilarity can be measured byHamming-distances. Using similar descriptor vectors around salient points in gradient space,like SIFT [92] or SURF [8], theoretically can be generalized for dense sets of points. Thesedescriptors however do not contain a reliable information in the regions of weak texture andtheir computation requires a very high computational cost.Mutual informationThe key idea of Mutual information is to quantify the extent to which two random variablesare dependent by computing the entropy of the joint probability distribution H1,2 and sub-tracting it from the sum H1 +H2 of entropies of single probability distributions (see [133]for further details). To do this, an assumption about correspondences must be made on acoarser level (initialization). If we know that x ∈ I0 and xk ∈ Ik are corresponding points,we increase the probability P (m,n) where m = s(I0(x)), n = s(Ik(xk)) and s is a discretiza-tion function, that is, a suitable number of intensity levels. For example, if two 16-bit imagesare given, it makes more sense to convert them to 8-bit and consider m,n = {0, 1, 2, ...255}than computing probabilities for eachm,n = {0, 1, 2, ...216−1)}. From P (m,n), we compute
P1(m) =

∑

n P (m,n), P2(m) =
∑

m P (m,n),

H1(m) = log(P̃1(m)),H2(n) = log(P̃2(m)),H1,2 = log P̃ (m,n),where ·̃ is the (one- or two-dimensional) Gaussian smoothness function. The cost functiongiven by Mutual Information (MI) is computed according to:
c(x) = −MI(m,n) = H̃1,2(m,n)− H̃1(m)− H̃2(n), (2.8)

m = s(I0(x)), n = s(Ik(xk)). The values of MI(m,n) are scaled between 0 and 1 andstored in a square matrix, see Fig. 2.3. The pixel-wise accumulation of costs from (2.8)within a window can be performed as well, e. g. by averaging costs of entries. The questionof initialization without image pyramids will be the topic of Sec. 4.5.1.



23 2.3. Image-based-methods � smoothness functions

Figure 2.3: Mutual information MI as a cost function stored in a 256× 256 square matrix(matching table). It can handle simple changes in illumination: in the pair of images onthe top left, the lower cost entries mostly lie near the main diagonal of the matrix (bottomleft). If we replace the second image by its negative (as in the pair of images on the right),the entries of the matching table change in the suitable way (bottom right). Fig. courtesyof P.Wernerus.2.3 Image-based-methods � smoothness functionsCorrect assignment of correspondences by minimizing one of the cost functions of the previ-ous section can be carried out, in the majority of practical situations, only for a small numberof points in textured areas. As we will see in Chapter 4, mismatches from local algorithmshappen due to radiometric deviations, repetitive patterns of texture and weakly texturedareas as well as many other factors. Since we want to obtain 3D coordinates for pixelshomogeneously distributed in the image, we must make additional assumptions about scenegeometry. In practice, surfaces observed are piecewise continuous, which means neighboringpixels usually have similar disparities. Belhumeur formulates in [10] the goal of matching asa Bayesian problem:
P (S|D) ' P (D|S)P (S), S denotes Scene, D denotes Data.In other words, to maximize the probability of a scene given some data, not only datagenerated from the scene but also prior information about the scene have to be considered.Taking the logarithm of the last formula yields the well-known energy function

E =
∑x (Edata(x, S) + Esmooth(x, S)) . (2.9)The most popular way to impose the smoothness penalty on the disparity or depth, denotedby d in this work, is to punish the disparity or depth jumps of neighboring points5. In otherwords,

Esmooth(x, S) = Esmooth(x, dx) = ∑

{x,y}∈N

f(dx, dy,x,y),5From here on, d is the unknown we use in order to parametrize the Scene S. We leave this parameter-ization and also a discretization of depth values, which is usually imposed for dense reconstruction, untilChapter 4.



Chapter 2. Theoretical background 24where {x,y} ∈ N (or, alternatively, y ∈ N(x)) if and only if ‖x−y‖1 = 1, dx is the unknownparameter of depth at x and f is a scalar non-decreasing function of ‖dx − dy‖. We givehere several possible cost functions f some of which can be found in related works cited inSec. 3.1.2.
f1(dx, dy) = λ1U(dx 6= dy) = { 0 if dx = dy

λ1 otherwise (2.10)
f2(dx, dy) = 



0 if dx = dy
λ1 if 0 < |dx − dy| ≤ d0
λ2 otherwise (2.11)

f3(dx, dy,x,y) = 


0 if dx = dy
λ2 if |I0(x)− I0(y)| ≤ g0
λ1 otherwise (2.12)

f4(dx, dy) = λ1|dx − dy|g0 (2.13)
f5(dx, dy) = λ1

(

1− d20
(dx − dy)2 + d20

)

. (2.14)Here λ1 < λ2, g0, d0 are positive numbers called smoothness parameters, and numerousreferences can be found about optimal choice of smoothness parameters. See, for example,[28, 101, 79] (Sec. 3), [59] and references therein.We review here the di�erences in expressions (2.10)-(2.14). In (2.13), the depth discon-tinuities are punished hard because the penalty function increases monotonically with thedi�erence of depth values. As a result, the depth map is expected to be oversmoothed nearocclusions. On the other hand, Eq. (2.10) punishes all discontinuities equally. Merely twocases of small and big di�erences of depth are considered in (2.11): for big di�erences it isa constant value. A smooth change between small cost for small di�erences and constantcost for big di�erences is modeled in (2.14). Finally, if two neighboring pixels have similarintensities, they are less likely to belong to di�erent segments and so the disparity cost forsuch a pair of pixels should be larger, which justi�es (2.12).Now suppose that we have a path v and want to enable depth values of points to increaseor decrease linearly along the path v instead of (possibly) incurring too many occlusions.This approach results in the next kind of smoothness term, which includes triplets of neigh-bors:
f6(dx, dx−v, dx+v) = λ1|dx−v + dx−v − 2dx|. (2.15)It is also possible to combine (2.14) with one of penalty terms acting on neighboring pixelsonly, for example, f1 of (2.10) or f2 of (2.11).Besides smoothness terms in the image space, we give an example of an object-basedsmoothness term from [79], see p. 63. The author uses the term interaction: pixels x, xk intwo images of I and Ik can only interact when the reprojection rays from x ∈ I,xk ∈ Iknearly intersect in space; the interaction i = 〈x,xk, d〉 is set active if the intersection pointis close to the object surface. Here d is a depth or disparity value, which, as we will see inSec. 4.1, uniquely de�nes the 3D coordinate. For active interactions i, the boolean variable
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U(i) is set to true. Two interactions i = 〈x,xk, dx〉 and i′ = 〈y,yk, dy〉 are neighbors({i, i′} ∈ N2) if and only if dx = dy and ‖x− y‖1 ≤ 1. The object-based smoothness term

Esmooth =
∑

{i,i′}∈N2

λ(i, i′)U(U(i) 6= U(i′)) (2.16)with a scalar function λ and U as in Sec. 1.4 is not quite the same as one of the single-image-based disparity terms (2.10)-(2.15).2.4 Shape reconstructionWe now consider the shape reconstruction portion of the reconstruction pipeline. The taskit to perform polygonization of an input point cloud which means either compression ofvery dense point clouds (as a result of substep 2.2 of Alg. 1.1, if it took place) and/orinterpolation of point clouds with moderate density (if that step was omitted). It is clearthat not every surface can be exactly modeled by triangles. Therefore we assume a surface
F interpolating or approximating such a point cloud X , and our task will be to �nd apolygonization homeomorphic6 to F . The necessary theoretical background about surfacepolygonization without explicit computation of F will be given in Sec. 2.4.1 while severalpossible ways of meshing of surfaces will be given in Sec. 2.4.2. Note that an elaborate surveyof previous work on surface computation will be given in Sec. 3.2.2.4.1 Direct polygonization of point cloudsGiven a set of 2D points in a plane, there are plenty of ways to connect (some of) them bymeans of straight line segments. However, depending on the con�guration, one way mayappear more compact or more natural from a physical point of view than another one. Asan example, all four options for connecting points in left hand side portion of Fig. 3.1, p. 34are possible and have geometric justi�cation (as we will see below), but the �rst one � whichdoes the best job of recognizing that the shape consists of two rings � seems somehow moreprobable; intuitively, its probability will increase with the point density within two rings.In 3D, the situation is clearly even more complicated. If we imagine a surface F passingthrough the 3D point cloud X and wish to generate a triangular mesh T homeomorphicto F , it becomes clear that the point sets must have special properties with respect totheir density (a term to be explained below) and noise: their density must exceed a giventhreshold and noise level must be low. Amenta and Bern [4] give a su�cient criteria forsampling in order to make a triangular surface homeomorphic to the original one.Here the de�nitions of medial axis (points in space which have at least two nearestneighbors on F in the Euclidean sense), local feature size (distance from point to medialaxis, denoted as lfs) as well as ρ-sample X such that dst(r,X ) < lfs(r)ρ for each r ∈ F)are given. The main result, stated in [4], considers noise-free ρ-samples, ρ ≤ 0.1. Then it ispossible to reconstruct the triangular mesh homeomorphic to F . Note that a ρ-sample doesnot require the point density to be uniformly constant. From the de�nition of the medialaxis, it must only be high enough in curved regions.The approaches related to that in [4] have an advantage that they do not require explicitknowledge of F for computation of such a triangular irregular network (TIN) T . This makesthem very attractive for several openly and commercially available software packages suchas meshlab. Therefore it will be worth reviewing these methods in Sec. 3.2.1. However,the main drawback of TINs is their extreme dependence on the sampling density of points.6Two surfaces F ,F ′, are said to be homeomorphic if there is a mapping (homomorphism) f : F ← F ′.Here f must be a continuous bijection, f−1 is also continuous.



Chapter 2. Theoretical background 26Apart from the fact that there are only heuristic methods to estimate ρ without knowledgeabout the surface, it is rather impossible, because of di�culties of image-based algorithmsto �nd correspondences in homogeneously textured areas or in the areas not su�cientlycovered by the camera path, to satisfy the assumptions of [4]. In addition, the resultingmesh T will usually contain aesthetically unpleasant surface artifacts which have to do withnoise and outliers in the data, since no explicit assumption about the smoothness of thesurfaces underlying T . Since we want to obtain polygonal meshes despite these negativeproperties and also be able to �ll sparsely sampled regions in a plausible way, it will benecessary to deduce methods that lack, to a certain extent, a theoretical justi�cation, butare good enough to be applied in the practical case. For this practical case, we may makeuse of assumptions for objects we are dealing with, such as orientation consistence, or onedominant direction which is given by the z-axis.2.4.2 Polygonization of surfacesGeneration of meshesSuppose that the function describing F is explicitly given. In the case of 2.5D "terrainskins", altitudes z are represented in terms of x and y coordinates as a function z = f(x, y).Otherwise, there is a 3D parameterization X(u, v) := (x(u, v), y(u, v), z(u, v)) in some coor-dinate system (u, v). In both cases, one can perform (e. g. Delaunay) triangulation of (x, y)-,respectively (u, v)-points.Other methods have an implicit surface as input. It is usually given by a signed distancefunction sampled for points in space. Since sampling implicit surfaces goes beyond the scopeof this work, we mention the most famous algorithms [39, 53, 66, 91, 107] and refer to (e. g.)Akkouche and Gallin [3] where a classi�cation of these methods in three groups (surfacemeshing techniques, surface �tting techniques and surface tracking techniques) is made andalso to [17] where several interesting re�nements and more references of the existing methodsare described. Our default method for implicit surface polygonization will be the well-knownalgorithm of marching cubes [91].Mesh manipulationSome kinds of surface tessellation routines described in the last paragraph often do not con-sider the (scalar or vector) properties of mesh vertices, as for example, the partial derivativevalues, color informations etc. A concept and examples of cost functions which can beminimized with local �ipping algorithms are given in [41] for 2.5D surfaces. Usually, acombination of several basic procedures are chosen for mesh simpli�cation, namely:1. vertex translation: Vertices are transformed so that a total energy of the mesh isdiminished. See Fig. 2.4, top.2. edge �ip: A spatial quadrilateral ABCD consisting of two triangles ABC and ACDis �ipped to BDC and BDA. See Fig. 5.3, p. 77, right.3. edge collapse: Two vertices are melt, that is, the edge between them disappears, thenumber of triangles is reduced by two and that of edges by three, as shown in Fig. 2.4,bottom.4. edge split: A new vertex is added near an edge. If this is not a margin edge, then thenew vertex is connected to other two vertices of the quadrilateral and so the numberof triangles is increased by two.
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Figure 2.4: Top: To reduce an energy term (e. g. Laplacian), a dominant plane can be �tted.Bottom: To compress the mesh, an edge collapsing method is applied (inserting a new pointmarked by a red circle). Edge split and edge collapse are inverse procedures.In [71], items 1-3 of those previously mentioned are selected in random order to performmesh simpli�cation. Other authors restrict themselves to one operation � edge �ip in [103]or edge collapse in [89]. Some publicly or commercially available software packages arementioned in [126].While the four procedures mentioned above do not change the topology of the mesh, theprocedure of hole �lling usually has a topologically di�erent mesh as output. A hole as aloop of boundary edges (i. e., those incident with exactly one triangle) has to be identi�edand �lled with new vertices and edges. One algorithm to perform hole-�lling is described in[134], the non-trivial part of the algorithm consists in reasonable choice of 3D coordinatesfor new vertices to be added to the mesh.
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Chapter 3Previous workTremendous amounts of work on scene reconstruction from video sequences have been donein the past decades. Even though it is hardly possible to survey the technical details for allexisting algorithms, a detailed study of state-of-the-art is very important for us not only be-cause an evaluation of our algorithms and comparable methods will be described in Chapter6, but also in order to demonstrate that the innovations presented in this work are meaning-ful and robust to close the gap in the area of generic urban terrain reconstruction from aerialvideos, often under non-cooperative conditions. Since our work consists of an image-basedand an object-based module, we separately cover algorithms for depth estimation from aset of images and surface reconstruction algorithms in Sec. 3.1 and Sec. 3.2. Among numer-ous already existing pipelines that go the whole way from an image sequence to a texturedreconstruction, we give in Sec. 3.3 a detailed description of three procedures [116, 48, 111]which turned out to be very instructive for our approach.3.1 Previous work on depth map computationThe task of retrieving depth values for a relatively dense and homogeneously distributed setof pixels in the reference image can be accomplished by tracking sparse points as in Sec. 3.1.1or by using data, smoothness and other assumptions, as mentioned in Sec. 3.1.2, 3.1.3, and3.1.4, respectively.3.1.1 Sparse trackingWe forget for a short moment the 3D aspect of the problem and solely wish to retrieve, fora pixel x ∈ I0, the corresponding point xk = x+wk ∈ Ik. This kind of matching is closelyrelated to the optical �ow problem because in the approaches of e. g. [72, 94], a functionalincluding a data and a smoothness term must be minimized over the translation parameters
wk by means of common numerical methods. For example, in [21], the data cost consists ofa non-decreasing function Ψ of weighted di�erences of gray values and their Laplacians:

Ψ = Ψ(|I0(x)− Ik(x+wk)|+ γ|OI0(x)− OIk(x+wk)|) , γ ∈ R (3.1)and the smoothness term is the total variation of the �ow �eld, which is given, in the caseof two images, by the norm of spatial-temporal second-order derivatives. In order not to getstuck in local minima, image pyramids downscaled by an arbitrary factor between 0 and 1are calculated and a steady-state solution of a linearized �xed-point-approximation of (3.1)determined for each pyramid level is used as the initial value for the next level.



29 3.1. Previous work on depth map computationThe process of optical �ow estimation can be generalized for a multi-view case [113].Unfortunately, the computational cost is very high and so discretization of derivatives andusing �xed-point numbers are necessary to perform minimization in a reasonable time. It istheoretically possible to detect moving objects by means of optical �ow algorithms since thefunctionals do not prevent any point from being moved to any other point. For retrieving3D structure, however, it will be indispensable to introduce geometric constraints and thusto reduce the search range for point correspondences to a one-dimensional space, namely thedepth, which reduces the search space in the images to the (epipolar) line. Still, it is possibleto use the features of the optical �ow estimation pipeline for a sparse set of points, whichlater can allow either direct surface reconstruction or 2D meshing of points into trianglesand classi�cation of these triangles into consistent and non-consistent with the surface byconsidering pixels within these triangles.The state-of-the-art method for computing correspondences for a sparse point set is thewell-known algorithm of Lucas-Kanade-Tomasi (KLT, [94]) which iteratively searches fora (e. g. a�ne) transformation of a window around a point in the �rst image that producesa similar window in the second image. Usually the similarity is measured by the squarednorm of the di�erences of the intensities within both windows; the optimization method canbe gradient descent. The algorithm has one important advantage � no need for any priorinformation; hence a simple creation of image pyramids and the identity transformation asa starting value is usually a suitable approximation for the position of pixels in the nextimage. But it is also its disadvantage because the search range for point correspondences istheoretically unlimited. For this reason, e�orts were made to incorporate the known camerapositions. Trummer et. al. [130] consider the binocular case and support tracking of pointsalong epipolar lines. The component perpendicular to the epipolar lines is supposed tocompensate for uncertainties of camera poses. The algorithm is expected to perform worsefor points that lie near edges parallel to epipolar lines. In order to make this approachmore stable with respect to this problem, one can consider the work of Gruen [54, 55] as ageneralization of this approach in the case of a multi-view system. In the system describedin Eqs. 9-11 in [55], an a�ne transformation of points in images is supposed to compensatefor rotations, so instead of considering relative orientation of cameras, he uses an over-parametrized system of equations for every point (six a�ne transformation parameters percamera and three spatial coordinates). In [54], an additional variable expressing radiometricdeviation is introduced. A statistical test in order to eliminate unnecessary parameters fromfurther calculations is performed afterwards. Note also that no use of information fromalready established correspondences is made in these approaches.3.1.2 Considering the data termMany existing approaches of stereo matching are mentioned in the survey of Scharstein andSzeliski [115]. Local methods compute depth maps pixel-by-pixel using the principle "winnertakes all". For a pixel x = (x, y), values of a cost function (denoted by c = c(x) = c(x, d))are obtained for candidates in a suitable rectangle
[x+ dmin − εx;x+ dmax + εx]× [y − εy; y + εy],where εx, εy are needed to take into account uncertainties in the camera parameters and

dmin, dmax are the disparity ranges computed, for example, from already available points.The cost function can be SSD of gray values di�erences, NCC or some other distance functionof Sec. 2.2. The point with the highest score is chosen to be the corresponding point if itsatis�es some heuristics (for example, the value of the score must exceed a certain threshold).We can mention contributions due to [69] where disparities that failed the cross-check test(see Eq. (3.2) below) are marked as discarded and then �lled by values propagated from



Chapter 3. Previous work 30neighboring points, [18] where the window size for correlation was adapted according to thelocal geometric constellation (pixels with disparity similar to dx, i. e., lying near the fronto-parallel plane through x, obtain larger weights in e. g. (2.3)) and [114] where a di�usion termwas introduced.Of course, these methods produce a large set of outliers among point correspondences inthe regions of repeatable texture and homogeneously textured regions. This happens becauseno model assumptions about the surface are made and so not all available information isused. In order to extract only reliable, con�dent pixels, [112] suggests discarding ambiguousmatches by selecting the maximum stable component along an epipolar line. This largeststable subset is proved to be unique, but � especially in areas of homogeneous texture, � itcan be very sparse and even empty.3.1.3 Considering the smoothness termSince we want to retrieve a reliable set of correspondences homogeneously distributed in theimages, we strive for an e�cient minimization of (2.9). To reduce computing time, depthor disparity scales must be discretized into labels. For example, we assign for every integerdisparity value (in pixels) one of S + 1 values j = 0, ..., S. Even with this discretization,global minimization of (2.9) was shown to be an NP-hard problem [19, 51], which meansthat the order of magnitude of operations needed for computing an exact minimum cannotbe less time-consuming than the brute-force procedure of O(SM ) con�gurations, where M isthe number of pixels in the images. We will sketch and discuss several methods of di�erentcomplexity that allow determining a strong local minimum of (2.9).Dynamic Programming, tree-based optimizationThe method presented in [10] suggests minimizing the energy functional along all epipolarlines using a well known method of dynamic programming. We will use this method for multi-view optimization and, from a detailed description of this method in Alg. 8.2 of the Appendix,we will see that the complexity can be reduced to O(MS) where M is the number of pixelsin the images and S is the number of depth/disparity values. However, the distributionof costs in the adjacent epipolar lines can be completely di�erent which usually leads toimplausible bulges and convexities in the �nal result. We do not discuss here heuristicsfor additional optimization in the direction perpendicular to epipolar lines, but turn ourattention to a generalization of this method given in [132] which uses a minimum spanningtree [82] from the weighted graph of absolute gray value di�erences of the neighboring pixelsinstead of (epipolar) lines. Since by including an edge between neighboring pixels x and y inthe tree, one enforces the constraint that pixels x and y should have similar disparities, it isreasonable to weight the edge of the graph by |I0(x)−I0(y)| and then to create a minimumspanning tree of such a graph.The algorithm starts at the leaves of the tree (as in [10], it starts in the �rst pixel of theepipolar line) and processes along the branches of the tree until the root is achieved. Fromthe root, it is then possible to go to every leaf since the recursive information, which is thebest disparity value of the current pixel (i. e. child) given a disparity value for the previouspixel (i. e. parent), is available; compare Alg. 8.2, p. 142. The algorithm has the propertyof being invariant with respect to image subdivision (since the minimum spanning tree ofa union of disjoint sub-images is a union of minimal spanning trees of these sub-images[82]), which o�ers an elegant way to compute depth/disparity maps even from large images.However, also here bulges that correspond to the branches of the tree are inevitable in the�nal result.



31 3.1. Previous work on depth map computation2D Global approachesAs mentioned before, the process of �nding a 2D global minimum of equation (2.9) is,unfortunately, a NP-hard problem, in contrast to both of the methods mentioned above,which obtain a global minimum of the 1D equivalent of equation (2.9). The algorithms ofalpha-expansion [80] and alpha-beta-swap [19] based on graph cuts and belief propagation[77, 124] approximate this minimum by iterative procedures.For example, given a depth map D, an alpha-expansion (α-expansion) of D, as describedin Kolmogorov and Zabih [80], is a con�guration D′ with D′(x) = D(x) or D′(x) = α. Nowone can de�ne a binary function f such as f(x) is true if D′(x) = D(x) and false otherwise.It is possible to construct a graph that minimizes in a polynomial time the energy functionfor binary variables:
E(f(x1), f(x2)...f(xn)) =

∑

i,j

E(f(xi), f(xj))if and only if E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0). The procedure of construction andminimization of the binary graph is given in [81].Now disparities from dmin to dmax are randomly ordered. The inner iteration consists ofselecting a disparity j from the list and minimizing energy over all j-expansions of D viagraph cuts. The outer iteration consists of repeating the inner iteration until no improvementin the value of energy function has been achieved.Especially for Nadir �ights, the graph-cuts approach turns out to be one of the bestmethods for removing noise without over-smoothing the edges. However, its main disad-vantage is an extremely long computing time. Another drawback is that the method hasproblems in scenes with many slanted surfaces.Semi-global approachesAnother procedure for minimization of (2.9) is the method of Hirschmüller [67], originallyelaborated for disparity map computation from a stereo pair. Here paths from di�erentdirections leading into one pixel are accumulated. For only one path, the method becomesequivalent to the dynamic programming. The key idea of algorithm is here, similar to [10],to use the previous pixel x− r in order to compute the disparity value for the current pixelx. The di�erence is that the global value of the cost function is stored in a M × S arrayobtained by summing up costs of all paths of the same disparity and then the disparitywhich yields the lowest result is chosen.The original approach of [67] consists of computing image pyramids, then to start usinga random map and iteratively calculate improved maps, which are used for a new cost cal-culation by means of Mutual Information (see Sec. 2.2.3). Finally, images and correspondingdisparity estimations are iteratively upscaled until the original scale is achieved. Since the�nal result usually looks too noisy because of discretization into a �nite number of paths,the author suggests using a median �lter to obtain the �nal result.To �nd occlusions and mismatches (in the reference image I1), one �rst computes dispar-ity map D12 from I1 to I2, then D21 from I2 to I1, after which pixels x with the property
∣
∣D12(x) +D21

(x+ [D12(x), 0]T )∣∣ > 1 (3.2)are marked as occluded. We will take a closer look at the implementation details for themulti-view case in Sec. 4.5.3 and we will see that it is also here possible to perform semi-globaloptimization in a linear time.



Chapter 3. Previous work 32The semi-global approach has another advantage in comparison with the the graph-basedalgorithm, apart from computing time. In its original implementation, graph cuts approachassigns to pixels in the regions of homogeneous texture depth values from neighboring tex-tured pixels and propagates these values, which leads to spurious disparities in whole regions.However, the semi-global approach solves this problem by considering di�erent patches andthus smooths the �nal result, as we will see in Chapter 6.In the last paragraph of this subsection, we mention other modi�cations of the semi-globalmatching. In the method due to [15], another sophisticated path choice was given and theauthors of [62] generalized the semi-global method for the recti�ed con�guration of threecameras. Finally, in [68], particular attention was paid to homogeneous segments. Mean-shift segmentation of the reference image was performed and included in the semi-globalmatching pipeline, with an assumption that homogeneous segments must have approximatelythe same disparity.3.1.4 Other approachesTo end this section, several other methods for depth or disparity map computation will belisted here, especially those that use a set of more than two images and use already availablesets of points. Many authors perform image segmentation in order to improve reconstructionin textureless areas [7, 14, 68, 77, 87]. For example [14], after performing color segmentationof one image of a recti�ed stereo pair and computing disparity from some reliable points, theauthors store the three degrees of freedom of the homography induced by a scene plane forevery segment in a vector v. The disadvantage is that, in general, v does not have geometricmeaning and depends, as we will see in Sec. 4.3.1, only on the way the images are recti�ed.For this reason, the authors state that the weak point of the algorithm lies in the groupingplanar segments into layers by computing Euclidean distances of corresponding values of v.Besides this nontrivial task of assigning planes to segments and typical artifacts arising fromover- and under-segmentation, color segmentation is not possible for infrared images, whichare actually very important in our applications. Furthermore, Szeliski and Coughlan [127]extracted depth maps by means of splines. In [105], the Delaunay triangulation1 of pointsalready determined is obtained; [103] proposes using edge-�ip algorithms in order to obtaina better triangulation since the edges of the Delaunay-triangles in the images are not likelyto correspond to the object edges, but the point correspondences obtained at that stage areusually too sparse.Using more than two images usually does not allow joint image recti�cation; neverthelessit is possible to use depth instead of disparity values. Multi-view systems are known to bemore robust against occlusions and patterns of repeatable texture because using redundantinformation from more than two images allows suppressing spurious local maxima of thecost function. One survey about handling occlusions in stereo- and multi-view systems canbe found in [74]. A global graph-cuts-based algorithm for multi-view depth map extraction[80] makes use of an additional term that marks occlusions and takes on the value in�nity forforbidden con�gurations. The work of Mayer and Ton [98] is a simpli�cation of the recon-struction pipeline of Schlüter ([116], see Sec. 3.3.1). A coarse 2.5D triangular mesh of pointsin a reference image is given and pixels inside the convex hull are projected into other imagesin order to obtain the local minimum of the cost function and thus the correspondences.This approach has turned out to be rather unstable for more than three images.In the work of [86], which makes up the Google 3D software, high-resolution images withenough overlap are used and depth maps are computed by means of [77]. This method is1There can be several Delaunay triangulations for degenerate sets of points, however, we can alwaysimagine a slightly transformed point set and so, for a general case, there is only one Delaunay triangulation.



33 3.2. Previous work on shape reconstructionknown to perform well for many fronto-parallel surfaces. Model assumptions are then usedto perform tessellation.The well-known software described in [50] is a continuation of the Microsoft-based soft-ware Photosynth. The main goal is to obtain dense reconstructions from arbitrary imagestaken mostly by tourists from historic buildings and available in the Internet. Even morethan the depth map computation itself, the authors are concerned about criteria for thechoice of local neighbors of the reference image from which the depth map is computed.These are: global criteria such as the number of common (SIFT, [92]) features, angles be-tween reprojection rays from these features and di�erences of the resolution, as well as(after rescaling images according to the resolution changes) local criteria, which include thechanges of the y-coordinates in the camera positions (in order to stabilize depth computationnear horizontal lines) and the matching scores of the local features with the ZNCC-matchingfunction (2.6). The (non-zero mean) NCC is the cost function for the region-growth-basedapproach for depth maps computation, but an important feature here is that the color shiftcomponent (denoted luminance in Sec. 2.2.2, Eq. (2.5)) is forced to be the same for eachimage pair and hence is included in the optimization. The output of the procedure is a 3Dpoint cloud. For our applications, a conclusion can be made that matching SIFT points can-not provide the desired resolution for spatial depth (because subpixel accuracy of matchingis not given) and therefore tracking algorithms provide better subpixel coordinates for thecharacteristic points.3.2 Previous work on shape reconstructionBecause of rapid progress in hardware development that allows processing large point sets,there are plenty of algorithms for generating models from scattered point sets. The goalof this section is to provide an overview of several surface reconstruction algorithms and todiscuss their potential advantages and disadvantages for application on our point clouds.We will consider in Secs. 3.2.1, 3.2.2, 3.2.3, 3.2.4, respectively, examples of four main ap-proaches of geometric reconstruction, namely, TINs (examples stemming from the generalidea of Sec. 2.4.1), (implicit) iso-surface extraction, surface reconstruction by level sets, andsurface reconstruction by explicit functions (tensor-product splines). Sec. 3.2.5 is dedicatedto several alternative algorithms for surface reconstruction.3.2.1 Polygonization of surfaces of unknown topological type byTINsMotivated by the approach of Amenta and Bern, many approaches are based on the localsample density. One of the typical examples presented in Gopi [52] requires that the dotproduct between the normals of neighboring points must be approximately constant andbounded away from zero. Then a local (2D) Delaunay triangulation of every sample point inits local coordinate frame replaces the 3D Voronoi polygonization of [4]. Medeiros et. al. [100]even compress the point set (by fusing neighboring points into clusters) and apply also alocal algorithm for triangulation. The method of Boissonnat [16] starts with a Delaunaytetrahedrization of 3D points, and deletes iteratively all tetrahedra which either have oneborder face and the vertex non-incident with this face as an interior point, or two borderfaces and one interior edge. Other criteria (as in our case, visibility criteria for the givencamera locations and corresponding depth images) can be applied, too. Another method,called ball pivoting algorithm it proposed by Bernardini et. al. [12]. It starts with a ballaround a �xed edge in the point set. Its radius is diminished until the next point is hit. Thetriangle formed by this triple of points is added to the list and the procedure is propagatedfrom these recently added edges. Finally, α-shapes [43], a geometric tool widely used and



Chapter 3. Previous work 34investigated for surface modeling, consist of all triples of points such that no further point of
X lies in one of two spheres of radius α around these triples of points. Clearly, for large valuesof α, the convex hull of X will be obtained while for too small values of α, the resulting setof triangles will be empty (see Fig. 3.1, left, for visualization of these situations). To namesome advantages of α-shapes, we mention that the size of the triangles is automaticallyregularized, α-shapes are easy to generalize for higher dimensions, and, since they are asubset of the Delaunay triangulation (or, in 3D, tetrahedrization) of X , they are in principaleasy to compute.The concept of α-shapes can be generalized to the case when information about distri-bution and quality of points is available. Here, weighted α-shapes [44] can be used. Thepoint X is given a weight (wX) such that the weighted distance between two points X,Yis given by d̃(X,Y) = dst(X,Y)− wX − wY. Just as α-shapes are subsets of the Delaunaytriangulation (tetrahedrization) of X , weighted α-shapes are subsets of the so called regularsimplicial complexes, which can be extracted in a manner similar to the way in which theDelaunay triangulation of X is generated.Despite the advantages of α-shapes and other TINs-based methods, the reconstructionresults produced by them su�er from the drawbacks mentioned at the end of Sec. 2.4.1. Eventhough e. g. [11] gives a necessary condition when a triangular mesh modeled by α-shape ishomeomorphic to F , in many practical cases, the surface is not topologically correct. Forexample, it is not guaranteed that an edge is shared by exactly two triangles. If α is toosmall, the resulting mesh will contain holes. If α is too large, it will connect points oftopologically di�erent fragments. Furthermore, noise around nearly planar regions in X willresult in visually unpleasant artifacts.
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Figure 3.1: Left: Alpha-shapes (depicted by black line segments) for di�erent values of
α. The characteristic circles around segments that belong to the α-shape are depicted incyan and their size is indicated by red circles on a blue background in the lower right ofeach portion. Right: Iso-surface extraction by [70]. Surface points X are depicted by redcrosses and the nodes Y of the volumetric grid by blue crosses. The value d of the signeddistance function is given by the length of the perpendicular from Y in the direction of "its"tangential plane (black horizontal line) if there is a sample point near the base-point, as inthe case of Y1. Otherwise, as for Y2, it remains unde�ned. Problems are expected in theareas near sudden changes of normal vector �eld, see Fig. 6.33, p. 113.



35 3.2. Previous work on shape reconstruction3.2.2 Iso-surface extractionAn iso-surface is a surface in space that represents points of a constant value of a trivariatefunction f(x, y, z). For the both state-of-the-art methods covered in this section, f representsthe signed distance from the point to the surface and it is computed at the vertices of atensor-product volumetric grid (xk, yl, zm), k = 0, ..., gx, l = 0, ..., gy and m = 0, ..., gz and
gx, gy, gz are the numbers of nodes in the grid, usually chosen in the way to guaranteeapproximately equal resolution of the grid in x, y and z direction. After extracting f , oneperforms meshing by means of one of the method mentioned in Sec. 2.4.2.Hoppe's methodThe method of Hoppe et. al. [70] is able to reconstruct a smooth, orientable surface of ar-bitrary topological type and consists of four steps (for schematic visualization, see Fig. 3.1,right). In the �rst step, the approximate computation of a surface tangent plane center andnormal vector for every sample point takes part. The tangent plane consists of the surfacenormal n (always of length 1) and the plane center C that can be computed as an average ofneighboring points. Then the surface normals are consistently oriented, which means thatfor neighboring points X and Y, the dot product of the normals nTXnY (which is expectedto be close to ±1 since the surface is piecewise smooth) should be rather close to 1 than to
−1. An exact solution of an energy function minimization implies a graph-cuts-based mini-mization, but in [70], a sign-propagation approach is proposed. In the third step, the valueof the signed distance function dst(Y) from each node Y of a volumetric grid is computedby projecting Y onto the tangent plane i, where the center of the plane i is the closest to
C. This function re�ects the distance from Y to the closest point on the surface. Formally,we have i = argmin(dst(Y,Ci)), the base-point

V = Y− ni

(nT
i · (Y−Ci)

) and dst(Y) = nT
i (Y−Ci) (3.3)is set to be the value of the signed distance function if and only if there is a sample pointof X within a sphere of radius ρ around V. Otherwise it is set to in�nity. In the laststep, triangles are extracted from the volumetric grid by one of the approaches described inSec. 2.4.2.Experiments show that the approach of [70] performs well in presence of moderate Gaus-sian noise. Its another advantages is the topological �exibility: there is no need to di�eren-tiate between 2.5D and 3D surfaces. But the approach has the following disadvantages: itis not immediately clear how to take the sample's accuracy (weighted points) into account.For a point Y quite far from the surface, a correct value of the signed distance function ishard to determine, especially if the surface has boundaries or there are uncertainties in thevalues of n. Other problem can emerge near the points of the medial axis, where functionvalues can di�er from negative to positive and so ghost triangles can appear. Also, theapproach does not perform well in regions of rapid curvature changes and non-continuousdistribution of normal vectors.Based on values of the signed distance function retrieved by [70], local adaptive [6] andglobal [42] methods were developed to support smoothing the function values at grid nodesand also at the intermediate points.Applying the Fourier transform for water-tight surface extractionAnother well-known method of iso-surface extraction from water-tight surfaces (i. e., thosethat partition the space into two sets, one with positive and one with negative values ofthe signed distance function) is given in [75]. Given the point sample and normal vectors

(x,n), the procedure �rst retrieves the Fourier transform of the characteristic function χ of



Chapter 3. Previous work 36the surface (χ(x) = 1 if x ∈ F and χ(x) = 0 if x 6∈ F) from the point set S and the set oforiented normal vectors using Stokes's theorem.
χ̂(v) =

∫

R3

χ
F
e−ivTxdx =

∫

F

e−ivTxdx =

∫

∂F

Gv(x)n(x)dx ≈
∑x∈X

Gv(x)n(x),where ·̂ denotes the Fourier-transform, v = (k, l,m) is a triple of integer numbers and Gis a vector function such as div(Gv(x)) = e−ivTx for all v. In [75], the term Gv(x) =

ive−ivTx/||v||2 is proposed, because it is the only function that is invariant under rotationsand translations and by which "no points in�uences its neighbor".After obtaining χ by Fast Fourier Transformation, the resulting mesh may be obtainedby any polygonization algorithm mentioned in Sec. 2.4.2. Of course, our models are notwater-tight. Therefore, the resulting surface must be �ltered in an additional step, e. g. byremoving pieces of the surface outside the bounding box of F .3.2.3 Surface reconstruction by level setsThe key idea of the level set method is an exploration of the evolution of the open, possiblymulti-connected set Ω ∈ R
n, bounded by a hyper-surface F under in�uence of a velocity�eld, see [106]. This velocity �eld can depend on position, time, geometry of F and manyother factors. The function φ(X, t), which (similar to the last section) is positive for X ∈ Ω,negative for X 6∈ Ω ∪ ∂Ω and zero at the border ∂Ω, is a kind of characteristic functionfor Ω. A signi�cant advantage of the representation can be seen from Fig. 3.2: the threedi�erent curves in the top of the �gure have completely di�erent topology and can hardly beparametrized from a mere intuition. But, if one considers the three-dimensional counter-partof these graphics (in Fig. 3.2, bottom), an evolution principle becomes evident and clear.

Figure 3.2: Top: the behavior of the level-set function is hard to describe by an explicitfunction. Bottom: in 3D, it is easy to observe how the level set function merely is moveddownward and so parameterization is easier in 3D. Source: Wikipedia.Reconstruction of open, water-tight surfaces is one of the applications of the level setmethod. The task is to obtain a steady-state solution for a partial di�erential equation (PDE)
∂φ/∂t + f(X, φ,∇φ) = 0 with a suitable function f ; the PDE representation means thatthe surface is assumed to be a time-dependent function that ideally converges to the correctsolution for t → ∞. This surface deformation approach has turned to be a very suitablemethod to optimize a surface given several kinds of information. A modi�cation of thatmethod will be presented in Sec. 3.3.2, and one of its best-known alternatives is the snake



37 3.2. Previous work on shape reconstructionalgorithm (see, for example, [65]). The partial di�erentiation of the PDE mentioned abovehelps to obtain the Euler-Lagrange equation for its steady-state solution. The resultingfunctional consists of a data term (which can express, similarly to [106] the distance fromthe point cloud to F or some radiometric relations, compare [76]), a smoothness term, whichaccording to [106] punishes the area of F , and, additionally, a salience �eld, which is usedto reduce the number and in�uence of outliers (see [93] for further information).The technical details of the approach for obtaining a solution of PDE mentioned aboveare described in [106]. The �rst step is an approximation of φ and its derivatives on adiscretized Carthesian grid. Then the solution of the discretized PDE can be obtained viaTVD (total variance diminishing) by Runge-Kutta schemes.The results of the level set approach are usually visually good even for a high percentageof outliers, especially after being extended with the salience term of [93]. However, thetensor voting procedure works only if the number of inliers is high and their distribution ishomogeneous. In addition to the rather high computing time needed to solve the PDE, thereare two other reasons why the level set in its straightforward implementation can hardly beapplied on our problem. First of all, the model assumption of a C2-function bias the resultstowards Gibbs artifacts (over-swinging near sharp edges and gradient discontinuities). Thesecond problem consists of the fact the models to be instantiated in our applications are notnecessarily water-tight.3.2.4 Approximation of surfaces on two-dimensional tensor-productgridsIf the assumption of the z-axis as a dominant direction holds (e. g., by �ights at su�cientlyhigh altitudes), it is possible to parametrize the terrain along its length and width by inde-pendent variables u and v and model the height
zi,j(u, v) = Ai,jFi(u)Gj(v), i = 0, ..., I, j = 0, ..., J (3.4)with basis functions F (u), G(v) of independent parameters u, v and unknown scalars Aij .Grid�tThe simplest possibility is to let F and G be �xed and model Ai,j . In the case F = G = 1,

Ai,j represent the function values of z at the nodes (ui, vj) and will be denoted by zi,j .For example, grid�t, a widely used modeling tool available in MATLAB (see [38]) can beapplied for obtaining the unknown zi,j and thus a C0-surface homeomorphic to a plane. Theresulting surface has to approximate the points X = (x, y, z) in the least square sense andthe interpolated method can be either:1 Bilinear: for ui < x < ui+1, vj < y < vj+1, we have
z(x, y) = t (szi,j + (S − s)zi+1,j) + (tj − t) (szi,j+1 + (S − s)zi+1,j+1) , (3.5)where s = x− ui, si = ui+1 − ui, t = y − vj , tj = vj+1 − vj (see Fig. 3.3, left).2 Triangular: here we use the local barycentric coordinates of (x, y) in the trianglesobtained after tracing the diagonal zi,jzi+1,j+1 of the spatial quadrilateral zi,jzi,j+1

zi+1,j+1zi+1,j . We have:
z(x, y) =

{
Uzi,j + Vzi+1,j +Wzi+1,j+1 s/t ≥ si/tj
Uzi,j + Vzi,j+1 +Wzi+1,j+1 s/t < si/tj .

(3.6)



Chapter 3. Previous work 38The condition s/t ≥ si/tj means that (x, y) lies in the upper triangle of Fig. 3.3,right, made by points (ui, vj), (ui+1, vj) and (ui+1, vj+1) with U ,V ,W are the localbarycentric coordinates corresponding to this vertices, while the condition s/t < si/tjis equivalent to (x, y) is incident with the bottom triangle.3 Nearest neighbor: the coordinates of x and y only have to be rounded towards thenearest vertex of the rectangle. Clearly, this kind of interpolation will be sub-optimalin the majority of cases, but it helps to save computing time.The �rst two options for interpolation mentioned in the previous paragraph also have theirdrawbacks. For example, in (3.5) the result will be di�erent, in general, for curvilinearrectangles, if we replace s, si and zi+1,j by t, tj and zi,j+1 respectively, because two lines inspace do not necessarily intersect. In (3.6), the result will be di�erent if the other diagonal ofthe quadrilateral is chosen. The optimization process consists of solving an over-determinedsystem of equations with a sparse, banded-structured left-hand-side matrix A using well-known methods of linear algebra.
W V

U

Figure 3.3: Left: Bilinear interpolation of a point (x, y) and (unknown) function values inthe grid nodes. Right: Triangular interpolation. See text for further explanation.SplinesIn order to cope for the negative e�ects mentioned at the end of previous paragraph, onehas to use other functions F (u), G(v) as the basis functions in (3.4). Hoschek and Lasser[73] consider in Chapter 6, among others, bicubic polynomial splines
zi,j =

3∑

k=0

3∑

l=0

Ai,j,k,l(u− ui)
k(v − vj)

l. (3.7)Since these splines will be very important for our applications in Sec. 5.2, we now providethe necessary theoretical background about bicubic splines. A bicubic C1-spline is uniquelydetermined by the values of the function z and its partial derivatives ∂z/∂u, ∂z/∂v at thegrid vertices (ui, vj) which we denote by zi,j , (zi,j)u, (zi,j)v, respectively.The integration of a data point (x, y, z) into the matrix A succeeds by assigning it toone of four triangles built by the diagonals of the cell containing (x, y) and computing itsSibson-element [57, 85]:If (x, y) lies in the triangle speci�ed by:
{

(ui, vj), (ui+1, vj),

(
ui + ui+1

2
,
vj + vj+1

2

)}then
x̃ = (x− ui)/si, ỹ = (y − vj)/tj with si = ui+1 − ui, tj = vj+1 − vj



39 3.2. Previous work on shape reconstructionlies in the triangle T0 speci�ed by vertices (0, 0), (1, 0) and (1/2, 1/2) and we can expressthe function value for z in terms of function and derivative values at the vertices of thecorresponding rectangle by means of the following equation.
z(x, y) =

[
1− 3x̃2 + 2x̃3 − 3ỹ2 + 3x̃ỹ2 + ỹ3

]
zi,j

+si

[

x̃− 2x̃2 + x̃3 − ỹ2

2
+

x̃ỹ2

2

]

(zi,j)u+ tj

[

ỹ − x̃ỹ − 3ỹ2

2
+ x̃ỹ2 +

ỹ3

2

]

(zi,j)v

+
[
3x̃2 − 2x̃3 − 3x̃ỹ2 + ỹ3

]
zi+1,j + si

[

−x̃2 + x̃3 +
x̃ỹ2

2

]

(zi+1,j)u

+tj

[

x̃ỹ − ỹ2

2
− x̃ỹ2 +

ỹ3

2

]

(zi+1,j)v +
[
3ỹ2 − 3x̃ỹ2 − ỹ3

]
zi,j+1

+si

[
ỹ2

2
− x̃ỹ2

2

]

(zi,j+1)u + tj

[

x̃ỹ2 − ỹ2 +
ỹ3

2

]

(zi,j+1)v

+
[
3x̃ỹ2 − ỹ3

]
zi+1,j+1 + si

[

− x̃ỹ2

2

]

(zi+1,j+1)u + tj

[

−x̃ỹ2 +
ỹ3

2

]

(zi+1,j+1)v .

(3.8)
Expressions for the Sibson element in the other three triangles can be created by mappingthese triangles onto T0. For instance, for the triangle with vertices {(xi+1, yj), (xi+1, yj+1),and (xi + xi+1, yj + yj+1)/2} (or, equivalently, (x̃, ỹ) vertices (1, 0), (1, 1), and (1/2, 1/2)),one adjusts (3.8) by replacing x̃ by 1 − ỹ and ỹ by x̃ and by rotating the indices ofthe four vertices of the cell, replacing zi,j, zi+1,j , zi+1,j+1 and zi,j+1 (with derivatives) by
zi+1,j , zi+1,j+1, zi,j+1 and zi,j , respectively.Smoothing SurfacesThe surfaces described above are �tting surfaces, in other words, they assume a point set ofhigh accuracy more or less regularly distributed over the parameter domain [u0;uI ]×[v0; vJ ].The result of these routines applied for point sets with sparsely covered regions will be poorsince the matrix A will have a multi-dimensional null-space. Similar to Sec. 3.1, we will haveto extend the data term:

‖z − z(x, y)‖, (3.9)(where X = (x, y, z) is a sample point and z(x, y) as in (3.4)) by a smoothness term. In thecase of grid�t, three possibilities are given:1 A Di�usion, or Laplacian term is the weighted norm (weight λ) of the numericalLaplacian ∆ of neighboring grid points. For example, for a point i, j such that i, j >
0, i < I, j < J ,

∆ = [2zi,j − zi−1,j − zi+1,j 2zi,j − zi,j−1 − zi,j+1]
T
, (3.10)which contributes two new rows to the matrix A. The weight λ balances data �delityand hypothesized properties of the surface. For the grid points on the margin ofcomputation domain but not in the corner, only one row of (3.10) is added. The totalnumber of equations thus obtained is 2(I − 1)(J − 1) + 2(I − 1) + 2(J − 1).2 The Gradient strategy suggests minimizing the norm of the gradient and is subtlydi�erent from what we saw before, since here the directional derivatives are biased tobe smooth across cell boundaries in the grid. The total number of equations here is

(I + 1)J + (J + 1)I.



Chapter 3. Previous work 403 Springs minimizes springs between neighboring nodes as well as between data pointsand the nodes of the grid. In this case, the nodes drag the surface toward the localmean of the data and therefore it is usually only a suboptimal choice. The totalnumber of equations here is 2m+ (I + 1)J + (J + 1)I.One of the �rst two terms is usually applied in the case of more complicated basisfunctions, as described in the previous section. Here the balance parameter λ as in (3.10)plays a role similar to that in equations of Sec. 2.3. Theory to guide the choice of λ is notyet well developed.In the case of conventional splines [73, 122], regions with sharp changes of curvature oftencannot be reconstructed correctly. For regions of rapid change of curvature (e. g., cornersof building), overshoot (Gibbs) artifacts emerge if the smoothness parameter λ is too smallwhile oversmoothing occurs if λ is too large. One possibility to solve this problem is presentedin [20], where reduction of the smoothness parameter near the characteristic edges in theimages is proposed; however, these edges have to be identi�ed in advance. Alternatively, the
L1-spline-based approach, originally elaborated by Lavery for approximation of 2.5D surfaces,allows non-overshooting and non-oversmoothing reconstruction of regions of sharp changeof curvature without requiring additional information, albeit at additional computation cost[84, 85]. In addition, L1 splines provide accurate terrain reconstruction even in cases withconsiderable noise and outliers. The remaining problem is thus to generalize this approachfor our applications � reconstruction of a fully 3D surface represented by a vector functionX(u, v) under the assumption that the surface is "nearly" 2.5D with the z-axis as dominantdirection.Summarizing the contents of this section, we state that smoothing splines on tensor-product grids are often used to retrieve plausible surfaces approximating noisy point clouds.However, because videos of the urban terrain recorded from a moderate height cannot berepresented by a function z = z(x, y) but rather require representation by a parametrized3D-vector function X(u, v), the question of parameterization must be solved. Typically,the parametrization by u and v is unknown a priori. If we succeed in �nding a suitableparameterization, the probability of obtaining good results is high.3.2.5 Other methodsHere we will describe several approaches of meshing point clouds that can be applied for thekind of data obtained from our image-based methods. For example, in [99], a constrainedDelaunay triangulation [119] of sparse points and endpoints of characteristic edges in everyreference image is obtained and afterwards a visibility constraint for every triangle is checked.The triangles in a new reference view that occlude a point obtained in an old reference vieware discarded. This approach leads to holes in the mesh and to artifacts resulting fromnoise and outliers in the data. The group of space-carving methods [83] also uses the powerprinciple: the more photographs are available, the more di�cult it is for 3D points tosatisfy either spatial or radiometric constraints and once a surface point fails to satisfy theseconstraints, no new image of that point can re-establish the reliability of this point.Several authors [1, 78] (see also contributions mentioned in these two papers) performsurface reconstruction by modifying the well-known Shepard method (Hoschek and Lasser[73], Chapter 9) for scattered point approximation. They interpolate on a volumetric gridY = (xk, yl, zm) the 3D function

a(Y) =

∑

i wi(Y)Xi
∑

i wi(Y)
where wi(Y) = − exp

(‖Y−Xi‖2
σ

)

,



41 3.2. Previous work on shape reconstructionor some other function that has a maximum atXi and decreases toward zero in all directions.Here, σ is a scalar that depends on the distribution and quality of the points. The resultingsurface is the zero set of the function
f(Y) = nT (Y) (Y− a(Y)) and n(Y) = argmin

(
∑

i

nT (Y) (Xi − a(Y))wi(Y)

)is the (oriented) normal vector �eld to be estimated. Intuitively, the point sets are locallyapproximated by planes and the size of the local neighborhood is given by the potentials wi.Di�erent approaches make use of topological relations between the points and variation ofnorm (since the L2-norm is known to be sensitive to noise and outliers).The approaches of [97, 34] and [117] are dedicated to extracting special kinds of surfaces.The work [97] searches for vertical planar segments from sparse 3D points clouds, since manyghost planes may appear if the assumption of vertical segments identifying building walls isdropped. On the other hand, [34] �ts conics in the depth maps. Finally, [117] searches forgeometric primitives in laser point clouds using RANSAC with an octree-based evaluationcost function.
P1

P2

P3X3

X2

X1

Figure 3.4: A typical approach of surface (illustrated by the blue curve) reconstructionfrom dense range images. As an approximation of the absolute value of the signed distancefunction at X (nodes of a volumetric grid, denoted, in selected cases, by orange circles),one takes min(|δi(X)|) over all reference images (identi�ed by the corresponding cameramatrices Pi) with the sign +1 if and only if all δX are positive (as for the point X2). Atthe points for which δi(X) cannot be calculated (for instance, X3), the value of the signeddistance function is left unde�ned.Curless and Levoy [36] have a set of depth maps Di corresponding to several referenceimages as input and calculate, in a volumetric grid, a signed distance function consisting ofa weighted sum of signed distances to the surface in the direction of the camera view. Theproblem is the choice of function values "behind the surface" which may lead to multi-sheetsurfaces. A possible solution consists in keeping track of the union of all regions behind thesurface and setting its signs after all depth maps are processed [80]. A typical constellationis shown in Fig. 3.4, where, for each grid point X and each reference camera Pi, the term
δi(X) = |CiX|−Di(PiX) can be calculated. (Note that, in an manner analogous to Fig. 3.4,we can write instead of the distance |CX| between X and camera center, the depth value
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dX; see Sec. 5.1.1.) The sign of the signed distance function at X is positive if and onlyif all δ(X) are positive. Turk and Levoy [129] remove the redundant parts of the meshes,connect their boundaries and, �nally, update the positions of the vertices. We assume thatthe results of this algorithm will be similar to the iso-surface extraction, since the mesh isnot expected to be topologically consistent and the values of signed distance function are notexact. As an example, one sees that the bad approximation of the signed distance functionin X1 and X2 resulting from the depth map at P1 (speci�ed by red dashed lines in Fig. 3.4)can be corrected by P2. However, in reality, such a P2 is either not necessarily given or maybe occluded by another object.3.3 Overview of three existing reconstruction pipelinesThere is quite a large amount of work on textured 3D reconstruction from images andvideos because of the importance and elegance of this area. In this section, we will presentseveral of approaches and discuss their applicability for our data. In particular, we willlearn form Schlüter's dissertation of Sec. 3.3.1 how to create, starting from a coarse 2.5Dtriangulation, a 3D description of surface patches in local coordinates. The idea of enrichinga sparse 3D point set by means of radiometric relations and then fusing an enriched pointset into a 3D surface is presented in Sec. 3.3.2 and a real-time oriented incremental approachof local tessellations from depth maps is given in Sec. 3.3.3. For additional relevant workon reconstruction pipelines that go the complete way from image sequences to textured 3Dmodels, we refer to [120].3.3.1 Schlüter's thesisThe approach of [116] generalizes global methods for 2.5D surface-�tting on a rectangulargrid by several images [63, 135] and uses multi-grid method to obtain dense 3D models with-out prior knowledge about the surface. The 3D nodes are vertices of a global triangulationto be de�ned for every pyramid level. The observations are de�ned for every pixel in everyimage that covers a patch F of the surface. The selection of images succeeds by means ofvisibility constraints previously computed. Both the point of intersection of a reprojectionray with F and its local barycentric coordinates within the corresponding triangle in spacecan be computed, which allows computing surface normals and main curvature directions.The solution of the resulting di�erential equation presupposes updating F by means of slid-ing 3D points in the direction of their normal vectors. Of course, updating the position ofevery single point can lead to completely wrong results, since the interactions of neighbor-ing pixels are not considered. Therefore, a regularization term that consists of a distancefunction between local tangent planes for adjacent points is added.The bottleneck of the method is the choice of the initial triangulation. While the authorclaims the 2.5D Delaunay triangulation of x and y coordinates of the available 3D pointsis good enough for the initialization, it is clearly not su�cient for our applications wherethe sensor platform may be located near the walls of the building, so that, in the case ofbalconies and overhanging roofs, projection of points into the xy-plane will not correspond tocorrect topological relations between the points. Varying density of the 3D points obtainedby photogrammetric methods does not contribute to the stability of such a triangulation.Since minimization parameters include both geometry and color information (together withthe local values of brightness and contrast), the parameter matrix becomes rather largeand the solution cannot easily be computed for a large number of images covering a broadscene. Therefore the 3D data presented in [116] include only a few high-resolution intensityimages around a small object (a single house) and not a complete, theoretically in�nite video



43 3.3. Overview of three existing reconstruction pipelinessequence with a lot of redundant information. For large data sets, it will be an advantageto split the process up into the image-based and point-based stage.3.3.2 Reconstruction by Furukawa and PonceThe key idea of this work [48] is to obtain a set of patches that are parts of the object surfaceusing a sophisticated region-growing system. Every patch is characterized by its center andnormal in the direction of its reference image. These two parameters are obtained by min-imizing the NCC-score. Initial guesses are given by matching algorithms for characteristicfeatures [92, 60] along epipolar lines in the images. At the initial stage, the patch must bevisible in at least two images and not be occluded by other patches in other images thatcan potentially see it. At the expansion stage, neighbors of already reconstructed patchesmust be added to the reconstruction. For accomplishing this task, images are partitionedinto quadratic cells, each of which can potentially contain several patches. The empty cellsthe neighbors of which contain already reconstructed patches are explored. The next stageis �ltering, where �rst patches that occlude more than n patches and �nally patches thatare occluded by more than m other patches (n, m are automatically calculated thresholds)are deleted.Since, until this stage, the algorithms are local, many outliers are expected and a subse-quent �ltering stage is indispensable. Since patches are sparse in space and even more holeswill be left after the �ltering process, Furukawa and Ponce propose a post-processing opti-mization that is described in [47]. An energy function that includes a smoothness term forminimization the second derivatives of local parameterizations of mesh nodes, a photometricconsistency term based on the reconstructed patches in the �rst phase, and a visibility termthat is additionally inserted in the case accurate silhouettes are available, is minimized inthe last step.Similar to Schlüter's method, the authors strive to use all available information at thesame time. Using already available point correspondences while expanding patch sets (whichwill be partly inferred in Chapter 4) and considering color/intensity information while post-processing makes results more robust. In the current implementation, this method producesa combinatorial explosion for a large number of images (which is given in our case because wedeal with theoretically in�nite video sequences with uncertainties in camera positions), butcan be modi�ed for incremental processing. Another drawback of this method is insu�cientinvestigation of its performance for critical motions, such as forward/backward motion,where not all points are situated in front of all cameras. Moreover, the post-processingstep without visibility is biased towards shrinking models, which can produce the empty setas output; in the case of water-tight models, Furukawa and Ponce prefer using Kazhdan'smethod ([75], see Sec. 3.2.2) to perform the post-processing step.3.3.3 Reconstruction algorithm by Nistér et. al.The system presented by Nistér et. al. in [111] can create textured models from a geo-registered video taken from a moving ground vehicle. The process is incremental, so modelgeneration can be performed in real time. There are four parts of the reconstruction pipelinethat are interesting for our purposes. First, a plane-sweep algorithm that allows obtainingdepth maps from several images is presented. Then the concept of fusing depth maps, whichhas several simple depth maps as input, is described. Then a triangular mesh from a refer-ence image is obtained. Finally, interaction of several such triangular meshes is obtained bydeleting wrong and redundant triangles.The concept elaborated in [111] will be partly adopted for our work. However, there areseveral signi�cant di�erences: while [111] assumes the set of several cameras to be �xed inthe ground vehicle and uses an internal navigation unit, model assumptions can be made



Chapter 3. Previous work 44that facilitate, clearly, the reconstruction. For example, directions of dominant planes aregiven by the ground plane and facades whose approximate positions can be easily determined(Sec. 6.2 of [111]). Moreover, resolution of depth does not change that dramatically as forthe aerial view, as one can see in Figs. 6.3 and 6.45 on pp. 84 and 124, respectively, of thispresent thesis, since the distance between the points on the surface corresponding to adjacentpixels can di�er by up to several meters. The question is, consequently, that of �nding apost-processing routine that allows computation a global mesh connecting points in di�erentparts of surface.



45
Chapter 4Multi-view algorithms for depthmaps estimationThe goal of this chapter is to obtain a dense 3D point set from a set of images, correspondingcamera matrices and also a sparse, but precise and reliable set of 3D points used for retrievingrelative orientation of cameras. Of course, such points can come from other sources, likeLIDAR points or manually measured ground control points. However, in our case, thesepoints are automatically extracted from the images and so usually stem from rather texturedareas and have extremely low density in the untextured regions. Each short subsequence of 5to 10 images that we consider in this chapter has a reference frame I0, typically in the middleof the subsequence. It can be assumed that the Non-Lambertian specular components can beneglected in relations between corresponding pixels in di�erent images of the subsequence.The desired output is the depth information of (almost) every pixel of I0 with maximumaccuracy. We do not care about the (theoretically unlimited) length of the video stream,but will show in the next chapter how the outliers can be successfully removed by usingseveral of reference images and simple geometric constraints.The proposed pipeline of point homogenization consists of two optional steps. The �rststep concerns characteristic points whose positions in 3D space are to be determined withmaximum accuracy. This process, used for enriching the already available point set, is calledsparse tracking and triangulation. The Delaunay triangulation of these points in images willsupport the second step, namely, the pixel-wise depth computation for which the smoothnessconstraints as in Sec. 2.3 must be enforced.Derivation of the most important relations for point-projection in multi-view con�gu-rations, choice of characteristic points, initial values of the unknown depth by means oftriangular meshes, sparse tracking and triangulation, and dense matching will be describedin Secs. 4.1, 4.2, 4.3, 4.4 and 4.5, respectively. We shall make a di�erence between a recti�edbinocular con�guration and a multi-view con�guration (and thus subdivide Secs. 4.3-4.5)not only in order to describe simple, but reliable heuristics for outlier rejection in the caseof geometrically less stable binocular con�gurations, but for the sake of di�erences in termsof disparity and depth estimation, since for the recti�ed binocular case, we do not need 3Dpoints and can work only in terms of disparities.It is important to emphasize that either of the two steps mentioned above can be omit-ted, usually at the cost of reduced accuracy of the reconstruction. Sparse tracking andtriangulation can be omitted and the (Delaunay) triangulation T of the already availablepoints in I0 can be thus the input for Sec. 4.5, but then T will probably consist of very smalltriangles in textured areas of I0 and large triangles far away from the surface in textureless



Chapter 4. Multi-view algorithms for depth maps estimation 46areas of I0. As a consequence, the evaluation of triangles into consistent or inconsistent withthe surface and thus rendering local tessellations will not have much sense. If the secondstep, the dense estimation, is omitted, only the (enriched) point cloud and the triangles of
T will be output of this chapter. However, even though some triangles that do not re�ectcorrect depth information can often be �ltered by considering further reference frames andlocal methods for shape reconstruction, which we will describe in Sec. 5.1, the assumptionsof many surface reconstruction methods [4] will generally not be satis�ed because of the lowdensity of points in textureless areas.4.1 Multi-view geometryThe goal of this section is to establish fast point projection relations that can be used forprojecting millions of pixels into dozens of images for dense reconstruction. The best wayto parametrize spatial coordinates of points with a minimum of unknown parameters is toconsider the depth values d of pixels in the reference image I0 of a sequence, because thesearch space for point correspondences is one-dimensional and the explicit computation of3D points is not required. We denote the camera corresponding to I0 by P0, as visualized inFig. 4.1, and call P0 the reference camera of the sequence. If P0 is a classical pinhole camera,then the depth d := dx of the 3D point X corresponding to a pixel x = (x, y) ∈ I0 is thedistance from X to the image plane of I0 and is given by (see e. g. [61]):

d(X) = (dx) = sgn(det(M))P 3
0X/‖M3‖, (4.1)where ·3 is the third row of ·, and M = P

{4}
0 is the 3 × 3 matrix obtained after omittingthe last column of P0. Throughout this work, the camera matrix P0 will be normalized,i. e. divided by the quantity sgn(det(M))‖M3‖. In homogeneous coordinates, we denote thevector [x y 1]T by x̌ and we prove, starting from (4.1), the following result:Result 1: The coordinates of the 3D point X corresponding to x are given by:X = d ·M−1x̌+C0 (4.2)(as a function of d) while the reprojection of x into the image Ik will be induced by thetransformation: x̌k(d) ' H0,kx̌+

ek
d

(4.3)where H0,k = P
{4}
k M−1, ek = PkČ0 are the in�nite homography and the epipole, respec-tively. Since (4.3) denotes equality up to a multiplicative constant, one can perform a furthersubstitution (with an arbitrary real scalar d0) in order to reduce point projection to additionof 2D points: xk(d) = ĥk + têk where t =

d− d0
d+ e3k/h

3
k

and (4.4)ĥk ' H0,kx̌+ ek/d0, êk =
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3
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]

.Proof: Since the fronto-parallel plane π at distance d from the image plane has theequation:
π(d) = P 3

0 − (0 0 0 d) ,the coordinates of the 3D point X are given by:



47 4.1. Multi-view geometry

Figure 4.1: Point projection in multi-view con�gurations. Cameras are depicted by orangepyramids on the top, the object surface is below. A point x ∈ I0 with depth dx inducesa 3D point X that can be projected to images x1 ∈ I1 and x2 ∈ I2. Matching can thensucceed by comparing color/intensity values of x,x1,x2.X̌ =
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]) x̌and thus X is given by (4.2). Moreover, (4.3) is also easily obtained:x̌k(d) = Pk ·X = Pk ·
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dwith notations for H0,k and ek mentioned above. According to (4.3), the reprojection ofa point into the image k can be performed by adding two homogeneous quantities, sincethe values of hik = H0,kxi can be saved for every pixel xi. In order to derive (4.4), thesubscripts ·k can be dropped and, because of a strong analogy in the calculations, it isenough to consider only the x-coordinates:ĥ+ tê =

d0h
1 + e1

d0h3 + e3
+

d− d0

d+
e3

h3

· h1e3 − h3e1

h3 (d0h3 + e3)
=

dd0h
1h3 + e1e3 + dh1e3 + d0h

3e1

(d3h + e3) (d0h3 + e3)
=

dh1 + e1

dh3 + e3
,which completes the proof.From the already available point correspondences, we approximately know the depthranges (d ∈ [dmin; dmax]), which allows us obtaining depth ranges for t:

t ∈
[

0;
dmax − dmin

dmax + e3k/h
3
ik

]

, t =
d− dmin

d+ e3k/h
3
ik

, d =
t · e3k/h3

ik + dmin

1− t
.We now describe the properties of Eqs. (4.2)-(4.4).If we know the spatial depth of an arbitrary number of points xi ∈ I0, using (4.2) repre-sents an extremely fast way for obtaining their spatial coordinates, because multiplication



Chapter 4. Multi-view algorithms for depth maps estimation 48and addition can be performed simultaneously and column-wise. The same argument canbe applied for Eqs. (4.3) and (4.4). There are more time-consuming algorithms for obtaining3D points from point correspondences, which, however, consider uncertainties in cameraparameters and point coordinates. Here, the DLT1 solution by means of singular value de-composition of a 2K × 4 matrix for every 3D point, see [61], Chapter 12. The solutions forerror-free camera con�gurations and noisy point correspondences are presented in [61] fortwo-view con�gurations and in [123] for three views.According to (4.3), point projection from image to image can be performed by addingtwo homogeneous quantities if one stores the values for hik, eik for every pixel of interest xi.This fact will be extensively used in Sec. 4.5 when d is a common optimization parameterin arbitrary multi-view con�gurations and dense sets of pixels. Since t depends on thecamera index k in equation (4.4), we cannot, unfortunately, generalize these considerationsfor t as a common optimization parameter in (4.4), unless K = 1 or images I0, Ik arerecti�ed to epipolar geometry. However, for epipolarly recti�ed images, e3k = 0. Hence, tdoes not depend on k anymore, the transformations concern only the x-coordinates, thetime-consuming conversion of (4.3) into inhomogeneous coordinates is not required and,since the in�uence of all rotation angles except the one around the baseline C0Ck hasbeen compensated, the algorithms of Sec. 4.4 and Sec. 4.5 are made more invariant againstrotations. There are also disadvantages of image recti�cation: First of all, it can be carriedout using a linear transformation only if the epipole e lies outside the image domain andsigni�cant distortions of images are inevitable if it is close to the image border. Moreover,due to interpolation errors in the course of image transformation, gradient calculations areless reliable. Throughout this work, we have a recti�cation option opt.r; if (and only if)its value is true and the epipoles are bounded away from the image borders, we rectify theimages by means of the algorithm proposed in [90] (see Sec. 2.1). As the result, we haveseveral recti�ed pairs of images and pairs of homographies. For example, if we rectify I0 and
Ik, we have the recti�ed images IR

0k, IR
k0, the homographies HR

0k, H
R
k0, and, for every pixelof interest xi ∈ I0, we store HR

0kxi, HR
k0H0,kxi = ĥik as well as êik in 2K ×N matrices andalways can perform a sum of 2D points for projection of points.For two images recti�ed to epipolar geometry, the �rst coordinate of the left hand sideof (4.3) can be formulated as:

xk(dR) =

(

H1,1
0,k + e1k/dR

)

x+H1,2
0,ky +H1,3

0,k

H3,3
0,k

abbreviated by
xk(d) = vx̌, where v =

1

H3,3
0,k

[

H1,1
0,k + e1k/dR H1,2

0,k H1,3
0,k

]

,

(4.5)
dR is the new value of depth in terms of HR

0kP0 and v is a 1×3 vector.From (4.5) we can obtain depth (in the terms of recti�ed images) from the disparityvalue j = xk − x:
d =

e1k
(x+ j)H3,3

0,k −H1
0,kx . (4.6)We illustrate in Fig. 4.2 fast ways of calculating 3D coordinates, depth values of points interms of original and recti�ed images as well as disparity values. The time-consuming processfor obtaining 3D points from point correspondences requires applying the DLT-algorithm.1Direct Linear Transformation



49 4.2. Choice of characteristic points(4.3), (4.4)
(4.1)dR X

dx (4.2)(4.6) (4.5) x = PX (4.2)(4.1)
Figure 4.2: Reprojection equations for multi-view con�gurations. The time consuming pixel-wise triangulation is denoted by a dashed line.4.2 Choice of characteristic pointsIf the original point cloud is too sparse and not distributed regularly in the image, weneed to obtain 3D coordinates for some additional points. The criteria of state-of-the-artfeature extraction procedures must therefore be modi�ed in order to incorporate the givenknowledge of camera matrices. In this case, the search range for points is reduced by the one-dimensional epipolar line as indicated by equations (4.3), (4.4) and (4.5). We are interestedin points whose neighborhoods have strong intensity changes in the direction parallel to theepipolar lines.We subdivide the reference image into small squares (e. g. 10 × 10 pixels) and select, forevery square, a point with a maximum response of some cornerness operator C(I). For thetwo-camera case, the authors of [29] considered the structural tensor (compare [46, 60]) A(I)for a given image as well as the term

C̄(I) = trace(A(I)) − 0.04 det(A(I)), A(I) =
[

Ĩ2
x ĨxĨy

ĨxĨy Ĩ2
y

]

, (4.7)where Ix/y are image gradients given e. g. by the Sobel operator, ·̃ is the optional Gaussiansmoothness operator. The response of the term C̄(I) given by (4.7) consists of points nearcorners of the intensity image and so the probability of �nding them in the second imageis relatively high. We use points obtained by (4.7) mostly in the binocular case. In orderto save computing time, we rely, instead of on the structural tensor, only on the gradientoperator, namely,
C(I) = (1− α)Ĩ2

x + αĨ2
y , (4.8)where α ∈ [0, 1] is a positive scalar needed to give more support to pixels with intensitychanges parallel to the epipolar lines. For example, if the x and y coordinates of the axesin the images approximately coincide with the corresponding coordinates in 3D space andthe height of the sensor platform remains approximately constant, the angle between x-axisand epipolar lines is usually small. Therefore α should be chosen close to 1; but even thechoice α = 0.5 is reasonable. For multi-view con�gurations, we usually apply (4.8) insteadof (4.7). An illustration of the operator C(I) for an infrared image is presented in Fig. 4.3.If several points with known depth are available, we always compute the Delaunay trian-gulation of these points in I0 and replace C(I0) of (4.8) by C(I0)C1(I0), where C1(x) is 0
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Figure 4.3: Top left: A reference frame of the video sequence Infrared. The other threepictures represent log(C(I) + 1) for di�erent choices of α: top right: α = 0.5, bottom left:
α = 0.2, bottom right: α = 0.8. As a consequence, horizontal lines are highlighted in thebottom left image and vertical lines are highlighted in the bottom right image.if the point x lies within the convex hull of these points and the area of the incident triangleis smaller than a threshold (150-300 pixels in our experiments) and 1 otherwise; so newpoints will be found in the areas not yet su�ciently covered. The points with response ofthe cornerness operator below a certain threshold are excluded from further consideration.4.3 Choice of initial values by means of triangular meshesOur goal is to obtain depth values for characteristic points from the previous section. Thisis done by the iterative algorithms of Sec. 4.4, which require initialization. If a characteristicpoint lies outside the convex hull of points in I0 with available depth values or no pointsat all are assigned 3D coordinates, a brute-force procedure consists of evaluating a suitabledata cost function (see Sec. 2.2) for several values of an unknown parameter and taking theone that leads to a global minimum. This approach is less sensitive to local minima, butit is time-consuming. A faster method can be applied if several points have already beenreconstructed. We obtain a 2D triangulation T of points already available and consider thesupport planes of each triangle in 3D space. The initialization consists of intersecting thereprojection ray of a pixel x with the support plane of the triangle T incident with x. In thefollowing three sections, we describe 1) the process of obtaining the initial disparity (withoutexplicit calculation of the corresponding 3D point) in the two-camera case (Sec. 4.3.1), 2)the process of obtaining initial depth values from multi-view con�gurations (Sec. 4.3.2) and,�nally, 3) the methods used for obtaining a suitable triangulation T and incidence relationsfor pixels in I0 (Sec. 4.3.3) with respect to triangles in T .



51 4.3. Choice of initial values by means of triangular meshes4.3.1 Binocular con�gurationSuppose two recti�ed images as well as a set of sparse point correspondences p1 and p2 aregiven. We can assume that the percentage of outliers among these points is low becausemost of the outliers are supposed to be eliminated by robust methods in Step 1 of ourreconstruction pipeline (Sec. 1.2, Alg. 1.1). We are interested in computing correspondencesof all points inside the convex hull of the points already available. Consider a triangulation
T of the point set and a triangle T ⊆ T . Suppose that the triangle T is consistent withthe object surface, in other words, the surface enclosed by three vertices of T can be nearlyreplaced by the support plane of T . Then for any point x = (x1, y) ∈ T , the correspondingpoint in the second image is given by:Result 2: Let p1,T ,p2,T

2 be triplets of corresponding points in two epipolarly recti�edimages. The homography induced by T maps x1 onto the point x2 = (x2, y), where x2 =vx̌1, v = x2,T (p̌1,T )
−1, p̆1,T is the 3 × 3 matrix formed by the columns of the projectivecoordinates of p1 and x2,T is the row vector consisting of x-coordinates of p2,T .Proof: Since triangle vertices p1,T ,p2,T are corresponding points, their correct loca-tions are on the corresponding epipolar lines. Therefore, they have pairwise identical y-coordinates. Moreover, the epipole is given by e2 = [1, 0, 0]T and the fundamental matrixis F = [e2]×. Inserting this information into Result 13.6 on p. 331 of [61] proves, after somesimpli�cation, the statement of Result 2.We wish to understand the nature of the parameter v, �rst mentioned in Eq. (4.5). Ascene plane π (visualized by one of the two red segments in the left hand side portion ofFig. 4.4 connecting points with already available 3D coordinates) induces an image-to-imagehomography Hπ which has three degrees of freedom [61]. These three degrees of freedomstem from a plane equation and are stored in v. On the other hand, π can be de�ned bythree non-coplanar points, which can be interpreted as three vertices of a triangle T in space.By Result 2, we have a relation that connects the vertices of T and the vector v withoutmentioning intermediate results π or Hπ.According to Result 2, the disparity in the second image is given by

jT,x = vx̆− x1, ,v = x2,T (p̆1,T )
−1which not only provides an initialization for the algorithms of Sec. 4.4, but also a coarseapproximation for the disparity/depth map itself, especially in areas where the surface isapproximately piecewise planar and does not have many self-occlusions, as illustrated inthe example of Fig. 4.5. To compute this approximation DT , it is su�cient to determineand store the entries of v for each triangle; the disparities of any other point � with notnecessarily integer coordinates � are computed according to Result 2. An optional step forimproving the quality of the initial depth map is to �t planes by clustering the values of vwhile considering neighborhood relations. This will be a subject of future work.4.3.2 Multi-view con�gurationFrom the already available 3D points, we can obtain the depth values by equation (4.1).The depth value of a point induced by the triangulation is given by a linear combination ofdepth values at the vertices of the corresponding simplex (epipolar line endpoints in Fig. 4.4,left, for 2D and triangle vertices T in Fig. 4.4, right, for 3D). In the two-dimensional analogyof triangular interpolation, Fig. 4.4, left, the coe�cients of the linear combination are givenby proportions U ,V of lengths of small segments vs. the total segment length. In 3D, these2Here xT , yT ,PT etc. are x, y,x-coordinates (respectively) of triangle vertices speci�ed by a triplet ofinteger numbers T .
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Figure 4.4: Left: The idea of triangular interpolation (same symbols as in Fig. 4.1). Severalalready reconstructed points are denoted by red circles and the triangulation by solid redlines. The initial estimation of dT,x is retrieved from triangular meshes of already availablepoints (whose depths are indicated by red dashed lines) either by means of local homogra-phies given by the plane π (as in Result 2) or by means of local barycentric coordinates ofx within triangle T (see text to Sec. 4.3.2). To obtain the local barycentric coordinates, theareas of small triangles, must be divided by the area of T , as depicted on the right.

Figure 4.5: Left: A reference frame of the video sequence House and a sparse point set(resulting from the structure from motion algorithm [22]) with Delaunay triangles depictedin red. One sees the abundant density of points in highly textured regions (e. g. on a tree)and in the door lattice while the density of points in textureless areas (road and roof) isrelatively low. Right: Initialization of the depth map obtained from the depth values ofthe points on the left and Eq. (4.9). There are also some outliers on the house walls visibleby sudden depth changes with respect to their neighbors. These outliers usually stem fromre�ections in the windows.



53 4.4. Sparse tracking and triangulationare proportions U ,V ,W of the areas of the small triangles vs. the total area, as illustrated inFig. 4.4, right, p. 52. This proportions are the the well-known local barycentric coordinates
U ,V ,W of x in T . Formally we have:

dT,x = Uda + Vdb +Wdc, U =
axbc

aabc

,V =
aaxc
aabc

,W =
aabx
aabc

(4.9)and a denotes the area of a triangle. Equation 4.9 shows the advantage of parameterizingthe 3D points according to their depth, not according to their distance to the projectioncenter. Similar to Sec. 4.3.1, dT,x will from here on denote the depth value resulting fromtriangular interpolation.4.3.3 Choice of triangulation and establishing incidence relationsThe remaining questions for this section are which kind of triangulation to apply (since wealready know, for example, from (3.6) that the results of the interpolation depend on thetriangulation) and how to assign to a point x ∈ I0 the incident triangle in T . The Delaunaytriangulation was chosen because of its easy availability in many software packages andbecause the max-min principle allows excluding more (visually unpleasant) long and thintriangles. There is one more reason � actually an answer to the second question � for choosingDelaunay triangulations. Suppose we want to determine in which triangle T ∈ T a pointx lies. There exist algorithms that allow �nding T in linear time when T is the Delaunaytriangulation. For example, one can calculate the vertex of the Voronoi-polygonization thatis the closest to x.If the cardinality of the point set is large, using these algorithms for each point becomescomputationally expensive. An alternative, on which we follow up in this work, is to createa segmented image where a triangle is labeled by its number. The points outside the convexhull are labeled by −1. The process of labeling is very fast and it also has an advantagethat the barycentric coordinates or any other scalar value (for example, the area of theincident triangle, mentioned in the last paragraph of Sec. 4.2) can be stored for each pixelonce and for all. The result of this routine works quite well (especially if the images andpoint coordinates are upscaled by a factor of 2 to 4, depending on image size) and with onlyseveral mismatches near the border of rather skinny triangles.4.4 Sparse tracking and triangulationThe task of this section is to enrich the point set, in other words, to �nd the correspondencesfor new characteristic points obtained in Sec. 4.2. From the resulting, extended point set,we will again use Delaunay triangulation to determine the set of triangles consistent withthe surface.4.4.1 Binocular con�gurationWe will �rst turn our attention to the binocular case. This con�guration is rather unstablefor obtaining point correspondences because of spurious matches in the textured areas andin the image regions near occlusions. We assume that the images I1, I2 are recti�ed toepipolar geometry and we search for point matches within corresponding epipolar lines.As visualized in Fig. 4.6, for a point x = (x1, y) in a triangle T ∈ T , the search windowcan potentially be reduced to
Ws = [x1 + xmin;x1 + xmax]× [y − εy; y + εy],

xmin = max(jmin − εx,min(sT )), xmax = min(jmax + εx,max(sT )),
(4.10)



Chapter 4. Multi-view algorithms for depth maps estimation 54where εx = εy are �xed scalars which cope for uncertainties in camera orientations, sT are the
x-coordinates of at most six intersection points between the epipolar lines at y, y−εy, y+εyand the edges of p1,T and jmin, jmax are the estimates of disparities ranges which can beobtained from the point coordinates already available.

max(sT )min(sT )Figure 4.6: Matching supported by triangular meshes in binocular case. An exemplar trian-gle T from triplets of corresponding points p1,T ,p2,T (small red crosses) is depicted by thinblue lines in both images. The search range for correspondences within T (a point markedby a big red cross) can often be further constrained by taking into account intersectionpoints of epipolar lines (denoted for a selected point by a thick red line) with edges of T . Indegenerated cases of occlusions in triangles inconsistent with the surface, this assumptiondoes not hold, but mismatches are usually excluded by applications of one of three �ltersimposed on putative correspondences.The search for correspondence points can succeed be means of any data cost functionmentioned in Sec. 2.2. In [29], it was the Normalized Cross Correlation (NCC), see Eq. (2.6)between quadratic windows I1(ω(x1)) of size between 5 and 21 pixels and I2(ω(x2)). Ap-plication of NCC is reasonable here since we can assume a piecewise linear transformationbetween luminance values of both images, see (2.5). However, in order to avoid includingmismatches in the set of correspondences, three �lters on the result are imposed before thecorrespondence x1,x2 is added:1. The luminance di�erence between the windows is bounded, i. e.
‖I1(ω(x1))− I2(ω(x2))‖1 < wumax where w is the number of pixels in the windowand umax = 15 in our experiments,2. The correlation coe�cient c0(x) = minj(x, j) of the winner is low enough (for example,below the threshold 0.5), and3. In order to reject ambiguous correspondences, c0 must be low enough with respect tothe neighbors. Let c1 be the best matching coe�cients in the sub-windows

([x1 + xmin;x2 − 2] ∪ [x2 + 2;x1 + xmax])× [y − 1; y + 1].If the ratio c0/c1 (best to second-best) exceeds a threshold (which is usually 0.9), thematch is rejected.The coordinates of corresponding points can be re�ned to subpixel values. We �rstcheck whether jx ≈ jT,x, which can be the case if T is consistent with the surface. The



55 4.4. Sparse tracking and triangulationdisparity jT,x is assigned to x if and only if |jx − jT,x| < 1. Otherwise, the subpixel valueof j can be assigned according to one of the four methods discussed in [128]. For the sakeof computing time, subpixel coordinates for correspondences are computed according tocorrelation parabolas (second-order curves �tted into the cost distribution function). Wedenote by c− and c+ the correlation values in the pixels to the left and right of x2. Thecorrection term x̂2 in the x-direction is then given by
x̂2 = x2 −

c+ − c−
2(c− + c+ − 2c0)

.In Fig. 4.7, new correspondences obtained from binocular sparse tracking are shown.

Figure 4.7: Two recti�ed images of the sequence Bonnland and a point set (marked in green)detected by means of (4.8) in a window of 20 × 20 pixels in the left image. In the rightimage, correspondences obtained by the local method are marked in red.After performing this algorithm for all points, an additional heuristic can be appliedin order to reject mismatches. A point with a deviation of disparity values of more thanone pixel from all its neighbors is rejected. Here, the neighborhood relation is de�ned bycommon edges within the triangulation T . We e�ciently apply this procedure once prior toand once after the expansion.Of course, the process of triangulation and matching can be carried out several times for anarrower matching search space given by (4.10), varying (diminishing) step and (increasing)window sizes until a new, re�ned disparity map is obtained. An alternative of using aconstrained Delaunay triangulation (see [119]) with seeded edges stemming from the old,coarser mesh allows evaluating triangles of the coarser mesh with respect to the surfaceconsistency (to be de�ned in Sec. 4.5) once for all, but has a signi�cant disadvantage ofhaving many long, skinny triangles.4.4.2 KLT-epipolar and simultaneous tracking policies fur multi-view con�gurationsObtaining point correspondences as described in the previous section usually works well fordata sets with many fronto-parallel surfaces. In the case of airborne sequences with many



Chapter 4. Multi-view algorithms for depth maps estimation 56slanted surfaces (which we discuss in Chapter 6), a deviation of one pixel in the image space(disparity) sometimes results in a deviation of several meters in object space. In order toincrease accuracy, we consider redundant information from several images by incorporatinginto the standard KLT-tracking algorithm [94] the knowledge of camera matrices. Becauseof a strong analogy in the calculations, we will concentrate on the case when the recti�cationoption opt.r of Sec. 4.1 is set to zero in the explanations of this section. For a characteristicpoint x, we have to compare the intensity distributions of I(x) and Ik(xk(d)), k = {1, ...,K}as in Eq. (4.3). The total error c̆ is composed of c = [c1, ..., cK ] (the radiometric deviationterm) and (optionally) g = [g1, ..., gK ]T (the uncertainties in the camera parameters). Here,the radiometric deviation can be described by di�erences of gray values since changes ofluminance are small in neighboring images of the video sequence. Overall, we have
c̆ = [c Wg]T , ck = Ik

(
ω(xk(d) + gke⊥k ))− I0 (ω(x)) , (4.11)where W is a diagonal weight matrix, ω is a small window around x, Ik(ω(xk(d) + gke⊥k )is computed by bilinear interpolation and e⊥k is the normalized perpendicular component tothe epipolar line ek: e⊥k =

[
e2k
−e1k

]

/
√

(e1k)
2 + (e2k)

2.The Jacobian of derivatives J̆ is sparse and has the following structure:
J̆ =

[
J J̄
0 WI

]

, where J = [J1, ...,JK ]
T
, J̄ =





J̄1 ... 0
...

0 ... J̄K



 ,

Jk =
∂ck
∂d

= [(Ik)x (Ik)y]
∂xk(d)

∂d
, J̄k =

∂ck
∂gk

= [(Ik)x (Ik)y] e⊥k , Ik =
∂gk
∂gk

= 1,

w is the number of pixels in the window ω and xk(d) of (4.3) is di�erentiated by thequotient rule. The system of normal equations can be solved for the parameter update
p = [∆d ∆g]T , for example, by the Levenberg-Marquardt algorithm (with a small scalar λand identity matrix I):

(

J̆ T J̆ + λI
)

p = −J̆ T c̆,followed by sparse matrix techniques for linear equation systems. In this work, the uncer-tainties in camera parameters gk are not further considered. We thus have c̆ = c, J̆ = Jand
∆d = −J T c/J TJ (1 + λ). (4.12)In this iterative minimization procedure, the initial value of d is re�ned until a given tolerancein parameter updates is achieved. In our implementation, we considered two policies ofoptimization: In the KLT-epipolar policy, points are sequentially tracked from image toimage; pairs of images are optionally recti�ed and the error function is minimized accordingto (4.12). Point correspondences are triangulated linearly as described in [61] and rejectedif the total reprojection error in pixels exceeds 1. Since I0 is usually chosen in the middleof the subsequence, the algorithm is modi�ed by forward and backward tracking. For thesecond policy, simultaneous tracking, we project x into all images by (4.3) or (4.4) and useLevenberg-Marquardt optimization. If the algorithm converges and the value of c̆ of (4.11)without considering camera uncertainties lies below a �xed threshold εmax, the point is saidto be tracked reliably and its 3D coordinates are computed from the depth value by meansof (4.2).



57 4.5. Multi-view dense matching using triangular meshes4.5 Multi-view dense matching using triangular meshesThe task of dense matching is to assign a depth to each pixel of the reference image I0. Thealgorithms of the previous section cannot be applied to every pixel because of susceptibilityto converge to local minima for pixels in areas of homogeneous texture and because of ahigh computational cost of a non-linear iterative minimization algorithm. Therefore, on theone hand, the values of unknown parameters must be discretized; for the binocular case, thediscretization labels are given in the natural way by the integer disparity values. On theother hand, smoothness assumptions must be used in order to propagate the informationfrom already reconstructed points or points where the correct depth value can be reliablyobtained to those textureless regions.The initialization of the depth map with DT from Sec. 4.3 can be used as a soft constraintin order to bias the depth values of the pixels � especially in areas of weak texture � tothose resulting from triangular interpolation. To do this, we introduce a triangulation-basedsmoothness term and a process of evaluation of triangles. In Sec. 4.5.1, we will use DT asinitialization for two non-local algorithms, namely the global algorithm of graph cuts with
α-expansions [81] and semi-global optimization used by [67] with Mutual Information ascost function. Such depth maps obtained from pairs of images can be fused into the mediandepth map described in Sec. 4.5.2, which has the advantage of a much lower percentage ofoutliers and points with non-assigned depth values. Since calculation of median depth mapsis computationally intensive, a framework of local and global simultaneous computation ofdepth maps will be presented in Sec. 4.5.3. Finally, we present in Sec. 4.5.4 an approach forautomatic selection of the smoothness parameter λ, which as we have learned in Sec. 2.3,represents a trade-o� between the properties of the data given a scene (photo-consistenceassumptions) and hypothesized properties of the scene (piece-wise smoothness assumptions).4.5.1 Binocular con�gurationTriangulation-based smoothingAs previously indicated, the evaluation of pixel costs is carried out by means of one of the costfunctions c(x, j) = Edata(x, j) of Sec. 2.2 for every integer value of disparity. A signi�cantdi�erence of this approach with many state-of-the-art approaches is that we extensively use alarge point set that is (after applying tracking routines described in Sec. 4.4) homogeneouslydistributed in I0. We assume that the non-occluded parts of the scene can be piecewiseapproximated by triangles. The point is that, if a correct evaluation is made about whichtriangles are nearly consistent with the surface and which are not, we will not only be ableto avoid mismatches in areas of repetitive patterns of textures and homogeneous texture,but also be able to obtain depth values of all points within these triangles with subpixelaccuracy. This subpixel calculation, performed in order to avoid discretization errors (seeFig. 4.8, left) actually does not depend on the choice of the cost function (see [128]) and itreplaces segmentation of images as in [14, 68, 77, 87].In [28], the local smoothness term

ET (x, j) = A(x, T )D(j, T,x) (4.13)is introduced. Here D can be practically any scalar nondecreasing function in terms of
|j − jT,x|. The weight function A(x, T ) should be zero outside the convex hull, re�ect thereliability for the coordinates of points at the vertices of a triangle T and become smaller inits interior (as, for instance, in Fig. 4.8, middle and right). One possible choice, followed upin this paper, is

A(x, T ) = A0 exp

(

−g(x, T )
σ

)

, D(j, T,x) = −1 + min

( |jx − jT,x|
j0

, 1

)

, (4.14)



Chapter 4. Multi-view algorithms for depth maps estimation 58where x ∈ T , the amplitude A0 (which in the future will be denoted by A) and j0 are twonon-negative constants and the descent parameter σ ∈ [0;∞]. By g(x, T ), we denote theminimum distance from x to the vertices of T . For j0, the value 2 is a reasonable choice. Itis clear that for small values of σ, only the depth values for characteristic points are madeunlikely to change (which can be good when such points are provided by other sources �such as LIDAR-data � and thus possibly lie in the weakly textured areas). On the otherhand, for σ → ∞, the whole convex hull ⋃T ∈ T will be a�ected:
A(x, T ) = { A if g(x, T ) < 1

0 otherwise for σ = 0,and
A(x, T ) = { A if x ∈ ⋃T ∈ T

0 otherwise for σ = ∞.

dmin

dmaxFigure 4.8: Left: Discretization of depth labels deteriorates the visual quality of the densereconstruction even in the case of error-free matching. The problem can be solved by con-sidering triangular meshes from 3D points already obtained rather than by increasing thenumber of labels, because, in the latter case, mismatches appear due to limited resolution,the smoothness term of (4.23) tends to lose its sense and computation cost increases dra-matically. Middle and right: Weights A(x, T ) from (4.14) propagated from already availablepoints with a small/large value of σ (on the left/right, respectively) for the reference imageof sequence Tsukuba (see [115]).In addition to the parameters A and σ, a third triangulation-based parameter γ ∈ [0; 1]is introduced in [28]. If the percentage of pixels consistent with the surface within a triangleexceeds γ, then all pixels y of such triangles are assigned the value dT,y. The de�nition ofa pixel x consistent with the surface is given by the ratio
r(x) = c0(x)

min {c ([jT,x]) , c ([jT,x] + 1)} , (4.15)where c0(x) = minj(c(x, j)) is the best cost value and [jT,x] is the "�oor value" of jT,x(the largest integer smaller than jT,x). Point x is said to be consistent with the surface if
r(x) = 1 for a global algorithm and r(x) > 0.8 for a local algorithm.Using similarity information of triangles in RGB-imagesThe in�uence of parametersA, σ and γ helps to overwrite, at di�erent stages of the algorithm,the disparity values of a set of pixels with those stemming from triangular interpolation. Theperformance of this approach depends directly on the quality of the triangular meshes. Inthe case of color images I1, I2, the authors of [29] propose a similarity analysis of trianglesbased on color information and histogram evaluations: Each color contains values from 0



59 4.5. Multi-view dense matching using triangular meshesto 255 and thus each color histogram has b bins with a bin size of 256/b. Let the numberof pixels in a triangle be N . In order to obtain the probability of this distribution and tomake it independent of the size of the triangle, we obtain for the lth bin of the normalizedhistogram
HT (l) =

1

N
·#
{

p

∣
∣
∣
∣
p ∈ T and 256 · l

b
≤ I0(p) <

256 · (l + 1)

b

}

.The three histograms HR
T , HG

T , HB
T represent the color distribution of T . It is also useful tosplit big, inhomogeneous triangles that are inconsistent with the surface into smaller ones.To perform splitting, characteristic edges [30] are found in every candidate triangle andsaved in the form of a binary image G(p). To �nd the line with maximum support, theradon transformation [37] is applied to G(p):

Ğ(u, ϕ) = R{G(p)} =

∫ ∞

−∞

∫ ∞

−∞

G(p)δ(pT eϕ − u)dp where δ(x) =

{
∞ x = 0
0 otherwiseis the Dirac delta function and line parameters pT eϕ − u, where eϕ = (cosϕ, sinϕ)T is thenormal vector and u the distance to the origin. The strongest edge in the triangle is foundwhen the maximum of Ğ(u, ϕ) exceeds a certain threshold for the minimum line support.This line intersects the edges of T in two points. We disregard intersection points too closeto a vertex of T . If new points are found, the original triangle is split in two or three smallertriangles. These new, smaller triangles consider the edges in the image.Next, the similarity of two neighboring triangles has to be calculated by means of thecolor distribution. There are a lot of di�erent approaches for measuring the distance betweenhistograms, see [31]. We de�ne the distance between two neighboring triangles T1 and T2 asfollows:dst(T1, T2) = wR · d

(
HR

T1
, HR

T2

)
+ wG · d

(
HG

T1
, HG

T2

)
+ wB · d

(
HB

T1
, HB

T2

) (4.16)where wR, wG, wB are weights for the colors that are all set to be 1/3 in our method. Thedistance d between two histograms in (4.16) is the SAD of their bins. There are two possibleways to de�ne neighboring relations on a set of triangles: two triangles can be declaredneighbors if they either share one or two common vertices (i. e. a common edge in this lattercase). The value of dst(T1, T2) is set to in�nity if T1 and T2 are not neighbors.In the last step, disparity values in the vertexes of triangles that are inconsistent withthe surface are corrected. For such a triangle T1, another triangle
T2 = arg min

T∈T0

dst(T1, T )was de�ned in [29]. Here, T0 denotes the set of triangles consistent with the surface. Ifarea(T2) > 30 pixels and dst(T1, T ) < 2, then T1 and T2 are likely to belong to the same(planar) region of the surface and therefore the disparities of pixels in T1 are recomputedwith vT2
according to Result 2. The more reliable, though time-consuming approach, notfollowed in [29], consists of expanding the already precomputed cost function Edata(x) bythe recalculated triangle-based term E′

T = A(x, T2)D(j, T1,x) from (4.13) and (4.14).Re�nement with global and semi-global optimization algorithmsThe values of the function c(x) = Edata(x, d) +ET (x, d), computed for each pixel and eachdisparity value, can be stored in a S×M matrix A where S is the number of disparity labelsand M is the number of pixels. The result Dloc of a local algorithm assigns to the pixel xi a
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Figure 4.9: Top row, left: Initialization of the disparity map created from the triangularmesh. Top row, right: Result of correction of triangles as suggested in [29] for a pair of imagesfrom the sequence Tsukuba. Bottom row, left and right: Results of semi-global estimation ofthe disparity map without and with initialization of the disparity map, respectively. Right:Color scale representing di�erent disparity values.label corresponding to the minimum value within a column i of A (followed by γ-smoothingof surface-consistent triangles). Two possibilities are now opened up: to use either A or Dloc(or alternatively DT ) as an initialization of a (semi-)global optimization algorithm with oneof the smoothness energy terms of Sec. 2.3. Before we go into the details of these two kindsof optimization, we consider two examples that justify each of two approaches. An exampleof advantages of initialization with DT is in the case of unclear luminance relations (suchthat A cannot be rendered). By calculating intensity correspondences with DT (see [29],Sec. 2.4), one can determine values for the mutual information matching table MI(m,n) ofEq. (2.8) and does not have to consider image pyramids. This helps save computing time.On the other hand, suppose we have several very exact (e. g., LIDAR) 3D points. In thiscase, we use a very high value of A and a low value of σ in (4.14) in order to �x the disparityvalues of the ground control points in A and propagate these values to neighboring pointsusing smoothness terms.As explained in Sec. 3.1.3, the main feature of the algorithm of [81] is an α-expansionthat expects a (depth) image D as input. The output D′ is either identical with D or somepixels of D′ are assigned the value α. In other words, if we have a good initialization,the energy computed at the beginning already takes on a large negative value and so, onaverage, fewer expansion moves need to be taken. This allows reducing computing time. Onthe other hand, initializing the semi-global optimization with a result of DT allows omittingimage pyramids without signi�cant visible and quantitative adverse a�ects on the results,as illustrated in Fig. 4.9, bottom.The second alternative, namely, to consider A, works in a slightly di�erent way and willbe covered for the multi-view case in Sec. 4.5.3 on the examples of dynamic programmingand semi-global optimization.



61 4.5. Multi-view dense matching using triangular meshes4.5.2 Median-based depth estimationA depth map produced in the previous section usually has several outliers and artifacts, es-pecially in areas of re�ections, occlusions, and homogeneously textured regions. To increaseaccuracy, it is necessary to use all available information from several images and severaldisparity maps obtained from I0 and Ik (k = 1, ...,K).One can ask why it makes sense to compute pairwise depth maps from pairs of frames in asubsequence of the given video sequence if a multi-view reconstruction algorithm (presentedin Sec. 4.5.3 below) that can handle all images simultaneously is available. The answer isthat the method described in this section has a possibility of self-control since, for pixelswithout reliable depth, unde�ned values are likely to occur while the algorithm of Sec. 4.5.3has the advantage of being fast although, since geometric control is not given (that is, thealgorithm always delivers some depth map), it is possible to have some outliers because ofradiometric irregularities in the reference image, low accuracy in the position of cameras,etc. We can compare the ideas behind the algorithms of Sec 4.5.2 and Sec. 4.5.3 with theepipolar and simultaneous tracking of Sec. 4.4. The second important point is that themajority of the (semi)-global state-of-the-art methods available online (such as the graph-cuts method, belief propagation, etc.) works only for recti�ed image pairs. If we search fora certain advantage of these algorithms and are interested in obtaining a stable result withfew outliers, we must be able to work with several disparity maps from a set of images ratherthan with an oriented subsequence (with external data provided by camera matrices). Thesituation covered in this section is schematically visualized by Fig. 4.10, left.The algorithm starts by computing depth values dk,x = dk for a pixel x ∈ I0 fromdisparity maps between I0 and Ik obtained in the previous section and use the chain ofequations (4.6) 7→ (4.2) 7→ (4.1) (compare Fig. 4.2). But which of these values dk should bechosen? Clearly, if a cluster with several values of dk can be identi�ed, we can assign to dxthe median of these values. In other words,
d̄ = dx = mediank {dk ||dk − d| < ε} (4.17)for some positive ε. Conversely, if for example, |dk − d′k| > ε for all 1 ≤ k < k′ ≤ K and noprior information (such as the con�dence of disparity maps or information about whether xis consistent with the surface) about the depth value at x is available, the depth at x is leftunde�ned.Equation (4.17) is recursive. In order to identify the set of values in a cluster, one caniteratively approximate d̄ by the weighted average
d̄ =

1

W

∑

k

dkwk with W =
∑

k

wk (4.18)and with initial weights wk = 1 if dk is not occluded and 0 otherwise. In the next iteration,we set wk = wk(dk − d̄)−β where β is a positive scalar (β = 2 is used for our applications).After the last iteration, we compute d from the inliers among the values of dk by (4.17) andaccept this value when the number of inliers is not smaller than max(K/3). Several remarkscan be made here:1 If DT (x) is available, it can be used as an additional observation in Eq. (4.17) and(4.18). The counter is now K + 1 and the initial weight for the triangular term islarger than 1 since the probability that the triangle incident with x is consistent withthe surface is rather high.2 Since the points in the background are obtained with lower accuracy than those in theforeground, one replaces the ε on the right of (4.17) by εd̄. Note that this right-handside only in�uences the results of the �nal iteration.



Chapter 4. Multi-view algorithms for depth maps estimation 623 A total of 3 to 5 iterations can be used in the algorithm. Because of the structureof (4.18), the loop over the pixels can be avoided, so the computation of weights and
d̄-values can proceed simultaneously. Therefore, the time for computing the mediandepth map is comparing with the time for computing depth maps.The last remark concerns the choice of initial weights. Especially in the case of a lownumber of views, it makes sense not to set all wk = 1, but to obtain, for one single pixelx, the con�dence of the depth value at x. The con�dence is expected to be high if thecost function has a single sharp minimum and low if there are several local minima (in otherwords, there are several plausible possibilities to match x in the corresponding epipolar line).The con�dence map is calculated in a manner similar to that used in [111]:

C0(x) = ∑
d̃6=dx exp−

min
(

c(x, dx)− c(x, d̃), 0)2
σ2












−1

, (4.19)where σ is an empirically determined constant. We use the con�dence function if the numberof available views is low and select the match of highest con�dence.

Figure 4.10: Left: Median-based computation of depth maps. In order to �nd dx, one cantake into account depth values dx,1, dx,2 resulting from images I1, I2 and also dT,x (sincethese values lie in a cluster speci�ed by the ellipse on the left). For the point y, only
dy,2, dT,y must be taken into account and dy,1 is an outlier. Right: Schematic visualizationof simultaneous multi-view dense estimation. Pixels have to be assigned labels using costand smoothness penalty functions. The triangulation from the enriched set of points isshown by red circles and lines. A forbidden con�guration of interactions {(x,x1) , (y,y1)}should be excluded either by adding an occlusion term as in (2.9) or by modi�cation of theaggregation function.4.5.3 Fast simultaneous computation of depth maps for multi-viewcon�gurationsDiscretizationFirst, the equations (4.3) and (4.4) of Sec. 4.1 must be modi�ed by discretizing d or t intolabels dj and tj , respectively; here, j = 0, ..., S and S+1 is the number of bins (labels). Thediscretization chosen is inverse-linear,

dj =
S

(S − j)/dmin + j/dmax



63 4.5. Multi-view dense matching using triangular meshes(schematically visualized in Fig. 4.10, right), which is more suitable than the linear one,namely,
dj = ((S − j)dmin + jdmax) /S,because, in the inverse-linear case, the projections of the corresponding 3D points lie nearlyequidistant at epipolar lines and so the decrease of the resolution is treated in a morenatural way. The resolution of depth for points near the camera is then higher (and so is theaccuracy of the depth computation) than in the background further away from the camera.The number of labels corresponds to the length (in pixels) of the longest epipolar line afterall available points are projected into images I1, ..., IK by means of Eq. (4.3) using values

dmin, dmax (or, respectively, Eq. (4.4) and values of tmin, tmax).Choice of data and aggregation functionAnalogously to binocular con�gurations, cost functions for each depth label and each pixelmust be computed. As a default cost function, the truncated SAD (2.4) is used. Exper-iments were also carried out for NCC as in (2.6) and MI as in (2.8). In contrast to thesituation with the image pair recti�ed to epipolar geometry, where the cost evaluation pro-ceeds by fast convolution methods between windows of type (4.10), we need here also theinner loop of depth values (labels), which presupposes extracting quadratic windows aroundreprojected (e. g. by (4.4)) points by means of bilinear interpolation as in (3.5) (actually, bi-linear interpolation is performed if and only if the option opt.i is activated; otherwise xk(d)is determined by rounding procedure). Between this inner loop over depth values and theouter loop over pixels, there is a loop over interactions, i. e. which pairs of windows must becompared to each other. Since there are K(K − 1)/2 possible kinds of interactions i = 〈·, ·〉and we want our algorithm to be linear in the number of views, a subset of imust be selected.One possibility, followed up in the current implementation, is to aggregate costs betweenthe reference image I0 and other images. This choice di�ers from [79] which proposes to useneighboring images. The latter approach, we admit, could help us to treat all images sym-metrically and avoid error resulting from radiometric irregularities in the reference image(re�ections, small moving objects, dead pixels, etc.), but we decided, similar to what wasdone in [111], to compute costs from the reference image to other images, because in doingso, a higher value of S and therefore a higher depth accuracy can be obtained. In [111], theminimum of sums of data cost functions on the left and on the right of the reference imagehas been chosen. An occlusion term, important in [79], can be omitted in the majority ofpractical situations if the choice of the cost aggregation function is robust against occlusions,in which case not every pixel x ∈ I0 must be seen in all images I1, ..., Ik, but, at the sametime x is encouraged to be observed in a large number of images (see Fig. 4.10, right). Forexample, in [22], where care was taken to exclude all triangles inconsistent with the surface,it was enough to consider the sum of costs ck over k. For a more sophisticated choice ofaggregation function, we denote by K(εmax) the number of interactions (of x) where thecost function does not exceed a constant εmax. Now, for example, the aggregation function"average error per interaction"
Edata(x) = ∑

k {ck|ck ≤ εmax}
K(εmax)also tends to be small if only for a few images ck is small at d, which is of course, unstable.Therefore we used positive constants b, εmax and K0 to increase the denominator for large

K(εmax) and the aggregation function chosen in this work was
Edata(x, d) = 



∑

k {ck|ck ≤ εmax}
(1 + b) (K(εmax)−K0) + 1

if K(εmax) > K0

+∞ otherwise. (4.20)



Chapter 4. Multi-view algorithms for depth maps estimation 64The concept of dense pixel matching is explained in Alg. 8.1 of the Appendix.Considering triangular meshesEquations (4.13) and (4.14) for the triangulation-based term can, as in Sec. 4.5.1, be writtenin terms of depth instead of disparity. We again use the triangulation-based smoothnessterm
ET (x, d) = A(x, T )D(d,x, T ), where (4.21)

A(x, T ) = A exp

(

−g(x, T )
σ

)

, D = −1 + min

( |dx − dT,x|
d0

, 1

) (4.22)with constants A, σ, d0 and function g(x, T ) de�ned analogously to (4.14).The values of the function Edata(x, d) + ET (x, d), computed for each pixel and eachdepth level, are again stored in a S ×M matrix A. Similar to the binocular case, the localalgorithm, in order to obtain dxi
compares the lowest cost within the column i (that is, j =

argminj′ A(j′, i)) with costs at rounded dT,xi
and assigns dxi

= dT,xi
if T is consistent withthe surface and dj otherwise. Furthermore, almost any algorithm for non-local optimizationmentioned in Sec. 3.1.3 can now be applied for the matrix thus obtained. We show twoexamples of the non-local optimization in the next section. After a depth level dx for a pixelx (a result of a local or global algorithm) has been retrieved, we can compute cost functionsat dx and dT,x; if the ratio r(x) as in (4.15) is below a threshold, the pixel x is marked asconsistent with the surface. The percentage of pixels consistent with the surface allows adecision about triangles: if the percentage exceeds a constant scalar γ, all pixels y of suchtriangles are assigned the value dT,y. The in�uence of the parameters A, σ and γ will beevaluated in Sec. 6.3 along with other items.Two examples of non-local optimizationAs two examples of non-local optimization, the 1D optimization algorithm of dynamic pro-gramming [10] and semi-global optimization as in [67] were considered. For both approaches,

Esmooth is chosen as in [67] (and, as in Eq. (2.11) on p. 24, d0=1):
Esmooth(x, j) = λ1 ·Nx(1) + λ2 ·

∞∑

j=2

Nx(j), (4.23)where λ1 and λ2 with λ1 ≤ λ2 are penalties for depth discontinuities andNx(j) is the numberof pixels y in the 4-neighborhood of x for which the absolute di�erence of depth/disparityvalues at x and y is equal to j. This choice of Esmooth is reasonable, because penalty termsmonotonically increasing with di�erences of depth levels result in over-smoothing occlusions.In the case of dynamic programming considered for an (epipolar3) line with M pixels, thedata cost matrix Aj,i is denoted, as done previously in Sec. 2.2, by [c(1, j), ...c(M, j)] for eachvalue j = 1, ..., S and the smoothness cost matrix with entries is denoted by cs(j1, j2), ...,
cs(jM−1, jM ). The smoothness term can also depend on the intensity levels of relevant pixels(see (2.12)) and should be denoted by cs(jM−1, jM , I0(M − 1), I0(M)). However, this slightmisuse of notation does not lead to misunderstanding and is, therefore, not critical. Thetask is to minimize

M∑

i=1

c(i, ji) +

M−1∑

i=1

cs(ji−1, ji) =

M−1∑

i=1

(c(i, ji) + cs(ji−1, ji)) + c(M, j)3Originally, dynamic programming is used for a recti�ed stereo pair, so that in our applications, epipolarlines coincide with horizontal (scan)lines if and only if opt.r = 1



65 4.5. Multi-view dense matching using triangular meshesover all SM possible con�gurations of ji. This is carried out by computing and storing thebest path P (i, j) from 1 to i for each value of ji+1, as explained in the Alg. 8.2.The complexity of Alg. 8.2 is actually O(MS2) (instead of the SM complexity of thebrute-force procedure which considers every con�guration), because computing C(j) byminimization over j′ is itself an O(S) procedure. By a suitable choice of smoothness function,one can achieve a complexity of O(MS). Such a smoothness function λ must depend as littleas possible on j (although dependence on I, as in (2.12), is not a problem). For example,in order to compute C1(j) with a disparity term given by (2.10) or (2.12), we need onlyto compare C(j) and C(P (j)) + λ(i)). For the smoothness term mentioned in (4.23), fourvalues of must be compared (see (4.24)). The generalization of the Alg. 8.2 for (2.15) (inwhich the smoothness term involves ji, ji+1, and ji+2) is straightforward. The di�erencewith Alg. 8.2 is just that we need to compute C1(j + 2) in order to know the best path
P (i, j). For example in order to know the optimal choice of the label j1 for every value of
j3, we must compute

min
j1

(c(1, j1) + c(2, j2) + λ1|j1 + j3 − 2j2|) ,for every j2 and j3, a procedure of O(MS3) complexity. Also in this case, of course, thecomplexity can be reduced for special kinds of depth terms.As for the semi-global optimization algorithm, the NP-hard 2D problem (2.9) was solvedby approximating the term Esmooth. As stated in [67], at least eight paths (two horizontal,two vertical and four diagonal) are necessary to provide good coverage of I0. Throughoutour experiments, up to 16 paths are used. A global accumulation of all possible paths isreplaced by paths emanating from each pixel along a straight line. Suppose we have a pixelx and a path direction r such that the previous pixel x − r is denoted by y. With (4.23),the path cost at x at depth label j in the direction r is recursively de�ned by
L′r(x, j) = c(x, j) + min

[

L′r(y, j), L′r(y, j ± 1) + λ1,min
i

L′r(y, i) + λ2

]

. (4.24)This recursive formula is initialized by corresponding values of A at the beginning of allpaths. Because the value L′r(x, j) always increases as the path is traversed, precautionsmust be taken to bound L. Thus, (4.24) is extended to
Lr(x, j) = L′r(x, j)−min

j′
Lr(y, j′). (4.25)Since minj′ Lr(y, j′) is constant for all j, the position of the minimum-cost depth does notchange and Lr is bounded by Lr ≤ εmax + λ2. To compute the costs for a depth, the pathsfor all computed directions r are summed up to

C(x, j) =∑r Lr(x, j).The depth label dx is then chosen as the label that yields the lowest overall cost: arg
minj C(x, j). Since 16 paths are used in our experiments, the upper limit of C is C <
16(εmax + λ2). By scaling the entries of the data cost matrix so that both εmax and λ2 arebounded by 2048, the size of C can be limited to 16 bits and thus a 16-bit integer vector isused throughout the computations. At the last step, outliers (which can sporadically emergein the regions between the paths) are eliminated by means of a median �lter. The subpixelcalculation can proceed by �tting a correlation parabola to the values of the cost function,as we explained at the end of Sec. 4.4.1.The semi-global optimization algorithm also has complexity O(MS) (or, to be exact,
O(MSr) where r is the number of paths) for our special choice of cost function. In general,



Chapter 4. Multi-view algorithms for depth maps estimation 66its complexity is O(MS2r) (since the second summand of (4.24) is, in the general case,
min[L(y, j′) + cs(j, j

′,x,y)] over j′). Applying semi-global optimization helps eliminatestreaking artifacts without signi�cant increase in computing time. It will, therefore, be ourdefault method for the reconstruction pipeline.4.5.4 Choice of smoothness parametersAs for the choice of smoothness parameters, the results presented in the next chapter showthat the di�erence λ2−λ1 should be bounded away from zero, since otherwise the algorithmprefers one big jump of the depth to its slow, continuous change that is characteristic forsmooth surfaces. As a result, the depth maps become too noisy. On the other hand, if
λ2 � λ1, the results easily become over-smoothed near occlusions and the deviations ofdepth in these areas become, consequently, very high. The best results were achieved forthe ratio λ2/λ1 = 2 to 3. The choice of λ1 is not trivial, but also not critical, since it istypical for global algorithms to produce results of comparable quality for quite a wide rangeof smoothness parameters. Due to equations (4.1) and (4.23), however, it is clear that λ1must not depend on image size while its order of magnitude must depend on the di�erencesof entries in the data cost term.The following strategy is applied: after the local algorithm is performed and a label j isassigned to a pixel x ∈ I0, we calculate the term

C1(x) = |c(x, j)− c(x, j + 1)|+ |c(x, j)− c(x, j − 1)| =
∑

|j̃−j|=1

|c(x, j)− c(x, j̃)| (4.26)in order to estimate, quite rigorously, the con�dence of x. This quantity C1(x) measureshow well the cost function at dj outperforms the cost functions of the previous and followinglabels, so that the depth value of x can be changed (oversmoothed) by λ1. The quantity
C1(x) is a special case of

C2(x) = 1

s

∑

j̃ 6=j

|c(x, j)− c(x, j̃)|, (4.27)and a simpli�cation of the term C(x) of (4.19). Here again, we denote by c(x, j) the valueof Edata(x, j) +ET (x, j). For illustration of this, see Fig. 4.11.Now let us assume that typically not more than 10 to 20% of all points are characteristicenough that the depth can be estimated with a precision of one (depth or disparity) label(since the vast majority of points lies in areas of rather weak texture). Then it is su�cientto take a value of λ1 corresponding to a quantile between the 80th and 90th quantiles ofthe histogram of {C1(x)|x ∈ I0}. Due to discretization e�ects, one could consider a lowerquantile value C2(x) of (4.27).To explain the reason for our assumption, we go one step further and take into accountpixels corresponding to smooth surfaces in object space. These are the pixels whose depthvalues we should be able to change by applying the smoothness term and which often liein homogeneously textured areas. The question how many pixels we must be able to over-smooth is equivalent to the question how many pixels lie in homogeneous, topologicallyconnected regions. This is the reason why the smoothness parameters the data set Tsukubawill turn out to be somehow lower than for data sets that are typical for our applications:there are not that many homogeneous regions in the reference image.
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Figure 4.11: Con�dence maps C1(x) (left) and C2(x) (right) from equations (4.26) and (4.27),respectively, of the data set Tsukuba. The reference image is depicted, for comparison oftextured and homogeneous areas, in Fig. 6.4, p. 90, on the right.



Chapter 5. Shape reconstruction 68
Chapter 5Shape reconstructionThe input of a shape reconstruction procedure consists of a 3D point cloud sampled from oneor several depth maps obtained, as described in the previous chapter, from the correspondingreference image(s). The desired output is a discrete set of 3D points as well as trianglesconnecting these points. Actually, there are two tasks that face us here. First, we considerthe urgent need for "close-to-real-time" algorithms and, consequently, their incrementalcharacter. In this case, we must make use of several reference images with correspondingdepth maps and generate from them triangular meshes "up-to-now" without considering theglobal character of data. We describe the local incremental fusion of tessellations (LIFT)algorithm in Sec. 5.1. The second task will be unifying these results into a global mesh.To do this, we apply methods discussed in Sec. 5.2 and Sec. 5.3. Here the L1-splines-basedprocedure of Sec. 5.2 is considered as our default method and represents the main innovationof our work. For comparison of the results on synthetic and real data, we implementedseveral methods mentioned in Sec. 3.2, namely, alpha-shapes, iso-surface extraction, grid-�tand conventional splines, details of which are reviewed in Sec. 5.3. Finally, the texturingprocedure, described in Sec. 5.4, consists of choosing a reference camera for each triangle ofthe mesh.5.1 Local tessellations from depth mapsThe goal of this section is the description of an incremental procedure for compressing thedata stemming from one or more reference images. We discuss �rst a method for tessellationof one reference frame (Sec. 5.1.1). If the number of reference frames is more than one, anaive approach is to consider the union of all tessellations. However, since such a tessel-lation usually contains spurious triangles, it is better to consider geometric constraints toremove these triangles. The local incremental fusion of tessellations (LIFT) algorithm willbe explained in detail in Sec. 5.1.2.5.1.1 Tessellation from one reference frameWe start our treatment of meshing with a minimum of information. Suppose we have onereference view and the corresponding depth mapD. If the depth map was retrieved accordingto Chapter 4, we already have a list of triangles consistent with the surface and can restrictourselves to this list only. Since the vertices of these triangles were obtained in the processof (epipolar or simultaneous) tracking, some of them (especially those in textureless areas)get lost. As a consequence, the triangles have di�erent sizes and, since many vertices lie inthe textured areas, the number of triangles becomes unnecessarily high. In the rest of thesection, we are concerned with compression and homogenization of the point set.



69 5.1. Local tessellations from depth mapsStarting from one single depth map, the simplest way to create a triangular mesh is toconsider a canonical triangulation (see [105]): we subdivide the image into small squares of
q×q pixels and further subdivide each square by one of its diagonals into two triangles. Twoimprovements of this approach are proposed and applied. The �rst improvement consists ofchoosing mesh vertices according to their accuracy. For every canonical vertex x, we search,in a small window (some q/4 to q/3 pixels) around x, for a point y with the maximum valueof the con�dence map (given, e. g., by (4.27)) and replace x by y. The second improvementconsists of subdividing a triangle with depth discontinuities into two smaller triangles alongits symmetry axis. This kind of subdivision is very e�cient (see Fig. 5.1) and preserves theangles of triangles. We have found out that the condition

dmax(T )− dmin(T )

dmin(T ) + d
> ε(where dmax(T ), dmin(T ) are maximum and minimum depth values of a triangle and d, ε arepositive constants) is a reasonable criterion for subdivision. The maximum possible orderof iterative subdivisions (also called generation of triangles) is set to 4. In order to avoidcracks in the �nal surface (that result if a 2D mesh vertex is an inner point of an edge,because the corresponding 3D point is not necessarily incident with the an edge connectingthe 3D endpoints of this edge) new vertices must be inserted, as in Fig. 5.1, bottom right.The process of inserting new vertices and subdividing triangles (which actually have passedthe criteria mentioned above) to avoid cracks is called restricted (top-down) quadtree trian-gulation (RQT or RTDQT) and was introduced in [108]. The report [108] and the sourcesgiven there provide only hints about how to compute RTDQT. We describe in the two fol-lowing paragraphs the basic terminology and the complete procedure for implementationof RTDQTs from the initial, canonical triangulation. For completeness, the procedure isformulated as pseudo-code in Alg. 8.3 of the appendix.

Figure 5.1: Left: The depth map of a reference frame from the sequence Infrared and thecanonical triangulation of vertices corrected by the con�dence map with pyramid-depth level2; triangles with jumps of depth are shown in red, those without jumps in green. Top right:The edges and vertices of a part of the left image marked by the yellow rectangle. The cracksin the �nal surface are clearly visible. Bottom right: No cracks are visible if a restrictedtriangulation is performed.The di�erent levels of details for vertices and triangles correspond to generations g. Onthe coarsest level, g = 0, for a vertex at the midpoint of the largest edge of such a triangle,
g = 1 and so on (see Fig.5.2, left). The generation of a triangle is given by the generation of



Chapter 5. Shape reconstruction 70its youngest vertex, such that we can de�ne for a triangle T (if g(T ) > 0) its parent and twochildren. If the edge e of T opposite to its youngest vertex is not incident with the marginof the (rectangular) domain, then the triangle of the same generation sharing e with T iscalled, the friend of T . On the coarsest level, g = 0, these are just triangles which sharethe diagonal of the same rectangle. Note that two friends are not brothers (i. e. children ofthe same parent) unless g = 0 and that it is easily possible to compute for every triangle itsfriend by comparing the indexes of its vertexes.The activity status s of a triangle can be active (s(T ) = 1), if it is in the list, non-active(s(T ) = 0), if a triangle of an older generation incident with T is active and lost(s(T ) = −1)if there is a chain of children of T ending up in an active triangle. Splitting a triangle
T can always be performed by setting its status to 0 and the status of its children to 1(see procedure Split(T ) of Alg. 8.3). The RTDQT has the property that the generations oftwo triangles sharing the same edge di�er at most by one, in other words, for every activetriangle, either its friend, or the friend's parent, or its friend's child, is active (Alternatively,no vertex can be the inner point of a triangle's edge). The main idea of the rtdqtSplit(T ),where T is the triangle to be split, is to identify the friend of T . If this triangle is active, it issplit. If it is non-active, then, by de�nition, its parent P must be active and the procedureis repeated for P . Even if the algorithm is recursive, it will converge since the generationof P is necessarily lower than that of T and the moment must come when g(P ) = 0. Theprocess of re�ning starts with the canonic triangulation on the coarsest level. From levelto level, the list of active triangle satisfying a splitting criterion is determined. For everytriangle T of this kind (unless g(T ) > n0 where n0 is a �xed number of maximum pyramidlevel), the procedure of rtdqtSplit(T ) is performed and so a new set of active triangles isgenerated.

Figure 5.2: Left: Canonic triangulation of an arbitrary rectangular domain. The trianglesof generation 0 are marked by crosses, for generation 1, by diamonds and dotted edges andfor generation 2 by small stars. For four exemplar triangles marked in green, we show theirchildren as well as their friends marked in red. There is no friend for a triangle near domainmargin. Top right: Cracks are likely to emerge if restricted triangulation is not carried out.Bottom right: To perform the algorithm, one has to identify the friend B of a triangle T tobe split, and if B is not active, then the same algorithm must be applied to the parent of B.



71 5.1. Local tessellations from depth maps5.1.2 Tessellation from several reference framesThe union of local triangular meshes from di�erent reference frames, as the output of theprevious section, can be now considered. However, several triangles inconsistent with thesurface may be included in the result. Also, there are many redundant triangles that emergebecause the di�erent reference images have a partial overlap (see, for instance, images onthe top of Fig. 6.3, p. 84). After a local tessellation for the new reference view (denoted by
Im) has been calculated, it is possible to reject several triangles that were incorrectly orredundantly assigned to the list of triangles consistent with the surface. In the followingparagraph, we review the main ideas of the local incremental fusion of tessellations (LIFT)algorithm, which is also illustrated as pseudo-code in Alg. 8.4, p. 143.From each pixel x of the current reference frame Im, we set the value of the booleanvariable status to 1 and project the corresponding 3D point X (extracted by means of thecorresponding depth map Dm at x) into the other reference images I1, ...Im−1. (In [22],double indexing Ir1 , ..., Irm−1

was used to di�erentiate between the local approach within asubsequence and a global approach, where results from di�erent subsequences are fused intoa global mesh). Since we have depth values for these points (xk), we can compute the errorterm
δ(x) = d(X)−Dk(xk)with depth d(X) computed from Pk according to (4.1). For a positive constant ε (tolerance),

δ(x) > εd(X) means that X occludes some point of Dk; in this case, the occlusion counter
o(T ) for the triangle T incident with x is increased. On the other hand, |δ(x)| < εd(X)meansthat the pixel x was already processed at an earlier stage, so, in this case, the redundancycounter r(T ) of T is increased. In either of these situations, the variable status is set to be0. After all pixels of the new reference image has been processed, we delete all trianglesfor which either o(T )/a(T ) > 0.1 or (o(T ) + r(T ))/a(T ) > 0.99 holds. Here a(T ) (areacounter) denotes the number of pixels processed in every triangle. The starting values forthe counters for a(T ), r(T ), o(T ) are all set to 0 for every triangle T .A modi�cation of this algorithm can be also found in [22] and it was originally appliedon the Delaunay triangulations from the point sets in the reference images. The mostsigni�cant di�erence between Alg. 8.4 and [22] is the following. Since Step 2.2 of our pipelinewas completely omitted in [22], the evaluation of triangles took place within LIFT. For thecase status = 1 after the inner loop in Alg. 8.4, the local approach with the aggregationfunction ‖ck′(x)‖ taken over neighboring images k′ = m± 1, m± 2, ..., (not other referenceimages!) was performed; here ck′ denotes the SAD-values from either gray or color values ina small window. If the value of the aggregated cost function exceeds a threshold, the pixelis declared as inconsistent with the surface. After all pixels of the new reference image havebeen evaluated, also triangles with a high percentage of pixels inconsistent with the surfaceare deleted as well. This has the advantage of performing a geometric and image-basedevaluation on triangles in one step but the disadvantage of potential wrong classi�cation oftriangles. For example, large triangles from homogeneous, untextured regions are biased tobe included into the list while triangles near occluded regions are biased to be excluded,since the aggregation function near occluded regions is less robust than the one chosen in(4.20).We now refer to other di�erences between Alg. 8.4 and [22] as well as extensions of theLIFT algorithm. Fitting dominant planes into local tessellations and correcting points inthe direction of normal vectors of these planes is a meaningful preprocessing step. Thecomputation of dominant planes proceeds by means of the RANSAC procedure with the
Td,d-test (see [95]) until a su�ciently large consensus set is obtained. After the 3D pointsof this set are projected onto the plane according to (3.3), they are deleted (temporarily)from the point list and the procedure begins again. This has an advantage, beside improved



Chapter 5. Shape reconstruction 72position of 3D points, that triangles lying in one of the dominant planes can be preferredby decreasing the maximum threshold for percentages of redundant and occluded pixels(o(T )/a(T ) and r(T )/a(T ), respectively) within them. In order to reduce computing time,the set of test points can be diminished from all pixels of the reference frame to the 3D pointsavailable up-to-now. This idea is proposed by [99]. Similar to [111], we also undertook e�ortsto avoid inconsistent meshes (i. e. those locally non-homeomorphic to a plane) and to reducethe number of vertices by fusing vertices of the new local tessellation with those of theprevious one if they are too close. The closest point in the previous mesh is computed in theHausdor� metric calculation (covered in Chapter 6). As the �nal step, we optionally deletetriangles of the previous mesh that occlude the new mesh.Clearly, for an increasing number of frames, it becomes quite expensive both to keepall reference images with the corresponding depth maps in memory and to process the newreference image while recalling all available reference images. The computational cost of sucha procedure depends quadratically on the number of reference images. More sophisticatedmethods (for example, octree decomposition of the 3D space to be reconstructed) can processall tessellations simultaneously. These methods will certainly be a topic of future work. Inthe current implementation, in order to keep the cost of the procedure linear, we keepand process only a �xed number, between 2 and 5, of previous local tessellations. Otherimportant parameters of the algorithm are the following:1. The number of images in the subsequences is 5 to 7, as we will see in Chapter 6.2. The number of frames between the frames within a subsequence varies between 2 and12, depending on the sensor's velocity (see also Chapter 7).3. The distance between subsequence in the current implementation is chosen so that twosuccessive subsequences almost overlap, i. e., the number of frames between the lastframe of the kth and the �rst frame of k + 1st subsequence is small.4. The value of q (from Sec. 5.1.2) of the resolution on the �nest level is 10-20 pixels.Consequently, it is 40-80 pixels for the coarsest level. The number of triangles in atessellation in a subsequence usually does not exceed 10000.5. Finally, the value of ε in Alg. 8.3 depends on the distance from the camera center tothe object points, the baseline, and the focal length. Mostly ε = 0.05.The procedure described in this section allows obtaining a close-to-real-time reconstruc-tion in the form of (quite regularly distributed) sample points in the areas covered up tonow and triangles that connect these points. This concept is su�cient for the majorityof applications. However, the visual quality of models thus obtained is unfortunately notalways su�cient. Two causes of insu�cient visual quality are holes and other topologicalinconsistencies in the triangular mesh and noise in the triangle vertices. In order to solvethese problems, we will consider the whole point cloud in the next sections.5.2 L1-splines-based procedureThe core element of our algorithm for shape reconstruction is the L1-splines-based procedure,also described in [24]. Starting with a 2D tensor-product domain (ui, vj), i = 0, ..., I, j =
0, ..., J , our main task is to obtain a di�erentiable homeomorphism in the form of a cubicspline that approximates the point cloud. Explicitly, this means that the surface to bereconstructed must be homeomorphic to a plane. This puts restrictions on the topologicalvariety of surfaces, but it is a plausible assumption for a �ying sensor covering the urbanterrain and thus eliminates, for a vast majority of cases, a large source of errors.



73 5.2. L1-splines-based procedureSince we strive for generic models automatically instantiated for data sets with irregulardensity of points, high percentage of outliers and sharp changes of curvature, we cannotrely on most least-squares-approaches. In order to obtain, on arbitrary grids, smooth ap-proximations free from extraneous overshoot and oscillations, we adopted the ideas of L1approximating splines, whose main idea (see [85] and references therein) consists of replac-ing (the outlier-sensitive mean-based) L2-norm by the median-based L1-norm. Overall, ouralgorithm consists of four steps, namely,1. Generation of a nonparametric 2.5D surface from the point cloud in form of a C1 cubicspline2. Creation of a parametrized data set using the latest 2.5D or 3D surface3. Generation of a parametric 3D surface and return to Step 2 until a stopping criterionis satis�ed4. Tessellation of the 3D surface.The point cloud serves as input of the algorithm while for texturing step, explained inSec. 5.4, camera matrices and depth information are also needed. If one wants to reconstructa smooth surface from depth maps or 3D character of the scene is not present, Steps 2 and3 can be omitted. When vertical structures (like building walls have) to be reconstructed,Steps 2 and 3 are necessary and a pair of independent parameters u, v are to be determined.This is why we denote the surfaces obtained in Step 1 and Step 3 by nonparametric andparametric, respectively.The four steps will be explained in the Subsections 5.2.1, 5.2.2, 5.2.3, and 5.2.4, respec-tively, of this section.5.2.1 Functional and algorithm for 2.5D L1 splinesThe �rst step of the procedure is orientation of the point cloud X = {Xm|m = 1, ...,M},since the nonparametric 2.5D representation assumes that one is able a priori to rotate thepoint cloud so that the z-axis coincides roughly with the physical vertical direction. For thedata considered here, this assumption is reasonable, since the physical vertical direction canbe estimated either by the normal vector of the plane robustly approximating the cameracenters or by the dominating direction of vertical straight lines (detected by [30] in theimages and triangulated by means of the DLT-method of [61]). This latter approach wassuccessfully used in [97].In this section, the problem of the 2.5D surface approximation given a set of samplepoints X is considered. Given a rectangular grid (ui, vj) (where u0 < u1 < ... < uI , v0 <
v1 < ... < vJ and the {(xm, ym)} of the data points are assumed to lie in the rectangle
[u0;uI ]× [v0; vJ ]), we wish to approximate the data with a C1 cubic spline z(u, v) that bestpasses through the data points.The (vertical) error of a single sample pointXm is |z(xm, ym)−zm|, where z(x, y) is givenby (3.8) or by the analogous formula for one of the other triangles. The way to aggregate theerror of the whole data set has a large in�uence on what surface one obtains. Unfortunately,the traditional choice which is the least squares minimization

∑

m

(z(xm, ym)− zm)
2virtually always produces inaccurate results with extraneous artifacts and oscillation inareas of rapid curvature change (for example, vertical discontinuities or near-discontinuities,



Chapter 5. Shape reconstruction 74which are common in terrain). Evidence in the recent literature [85] suggests that surfacescalculated by minimizing sums of absolute values are more robust and have fewer artifactsthan surfaces calculated by minimizing sums of squares. For this reason, we decided tominimize the sum of the absolute values (along with other terms) instead of the sum ofsquares.The functional that we minimize to create an L1 spline consists of a weighted sum ofthe absolute (vertical) deviations of the data from the surface, a smoothness term, similarto the Laplacian of Sec. 3.2.4 and a regularization term that resolves nonuniqueness when itoccurs:
(1− λ)

M∑

m=1

wm |z(xm, ym)− zm|+ λ

∫

(|zuu|+ 2 |zuv|+ |zvv|)du dv
+ε
∑

nodes (|zu|+ |zv|) −→ min .

(5.1)In the �rst term (data term) of (5.1), the weights wm can be chosen to re�ect uncer-tainty in the point coordinates. If there is no information on the uncertainty in the pointcoordinates, all of the wm are set equal to 1. The parameter λ ∈ [0; 1] expresses the balancebetween how closely the data points are �tted and the tendency of the surface to be close toa piecewise planar surface, without extraneous, nonphysical oscillations. If λ is too small,the second term (smoothness term) of (5.1) becomes rather unessential and so the negativee�ects caused by outliers become clearly visible. If, however, it is too large, areas near char-acteristic edges become oversmoothed. In order to approximate the integral which makesup the smoothness term in (5.1) by a discretized value, each grid cell [ui;ui+1] × [vjvj+1]is divided into N2 equal subcells (N ≥ 3) and the sum of absolute values of the integrandat the midpoints of those sides of the subcells that are interior to the cell is computed.The value of the integrand is approximated by di�erential quotients of function values givenby (3.8). The last term of (5.1), consisting of the sum of the absolute values of the �rstderivatives at the grid nodes, is added to the functional in order to prevent it from havinga non-unique minimum. L1 functionals are in general, non-convex and can have an in�nitenumber of solutions. This third term is responsible for choosing from this set the mostphysically meaningful one. If ε is small enough, consideration of the last term in (5.1) doesnot change the minimum value of the functional.The task is thus to solve an overdetermined system of equations Ab = c in the L1 norm.Formally:
b = argmin

b′



‖Ab′ − c
︸ ︷︷ ︸r ‖1



, (5.2)where A is a coe�cient matrix stemming from (5.1) that has r = M +6IJN(N − 1)+2(I+
1)(J + 1) rows and 3(I + 1)(J + 1) columns (recall that M is the cardinality of the pointset, N is the number of grid cells used for discretization of the integral in (5.1) and I × J isthe dimension of the grid). It can be assumed that A has the full rank. A linear programcan be obtained from (5.2) by considering the residuals r. We have to minimize

12r

[ r+r− ] subject to [A | Ir | − Ir]





br+r− 

 = c and [ r+r− ]

> 02rwith r+, r− as in Sec. 1.4. The minimization is carried out by means of a primal-a�nealgorithm. This is an interior-point method that starts with a least squares solution of (5.2)and, by iteratively updating the weight matrix W and computing the weighted least-squares



75 5.2. L1-splines-based proceduresolution WAb = Wc, either converges to a L1-solution of (5.2) (if parameter updates liebelow a reasonable tolerance) or terminates if a maximum number of iterations is reached.The algorithm converges theoretically both for cases of unique minima [131] and for casesof multiple minima [2]. It is closely related with the robust least-squares approach becausethe outliers are supposed to be given smaller weights in the course of the minimizationprocedure. Consequently, it is possible to keep track track on outliers in the data; however,these outlier tests are not carried out in our approach.The proof of the statement that primal-a�ne algorithm corresponds to a L1-solutionof (5.2) was given in [102]. The most time-consuming step is the least-squares solution ofthe overdetermined linear system, that is, solution of ATW 2Ab = ATW 2c. By properlyordering the unknowns, the symmetric, positive de�nite matrix ATW 2A can have a minimalone-sided bandwidth (number of superdiagonals + 1 for the main diagonal) of 3min(I, J)+9.We give, for completeness, the pseudo-code for the primal-a�ne algorithm that we use inAlg. 8.5 of the Appendix and refer to [85] for further details.5.2.2 Parameterization of data pointsWhile the method presented in the previous section produces good results for 2.5D data,the question now is how to generalize it for a 3D point cloud. What we need is a globalparametrization u, v that allows calculation of a triplet of splines x(u, v), y(u, v), z(u, v),which we now denote by X(u, v). Such a parametrization usually exists for typical airbornevideo data of an urban scene, because the surface is usually homeomorphic to the plane. Ifthe point density is su�cient and adaptive to curvature changes, one could apply methods ofmulti-dimensional scaling (see, for example, [35]) and (in the case of 3D to 2D dimensionalityreduction) closely related surface �attening. These methods roughly consist of minimizinga norm of a matrix with observationsdst ((um, vm), (un, vn))− dst(Xm,Xn)over 2M values of the parameters um, vm and where Xn, n ∈ {1, ..., N} is a neighbor of Xm.The choice of neighbors can be carried out by means of the approximate nearest neighbors(ANN) algorithm as described in [104]. In the context of surface reconstruction by bivariateB-splines, this approach was applied by Eck and Hoppe in [42]. Unfortunately, despite theband structure of the MN × 2N observation matrix, solving the system for (um, vm) wasnoted to be an extremely time-consuming and unstable process. We project the data pointsXm onto the (most recently generated) surface to obtain "corrected" points X̂m and use itscoordinates (u, v) = (ûm, v̂m) as a parameterization for the surface X to be calculated next.The unknowns in this case are the (u, v)-coordinates of the point X̂m at the surface that isclosest to X. We use the Levenberg-Marquardt algorithm [49, 61], where the cost function
ε and the Jacobian J are given by:

ε = ε(u, v) = X−X(u, v) → min,J = [X(u, v)u X(u, v)v] .The terms of X(u, v),X(u, v)v,X(u, v)u are given by (3.8) (in which one has to replace zby the entries of X and select the suitable Sibson-triangle) and its derivatives. While forparameterization of the 2.5D surface, the �rst two rows J are made up by the identitymatrix and the third row is zu, zv, it is a full 3 × 2 matrix at all following iterations (seeSec. 5.2.3). This parametrization process is schematically visualized on the left of Fig. 5.3.5.2.3 Functional and algorithm for 3D L1 splinesAfter parameter values (um, vm) have been assigned to each point (xm, ym, zm) as indicatedin the previous section, we compute a 3D L1 spline by minimizing the functional
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(1 − λ)

M∑

m=1

|wm|z(um, vm)− zm|+ λ

∫

(|zuu|+ 2 |zuv|+ |zvv|)du dv+
ε
∑

nodes

(|zu|+ |zv|) +
12∑

1

[analogous expressions], (5.3)where by "analogous expressions" we mean replacing z in (5.3) by the 12 functions x, y, x±y,
x± z, y± z and x± y± z , respectively. The functional (5.3) is more robust (at the cost ofcomputing time!) with respect to outliers than three uncorrelated functionals as in (5.1) for
x(u, v), y(u, v) and z(u, v). Functional ((5.3)) is minimized by the primal-a�ne algorithmdescribed in Sec. 5.2.1 (with details suitably adjusted). The complete process consists ofstarting from a 2.5D L1 spline and then iterating the two steps of parameterization and 3Dspline generation several times.The smoothness parameter λ in (5.3) does not need to be the same as in the (5.1). Theautomatic choice of suitable λ is not a trivial problem. Neither theoretical nor heuristicguidance is currently available. Like in (2.9) of the image-based part of this dissertation,changing λ by small values (in our case ±0.05) does not result in large changes in the L1splines. Usually, it is recommended that λ be bounded away from zero in the non-parametricspline since we must make sure that the correct topological relations are not a�ected byoutliers. For other iterations, smaller values of λ can be used.5.2.4 Tessellation of the spline surfaceAs a result from the previous sections, we have an explicit representation of the objectsurface X(u, v) and also of its partial derivatives. Our task now is to create a triangularmesh that best �ts the spline surface. This triangular mesh will be, at a later stage, themain input of the texturing procedure: its task will be to texture each triangle using one ofthe available reference views.Surface meshingThere are two possibilities for meshing the surface obtained using the procedures of Sec. 5.2.3.The authors of [24] applied the Delaunay triangulation of the (u, v)-values of the pointsX̂m (the points on the surface closest to the data points Xm) of the last of the iterativelycalculated spline surface. Points within a rectangle R = [ui; ui+1]×[vj ; vj+1] are compressedintomultipointsXr that coincide with the center of R. Another possibility is to use canonicaltriangulation of spline nodes in the (u, v) domain (rectangles cut by one of the diagonals, asproposed in 5.1.1). Since the number of spline nodes in each direction is about 30-50, we areable to model our objects by means of several thousands of triangles. Although this secondapproach results in a higher number of triangles, we use it in our further considerationsbecause it represents the spline surface at its �nest resolution and the high number oftriangles can be reduced by e�cient mesh-manipulation methods described in Sec. 2.4.2.In our implementation, an optional step after tessellation is mesh manipulation by anedge-�ipping method. From the initial triangulation, the (u, v)-values of 3D points X andthe values of their normal vectors nX = (Xu×Xv)/‖Xu×Xv‖, we wish to obtain a new meshthat is more consistent with nX, as indicated in Fig. 5.3, right. To do this, one starts withconsidering for a triangle T with vertices ABC the terms (actually, three scalar products)n1(T ) = (nT,0)

T · [nA nB nC] , (5.4)



77 5.2. L1-splines-based procedurewhere nT,0 is the normal vector of the triangle given bynT,0 =
(A−B)× (A−C)

‖(A−B)× (A−C)‖ .If the normal vector of T is nearly parallel to the normal vector at one of its vertices,the corresponding entry of the vector n1(T ) in (5.4) is close to ±1. Therefore, we choose,among a large number of possible energy functions for a triangle T , the very simple term
E(T ) = −‖n1(T )‖∞ and wish to minimize the total energy E(T ) =

∑

T∈T E(T ) overtriangulations T .The next step of our minimization algorithm consists of obtaining all interior edges of
T . Each of them is associated with a quadrilateral, so the energy value E(Q) of everyquadrilateral Q is computed. The energy of Q is given by the sum of the energies of bothtriangles composing Q. The energy values are now stored in non-decreasing order.The activity status of all quadrilaterals is now set to be 1. The iteration loop runs overall swappable quadrilaterals of the list, where a quadrilateral Q is declared swappable if itsactivity status is 1, all its angles do not exceed π and the angle between the oriented normalvectors of the two triangles from which Q is made up is below a �xed value (π/2 − ε). If
E(Q) > E(Q′) (whereQ′ is a swapped quadrilateral), the triangles composingQ are replacedby those composing Q′, incidence and energy information of all quadrilaterals around Q isrecalculated and their activity status is set to be 1. Finally, the activity status of Q′ is setto be 0.
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Figure 5.3: Left: Parameterization of the approximating spline surface (see Sec. 5.2.2). The2.5D spline surface is depicted by the green curve, the point cloud is depicted by red crossesand the correct surface is indicated by a black dotted line. Points are projected onto thesurface (depicted in selected cases by blue crosses) and the �rst two coordinates are chosenas independent parameters (blue circles). The approach will preserve topological relationsof points when the inclination angle of the z-axis against the vertical direction of buildingwalls is small and the input surface is good enough.Right: Visualization of the edge-�ippingprocess. Two triangles sharing a common edge and not re�ecting the values of the normalvectors of their vertices (given by derivatives) are �ipped along this edge.In our applications, it was convenient not to include quadrilaterals Q into the list when
E(Q) was below 0.0001 and so the number of iterations was always below 500. It is alsoimportant to point out that the �nal triangulation depends on the order of swapping andso there is generally no guaranty that, at the end of the process, the energy takes on theglobal minimum value argminT E(T ) over all possible triangulations T . However, since theenergy of every swap reduces the total energy, it will be always lower than the energy in thebeginning and therefore the algorithm terminates (in a local minimum of the total energyfunction) after a �nite number of iterations, namely, when there are no longer any swappablequadrilaterals in the list. Further reduction of total energy can be achieved by considering



Chapter 5. Shape reconstruction 78more sophisticated methods like simulated annealing, see, for instance, [118], but also hereno statement can be made about conditions under which a global minimum of energy canbe achieved in a reasonable time. Furthermore, simulated annealing is very sensitive to thechoice of relaxation parameters and, as stated in [118], quantitative improvements of thegeometric cost function are not as signi�cant as those of the local result.5.3 Implementation details of other procedures for sur-face reconstructionIn the next three short sections, we give brief descriptions of implementation details ofseveral approaches that will be used to provide comparison with results obtained by the
L1-splines-based procedure.5.3.1 Alpha-shapesThe main properties of Alpha-shapes (α-shapes, [43]) were discussed in Sec. 3.2.1. Becauseof its indisputable advantages (no need for 3D parameterization, regularized triangle sizesetc.), the α-shapes-based procedure will be our default TIN-based method for shape recon-struction. To compute an α-shape, one needs the Delaunay tetrahedrization of the inputpoint cloud, after which for each face, the maximum and minimum value of α for which Tbelongs to the α-shape can be obtained. These values are stored in a 2 × N array where
N is the number of triangles. Then it is a trivial task to select triangles belonging to the
α-shape from this array.The value of α should be slightly larger than the average triangle edge size in meshesobtained by a local method. After the α-shape has been obtained, the vertices and mesh canbe manipulated in order to detect large planar regions and to reduce the number of triangles.For the comparison of computational results, the Steps 1-4 of the procedure mentioned atthe beginning of Sec. 5.2 are replaced by triangulation with α-shapes.5.3.2 Iso-surface extractionSimilar to the previous section, we wish to understand the advantages and disadvantages ofiso-surface extraction with respect to our applications. The most important parameters forthe iso-surface extraction algorithm of [70] described in Sec. 3.2.2 are ρ (sampling density)and r (resolution). If ρ is too large, completely wrong results for the signed distance functioncan be obtained, as depicted in Fig. 5.4, top left. However, if ρ is too small, two many valuesremain unde�ned (Fig. 5.4, top right). A resolution grid that is too �ne usually leads not onlyto an unnecessarily large number of triangles with coordinates of vertices contaminated bynoise, but also to increased computing time, since, at least at present, gx ·gy ·gz ·M distanceevaluations (where gx, gy, gz are the numbers of nodes in a grid in the x, y and z directions,respectively, and M the cardinality of the input point cloud) for determination of closestpoints in (3.3) are required for every grid point. Grids that are too coarse usually ignoresome �ne details. For the data set Gottesaue, depicted in Fig. 5.4, bottom (intermediateresult), we set gx = gy = gz = 26 = 64.Computing depth maps and rendering local tessellations according to Sec. 5.1 allowsthe assumption of a constant point density at least in large portions of the surface. We cancompute the neighbors of a sample point using the well-known approximate nearest neighbors(ANN) method, [104]. The matrix of distances between the point set and its neighbors isobtained as well and a number proportional to the median of these distance values is set tobe ρ. Now, if a sample point X projected by a reference camera, in which it is visible, lies in



79 5.3. Implementation details of other procedures for surface reconstructiona triangle consistent with the surface, we assign to the normal vector at X the normal vectorof the triangle. Otherwise, the calculation of the normal vector is carried out by �tting aplane with RANSAC from the neighbors of X. The most di�cult part of the algorithm,namely determining the orientation of the normal vector, can be signi�cantly simpli�ed inour applications, because one can take the vector from X toward the camera as an initialorientation of the normal vector of X ∈ X . Multiplication by −1 proceeds merely in theregions of sharp curvature changes (it can not be completely skipped!) and is completedafter several iterations. Finally, meshing is provided by the marching cubes algorithm [91].In the post-processing step, another problem, namely, ghost triangles near the medialaxis, can be partially solved by selecting a rather small value for resolution and then deletingall vertices lying in the cube where either the maximum of negative values at the vertices orthe minimum of positive vertices is bounded away from zero. Finally, neighborhood relationsof vertices sharing a triangle edge are established and we delete all triangles with too fewneighbors. n n
ρ

ρ

Y

Ydst(Y) dst(Y)

Figure 5.4: Top: Problematic of parameter choice for iso-surface extraction. Top left: Toolarge ρ and a too small value is assigned to dst(Y), namely the distance to the regressionplane. Top right: Since no points of the sample lie in a circle of radius ρ (which was chosen tobe too small), the value of signed distance function at Y remains unde�ned. A meaningfulvalue would be assigned if ρ were slightly larger. The regression plane is always denotedby the thick black line, its normal vector by the arrow on the left, the input point setby red crosses and the points included into the consensus set for plane �tting by greenellipses. Bottom: An intermediate result of signed distance function extraction for the dataset Gottesaue. The original point cloud is indicated in black, Y with positive values of thesigned distance function in green, and those with negative values in red. One can see severalwrong assignments which are mainly situated near regions with sharp gradient changes (e. g.,towers), points of medial axis and outliers in the data. The result of the complete procedurefor this data set is depicted in Fig. 6.33, p. 113, middle left.



Chapter 5. Shape reconstruction 805.3.3 Conventional (L2) splines and grid�tThe procedure for conventional, or L2 splines of Sec. 3.2.4 is the same as that stated for
L1 splines in Sec. 5.2 except that the absolute values in the minimization principles of (5.1)and (5.3) are replaced by squares. A conventional spline is easily obtained, since it is (thespline corresponding to) the value of b after the �rst iteration of Alg. 8.5. The tessellationprocedure remains the same. Comparison of procedures based on conventional splines withour default procedure based on L1 splines is of interest because conventional splines arecommonly used in geometric modeling and because all of the di�erences in the results can bedirectly attributed to the di�erences in the functionals by which these splines are calculated.Computational results generated by the Grid�t routine ([38], see also Sec. 3.2.4) for 2.5Dsurfaces in particular and for di�erent grid sizes, regularization kinds, and smoothness terms,help understand to what extend C0-surfaces can perform successful reconstruction from pho-togrammetrically generated point clouds. Comparison of surfaces generated by Grid�t with
L1-splines provides an additional component of comparison that assists in understandingthe context.5.4 TexturingTo texture the 3D surface obtained by a global algorithm, we must �nd for every triangle
T of the mesh a (reference) camera k that completely observes it under a reasonable angle.�Reasonable angle� means that the cosine of the angle α between the triangle normal n0,Tand the ray connecting its center of gravity (denoted by G(T )) with the location of referencecamera (Ck) must be bounded away from zero. The choice of such a camera is not a trivialtask because there is a lot of available information (the distance G(T )Ck, which should notbecome too large, depth information for points within T in Ik, and many others). So we �rstextract by means of depth maps information about which vertex is seen in which referenceimage. This set will be denoted by v(X) for the given vertex X. Then, the sets ∪3

i=1v(Xi)and ∩3
i=1v(Xi) are evaluated for the three vertices of T . If the �rst set is non-empty, wetake one view from the intersection set for texturing. Otherwise it is clear that the trianglecan theoretically be textured using any image of the second set. We therefore start withremoving the views that cannot texture T either because at least one of it vertices is notvisible in the image or because of coarse aberration from the indicated depth information,in other words
min

(

min
i

(|Dk(PkXi)− d(Xi)|) , |Dk(G(T ))− d(G(T ))|
)

< 2ε · Dk(G(T )),where d(X) is the depth of the point X according to (4.1), and on the right, ε is the sameas in Alg. 8.4 and the factor 2 considers the fact that the positions of mesh vertices areslightly changed by a global method. In [24], the reference image with the smallest value of
c1(k, T ) = |G(T )Ck|(1−cosα) was chosen from the remaining set of reference images. If theuncertainties in camera parameters are not negligible, the approach is modi�ed by choosingthe minimum value of c1(k, T )−Ac2(k, T ) where A is a large positive constant and the valueof c2(k, T ) is set to 1 if a triangle sharing an edge with T is chosen by the reference image kand 0 otherwise. This not only allows selecting cameras with low values of α and small valuesof |G(T )Ck| for texturing T , but also making small errors of point projections less visible(since triangles are textured cluster-wise from reference images). The last strategy achievesits best impact as an iterative procedure where triangles already textured are propagatedalong their edges. Finally, triangles that cannot be assigned to any camera are textured bya neutral color and their transparencies are set to 0.5.



81
Chapter 6Evaluation of algorithmsAfter presenting reconstruction algorithms in Chapters 4 and 5, evaluation of results ob-tained by these algorithms will be described in this chapter. To emphasize the genericcharacter of our approach, video sequences of quite various types and quality will be de-scribed in Sec. 6.1. For each frame of the video sequence, we are given, as stated in Chapter1, the corresponding camera matrix. As additional input, a sparse set of 3D-points is giventogether with a visibility information (which point is seen in which camera). Evaluation ofsparse tracking algorithms, which represent Step 2.1 of our reconstruction pipeline of p. 15,takes place in Sec. 6.2. Qualitative and quantitative evaluation of dense image-based meth-ods (Step 2.2) is provided in Sec. 6.3. Evaluation of the methods for shape reconstructiondescribed in Sec. 6.4 (Steps 3.1 and 3.2) is divided into two parts: in Sec. 6.4, screen-shotsof meshes and textured model representations are presented; a separate section (Sec. 6.5) isdedicated to quantitative evaluation. In order to visualize di�erent steps of our algorithmfrom input images over depth maps and dense points clouds to textured model instances,qualitative results for two additional video sequences are presented in Sec. 6.6; for thesesequences, only main challenges will be mentioned, but a detailed performance analysis willnot be performed. Information about computing time is given in the concluding Sec. 6.7.6.1 Data setsThe �rst data set that we discuss in this section is the well-known Tsukuba data set [115].Several images and the disparity map between two of these images (I3,3, I3,4) are providedfor veri�cation and evaluation of the results. Although we do not consider this data set ascharacteristic for our applications and hence do not perform shape reconstruction in thiscase, we decided to demonstrate the performance of the image-based part of the algorithmfor a data set with available ground truth. Since the surface has many self-occlusions, thegrading of the geometric complexity of the scene is declared as high in Table 6.1 (whererelevant properties of all data sets mentioned in this Chapter are summarized). For pointtracking, we use either �ve images (I2,2, I3,2, I3,3 (reference image) I3,4 and I4,4 � in orderto mimic a �ying sensor) or nine images with (2 ≤ r, c ≤ 4) and again I3,3 is chosen to bethe reference image. For dense estimation, the number of images was chosen to be �ve.In the next data set, Turntable houses, only the moving parts of the images need bereconstructed. Since the (unmoved) background (see Figs. 6.1 and 6.5) does not satisfy thecollineation constraint, it does not make much sense to perform a dense reconstruction ofthis data set, but it is still interesting to observe the results of sparse tracking for di�erentmethods and parameter sets for this labor data set. The extraction of camera trajectoryand sparse point cloud was carried out by the structure-from-motion approach of [22, 23]



Chapter 6. Evaluation of algorithms 82followed by a bundle block geometric error minimization. The total number of cameras was81 and the number of points 8159. The shape reconstruction methods are applied to thispoint cloud. Several video frames of the data set as well as the result of Step 1 of ourreconstruction pipeline is visualized in Fig. 6.1, bottom.

Figure 6.1: Top: Three views from the original sequence Turntable houses. Bottom: Thecomplete camera trajectory and the point cloud as a result of a structure-from-motion algo-rithm are the input of our reconstruction pipeline.Our next sequence, Gottesaue, shows a real building Gottesaue Palace in Karlsruhe,Germany. The results of the reconstruction presented in [24, 25] were derived from 339images and 39059 points obtained using the methods of [22] without bundle adjustment(which was not possible to perform reliably for such a large number of cameras). Theresults depicted in Fig. 6.6, bottom, were produced by generating four workspaces fromsubsequences showing di�erent but overlapping parts of the building. Each subsequencewas self-calibrated and reconstructed by [22] with bundle adjustment in a Euclidean spaceand then transformed into the same coordinate system. Nevertheless, because of the �ightin turbulent conditions (with a consequence of a high level of noise and outliers, partlyproduced by drift e�ects of the camera trajectory) and the challenging geometry (huge depthranges, �ne details in the structure of the palace and its surrounding terrain, abundance ofnon-fronto-parallel planes), the radiometric and geometric complexity of this sequence areclassi�ed to be high and very high, respectively, in Table 6.1. The total numbers of cameramatrices and points are 310 and 39165, respectively; several frames of the video sequencetogether with the results of sparse reconstruction are illustrated in Fig. 6.2.We also present an infrared video sequence of a skyscraper in the city Frankfurt (Oder)in the eastern part of Germany. This video was also recorded by an airborne sensor (in ahelicopter) and reconstructed by a SLAM-method [9] after self-calibration of a short subse-quence was performed. The whole sequence has 418 images and 3109 points (see Fig. 6.3).Its particular complexity consists of dead pixels and many textureless areas (radiometry) aswell as slanted surface of huge depth ranges in the background (geometry). Contrary to the
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Figure 6.2: Top: Three views from the original sequence Gottesaue. Bottom: Part of thecamera trajectory and the point cloud as a result of a structure-from-motion algorithm dueto [22] are the input of our reconstruction pipeline.
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Figure 6.3: Top: Three views from the original sequence Infrared. Bottom: Part of thecamera trajectory and the point cloud as a result of a SLAM algorithm due to [9] are theinput of our reconstruction pipeline.



85 6.2. Sparse tracking and triangulationpoints in the background, 3D points at the walls of the tower can be computed with a higheraccuracy. For this reason and also because of the abundance of planar regions (similar tothe situation in the sequence Turntable houses), we decided to show the result of the LIFTalgorithm in Sec. 6.4.1 for these two data sets.The video sequence Ettlingen church is used for quantitative evaluation of several shapereconstruction algorithms in Sec. 6.5 because a laser point cloud representing the surfaceis available. Because of many �ne details, the complexity of scene is high. Finally, todemonstrate the reliability of our reconstruction pipeline for di�erent situations, we presentin Sec. 6.6 qualitative results for two additional data sets: Wangen and Speyer, but, sincethe quantitative analysis of these two sequences does not represent a signi�cant di�erencefrom other data sets and, therefore, was not carried out, we do not consider them in Table6.1 below. Note that in Table 6.1, an important measure for geometric complexity of theinput data is given by the ratio �eld of view/spatial resolution ranges that re�ects the rangesfor the quotient baseline/depth.Table 6.1: Summary of data sets available for this work. It is also mentioned which exper-iments (denoted by Sec. 6.2-6.5) were carried out for which data set. "dl" means daylightvideo with three spectral channels, "ir" infrared video, and "i" denotes image sequence. Thecomplexity of radiometric or geometric con�guration of the scene is denoted by "!", if thescene is very complex, a "!!" is put. If the reason why a certain experiment was not carriedout with a certain data set is not given, it was omitted because of redundancy. See text forfurther details.Data set Tsukuba Turntable h. Gottesaue Infrared Ettlingen h.dl/ir dli dl dl ir dlisensor platf. �xed hand-held Cessna helicopter hand-heldimage 384 × 288 720 × 566 720 × 566 640 × 480 650×475num. offrames / 9/- 81/8159 310/39165 418/3109 5/8693D-Pointsdist. cam/pt 10 to 39 7.5 to 10 17 to 25 10 to 17 14 to 17focal (pix) 300 1.07·103 3.39·103 4.67·103 1.38·103fow / spat.res. ranges 1 to 3.77 0.70 to 0.96 0.21 to 0.30 0.12 to 0.21 0.5 to 0.59complexityrad./geom. 0/! 0/0 !/!! !/! 0/!test-runs 6.2, 6.3 6.2, 6.4 6.2, 6.3, 6.4 6.2, 6.3, 6.4 6.56.2 Sparse tracking and triangulationFor the benchmark data set Tsukuba, we �rst convert the data into the format describedat the beginning of Chapter 4. Since the cameras have the same calibration and rotationmatrices, we need only modify the camera centers. They lie in the same plane and in aequally spaced rectangular grid. We choose a reasonable calibration matrix to guaranteenumerical stability of the calculations, rotation matrices are set to be identity matrices,and the translation vector corresponding to image Ir,c is [1.5(c − 3) 1.5(r − 3) 0]T . Theevaluation is carried out by projecting a 3D point into the images I3,3, I3,4 and computingthe minimum absolute di�erence between x3,3 − x3,4 and the true disparity values dgt atrounded x3,3 and its 8 neighbors (in order to avoid rounding errors). In other words, we



Chapter 6. Evaluation of algorithms 86have the set of incorrectly tracked pixels:
B =

{x ∣∣∣minv |dgt(x3,3 + v)− (x3,3 − x3,4)| ≥ 1
}

, (6.1)where v = [vx vy], −1 ≤ vx, vy ≤ 1 and the error quantity min(·) in (6.1) is denoted by ε.We provide in Table 6.2 the results of the state-of-the-art implementation of KLT-tracking,as well as the epipolar and simultaneous tracking described in Sec. 4.4, applied to 1238characteristic points obtained as described in Sec. 4.2.Table 6.2: The numbers of points tracked correctly, incorrectly and lost for di�erent methods,di�erent numbers of cameras and di�erent window size (win) of the sequence Tsukuba. opt.rwas set to zero everywhere. For the standard KLT-method, image pyramids at the thirdlevel were necessary to produce these results. The total number of points was 1238.meth. KLT, pyr = 5, cam = 3 KLT, pyr = 5, cam = 5 KLT, pyr = 5,cam = 9win 5 7 9 11 5 7 9 11 5 7 9 11total 936 1005 1030 1039 650 741 787 798 475 572 608 619cor. 859 916 941 954 649 732 777 789 474 570 606 618incor. 77 89 89 85 1 9 10 9 1 2 2 1lost 302 233 208 199 588 497 451 440 763 666 630 619meth. KLT-epi, cam = 3 KLT-epi, cam = 5 KLT-epi, cam = 9win 3 5 7 9 3 5 7 9 3 5 7 9total 1061 1038 1018 1003 993 991 949 929 987 974 942 910cor. 918 938 933 918 978 981 938 917 981 965 936 900incor. 143 100 85 85 15 10 11 12 6 9 6 10lost 177 200 220 235 245 247 289 309 251 264 296 328meth. simultan, cam = 3 simultan, cam = 5 simultan, cam = 9win 3 5 7 9 3 5 7 9 3 5 7 9total 1125 1156 1171 1181 883 970 975 982 613 733 754 766cor. 1026 1086 1086 1076 872 962 971 964 612 731 749 761incor. 99 70 85 105 11 8 4 18 1 2 5 5lost 113 82 67 57 355 268 263 256 625 505 484 472For the data set Turntable houses, the considered subsequence consists of seven images
I1, ..., I7 and the triangulation results are shown for 900 points detected in the referenceimage I4. Since it is quite di�cult to obtain a data set with reliable ground truth andsince a comparison with results obtained by di�erent methods shows similar tendenciesas in the case of the benchmark sequence, we compare the results of the epipolar andsimultaneous tracking algorithms for all non-benchmark sequences with the standard KLT-tracking algorithm. We use 1 pixel as threshold for reprojection errors for triangulation forwhich the number of outliers in the benchmark data set is extremely low. After the 3Dpoints are normalized to have average standard deviation of x, y, and z-coordinates of 1, apoint tracked by the epipolar and simultaneous tracking algorithms is declared as trackedcorrectly if the Euclidean distance between the corresponding 3D point and its counterpartobtained by the KLT-tracking algorithm is below 0.1. Table 6.3 shows how many pointswere lost, tracked correctly (cor.) and tracked incorrectly (incor.).For the sequence Gottesaue, the number of points with a high response of the operator(4.8) of Sec. 4.2 is 1517. Again, seven images are used for triangulation. Table 6.4 showsthe sensitivity of the standard KLT-method for a video sequence taken from a small planein extremely bumpy and turbulent conditions while Table 6.5 shows triangulation resultsobtained by epipolar and simultaneous tracking. Finally, for the sequence Infrared (and itsshort subsequence of seven images), we are interested in keeping the number of outliers small
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Table 6.3: Results of tracking characteristic points for the data set Turntable houses withseven images, variable window size (win) and recti�cation option (opt.r). The total numberof points was 900. The standard KLT-tracking with the window size 11 and the number ofimage pyramid levels 5 yielded 180 points.meth. KLT-epi, opt.r = 0, init = 1 KLT-epi, opt.r = 1, init = 1win 3 7 11 15 19 3 7 11 15 19total 279 360 380 414 425 231 284 323 356 377cor. 92 138 144 153 152 67 99 116 126 136incor. 0 0 1 2 3 1 0 1 2 2lost 88 42 35 25 25 112 81 63 52 42meth. KLT-epi, opt.r = 0, init = 0 KLT-epi, opt.r = 1, init = 0win 3 7 11 15 19 3 7 11 15 19total 188 303 348 377 393 138 263 316 339 361cor. 44 101 127 139 148 26 69 100 120 128incor. 1 3 3 3 2 2 3 4 4 4lost 135 76 50 38 30 152 108 76 56 48meth. simultaneous, opt.r = 0, init = 1 simultaneous, opt.r = 1, init = 1win 3 7 11 15 19 3 7 11 15 19total 525 617 671 684 691 896 896 898 898 898cor. 124 131 141 139 142 162 164 164 165 165incor. 1 0 1 2 2 18 16 16 15 15lost 55 49 38 39 36 0 0 0 0 0meth. simultaneous, opt.r = 0, init = 0 simultaneous, opt.r = 1, init = 0win 3 7 11 15 19 3 7 11 15 19total 563 574 583 575 564 889 872 840 818 792cor. 114 128 143 145 145 130 147 160 160 163incor. 3 3 1 3 1 49 31 16 16 13lost 63 49 36 32 34 1 2 4 4 4



Chapter 6. Evaluation of algorithms 88and, for this purpose, varied the norm of the value of maximum total error εmax; a pointis lost if at the end of the optimization process of Sec. 4.4.2, ‖c‖ from (4.11) exceeds εmax.Table 6.6 (from [28]) shows the results for 1170 characteristic points.Table 6.4: Results of tracking characteristic points by the standard KLT-tracking with andwithout initialization for the data set Gottesaue, seven images and variable window size(win) and the number of image pyramid levels (pyr).meth. KLT-epi, pyr = 5, init = 0 KLT-epi, pyr = 1, init = 0win 5 7 11 15 19 23 5 7 11 15 19 23total 64 134 313 473 532 542 1 2 2 10 18 20meth. KLT, pyr = 5, init = 1 KLT, pyr = 1, init = 1win 5 7 11 15 19 23 5 7 11 15 19 23total 96 212 369 479 532 542 99 200 349 430 480 489Table 6.5: Results of tracking characteristic points for the data set Gottesaue with sevenimages and variable window size (win), recti�cation and initialization options. The maximalerror per pixel and interaction was 30.meth. KLT-epi, opt.r = 0, init = 1 KLT-epi, opt.r = 1, init = 1win 7 11 15 19 23 7 11 15 19 23total 765 829 833 852 849 767 868 867 872 861cor. 375 424 433 428 415 369 429 442 443 427incor. 12 10 5 7 17 18 12 3 2 11lost 92 45 41 44 47 92 38 34 34 41meth. KLT-epi, opt.r = 0, init = 0 KLT-epi, opt.r = 1, init = 0win 7 11 15 19 23 7 11 15 19 23total 999 1029 1045 1049 1046 946 977 975 947 930cor. 400 417 421 410 405 399 427 441 432 429incor. 25 12 11 22 22 22 14 2 6 12lost 54 50 47 47 52 58 38 36 41 38meth. sim. εmax = 50, opt.r = 0, init = 1 sim. εmax = 50, opt.r = 1, init = 1win 7 11 15 19 23 7 11 15 19 23total 866 881 890 856 848 1219 1217 1191 1129 1087cor. 339 357 356 347 345 387 396 394 395 380incor. 23 13 14 13 10 72 62 60 55 66lost 117 109 109 119 124 20 21 25 29 33We can see from Tables 6.2-6.6 that both policies (epipolar and simultaneous tracking)yield more reliably reconstructed points than the original version of KLT-tracking withoutconsidering camera matrices (the total number is always higher). For the video sequenceGottesaue, recorded in turbulent conditions, standard KLT-tracking fails to obtain a largeset of correspondences if the number of image pyramid levels is below 5 (Table 6.4). Assoon as the initialization of depths provided by triangular interpolation as described inSec. 4.3 is carried out, the total number of reliably triangulated points depends mainly onthe window size and not so much on the number of pyramid levels. For the epipolar andsimultaneous tracking algorithm, initialization is not crucial. The results are similar tothose in Tables 6.3 and 6.5. Increasing the window size usually contributes to a largernumber of triangulated points, because the risk of ending up in a local minimum of the costfunction declines; unfortunately, the computing time depends quadratically on the window



89 6.2. Sparse tracking and triangulationsize. Increasing the number of cameras always contributes to better reconstruction, as onecan observe in Table 6.2. The parameter εmax practically does not in�uence the resultsof the epipolar tracking algorithm. In simultaneous tracking, it clearly contributes to alarger number of tracked points (and, clearly, outliers between them). The next questionconcerns the recti�cation option opt.r: for the data sets Gottesaue and Infrared, one cansigni�cantly reduce the number of outliers for growing window size in epipolar tracking byusing opt.r. The explanation is the following: while, for smaller windows, the interpolationerrors in values of derivatives computed for recti�ed images deteriorate the results, thereal invariance against rotation begins to show its e�ects for larger windows. We do notdiscuss the recti�cation option for Tsukuba, since it is already recti�ed nor for the sequenceTurntable houses because here too many points lie on unmoved parts of the scene andinvariance against rotation cannot be achieved for them. From Table 6.6, where e�orts havebeen made to reduce the number of outliers, it becomes clear that the number of outliersfor epipolar tracking is usually slightly smaller than for simultaneous tracking. Probably,the main reason lies in gross errors in single images. For simultaneous tracking, the onlypossibility to sort out points is to decrease εmax, in other words, the e�ect of gross errors canbe distributed across all images preventing the point from being discarded during tracking.Also, the interpolation errors for (optional) image recti�cation and gradient computation aswell as camera uncertainties cannot be corrected geometrically (i. e. by reprojection errors).Since in pairwise tracking gross errors in single images are detected and eliminated rightaway, we will use epipolar tracking as our default option.We are also interested in the locations of the lost points and incorrectly tracked pointsin the images. Figures 6.4-6.7, on the left, show the already available features, depicted byorange points, and, on the right, the newly tracked features (yellow), the lost features (cyancircles) and the features tracked incorrectly (red diamonds). As could be expected, most ofthe lost points lie near occlusions; this is not really surprising, because only one part of thetemplate window is seen in the new image and the other part changes from image to image.This problem can be partly solved by considering cost functions other than the c in (4.11)or norms other than L2 for weighting the entries within windows, but we let that be a topicfor future work. The few outliers lie in the weakly textured regions; here the cost functiondoes not have a clear minimum and so the result is not reliable. One can apply heuristicsas described in [29] and in Sec. 4.4.1 in order to eliminate outliers, but we do not considerthese options here.Table 6.6: Results of tracking characteristic points for the data set Infrared with sevenimages, variable window size (win) and recti�cation option (opt.r). The total number ofpoints was 900 and the standard KLT-tracking with window size 11 and image pyramidlevels 5 yielded 583 points. See also [28].meth. KLT-epi, opt.r = 0 KLT-epi, opt.r = 1win 7 11 15 19 7 11 15 19total 764 807 821 813 616 709 757 770cor. 487 530 545 538 416 474 593 510incor. 0 0 1 10 0 0 1 4lost 96 53 37 35 167 109 79 69meth. simultaneous, opt.r = 0 simultaneous, opt.r = 1win 7 11 15 19 7 11 15 19total 985 995 995 971 957 987 966 942cor. 571 575 576 564 563 570 557 550incor. 2 3 3 11 4 6 12 14lost 10 5 4 8 16 7 14 19



Chapter 6. Evaluation of algorithms 90ConclusionIn the current version of our implementation, we use epipolar tracking as a default option.The reason is that the number of outliers is usually lower than in the case of simultaneoustracking and camera uncertainties are better taken into account during the �nal triangulationstep. In the future work, we will restructure the simultaneous tracking algorithm: �rst by�ltering out, by means of radiometric di�erences, the images where occlusions are probableand second by taking camera uncertainties into account.

Figure 6.4: Left: The ground truth result of the benchmark data set Tsukuba needed forSec. 6.3 with the original point cloud colored in orange. Middle: Disparity scale bar. Onthe right, the reference image with results of epipolar tracking. Points with disparity valuescorrectly assigned by epipolar tracking are depicted by yellow dots, the lost points by cyancircles and outliers by red diamonds. See also [28].

Figure 6.5: Left: The reference image of a subsequence of the data set Turntable houses withthe results of epipolar tracking. Points with disparity values correctly assigned by epipolartracking are depicted by yellow dots, the lost points by cyan circles and outliers by reddiamonds. Points lost in the standard KLT tracking algorithm are depicted by green dots.Right: A view of the 3D-point cloud with already available points marked in orange.
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Figure 6.6: Left: the median-based depth map will be our ground truth of a subsequenceof the data set Gottesaue in Sec. 6.3. The original point cloud is colored in orange. Middle:Depth scale bar. On the right, the reference image with results of epipolar tracking. Pointswith disparity values correctly assigned by epipolar tracking are depicted by yellow dots,the lost points by cyan circles and outliers by red diamonds. Points lost in the standardKLT-tracking algorithm are depicted by green dots.

Figure 6.7: Left: The median-based depth map will be our ground truth for a subsequence ofthe data set Infrared in Sec. 6.3. The original point cloud is in orange. Middle: Depth scalebar. On the right, the reference image with results of epipolar tracking. Points with disparityvalues correctly assigned by epipolar tracking are depicted by yellow dots, the lost pointsby cyan circles and outliers by red diamonds. Points lost in the standard KLT-trackingalgorithm are marked by green dots.



Chapter 6. Evaluation of algorithms 926.3 Dense reconstructionThis section will illustrate dense reconstruction of selected subsequences of video data withwhich we deal. We will structure this section in a manner similar to what we did in Chapter 4,�rst handling the binocular case (Sec. 6.3.1) and then multi-view reconstruction (Sec. 6.3.2).A subject of particular interest will be the automatic choice of the smoothness parameters
λ1, λ2, covered in Sec. 6.3.3.6.3.1 Binocular caseFor the benchmark data set with the ground truth depth map shown in Fig. 6.4, the eval-uation is carried out analogously to the previous section and we followed the choice of theauthors of [115] to measure the number of incorretly tracked pixels, which we denote by
NB =

∑

B 1, as a function of di�erent parameters. Alternatively, one can compute theaverage sum of relative depth deviations, denoted by εB =
∑

B ε, with B and ε de�ned inEq. (6.1). For the data sets Infrared and Gottesaue, we chose the ground truth to be themedian depth map using the methods of Sec. 4.5.2. This method is very robust � the reasonthat justi�es us to take it as a ground truth � but also very time-consuming since semi-globaloptimization must be performed altogether 2K times (with cross-check as in (3.2), andK+1number of images). We show in each of Figs. 6.8, 6.9, and 6.10, a typical result of the dispar-ity estimation computed for the sequences Tsukuba, Gottesaue, and Infrared, respectively,with a local method supported by triangular meshes. One can see the two typical sources oferrors: either too much noise makes it impossible to assign a triangle as consistent with thesurface or a triangle is spuriously declared as surface-consistent. For the binocular case, thisis especially visible in Fig. 6.9, where the stripes on the roof � which go perpendicular to theepipolar lines � provoke too many mismatches that cannot be corrected by the evaluationon triangles. As we will see later, this situation will be fairly seldom for the local algorithmapplied to multi-view con�gurations because the pixels in somewhat textured area will behelped out of local minima by redundant views.

Figure 6.8: Top left: Illustration of the disparity map computed by the local algorithm fromimages I3,3, I3,4 of the sequence Tsukuba. Top right: Evaluation of the result on the left withincorrect matches depicted in black. The triangles consistent with the surface are markedin green, those inconsistent with the surface in red. The ground truth result is depicted inFig. 6.4, p. 90, left.In the next step, we turn our attention to global and semi-global methods. Figures 6.11,6.12 and 6.13 illustrate typical results for the sequences Tsukuba, Gottesaue, and Infrared,respectively, of the graph-cuts-algorithm implementation of [81] (top) and the semi-globaloptimization due to Hirschmüller as in [67] (bottom). In the graph cuts algorithm, the



93 6.3. Dense reconstructiondata-cost function was given by the truncated SSD, as in Eq. (2.4), p = 2, the smoothnessfunction was given by (2.16), where
λ(i, i′) = λ1U(u ≥ 8) + 3λ1U(u < 8), u = min (|I(x)− I(y)|, |I ′(x′)− I ′(y′)|) ,and points x = (x, y) with the property d(x, y) = d(x + 1, y) + 1 were marked as occluded.In the implementation of the semi-global algorithm for the binocular case, mutual informa-tion was our the data-function; also the cross-check test according to (3.2) followed by theevaluation on triangles by the methods of Sec. 4.5.1 was carried out.

Figure 6.9: Top left: Part of the recti�ed reference image from the sequence Gottesaue.Triangles declared as consistent with the surface by the local algorithm are colored in greenwhile inconsistent triangles are colored in red. Right: Disparity map DT produced bythe triangular interpolation described in Sec. 4.3.1. Bottom left: a typical result Dloc ofthe local depth computation. Bottom right: evaluation of Dloc on the left with incorrectmatches depicted in black and triangles consistent and inconsistent with the surface in greenand red, respectively.The next several �gures show quantitative evaluations of the binocular dense reconstruc-tion. The global results, demonstrated for the three sequences Tsukuba, Gottesaue, andInfrared, in Figs, 6.14, 6.15, and 6.16, respectively, are important for understanding, amongother things, the performance of the graph cuts algorithm (always top row) in compari-son with the performance of semi-global matching (bottom row). The local results will becovered in Sec. 6.3.2 because of a strong analogy with the multi-view case.One can see that the graph-cuts algorithm, despite its positive properties to performwell near occlusions and in regions of repetitive patterns of texture, is barely suitable forcomputing disparity maps for the sequences Gottesaue and Infrared. In the latter sequence,application of the graph-cuts algorithm even deteriorates the results of the local algorithmsupported by triangular meshes, while, in the �rst, it improves them only slightly. The
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Figure 6.10: Top left: Part of the recti�ed reference image from the sequence Infrared.Triangles declared consistent with the surface by the local algorithm are colored in greenwhile inconsistent triangles are colored in red. Right: Disparity map DT produced by thetriangular interpolation described in Sec. 4.3.1. Bottom left: a typical result Dloc of the localdisparity computation. Bottom right: evaluation of Dloc on the left with incorrect matchesdepicted in black and triangles consistent and inconsistent with the surface in green andred, respectively.idea behind the graph-based algorithm based on alpha-expansions is to overwrite a setof pixels of a given initial disparity map D by a scalar value α. In other words, if wehave a pixel with disparity label α in a textured region, this value will be propagated toneighboring untextured regions until no improvements take place. Hence a risk to fall intoa local minimum is very high. The susceptibility of the algorithm towards fronto-parallelplanes additionally aggravate this problem; and evaluation of triangles cannot actually solveit because the percentage of pixels that the algorithm recognizes to be consistent withthe surface is rather low (see Fig. 6.12). As a result, the disparity values are likely to begrouped into segments whose borders are often drawn somewhere within textureless regions.The semi-global method can reduce the number of pixels with wrongly assigned disparities,especially if evaluation of triangles takes place, but for the remaining pixels (which areusually situated near occlusions, the values of the disparities are forced to be near to thoseof neighboring pixels or are interpolated linearly. Therefore the value of εB increases while
NB falls and we can state that occasional over-smoothing edges represents the main drawbackof the semi-global method.With respect to the choice of the smoothness parameter for the graph-based method,good experiences were made with the heuristic described in [79]. One can see a clear min-imum in the number of pixels with incorrectly assigned disparity values in Fig. 6.14 which
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Figure 6.11: Top left: Illustration of the disparity map computed by the graph cuts algorithm[81] for the sequence Tsukuba. Top right: Evaluation of the result on the left with incorrectmatches depicted in black. Bottom: Result and evaluation of the semi-global algorithm.results from the automatically selected value of λ1. In the case of data sets with less self-occlusions (for instance, Nadir �ights over urban terrains), λ1 can be chosen slightly largerthan the automatically computed value. In the case of the semi-global optimization, we havetwo smoothness parameters. Both in binocular and multi-camera con�gurations, visuallygood results were obtained if the strategy to choose a moderate value of λ1 (to admit slantedsurfaces) and λ2 = 2λ1 was followed. We refer to Sec. 6.3.3, where the question of automaticchoice of λ1 for dynamic programming and semi-global optimization methods will be coveredin a more detailed way.Our next issue concerns reduction of the computing time by initialization of the graph-cuts algorithm. As one can see from Figs. 6.12 and 6.13, quantitative results of a globalalgorithm do not depend signi�cantly on the initialization, so we are concerned here aboutthe number of iterations in the process of computing the disparity map. Since we have herea random process, we carried out the energy minimization several times and computed theaverage number of iterations. The test data set was Gottesaue because the number of pixelsin the images was larger than in other data sets and so the randomization e�ects of order ofdisparity values for alpha-expansions could be reduced. The correlation between the energyratios at the beginning and at the end of the algorithm is indicated in Table 6.7. We seethat a good initialization is equivalent to a low energy at the beginning of the graph-cutsalgorithms and so, in the majority of cases and especially for larger values of smoothnessparameter λ, less iterations are needed to reach a (local) minimum of the energy functional.For the semi-global method, computation ofMutual information matching table from thetriangular mesh and initialization with this result helps to produce comparable results as inthe case of image pyramids as one can see from the blue and cyan curves in Fig. 6.15. Thiskind of initialization can thus be preferred to the computation of image pyramids proposedin [67].
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Figure 6.12: Top left: Illustration of the disparity map computed by graph cuts algorithmfrom two frames of the sequence Gottesaue. The discretization artifacts are very visible inthe �nal result because no subpixel matching is performed. Top right: Evaluation of theresult on the left with incorrect matches depicted in black. Typical problems emerging in thisalgorithm are shown by marking some disparity labels; of course no jumps in the disparityexist in the reality (see Fig. 6.6 above). Bottom, left and right: Result and evaluation of thesemi-global algorithm.
Table 6.7: Correlation between the energy ratios at the beginning and the end of the graphcuts algorithm and the computing time, which is directly proportional to the number ofiterations. Sequence Gottesaue, di�erent smoothness parameters λ.no init

λ 100 200 300 400 500 600
E0/E 0av. iter 12.7 10.3 10.05 9.15 8.05 6.85init Dloc

E0/E −0.43 0.12 0.29 0.36 0.44 0.48av. iter 14.45 11.85 8.95 8.55 7.35 6.75init DT

E0/E −0.12 0.31 0.44 0.50 0.56 0.59av. iter 11.6 8.25 8.65 8.5 6.9 6.05
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Figure 6.13: Top left: Illustration of the disparity map computed by graph cuts algorithmfrom two frames of the sequence Infrared. Top right: Evaluation of the result on the leftwith incorrect matches depicted in black. Bottom: result and evaluation of the semi-globalalgorithm.
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Figure 6.14: Results of disparity estimation for the sequence Tsukuba with the graph-cutsmethods. Left: The %�-value NB of pixels with incorrectly assigned disparity values as afunction of smoothness parameters λ1 and the triangulation-based parameter γ. The choicefor γ = 0.75 is always marked by solid lines and γ = 1 by dotted lines. The black, greenand red curves represent results initialized with the local disparity map Dloc, initialized with
DT and without initialization, respectively. On the right, average error per pixel εB for allcon�gurations described above. Quantitative analysis of this data set with the semi-globalmethod will be performed for a multi-view con�gurations in the next section.



Chapter 6. Evaluation of algorithms 98

λ1

λ1λ1

λ1

NB, %� εB · 103

NB, %� εB · 103

Figure 6.15: Results of disparity estimation for the sequence Gottesaue with non-local meth-ods. Top left: Graph-guts algorithm: the %�-value (NB) of pixels with incorrectly assigneddisparity values as a function of λ1. The black, green and red curves represent results ini-tialized with the local disparity map Dloc, initialized with DT and without initialization,respectively. The dashed, solid and dotted curves represent choices γ = 0.5, γ = 0.75 and
γ = 1.0, respectively. Bottom left: Results for the semi-global algorithm. The %�-value of
NB as a function of λ1, where γ = 0.75 is always marked by solid lines and γ = 1 by dottedlines. Blue and cyan curves denote the results from the initialization as in [29] while all othercurves use image pyramids and mutual information as the cost function. Green and cyancurves stem from the choice λ2 = λ1, black and blue curves stem from the choice λ2 = 2λ1and the red curve from the choice λ2 = min(4λ1, 2047) (see explanation of Eq. (4.25)). Onthe right, average error εB per pixel for all con�gurations described above.
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Figure 6.16: Results of disparity estimation for the sequence Infrared with non-local methods.Top left: Graph-cuts algorithm The %�-value of NB as a function of λ1, where γ = 0.67 ismarked by solid lines and γ = 1 by dashed lines. The black curves denote the results withinitialization and red curves without. Bottom left: Results for the semi-global algorithm.Green curves stem from the choice λ2 = λ1, black curves stem from the choice λ2 = 2λ1 andthe red curve from the choice λ2 = min(4λ1, 2047). The dotted, solid and dashed curvesrepresent the choices γ = 0.5, 0.75 and 1.1, respectively. On the right, average error perpixel εB for all con�gurations described above.



Chapter 6. Evaluation of algorithms 1006.3.2 Multi-view con�gurationsIn order to demonstrate that the matching ambiguities in regions of repetitive patterns oftexture and near occlusions can be resolved by using redundant views, we now replace thebinocular con�guration of the previous section by the multi-view con�guration made up by�ve images in data set Tsukuba and seven images in both data sets Gottesaue and Infrared.The ground truth result remains the same as in the last section, but we changed slightlythe evaluation criterion for data sets Gottesaue and Infrared in order to take into accountthe rather vast depth ranges which vary from several dozens to at least several hundreds ofmeters. We say that a pixel x is assigned to B if the deviation of dx from the ground truth
dgt(x) value is more than 5%, in other words:

ε = |dgt(x)− d(x)|/|dgt(x)| > 0.05,and the de�nitions for NB, εB remain the same.

Figure 6.17: Top Left: Triangular mesh and the result of the local disparity map of thedata set Tsukuba from �ve images and the mesh rendered from the enriched point set wherethe triangles consistent and inconsistent with the surface are marked in green and red,respectively. Top right: Evaluation of the result on the left by means of the ground truthdisparity map depicted in Fig. 6.4, all matches where the di�erence exceeds one pixel aredepicted in black. Bottom left: Part of the reference image (denoted by yellow rectangleabove) where triangles inconsistent with the surface are given red color. Bottom right:evaluation of this part, almost all wrong matches lie inside of red triangles.Extended tests were carried out for 9 local parameters (number of cameras K, windowsize, cost function which we denote here by εmax, recti�cation option opt.r and interpolationoption opt.i, the parameter εy responsible for compensating errors due to uncertainties incamera positions as well as triangulation-based smoothness terms A, σ, γ) and two globalparameters λ1, λ2 for semi-global optimization. Many of these parameters were already ob-ject of related research (see [115] and references therein), therefore we will not vary here the



101 6.3. Dense reconstructionvalue of every parameter by letting �xed all others (and this for each data set), but restrictourselves to describing in the graphics below the in�uence of the most important ones, es-pecially those related to triangular meshes and global methods. For the other parameters,we give only resuming observations.We show in Figs. 6.17, 6.18, and 6.19 typical results of the local approach with consideringthe local smoothness term ET from Eq. (4.21) for the data sets Tsukuba, Gottesaue, andInfrared, respectively. The result of applying the local triangulation-based smoothness termsfrom the enriched point set (as the result of Sec. 6.2) is shown together with the triangulatedpoint set, triangles consistent and inconsistent with the surface (colored in green and red,respectively), and binarized absolute di�erences from the ground truth. For the non-localoptimization algorithms of dynamic programming and multi-view semi-global optimization,we show typical results of the multi-view dense reconstruction for the three data sets inFigs. 6.20, 6.21 and 6.22, respectively.

Figure 6.18: Left: Triangular mesh and the local result of the depth map of the data setGottesaue from seven images and the mesh rendered from the enriched point set wherethe triangles consistent and inconsistent with the surface are marked in green and red,respectively. Right: Evaluation of the result on the left with incorrect matches depicted inblack.

Figure 6.19: Left: Triangular mesh and the local result of the depth map of the dataset Infrared from seven images and the mesh rendered from the enriched point set wherethe triangles consistent and inconsistent with the surface are marked in green and red,respectively. Right: Evaluation of the result on the left with incorrect matches depicted inblack.
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Figure 6.20: Top left: The result of energy minimization with dynamic programming for thedata set Tsukuba, �ve images, window size = 3. Top right: Evaluation of the result on theleft with incorrect matches depicted in black. Bottom left and right: Result and evaluationof the semi-global algorithm.

Figure 6.21: Top left: Result of energy minimization with dynamic programming for thedata set Gottesaue, seven images. Top right: Evaluation of this result with incorrect matchesdepicted in black. Bottom left and right: Result and evaluation of the semi-global algorithm.



103 6.3. Dense reconstructionIn Figs. 6.23, 6.24, and 6.25, dependence of the results on the window size, cost function,
A, σ and γ for data sets Tsukuba, Gottesaue, and Infrared, respectively, is represented. Thered and green curves stand for the truncated SAD from Eq. (2.4) with εmax = 15 and40, respectively. The blue curves stand for the NCC (2.6) and the black curves for thesimpli�cation (2.7). A smaller percentage of incorrectly reconstructed pixel makes clearthat for a video sequence, it makes more sense to use (truncated) SAD as a cost function.A possible explanation lies in the parameters a and b of (2.5). These additional degrees offreedom allow a more �exible distribution of gray values within windows, but their valuesmust also satisfy (at least a piecewise-)smoothness condition because the re�ection coe�cientof the material surface is made of as well as the angle between normal vector of a point anda camera plane are constant in the whole regions. As a consequence, Eq. (2.6) is implicitlyover-parametrized and therefore blue and black curves lie above the red and green ones.In other experiments, which go beyond the scope of this work, we were able to ascertain aslight improvement of the results after activating opt.r or opt.i (the bilinear interpolationinstead of rounding) while increasing εy (see Eq. (4.10), p. 53) does not in�uence much theresults. Finally, augmenting the number of cameras K and the window size win is helpfulto reduce NB and εB although the computing times clearly increase.

Figure 6.22: Top left: The result of energy minimization with dynamic programming for thedata set Infrared, seven images, window size = 3. Top right: Evaluation of the result on theleft with incorrect matches depicted in black. Bottom left and right: Result and evaluationof the semi-global algorithm.We go on by investigating the in�uence of the triangulation-based smoothness termswhose presence usually not only increases the accuracy but also smoothers the e�ects oftoo small K, or opt.r = 0. As one can see from Figs. 6.9 and 6.18, there are almost nomismatches in triangles consistent with the surface. If γ(T ) < 1, then all pixels within T
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Figure 6.23: Top left: The %�-value (NB) of pixels with incorrectly assigned depth valuesas a function of A, cost function and γ, data set Tsukuba, window size = 5, opt.r = 0 and
σ = 50. The dashed curves correspond to the value γ = 0.67, solid curves for γ = 1. Thebehavior for di�erent cost function: red and green curves for (2.4) with εmax = 15 and 40,respectively, blue curves for (2.6) and the black curves for (2.7). Bottom row: Variation of
σ and γ. Black curves correspond to γ = 0.75 and green curves to γ = 0.95, the dashed,solid and dotted lines correspond to di�erent choices of sigma (σ = 0, 10, 50, respectively).On the right, average error εB per pixel for all con�gurations described above.
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A AFigure 6.24: Top row, left: The %�-value of NB as a function of A, cost function and γ,data set Gottesaue, window size = 5, opt.r = 0, number of images = 5 (images 1, 2, 4, 6,7 used) and σ = 50. The dashed curves correspond to the value γ = 0.67, solid curves for
γ = 1. The behavior for di�erent cost function: red and green curves for truncated SADfrom Eq. (2.4) with εmax = 15 and 40, respectively, blue curves for NCC from Eq. (2.6) andthe black curves for (2.7). On the right: Average error εB per pixel for all con�gurationsdescribed above.



105 6.3. Dense reconstructionare assigned depth values dT ; this assumption is reasonable, because for large point cloudsnearly homogeneously distributed in the image, the number of triangles compatible with thesurface will normally be quite high. One can see the noisy distribution of depth values withinred triangles and the smooth (and correct) depth values by green triangles in Figs. 6.17 and6.19. Declaring a triangle consistent with the surface can be further eased by adding atriangulation-based smoothness term ET term of the form (4.14) or (4.22); this approachproves to be very e�cient at a pixel x in a low textured area (see Fig. 6.23 and Fig. 6.25)where the cost function is likely to yield quite similar results for several depth labels. Inthis case, a support for the plausible value dT,x can help to assign correct depth values withsubpixel accuracy. Of course, if T is inconsistent with the surface (i. e. when one or two ofits vertices lie on an occlusion edge), then T will be mapped in a wrong way; therefore theterms NB, εB become larger if σ and A are unreasonably high. The results of triangularinterpolation become indeed worse for very high σ and A, as one can see, for example, fromthe dotted lines in Fig. 6.23 where too many triangles were declared consistent with thesurface.
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win winFigure 6.25: Left: The %�-value of NB as a function of A, σ and γ, data set Infrared, windowsize = 3, opt.r = 0, number of images = 7. The green curves correspond to the value γ = 0.67,black curves for γ = 1 and the red horizontal line shows the result without considerationof triangulation-based smoothing. The behavior for di�erent σ-values (σ = 10: dashed lineor σ = 50: solid line) is illustrated as well. Bottom left: NB (in %�) as a function of thewindow size. The di�erent curves are shown for opt.r = 0 (green line) and opt.r = 1 (blackline) as well as di�erent choices of images: for the dashed line, all 7 images were considered,for the solid line, images 1, 2, 4, 6, 7 were used and for the dotted line, only images 1, 4, 7.The reference image was always image 4 and the number of levels for disparity computationwas the same for each experiment. On the right, top and bottom: Average error εB per pixelfor all con�gurations described above.
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Figure 6.26: Left: The %�-value of NB as a function of λ1 for dynamic programming in thedata set Tsukluba. Right: Results of semi-global matching. The dotted, solid and dashedcurves correspond to di�erent choices (1, 2, 4, respectively) for the ratio λ2/λ1. Furthermore,
γ = 0.67 for black curves and γ = 0.95 for green curves. semi-global opt.
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Figure 6.27: Left: The %�-value of NB as a function of λ1 for dynamic programming in thedata set Gottesaue. Right: Results of semi-global matching. The dotted, solid and dashedcurves correspond to di�erent choices (1, 2, 4, respectively) for the ratio λ2/λ1. Furthermore,
γ = 0.5 for black curves and γ = 0.95 for green curves with the cost function initialized bya truncated SAD (see Eq. (2.4), εmax = 40), blue curves stand for NCC in (2.6) and redcurves for (2.7). For blue and green curves, the value of γ was always 0.5.Since the improvements of our local algorithm (for a �xed point set) are limited by thenumber of triangles consistent with the surface and it depends on the complexity of the scenehow far we can go with increasing σ and A and also decreasing γ, a further optimizationcan be achieved by applying non-local algorithms. In Figs. 6.26, 6.27, 6.28, values of NB fordynamic programming and the semi-global algorithm are presented (since the results for ε

Bshow a similar behavior) for the data sets Tsukuba, Gottesaue, and Infrared, respectively.For all data sets, we varied the values of λ1 and ratios λ2/λ1. On the other hand, we varied γin Fig. 6.26, γ and the cost function in Fig. 6.27 and the number of cameras in Fig. 6.28. Theresults con�rm that anything what improves the performance of a local algorithm, will alsodo of a global one. We decided to use for all data sets window size 3 (because considering onlypixels themselves without neighbors results in a rapid increase of the number of mismatches



107 6.3. Dense reconstructionand larger windows make increase computing time without very signi�cant improvementsof the results), opt.r was set to zero (because image transformations take extra computingtime) and the number of images was �ve for Tsukuba data set and seven for other data sets.We can see from illustrations and graphics that dynamic programming can eliminate mostoutliers within epipolar lines, but since epipolar lines are usually di�erently over-smoothed,there are visually unpleasant streaking artifacts in the result. Applying the semi-globalalgorithm with 16 smoothing directions allows eliminating these artifacts and so the numberof mismatches (which are mostly made up by points near occlusion edges and far away fromthe camera positions) usually tends against zero (compare Figs. 6.20-6.22 for visualization,Figs. 6.26-6.28 for quantitative evaluation). The %�-values for NB decrease from around45 (local method) to 20 (dynamic programming) and to 15 (semi-global matching) for bothdata sets. For the data set Tsukuba, the lowest values of NB are around 1.3% and 2.9% (withand without correction for rounding errors, respectively). This means that our method isone of the best among those mentioned by [115] and so a multi-view con�guration supportedby a dynamic or, even more, a semi-global algorithm outperforms most of the two-cameraalgorithms. semi-global opt.NB, %�dyn. programmingNB, %�

Figure 6.28: Left: The %�-value of NB as a function of λ1 in the data set Infrared fordynamic programming. On the right, results for semi-global matching. The black curvesresult from considering all 7 images, the green curves from considering only images 1, 4, 7.The dotted, solid and dashed curves are for ratios λ2/λ1 = 1, 2, 4, respectively.6.3.3 Automatic choice of smoothness parametersOur next issue will be the automatic choice of smoothness constants λ1 and λ2. For the datasets Tsukuba and Infrared, we write down the best ranges of λ1 (with respect to NB and εBand ratios λ2/λ1. We can clearly see from Eq. (4.27) that the automatic choice of smoothnessparameter must depend on the cost/aggregation function c. As a consequence, Table 6.8shows the results for four typical cost functions: NCC from (2.7), Sec. 2.2.2 (p. 21), MutualInformation (MI) from (2.8), Sec. 2.2.3 (p. 22)1, as well as the truncated SAD from (2.4)with two di�erent values of εmax = 15 and 40. Here Cγ
1 and Cγ

2 are the values of con�denceterms in equations Eqs. (4.26) and (4.27) of Sec. 4.5.4, respectively, which correspond to the1In the experiments to this chapter, it was important to check the consistences of best choices for smooth-ness parameters and quantile values of the con�dence maps for all available cost functions; therefore MutualInformation was included into computations and, since, at the time of evaluation, computation of this costfunction was only possible in the case of a recti�ed stereo pair, the number of images was restricted to betwo.



Chapter 6. Evaluation of algorithms 108quantile γ and the superscripts ·S and ·D denote parameters corresponding to semi-globaloptimization and dynamic programming respectively.Table 6.8: Correlation between quantile values for con�dence terms Cγ
1 and Cγ

2 and smooth-ness parameters λ1 and λ2 which yielded best results for the evaluation pipeline describedabove. The number of cameras was two, the size of the correlation window win = 5,triangulation-based constants A = 50, σ = 50, opt.r was set to 1 and the cost values forassigned (non-occluded) values of c(x, j) were scaled between 0 and 1, in other words, multi-plication by 2048 required in the considerations of p. 65 was not carried out. Similar resultswere obtained also for other sequences and other parameter settings.data set Seq.Tsukuba Seq. Infraredmethod NCC MI SAD SAD NCC MI SAD SAD
εmax = 15 εmax = 40 εmax = 15 εmax = 40

C
0.7
2 0.36 0.15 0.38 0.30 0.40 0.22 0.50 0.41

C
0.9
2 0.45 0.24 0.50 0.45 0.48 0.34 0.59 0.53

C
0.7
1 0.26 0.051 0.20 0.12 0.094 0.023 0.13 0.063

C
0.9
1 0.18 0.13 0.37 0.27 0.20 0.068 0.28 0.140.18- 0.13- 0.37- 0.27- 0.20- 0.068- 0.28- 0.14-
λS
1 0.68 0.29 0.98 0.78 0.78 0.29 0.98 0.78

λS
2 /λ

S
1 2-4 1 2 4 2-4 1-2 2-4 20.49- 0.29- 0.49- 0.59- 0.49- 0.20- 0.29- 0.39-

λD
1 0.78 0.59 0.78 0.78 0.68 0.39 0.98 0.59

λD
2 /λD

1 1-2 1-2 2 2 2-4 2 2-4 2From Table 6.8, one can clearly see that the quantile values of Cγ
1 and Cγ

2 show similartendencies as λ1 for both algorithms described above. If one of quantile values becomeslarger, a right-shift of the range suitable for λ1 can also be expected. Conversely, for smallerquantile values, also smaller λ1 can be chosen. Generally, a value around 1.5 · C0.9
2 and

2.5 · C0.9
1 is a suitable choice for λ1 and, according to our earlier considerations, the defaultvalue for λ2/λ1 is 2.ConclusionSummarizing the content of this section, we can state that dense depth maps extractionrepresents a very useful module for our pipeline �rst because it contributes to homogenizationof the point clouds (better input for Steps 3.1 and 3.2 of our reconstruction pipeline) andsecond because it enhances the visibility information in the texturing portion of Step 3.2.We have seen that the local methods supported by triangular meshes can reduce the numberof wrong matches within triangles consistent with the surface. We can even claim that thebigger the number of points consistent with the surface is, the more similar the results of localoptimization with a triangulation-based smoothness term in a binocular con�guration are tothose in a multi-view con�guration. In the general case, multi-view con�gurations provide abetter resolution of depth and allow treating occlusions and the regions of repetitive texturein a robust way. In order to save computing time, we prefer the simultaneous methodsupported by triangular meshes to the median-based method and, especially with respectof treating regions with homogeneous texture and slanted surfaces, we recommend usingthe semi-global global algorithms as non-local optimization method because of its clearadvantages to algorithms of dynamic programming and graph-cuts.



109 6.4. Shape reconstruction methods � qualitative results6.4 Shape reconstruction methods � qualitative resultsIn this section, results for textured reconstruction from our main data sets are presentedand discussed. Section 6.4.1 shows reconstruction results for the LIFT procedure; theseresults can be obtained if Step 3.2 of the reconstruction pipeline Alg. 1.1, p. 15 is completelyomitted. Results of our main procedure for surface reconstruction by L1 splines are presentedin Sec. 6.4.2 and those of other procedures in Sec. 6.4.3.6.4.1 Results for the LIFT-algorithmThe results for the Local Incremental Fusion of Tessellations algorithm, LIFT, supported bydominant-planes extraction from local tessellations (as described in Sec. 5.1.2) are presentedin Figs. 6.29 and 6.30 for the video sequences Turntable Houses and Infrared, respectively. Inthe data set Infrared, points far away from the skyscraper were deleted because long skinnytriangles deteriorated the visual quality of the results. Although there seem to be little sense(from the point of view of photogrammetry) to reconstruct pieces of surfaces situated severalhundreds of meters from the camera locations while the length of the baseline measuresonly several meters, it will be, nevertheless, interesting to see in the next sections how thepoint-based methods are able to reconstruct this kind of surface (even when interrupted byocclusions, as in the example of the video sequence Infrared).

Figure 6.29: Two screen shots from the textured model of the sequence Turntable Housesreconstructed by the LIFT-procedure. Note the small number of undetected triangles incon-sistent with the surface. Several video frames and a view of the reconstructed point cloudand the camera trajectory are given in Fig. 6.1, p. 82.
Figure 6.30: Results of reconstruction from the sequence Infrared with the LIFT algorithm,two screen shots from the textured model. Video frames as well as a part of the cameratrajectory are given in Fig. 6.3, p. 84.



Chapter 6. Evaluation of algorithms 1106.4.2 L1-splines-based resultsFor the domain on which the nonparametric and parametric L1-splines of Step 1 and Step3, respectively, of the procedure described in Sec. 5.2 are calculated, we used an equally-spaced rectangular grid extending from minm(Xm) to maxm(Xm) and from minm(Ym) to
maxm(Ym) in the horizontal and vertical directions, respectively. For the data sets TurntableHouses and Infrared, the number of grid cells was 30× 30. We used the original point clouddepicted in Figs. 6.1 (bottom) and 6.3 (bottom) as input for the algorithm; several referenceimages (some of them are shown in Figs. 6.1 and 6.3, top) were used for texturing. Notethe abruptly changing nature of the point cloud, with adjacent sparse and dense regions(hundreds data points describing the oblique roof near almost no points on the �at roof ofFig. 6.1) and the changes of depth (Fig. 6.3). The weights wm were chosen equal to 1 dividedby the number of pointsXm in each triangle of the Sibson element, the smoothness parameter
λ was set to be 0.7 for the nonparametric spline and the �rst parametric spline, and 0.8 forthe second and third parametric splines (in accordance with our considerations in Sec. 5.2.3).Two views of the �nal mesh and three views of textured images are given in Fig. 6.31 for thedata set Turntable Houses. A colormap view of the �nal mesh and a view of the result of thetextured reconstruction are given in Fig. 6.32 for the data set Infrared. Note the topologicalconnectivity of meshes in Fig. 6.31 in comparison to Fig. 6.29 and the ability of L1-splines-based surfaces to obtain good reconstruction in sparsely covered areas. These areas can beobserved by slightly lighter pieces that mark the texture of triangles not completely seenby any of the reference cameras behind the tower in Fig. 6.32, bottom. We also refer thereader to [24] where the process of surface evolution � e. g. using the nonparametric splinethat results from Step 1 of the L1-splines-based procedure � is illustrated.6.4.3 Reconstruction results by other global methods for shape re-constructionComparison with the alpha-shapes procedure and iso-surface extractionIt was shown in [25] that, for non-regularized point clouds with many outliers, α-shapes arenot able to provide signi�cantly better reconstruction than the local methods of Sec. 5.1.The reconstruction results are somewhat better if the input of the algorithm is given bythe regularized (for instance, RTDQT) nodes of Sec. 5.1.1. The number of holes is therebyreduced, but the problems of a noisy point cloud and an unnecessarily high number oftriangles remain. One can now use commercially available software packages mentionedin [126] to perform interactively operations of mesh compression and hole �lling, but anautomatic approach is hardly possible here. The result of the α-shapes procedure withtexturing as in Sec. 5.2.4 is visualized for data set Gottesaue in Fig. 6.33, top left. Asmentioned in Sec. 3.2.2, the most challenging step of the algorithm based on iso-surfaceextraction lies in the retrieval of the normal vector �eld in the areas of sharp gradientchange. In the middle left portion of Fig. 6.33, severe artifacts are clearly visible in theareas of the gabled roof and the towers. The visually best results of all of the methodsimplemented here were obtained by applying the procedure based on L1 splines, depictedin Fig. 6.33, middle right and bottom. We can see that the L1-splines-based surface is lessa�ected by noise and outliers in the point cloud, as one can see in the area in front of thebuilding; it is homeomorphic to a plane (has genus zero) and also the changes of gradient arereliably treated. Unfortunately, the problem of parameterization is not completely solvedhere because the surface remains a 2.5D manifold z(x, y), not a parametrized 3D manifold
(x(u, v), y(u, v), z(u, v)). We also refer the reader to [25], where, for further comparison, thequalitative results of the procedure based on conventional splines are shown and presentin the next subsection a comparison in performance of two procedures in three exemplaryregions of the surface.
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Figure 6.31: Reconstruction results of the data set Turntable Houses produced by the L1-spline-based procedure of Sec. 5.2. Top: Two views of the triangular mesh. Middle andbottom: Three views of the textured reconstruction. The bottom view contains the 3Dpoints (depicted in blue) as well as a part of camera trajectory. See also [24].
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Figure 6.32: Reconstruction results of data set Infrared produced by the L1-spline-basedprocedure of Sec. 5.2. Top: A colormap view of the triangular mesh. Bottom: A view of thetextured reconstruction with the input point cloud depicted in green.Comparison with the conventional-splines-based procedureWe are now interested in the locations and distributions of the errors in the surfaces re-constructed from the sequence Gottesaue by means of L1 splines and conventional splines.Other methods are left out of consideration here since they produce topologically inconsis-tent meshes. Figure 6.34, left, shows a reference frame of this sequence. In this frame, wemanually selected three portions of the surface corresponding roughly to the ground, walland roof. Then the residual errors of the points near the three regression planes were com-puted. The three histograms depicted in the right hand side portion of Fig. 6.34 illustratethe error distribution of points to the ground plane π1 : z − z0 = 0 by the red histogram, ofpoints to the wall plane π2 : x−x0 = 0 by the blue histogram and of points to the roof plane
π3 : ax+ by + cz + d = 0 by the green histogram. We rotated the point cloud as describedat the beginning of Sec. 5.2.1, oriented the ground plot of the palace to be nearly parallel tothe coordinate axes and, �nally, chose a translation vector and a scaling factor to put theinput point cloud into the bounding box [−4; 4] × [−4; 4] × [−1.5; 1.5]. In Fig. 6.34, right,one sees that all histograms nearly correspond to Gaussian distributions, possibly contami-nated by several outliers. The error distribution of the points near the ground plane is lessfavorable (due to the low quality of points in the textureless areas, further distance from thecamera and the drift errors) than that of the points near the wall and roof. Also, since theparameters a, b, c, d of the roof plane were computed automatically, the error distribution ofpoints on the roof is the best. We illustrate by means of the histograms of Fig. 6.35, left andright, the error distributions of surface points sampled from triangles constructed by theconventional-splines-based and the L1-splines-based approaches, respectively. In Tab. 6.9,we report the numbers of triangles that participate in the evaluation and the measuresof the error function that result from the sum of zero-mean absolute di�erences of the z-coordinates (in the case of π1 and π3) and the x-coordinates (in the case of π2) between the



113 6.4. Shape reconstruction methods � qualitative resultsplane and the corresponding spline. For instance, in the case of π3, this measure is
ε =

1

N

N∑

i=1

|z(u, v)− ū|, u = z(u, v) + (ax + by + d)/c, (6.2)where N is the number of points in the triangles to be evaluated. We can see that the error ofthe non-parametric L1-splines-based surface is always lower than that of the conventional-splines-based surface and that, due to the parametrization problem, the performance isworse in the area of the wall than in the ground plane and roof plane. Fully 3D parametricsplines as in Sec. 5.2.2 and Sec. 5.2.3 allow reducing the error for the wall from 0.041 (whichcorresponds, after consideration of the real building size, to approximately 0.33m) to 0.018(some 0.14m), but the value for the roof plane increases (for a reason that is not yet clear2)from 0.014 to 0.022.

Figure 6.33: Reconstruction results from the sequence Gottesaue, top left: α-shapes pro-cedure, middle left: iso-surface extraction, bottom: L1-splines-based procedure. All three�gures represent the frontal view of the building. Top right: another view of the reconstruc-tion by the L1-splines-based procedure.Results for conventional cubic splines were shown here to demonstrate the susceptibil-ity of these splines to Gibbs artifacts in areas of fast gradient change, noise and outliers.2One possible interpretation is suggested by the small dormers: these are textured regions in images andtherefore contain many data points. They also lie in a vertical plane and so they are inconsistent with π3while likely to be reconstructed by the parametric L1-spline
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Figure 6.34: Left: A reference frame from the sequence Gottesaue and, marked by the greencurve, the part of a surface to be evaluated. The three portions of the surface belong to theground plane, the wall and the roof. Right: Error distributions of sample points near theground plane (red histogram), wall (blue histogram) and roof (green histogram).

Figure 6.35: Distribution of the (non-zero-mean) deviations u from (6.2) for the procedurebased on conventional splines (left) and L1-splines (right). Red histograms stand for thereconstruction results of the ground plane, blue from the walls and green for the roof.Table 6.9: Zero mean average deviations ε from (6.2) of the spline-based surfaces from threeselected planes. Sequence Gottesaue, 40×40 tensor-product grid, λ = 0.3. The �rst numberin parentheses denotes the deviations in meter while the second is the number of evaluatedtriangles. deviations ε (in m) (number of triangle)Method Ground plane Wall Roof
L2- splines 0.030 (0.24)(36) 0.045 (0.36)(21) 0.030 (0.24)(18)
L1- splines 0.025 (0.2)(21) 0.041 (0.33)(24) 0.014 (0.11)(24)(non-param)
L1- splines 0.025 (0.2)(24) 0.018 (0.14)(11) 0.022 (0.18)(14)(param)



115 6.5. Shape reconstruction methods � quantitative evaluationAlthough these results were the only results for conventional splines presented here, theconclusions of this work and of [25] about conventional cubic splines can be generalized toother types of conventional splines mentioned in Sec. 3.2.4.6.5 Shape reconstruction methods � quantitative evalu-ationWhile the last section presented screen shots of the reconstruction results, the task of thissection is to perform a quantitative evaluation of several procedures for shape reconstruc-tion. The evaluation of methods for shape reconstruction is carried out in two separatesections for two main reasons. First, �nding ground truth and an appropriate measure forthe comparison of ground truth with triangular meshes for buildings with many complicatedstructures are not trivial problems. Although the comparison measure should ideally containpenalty terms for both geometry and texture, we concentrate here only on the geometry ofthe reconstruction and adopt the well known Hausdor� Distance. We motivate in Sec. 6.5.1our choice of the Hausdor� distance as a metric for the quality of reconstruction while, inSec. 6.5.2, we describe several technical details of the computation of this distance. Whilebeing applied on point clouds obtained from our reconstruction pipeline, any distance mea-sure is biased not only by the quality of the input data set but also by the reconstructionresult of Step 2, which makes it almost indispensable to consider a synthetic data set (notcontaminated by systematic errors, such as camera drift), as we do in Sec. 6.5.3, beforeevaluation of a real data set can be performed in Sec. 6.5.4.6.5.1 Hausdor� distance as a measure for completeness and cor-rectnessA crucial issue when making comparisons is the metric (measure of similarity) in which thecomparisons are made. Conventional metrics such as the average error and generalizationsthereof, such as the Lp norms [40], measure similarity in ways inconsistent with humanperception. For many commonplace situations, for example, thin walls in urban terrain,these metrics indicate that two sets are nearly the same when observers judge them to bedissimilar, and, conversely, for other situations, they indicate that two sets are very di�erentwhile the user assesses them to be very similar.Given a ground truth model Y and a reconstruction result denoted by X , our goal is toevaluate X in terms of completeness (i. e. how much of Y is modeled by X ) and correctness(how closely X models Y). These two anchors for evaluation of any algorithm were usedby e. g. Heipke et. al. in [64] and, specially for geometric reconstruction, by Seitz et. al. [120].The latter paper motivated us to use the Hausdor� distance as the quantitative measure tocompare di�erent procedures for geometric surface reconstruction. Other applications of theHausdor� metric are to measure similarity of objects in computer vision [58] and to matchobjects with templates for identi�cation in geometric modeling and tracking [109].We denote the distance from a point X to mesh Y and the distance from mesh X tomesh Y by dst(X,Y) = infY d(X,Y) and dst(X ,Y) = supX dst(X,Y), respectively. Forour purposes, d(X,Y) is the Euclidean distance between X and Y and in all de�nitionsabove, ” inf ” can be replaced by ”min ” and ” sup ” by ”max ”, because we always deal withcompact surfaces. The Hausdor� metric for the "distance" from one set of points X (couldbe disjoint points or a continuous surface) to another set of points Y is
dH(X ,Y) = max {dst(X ,Y), dst(Y,X )} . (6.3)



Chapter 6. Evaluation of algorithms 116One can see from Fig. 6.36, left, that dst(X ,Y) describes the correctness and dst(Y,X )the completeness of the reconstruction to be evaluated. The Hausdor� metric is sensitiveto outliers, a property that makes it a suitable tool for evaluating surface reconstructionmethods for practical applicability such as automatic navigation. Note that, in our case, theoutliers to be punished are not the input sample points lying far from the surface but thosetriangles of the resulting mesh that contain points far from the surface. There also existgeneralizations of the Hausdor� distance that play down the e�ect of outliers, for example,the generalization of [5], where an error integral over a discretized volumetric domain D

dp,c,D(X ,Y) =
(∫

V∈D

min (|dst(V,X ) − dst(V,Y)|p , c)
)1/pwith two scalars c > 0, p ≥ 1 is considered. However, in our work, the original Hausdor�distance of Eq. (6.3) (which comes out of the last equation in case p, c → ∞) is adopted toperform comparisons for a simple object.6.5.2 Details of the implementationCare must be taken with the implementation details of the computation of the Hausdor�distance in order to prevent the algorithm from becoming quadratically expensive in terms ofthe sampled points, which is, of course, the worst-case scenario of (6.3). Since we work withtriangular meshes (Y = (Y, T )), we observe that the distance dst(X,Y) is either a shortestdistance from X to a vertex of the point set Y or the shortest length of the perpendicularfrom X to one of the faces given that the base point V as in (3.3) lies within a triangle T .A rather e�cient way to compute dst(X,Y) is thus as follows.1. compute d1 = minX dst(X,Y),2. by considering normals nT (of length 1) of all triangles in the mesh, compute simul-taneously (with (3.3)) both the length of the perpendiculars d⊥(X, T ) and the basepoints V,3. as a last step, perform for every triangle T , for which d⊥(X, T ) lies below d1, thetest V ∈ T is performed. The minimum of these values is denoted by d2. We havedst(X,Y) = min(d1, d2).The third step is the most time-consuming. It could be carried out, for example, bychecking whether the sum of the barycentric coordinates U ,V ,W of V ∈ T is equal to 1.However, two heuristics can be applied to avoid this calculation. The �rst heuristic is atrivial one that takes into account the coming calculation of dst(X ,Y). If we see that d1or d2 is already smaller than the value dst(X ,Y), we interrupt the calculation. The secondheuristic directly concerns step 3 previously mentioned. If we assume that V ∈ T , then bythe Pythagorean Theorem,

d⊥(X, T )2 = dst(X,Y)2 − dst(Y,V)2 > max
(dst(X,YT )

2
)
− ξ(T )2, (6.4)where Y is a vertex of T and ξ(T ) is the maximal Euclidean distance between a point Vwithin a triangle and the vertices of the triangle:

ξ(T ) = max
V∈T

(

minYT

(d(V,YT ))

)It can be proven that ξ(T ) is either the radius of circumference (if no angle of T exceeds
π/2) or the distance from the vertex opposite to its longest side to the intersection point ofthe perpendicular bisector of the second-longest side of T with the longest side (otherwise),



117 6.5. Shape reconstruction methods � quantitative evaluationas illustrated in Fig. 6.37. The proof of this statement is trivial in the �rst case; in thesecond case, one denotes the smallest angle of T by β and the median angle by α. Then thestatement follows after analysis of the two subcases α ≥ 2β and α < 2β (see Fig. 6.37). Thecomputation of the two quantities in the rightmost part of (6.4) proceeds simultaneously andis therefore very fast. Veri�cation of the necessary condition (6.4) allows rejecting trianglesthat do not satisfy V ∈ T without computing U + V +W .
supX (infY d(X,Y))

supY (infX d(X,Y))

maxX (dst(X,Y))
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Y

dst(X ,Y)

Figure 6.36: Left: The Hausdor� distance measures completeness and correctness of thereconstruction, and, as originally formulated, is sensitive to outliers (Source: Wikipedia).Right: A con�guration of two points sets consisting each of two rectangles (or, equivalently,four triangles) for which both values dst(X ,Y) (corresponds to AB) and maxX(dst(X,Y))(that is larger or equal than AC) di�er signi�cantly.
Figure 6.37: Computation of ξ(T ) in the case one of angles of T exceeds π/2.One can now have an idea to evaluate dst(X ,Y) by evaluating each vertex X ∈ X by theprocedure described above and taking the maximum value max(dst(X,Y)). Unfortunately,even in the case of connected meshes, the extreme point is not necessarily a vertex, but can liein the interior of an edge, as illustrated in Fig. 6.36, right, and, by a "suitable" (worst-case)choice of parameters, the di�erence dst(X ,Y) −max(dst(X,Y)) can be, theoretically, arbi-trarily high. In the case of meshes topologically di�erent from planes (e. g. with holes) whichmay be obtained from application of procedures based on α-shapes or iso-surface extraction,

max(dst(X,Y)) is even a worse estimate of the one-sided distance. Therefore, for the generalcase, we implemented several features of the algorithm described in [56]: the points sampledfrom triangles in X and Y are stored in an octree array, whose �nest resolution multipliedby 3
√
2 is the discretization error. From the centers of the disjoint cells of the octree, thecells �lled by points of the other set are identi�ed and, if the computation to the submeshmakes sense (i. e. the distance between cells is not too short), it is carried out by the methodsused for computing dst(X,Y). The option of fast computation of maxX(dst(X,Y)), which,for non-pathologic cases such as that in Fig. 6.36, is a good approximation of dst(X ,Y), isadopted for tensor-product surfaces that produce meshes without holes.



Chapter 6. Evaluation of algorithms 1186.5.3 Evaluation of several algorithms on a synthetic data setThe test object represented by the point cloud X must be simple enough that it can becorrectly evaluated with the Hausdor� metric. On the other hand, it should possess allof the properties of a point cloud obtained by photogrammetric methods in urban terrain:gradient discontinuities (characteristic for man-made objects), high amplitude of Gaussiannoise, several outliers and varying density of points. In [26], the point cloud X to be used inthe comparisons represents a house with an overhanging roof (see Fig. 6.38). Computationalexperiments were carried out for levels 0.025 and 0.15 of Gaussian noise and for outlierpercentages of 0%, 1% and 10% for x, y, and z coordinates of the point (in the case ofiso-surface extraction, also for normal vectors). Here, outliers were randomly chosen pointsin the bounding box of the object. The density of points remained roughly unchangedin all experiments but was variable in di�erent regions of the data set. For each levelof noise and outliers, we carried out data set generation, reconstruction and evaluation10 to 15 times and computed the average of the Hausdor� distances (6.3). Qualitativeresults from the L1-splines-based procedure is shown in Figs. 6.39. As we see in the graphicsthat demonstrate the quantitative performance of di�erent algorithms Fig. 6.40, our defaultprocedure turns out to be the most robust with respect to the increasing outlier percentage.In order to reconstruct this clearly 3D point set X by tensor-product surfaces, we manuallychose suitable spatial homographies for points on the ground, on the walls, on the roof andunder the overhang that transform the points from di�erent parts of the house into the (u, v)-plane and preserve topological relations between these points. The (u, v)-parametrization isshown in Fig. 6.38, top center. For the qualitative illustrations of other procedures, we referto [26].As one saw previously, the L1-splines-based procedure shows the most stable results withrespect to the percentage of outliers and noise, despite limitations due to the relatively smallnumber of grid nodes and the rather in�exible structure of a tensor-product rectangular grid.In is also noticeable to observe the high Hausdor�-distance error of the iso-surface extractiongenerated by the method of [75] in the absence of noise which we believe happens becauseof degenerate con�gurations, for instance, planar structures.

Figure 6.38: Model Synthetic house with overhanging roof and a point cloud without outliers,see also [26]. On the left: view from side, right: view from top, middle at top: parametriza-tion in (u, v)-domain (points on the ground, on the walls, on the horizontal, upper and loweroverhanging parts of the roof are marked in black, red, green, cyan and yellow, respectively).



119 6.5. Shape reconstruction methods � quantitative evaluation

Figure 6.39: Modeling the data set Synthetic house with overhanging roof with L1-splines (seealso [26]). Outlier percentage is 0.01 everywhere. Equally spaced grid. Left: λ = 0.3, right:
λ = 0.5. The endpoints (X,Y) producing the largest values of dh(X ,Y) are surrounded bya red circle and connected by a green line.

A

dh

Figure 6.40: The average values of the Hausdor� distance dh obtained for the data setSynthetic house with overhanging roof for Gaussian noise amplitudes (A) 0.025-0.15 by alpha-shapes (green/cyan line: a small/large value), iso-surface extraction (red), grid-�t (black)and L1-splines (blue). Curves for data sets without outliers are shown by solid lines, foroutlier percentage 0.01 by dotted lines.



Chapter 6. Evaluation of algorithms 1206.5.4 Evaluation of a real data setIn this section, we again turn our attention to real data. Fragments of �ve high-resolutionimages of the sequence Ettlingen church present the entrance area of the Herz-Jesu churchin Ettlingen, near Karlsruhe, Germany. The laser point set Y, obtained from multiple scanpositions by means of Zoller+Fröhlich IMAGER 5003 laser scanner and registered interac-tively, as a ground truth, several images and corresponding camera matrices are available[125] for evaluation of multi-view dense estimation and surface reconstruction algorithms.We selected and down-sampled �ve images of the sequence. Our reference image (presentedin Fig. 6.41, right) is the third image of the subsequence. We mention here the two mainproblems that emerged during the evaluation process:1. The laser point set contains several millions of points and is therefore not convenientfor further processing (e. g., building meshes). For this reason, we did not performmeshing of the ground truth point cloud Y, but generalized our calculations directlyfor the point set. For example, in order to calculate dst(X ,Y), the ANN algorithm dueto [104] can be used. Here X , T is again the mesh resulting from the reconstruction.2. As one can see from Fig. 6.41, left, the laser point set Y is not complete (due to theunfavorable position of the scanner) and therefore cannot be considered as ideal groundtruth. The error in correctness of our reconstruction results will be unnecessarily highif care is not taken to exclude the triangles lying in the regions where no ground truthis given. In the current implementation, we projected Y by the reference camera intothe image and calculated the histogram that assigns the number of laser points toeach triangle of the reconstruction. If we denote by T0 all triangles whose support setcontains less than a �xed number of points in Y, then we exclude the set of triangles
T1 = {T | one of vertices of T is incident with a triangle of T0 }from consideration. Of course, this approach will fail if some empty triangles areoccluded from the reference image by regions su�ciently covered by laser scannerdata, but this is not the case for our data set. By luck, also triangles near the imageborders with spurious depth values at the vertices � mainly because these regions werenot covered by a su�cient number of images, e. g., in the bottom left corner and onthe right � belong to T1 and are left out of consideration.Because of last two issues, we will treat separately the two values of the Hausdor� distancein Eq. (6.3), which, as we saw previously, denote the correctness and completeness of thereconstruction. We denote the two penalties for correctness and completeness by d1 and d2,respectively.We begin with sparse reconstruction from a set of images and points tracked by themethod of [94] and triangulated by means of the DLT algorithm [61]. In Fig. 6.41, left, thesepoints are depicted in green while every 200th laser point is shown in blue. We computethe Delaunay triangulation of these points, and, since the number of outliers is low and thesurface we wish to describe is approximately 2.5D, the value of d1 is low for this simplemesh. The value for d2 is rather high because large portions of the reference image are notcovered. When we computed the depth map as described in Sec. 4.5.3 (with parameterssuitable for this data set (window win = 2, data cost function: NCC, triangulation-basedparameters: A = 50, σ = 100, γ = 0.75, non-local optimization: semi-global algorithm) andthe RTDQT-mesh (see Sec. 5.1.1) starting from the depth map, one sees in Fig. 6.42, top leftand right, respectively, that the number of outliers (caused in this case by re�ections in thewindows) and, therefore, the value of d1 increases. If one computes a 2.5D L1 spline fromthese nodes, as described in Sec. 5.2.1, the value of d1 becomes smaller while the value of d2also slightly decreases. In Fig. 6.42, in the bottom row, left and middle, meshes obtained by



121 6.5. Shape reconstruction methods � quantitative evaluationthe RTDQT and L1-spline-based procedure, respectively, as well as pairs of points that areresponsible for the maximum values of the correctness (d1) and completeness (d2) penaltiesare depicted. On the right of Fig. 6.42, bottom, we show two screen shots of the texturedreconstruction. Quantitative results for the three procedures already mentioned here andtwo other tensor-product-based procedures, namely grid�d and conventional splines, areshown in Table 6.10.Remark: The deviations of around one meter seem, clearly, very high for this simpleimage sequence. However the output of this section is always the highest deviation thatcan be indeed quite high. Computation of average deviations for 3D models would requiremodi�cation of (6.3) that, unfortunately, is not available yet. Computation of averagedeviations for "2.5D models" is equivalent to comparison of depth maps and yields similarresults as in Sec. 6.3.

Figure 6.41: Left: The ground truth mesh with vertices given by laser points (in blue) fromthe image sequence Ettlingen church, view from behind. Note that orientation of the z-axisin the input data set is from top to bottom. The triangulated points are illustrated by greendots both in the 3D space (left) as well as in the image space of the reference image (right).Table 6.10: Reconstruction results for the data set Ettlingen church produced by severalmethods. The grid size for all tensor-product-based methods was 50× 50. The smoothnessparameter λ was 0.1 for L1 splines and conventional splines, and 0.8 for grid�t. The objectbounding box measures were [8.3; 10.8]× [−9.5;−5.9]× [−5.6; 0.8] m. method Delaunay RTDQT L1-splines conv. splines grid�d
d1 0.216 0.754 0.186 0.718 0.298
d2 1.00 0.610 0.486 0.478 0.598
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Figure 6.42: Evaluation of the data set Ettlingen church. Top left: depth map computedby means of the simultaneous algorithm of Sec. 4.5.3. Top right: RTDQT-mesh producedfrom the depth map. Bottom left and middle: Top view of the RTDQT-mesh and the meshobtained from the L1-splines-based procedure. The pairs of points in the ground truth andresulting meshes responsible for the highest values of the correctness (d1) and completeness(d2) penalty terms are depicted by blue stars and denoted, for further clari�cation, by 1 and2, respectively. Bottom right: Visualization of the textured reconstruction provided by the
L1-splines-based procedure.



123 6.6. Computational results for the reconstruction pipeline for two more data sets6.6 Computational results for the reconstruction pipelinefor two more data setsWe decided to include in this work two more data sets that assist in (and are very suitablefor) demonstrating the potential of our reconstruction pipeline and, in particular, that of the
L1-splines-based procedure. The village of Wangen in Switzerland represents a destroyedurban scenery (designated for training of police units, �re �ghters and military forces) andwas recorded by a quadrocopter of the type depicted in Fig. 1.1, b. It is clear that the model-based approaches are not expected to do a good job for this kind of scene. On the otherhand, this scenario is exactly what the automatic navigation, disaster management, anddefense missions in non-cooperative terrain are facing in a continuously increasing numberof cases.The sparse point cloud and the camera trajectory were reconstructed by means of ourstructure-from-motion algorithm [22]. Since the images are nearly 2.5D, it is, for qualitativeillustration of the results, su�cient to compute RTDQT with �lled holes from one referenceframe and to model the distance of 3D points to the image plane of the reference frameusing cubic splines (that is, using the 2.5D surface of Sec. 5.2.1 only and not the completeprocedure). The reference image, corresponding depth map computed using median depthestimation, and several views from the point clouds triangulated by means of (4.2) andexported into an OpenGL-interface (which assigns to each 3D point its color) are depictedin Fig. 6.43. Furthermore, we illustrate in Fig. 6.44 compressed representations of the 3Dpoint cloud produced by RTDQT-mesh (top left) and by the L1-spline-based procedure(bottom left and right). The main observation that can be made here is that the the 2.5D
L1 spline can suppress the noise in the coordinates of the 3D points.

Figure 6.43: Top left: The reference image of the sequence Wangen. On the right, the depthmap created as a median fusion of six depth maps as described in Sec. 4.5.2. Note that evenby means of depth map, one can clearly see which part of the roof in the house at the bottomleft still remains and which does not. (This is extremely di�cult to realize when viewingthe original image sequence!) Bottom: Three views of the dense point cloud (Fig. courtesyof Peter Wernerus).
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Figure 6.44: Top left: a view of the textured reconstruction from the sequence Wangen bythe local algorithm of Sec.5.1.1 with pyramids up to level 4 and one reference image. Bottom:A similar view of the L1-spline-based reconstruction. One can see how the 3D points notexactly computed by depth maps were replaced by spline vertices. Right: Another view ofthe L1-splines-based reconstruction. The original point cloud is depicted in blue.The next data set shows the cathedral of Speyer, a historical building in the southwestof Germany. The video sequence, from which 200 frames were automatically extracted andoriented by the procedures of [22], was recorded in late autumn by a hand-held cameramounted on a Cessna. In this case, the reconstruction is particularly di�cult because of thelea�ess trees, which not only violate the assumption of a piecewise smooth surface neededfor the image-based methods of Chapter 4 but also contribute to degeneracy of the surface,which is no longer a 2D manifold of genus zero (contrary to the assumptions of Chapter 5).Nevertheless, our methods showed their robustness and achieved reliable reconstruction inthe large parts of the scene. Various steps of the reconstruction from reference frames tothe views of the textured mesh are visualized in Figs. 6.45 and 6.46.ConclusionFrom the contents of Secs. 6.4-6.6, it becomes clear that the L1-splines-based procedure isable to produce topologically consistent surfaces with reliable information even in areas notcovered by the camera. Moreover, it can cope with a considerable percentage of outliers inthe point clouds.

Figure 6.45: Three reference images from the sequence Speyer (top) and corresponding depthmaps (bottom) created by the algorithm described in Sec. 4.5.3.
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Figure 6.46: Reconstruction results for the sequence Speyer. Top row: Two views of thedense point cloud (Fig. courtesy of Peter Wernerus). Middle: Two views of the mesh resultingfrom the L1-spline-based procedure with original point cloud depicted in green. Bottom:Two views of textured reconstruction.6.7 Computing timesThis section gives a coarse information about computing times for the main modules of theprogram coded on a standard laptop by the author of this work in a MATLAB GUI with sev-eral C(++)-�les (mostly coded as mex-functions) for the most time-consuming procedures.Generally, there are two important properties of our algorithm that prevent the softwarefrom rapidly increasing the time for computation. The �rst is the subdivision in the image-and point-based steps and the second is its modular structure; the time-consuming modulesof dense depth maps or L1-splines can be omitted or replaced by the simple Delaunay tri-angulation or the (less time-consuming) procedure of α-shapes, respectively. The user candecide which modules should be activated.According to the reconstruction pipeline Alg.1.1, there are four main modules: Sparsetracking, dense reconstruction, local tessellations and global approach for shape reconstruc-tion (including texturing). In the following four paragraphs, we will report the computingtimes of these modules and their main subroutines. The computational "bottlenecks" of therespective modules will be described as well.Sparse tracking includes MATLAB implementations of the epipolar and simultaneoustracking algorithms and a mex-function for the standard KLT algorithm. MATLAB �les



Chapter 6. Evaluation of algorithms 126need around 0.25 minutes for some 500 points and two pictures. The bottleneck is the choiceof the relevant image fragment in (4.11), which takes place by means of bilinear interpolationand is therefore rather time-consuming in MATLAB. The mex-function of standard KLT-tracking with 5 pyramids requires less than 0.1 second for the same input data.Dense reconstruction consists of two submodules coded by mex-functions: computationof the data term with triangulation-based smoothing and a smoothness function that is bydefault semi-global optimization. For 7 images with 384×288 pixels and 21 depth labels,both submodules need some 0.5 minutes. The current bottlenecks are the data exchangeand the not very e�cient computation of the aggregation function (4.20). Use of dynamicprogramming instead of semi-global optimization allows reducing the computing time by upto 3 seconds.Local tessellations are computed directly from depths maps. Less than one minute isusually required in MATLAB in order to compute a LIFT interaction between two localtessellations (shapes). The computing time increases linearly with the number of shapes,and the whole procedure is then quadratic. Running the C-code for (optional) �tting ofseveral dominant planes in relatively sparse point clouds requires some 1-2 seconds.Global approach is the last step of our algorithm. The most time-consuming procedureis clearly the L1-spline based minimization algorithm, which includes iterative solution of alinear equation system and has either 3(I+1)(J+1) or 9(I+1)(J+1) unknowns (the valuesof z(x, y) or X(u, v) and their derivatives at Steps 1 and 3, respectively, of Sec. 5.2). So thecomputation of L1 splines depends on the number of iterations (the inner iteration loop isneeded for the primal-a�ne algorithm and the outer to compute the parametric spline inSec. 5.2) and can take up to about 1 hour of time (I = J = 40, 1 outer iteration). Renderingof a 2.5D L1 spline requires, however, only 1 minute. Improvements in the current (C-)codecan be carried out. In addition, we mention in Sec. 7.2 several general ideas for future workthat can reduce the computing time of the algorithm by orders of magnitude.Other shape-reconstruction procedures are signi�cantly faster. For example, the calcu-lation of an α-shape for several thousands of 3D points requires only about 1 second. Themost computationally expensive portion of this procedure is Delaunay tetrahedrization. Iso-surface extraction (implementation in C++ and MATLAB) requires 2 to 3 minutes becausethe normals of all points must be computed and oriented by identifying neighbors andRANSAC-based plane �tting.The computing times for all other routines needed for our approach (detection of charac-teristic points, texturing, mesh manipulation, etc.) are not higher than a couple of seconds.



127
Chapter 7Summary and outlookThe concept presented in this work has proved to provide good visual and quantitativereconstruction results for monocular, uncalibrated video sequences of a challenging qualityfrom both infrared and daylight cameras. The procedure is subdivided into two major parts:image-based and point-based. This separation was retained throughout the whole processnot only in order to save computation time but also in order to avoid getting stuck in a localminimum of some global minimization functional. We showed in the image-based portionhow to obtain depth maps from short subsequences of images. In the point-based portion,also called shape reconstruction, these depth maps are integrated into a global triangularmesh and textured by the images.The algorithm is nearly autonomous. The only user intervention may consist of select-ing the method of surface reconstruction and specifying thresholds minm(xm), maxm(xm),
minm(ym) and maxm(ym) to reconstruct the fragment of interest. The reconstructionpipeline is real-time oriented and only the last step � surface reconstruction � must waituntil the whole point cloud is obtained. We start the detailed discussion of our conclusionsin Sec. 7.1 by emphasizing the main features of the image-based methods. The methods forshape reconstruction are summarized in Sec. 7.2. For every contribution mentioned in thiswork, we discuss not only the main advantages and drawbacks, but also ideas recommendedfor future work which suppose improvements over the existing drawbacks.7.1 Image-based methodsUsing the algorithms presented in Chapter 4, we are able to compute correspondences fora sparse or dense point sets from several images, optionally pairwise recti�ed to epipolargeometry, using modular cost functions, with or without triangular meshes, with or withoutsubpixel precision and with or without non-local re�nement (for dense methods) by meansof dynamic programming, semi-global optimization, or, in the binocular case, graph-basedapproach of alpha-expansions.Sparse tracking and triangulationWe have seen from Tables 6.2-6.6 of Sec. 6.2 that consideration of multi-camera systems is apowerful tool in order to obtain both exact spatial coordinates from characteristic points inimages and dense depth maps without too many additional heuristics. The precision of theresults obtained by epipolar and simultaneous tracking policies is, in theory, approximatelythe same since, in the end, all cameras participate in the reconstruction. But in practice,simultaneous tracking su�ers more from uncertainties in camera positions, from the not



Chapter 7. Summary and outlook 128always correct assumption of almost fronto-parallel object planes (which requires includingorientation (the normal vector) of π from Result 1 into the optimization pipeline and, inparticular, Eq. (4.11), as it was done in [54] for sparse tracking, [18] for local methods (seeSec. 3.1.2) as well as [76] for global surface reconstruction methods followed by the level setprocedure of Sec. 3.2.3) and from radiometric artifacts in the reference image. While the lastproblem can be solved by varying interacting pairs of images, both of the other problemscan hardly be solved without introducing additional parameters and statistical tests as in[54]. Considering camera uncertainties as described in Sec. 6.2 would probably improve thesituation because the error bounds for camera matrices are usually known from Step 1 ofAlg. 1.1.Depth map extractionA new idea of applying triangulation-based smoothing was presented in the course of thiswork. It consisted of a smoothness term and an additional evaluation step that ascertainswhether a triangle is consistent or inconsistent with the surface. This helps overcome thebiases of the non-local methods toward fronto-parallel surfaces. Since triangulation-basedterms are also a kind of smoothing, they usually seem � at �rst glance � not to bring verysigni�cant improvement of the graphics of Figs. 6.26-6.28 if they are followed by non-localmethods with suitably chosen parameters, but these graphics do not re�ect the fact that thedepth values of points within triangles consistent with the surface are obtained with subpixelprecision. An isolated outlier within the point set usually does not a�ect the performance ofthe algorithm because triangles incident with it are supposed to be �ltered out as inconsistentwith the surface. By considering further reference frames, as described in Sec. 5.1.2, it is alsopossible to correct gross errors for triangles spuriously added to the list of surface-consistenttriangles. Other advantages of the triangulation-based approach � its ability to initializedepth maps, disentanglement from discretization heuristics, the perspective of optimizationwith global methods only in areas made up of triangles that are inconsistent with the surface� make us believe that the approach can still be improved. One can, for example, considerfor equations (4.21) and (4.22) a term A(T ) instead of A, where A(T ) decreases as thevariance of the depth at triangle vertices increases, and σ(T ) instead of σ, where σ(T ) islarger for triangles with homogeneous color distribution in order to improve the classi�cationof triangles into consistent and inconsistent with the surface. Within one subsequence, ourfuture work will also consist of pushing forward the histogram approach described in [29]for �nding similar triangles and recalculating cost functions for triangles with �ipped depthvalues. This approach must �rst be generalized for multi-camera con�gurations.As for non-local methods, numerous tests were carried out with dynamic programming,semi-global optimization, and, in the binocular case, with the graph-cuts-based approach.Semi-global optimization with 16 optimization paths obtained clearly better results thandynamic programming (due to streaking artifacts) and the graph-cuts-based approach (dueto its susceptibility to fronto-parallel planes) while the computing time turned out to bea clear advantage of dynamic programming. Overall, the implementation of the image-based part of our reconstruction pipeline is very favorable for future developments. Newcost functions as well as other aggregation functions and non-local algorithms can easilybe added as additional modules. Because of the e�cient, abstract problem statement fordynamic programming and semi-global matching, other smoothness functions can also beintegrated into the software if necessary. However, for multi-view dense reconstruction ofour data sets, the smoothness term (4.23) contributed to better results than other termsmentioned in Sec. 2.3.In the current version of the software, automatic choice of reference frames and other im-ages of the subsequence is insu�ciently covered. Motion blur and many other artifacts can



129 7.2. Shape reconstruction and visualizationmake the reference frame unsuitable for dense reconstruction. Other images can have paral-laxes to the reference frame that are either too large (which leads to many disparity/depthlevels and therefore high computing time) or too small, which has the consequence thatthe numerical stability for retrieving 3D structure is lost. Adopting some of the heuristicsmentioned in [50] will help to overcome these drawbacks.7.2 Shape reconstruction and visualizationLocal methods for shape reconstructionWe start this section by summarizing our local method, the LIFT algorithm introduced inSec. 5.1. This is a close-to-real-time incremental method for �ltering triangles that not onlydoes not require solving texturing problem (as in global methods, see Sec. 5.2.4) but alsoallows covering the object surface with multi-sensorial texture. An example of triangulation-based multi-sensorial surface representation is presented in [27], where the author workswith disparities and Result 2, for which the 3D structure does not need to be explicitlycomputed. A textured 3D model representation from additional sources (e. g. combinationinfrared and daylight videos) is also possible. The simple concept of the LIFT algorithmallows improving the quality of the mesh by additional sources, such as dominant planes.The main conceptual drawback of the current implementation is that the algorithm is biasedtoward the old reconstruction: if a new triangle blocks an old one, it is deleted, although itis theoretically possible that the positions of the vertices of the old triangle are less accurate.The parameter ε in Alg. 8.4 is thus a user-speci�ed threshold and the results are very sensitiveto its choice. In order to solve these problems, it will be necessary to take the accuracy ofthe 3D points into account and to consider the global structure of the scenery, for instance,by maintaining and updating, after processing every reference frame, an octree structure.Global methods for shape reconstructionAmong many procedures tested in the course of this work, the L1-splines-based procedureperforms the most robust reconstruction of the urban terrain despite highly varying densityof points, high amplitude of Gaussian noise and outliers. The fact that the L1-norm iscoupled to the coordinate axis and is not a�ne invariant against rotations and a�ne trans-formations does not signi�cantly a�ect the computational results. Making use of additionalinformation, such as known footprints of buildings that might be obtained from photogram-metric or architectural databases, or developing approaches for removing outliers, wouldimprove the performance of all procedures, including that of the L1-spline-based procedure.Still, by not using the bells and whistles, one gets clear insight into the fundamental capabil-ities of the proposed method una�ected by other factors. The present work treats the casewhen the footprints of buildings and other model-based information (except the direction ofthe z-axis, described in Sec. 5.2.1) are not a priori known.There were several limitations in the current implementation of the L1-splines-basedprocedure, namely,1. use of a static, coarse, equally spaced rectangular grid that does not adapt to the localdensity and characteristics of the point cloud,2. non-adaptive balance parameters in functionals (5.1) and (5.3),3. high computing time due to global calculation of the L1 splines and4. use of the parameterization of points described in Sec. 5.2.2 that is very sensitive tothe quality of the initial triangulation and the correct choice of the z-axis.



Chapter 7. Summary and outlook 130The results that we have presented in this work prove the principle of comparability orsuperiority of our method in comparison with other procedures but, because of the limita-tions mentioned above, the procedure for this method is not yet fully �exible and not yetcomputing-time-optimized. By making further improvements in the implementation of the
L1-spline-based procedure, we expect to achieve further improved textured reconstructions.Speci�cally, in the future, we will investigate extending the procedure of Sec. 5.2 using1. �exible triangular grids that adapt to the local density and characteristics of the pointcloud. Possible directions of research on triangular grids include but are not limited to

C0 linear splines (for comparison with grid�t) and C1 cubic L1 splines. These splinesconsist of Clough-Tocher elements (separate cubic polynomials in three subtrianglesof a mesh triangle) [73] and are analogous to C1 cubic L1 splines on rectangulargrids, which consist of Sibson elements. The triangulation to be chosen will be data-dependent, with roughly the same number of data points assigned to each triangle inthe parametric (u, v)-domain, and it will preserve topological relations.2. locally adaptive balance parameters λ in functionals (5.1) and (5.3) (that will not over-smooth the edges describing the walls of buildings). Alternatively, since an automaticchoice of λ is in general a non-trivial issue, use of L1 spline �ts [84], which do notinvolve any balance parameter, can be considered.3. reduction of computing time by 1-4 orders of magnitude by local processing of thepoint cloud using domain decomposition, that is, by computing local models on over-lapping local domains and assembling the local models to generate the global model(see [88]). This is feasible without detriment to accuracy because L1 splines keep localperturbations in the data completely (not just mostly) local in the surface.The parameterization of points is indeed a rather complicated issue for future work. FromFig. 5.3, left, one can see that the building walls will not become completely vertical evenafter a large number of iterations and that the approach can fail if the angle between the
z-axis and the correct vertical direction is too large. (It could be asserted that an angle of 15degrees is already critical for a data set similar to the synthetic one described in Sec. 6.5.3,but, in this case, the problem can be alleviated by rescaling the point cloud). We will searchfor a solution both by manipulating the point cloud by means of the approaches mentionedin Sec. 5.2.2 and by modifying approaches that are not based on systems of coordinates (suchas level sets with consideration of image information) by our L1-splines-based tools.Two possibilities for meshing the surface after its generation were mentioned in Sec. 5.2.4:Delaunay-triangulation of multi-points and canonic triangulation of the spline nodes. Here,our future work will consist of further e�ort to manipulate the mesh with the goal of com-pressing the mesh without deteriorating its quality.Due to the strict separation of image- and point-based methods in our reconstructionpipeline as well as the quite simple texturing step described in Sec. 5.2.4, our textured modelshave several disadvantages, such as di�erences in the luminance of neighboring trianglesthat have been textured from di�erent images, occasional errors caused by choosing a wrongcamera (if the visibility relations are not exact) and, �nally, the fact that the cameras arenot error-free and so the choice of image coordinates is not always exact. Improving thetexturing portion of the reconstruction procedure can proceed by a combination of followingideas that will be part of our future work.1. modi�cation of the cost function and applying non-local labeling algorithms on trian-gular grids in the same way that the algorithm mentioned in Sec. 3.1 and Sec. 4.5.3works on rectangular grids.



131 7.2. Shape reconstruction and visualization2. smoothing, as described e. g. in [45], the color distribution of the triangles by usinglinear combinations I(T ) = ∑

k tkIk(T ) where I(T ) denotes intensity or color valuesof the triangle T in 3D space, the Ik(T ) denote intensity or color values of triangles inthe images Ik in which T is visible, and the tk are transparency values that satisfy theconstraint∑ tk = 1 and depend on the angles that the triangle normal builds with thecamera rays toward the center of gravity of T . Of course, the problems of a rapidlyincreasing number of triangles as well as uncertainties in the positions of cameras mustbe taken into account.3. simultaneous consideration of image- and object-based modeling as mentioned in theend of the previous paragraph.Evaluation of algorithms for shape reconstructionOur next group of observations concerns performance evaluation of shape reconstruction al-gorithms by means of the Hausdor� distance as described in Sec. 6.5. Experiments describedin this section as well as in [26] make clear the correlation between lower Hausdor� distanceand better reconstruction in the view of the user interested in practical applications. Threeimportant directions of future work are1. modifying the error function to make it less outlier-sensitive,2. applying modi�cations of Eq. (6.3) that allow considering not only geometry, but alsotexture deviations of the reconstructed models and3. comparing the procedures investigated in this work with a wider class of reconstructionprocedures.ConclusionDespite several still existing problems � e�orts to cope with them are currently being made �it is clear that the reconstruction procedure presented in this work can be used for obtainingexcellent textured 3D models for buildings and surrounding terrain from monocular aerialand UAV-videos.
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141
Chapter 8AppendixSelected Algorithms Used in the Disserta-tionfor i = 1 : M do % number of pixelsevaluate Iω2 = I0(ω(xi)for k = 1 : K do % K + 1 number of camerasfor j = 1 : S do % number of depth labelsobtain xik(j) from xi and dj % with eq. of Sec. 4.1if xik(d) ∈ Ik thenevaluate Iω2 = Ik(ω(xik(j)) % e. g. bilinear interp.and compute ck(i, j) from Iω1 , I

ω
2 % with eq. of Sec. 2.2Set C(k, j) = ck(i, j)elseset C(k, j) = ∞end ifend forend forfor j = 1 : S doaggregate C(k, j) into Edata(x, j) % using e. g. (4.20)store A(j, i) = Edata(x, j) + ET (x, j) % using (4.21) and (4.22)end forend for Algorithm 8.1: Dense simultaneous pixel matching.
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initialize C(j) = c(1, j), P (i, j) = ∅for i = 1 : M − 1 dofor j = 1 : S docompute: C1(j) = minj′ (C(j′) + cs(j

′, j))and set P (i, j) = argminj′ (C(j′) + cs(j
′, j))end forfor j = 1 : S do

C(j) = C1(j) + c(i, j)end forend for
jM = argmin(C(j))for i = 1 : M − 1 do

jM−i = P (M − i, jM−i+1)end for Algorithm 8.2: Dynamic programming algorithm.procedure rtdqtSplit(T )if exists B = friend(T ) then
u = s(B)if u == 1 thensplit(B)else if u == 0 then

P = parent(B) % since s(T ) = 1 and s(B) = 0, s(P ) = 1% according to de�nition of RTDQTrtdqtSplit(T ) % and so B becomes activesplit(B)end ifend ifsplit(T )procedure split(T )
s(T ) = 0

s(children(T )) = 1

g(children(T )) = g(T ) + 1 % increase generationAlgorithm 8.3: One step of the (recursive) algorithm for restricted top-down quadtree tri-angulation. For necessary de�nitions, see text.
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Get N = total number of triangles in Tkfor j = 1 : N do %InitializeSet a(j) = 0, r(j) = 0, o(j) = 0 % area, redundancy, occlusion counterend forfor x ∈ T ∪ Im dodetermine j such as x ∈ Tj % see Sec. 4.3.3retrieve Dm(x) and calculate X % using (4.9) and (4.2)set a(j) = a(j) + 1 and set status = 1while status and k < m− 1 do

k = k + 1project X with Pk to obtain xkif xk ∈ Tk and Tk surface-consistent then % T ∈ Ik!retrieve δ = Dm(xi)− d(X) % d(X) from (4.1)if |δ| < εd(X) then % X is appr. the same pointset r(j) = r(j) + 1, set status = 0else if δ > εd(X) then % X blocks Tset o(j) = o(j) + 1, set status = 0end ifend ifend whileend forfor j = 1 : N doif o(j) > 0.1a(j) or o(j) + r(j) > 0.99a(j) then
Tj is marked as inconsistent with the surfaceend ifend forAlgorithm 8.4: The LIFT algorithm performs geometric evaluation of T into redundant,consistent and inconsistent with the surface by means of depth maps of previous referenceframes. The input is the camera matrices Pk, the corresponding triangulations Tk, the depthmaps Dk and a positive scalar threshold ε.
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Set k = 0 % number of iterationsSet b = 0, ω = 0, ε = ∞while k < kmax and ε > εmax do
k = k + 1

W =diag(1− |ωi|) % ωi is the ith element of ωsolve WAbnew = Wc for bnew % least squares solutionif ‖bnew − b‖1 > εmax or k < kmax then % the normalized L1-normcompute r = c−Ab,v = W 2r % residual r, temporal vector v
α = maxi

(

max
(

vi
1−ωi

, vi
1+ωi

))

ω = ω + cv/α % recompute primal a�ne weightsend ifset b = bnewend whileAlgorithm 8.5: Primal A�ne Algorithm. Given a matrix A and data vector c, obtaina solution vector b for (5.2). Two additional parameters are: the maximum number ofiterations kmax and the error tolerance εmax normalized by a number of nodes (I+1)(J+1).
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