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ABSTRACT: 

 

In this paper we propose a probabilistic supervised classification algorithm for LiDAR (Light Detection And Ranging) point clouds. 

Several object classes (i.e. ground, building and vegetation) can be separated reliably by considering each point's neighbourhood. 

Based on Conditional Random Fields (CRF) this contextual information can be incorporated into classification process in order to 
improve results. Since we want to perform a point-wise classification, no primarily segmentation is needed. Therefore, each 3D point 

is regarded as a graph's node, whereas edges represent links to the nearest neighbours. Both nodes and edges are associated with 

features and have effect on the classification. We use some features available from full waveform technology such as amplitude, 

echo width and number of echoes as well as some extracted geometrical features. The aim of the paper is to describe the CRF model 

set-up for irregular point clouds, present the features used for classification, and to discuss some results. The resulting overall 
accuracy is about 94 %. 

 

 

1. INTRODUCTION 

1.1 Motivation 

Airborne LiDAR (Light Detection And Ranging) has become a 

standard technology for the acquisition of elevation data. 

Especially in urban areas, the classification of a point cloud is 

an important, but challenging task in order to derive products 

like 3D city models. Consisting of many different objects such 
as buildings, ground and vegetation, urban scenes are complex. 

As a consequence three-dimensional point clouds are difficult to 

classify.  

 

Common approaches classify  each point independently of its 
neighbourhood. However, incorporating this contextual 

information can improve the quality of the results significantly. 

In this work we present a supervised classification method of 

3D point clouds based on Conditional Random Fields, which is 

able to take into account contextual correlations. Several object 
classes can be distinguished. We do not carry out a 

segmentation before classification, but we directly classify each 

point individually. 

 

 
1.2 Related Work 

In urban areas the most important objects are buildings. 

Consequently, many publications can be found in literature 

dealing with this topic, e.g. (Rottensteiner & Briese, 2002).  

The detection of urban vegetation has become increasingly 
important. Many applications based on city models require 

more realistic descriptions. For instance, trees and hedges have 

an important effect on a flooding- or emission simulation. 

Therefore, accurate information about vegetation is needed. The 

classification of vegetation can benefit from full waveform 
LiDAR technology (Wagner et al., 2008). An analysis of the 

temporal behaviour of the received waveform provides some 

additional information about the illuminated objects. On the one 

hand, we are able to acquire multiple echoes within one 

waveform, which give hints of the vertical distribution of 
objects within a footprint. Thus, especially in vegetated areas, 

the point density gets improved, and the objects are better 

described in 3D. On the other hand, information concerning the 

slope and reflectance of illuminated objects can be derived. 

Usually, Gaussians are fitted into the continuous backscattered 
waveform in order to detect echoes (Wagner et al., 2006). 

Object size and radiometric object properties have effect on the 

echoes’ amplitude. In addition, the echo width can be a good 

indicator for vegetation (Rutzinger et al., 2008), because it is 

narrow on ground and gets broadened in tree regions.  
 

Several approaches consider the task of classifying an entire 

point cloud and assigning the points to different object classes. 

For this purpose, some investigations have been spent on 

Support Vector Machines (SVM), e.g. (Mallet, 2010). Although 
SVMs are able to handle high-dimensional feature spaces, they 

are restricted to local classification of points or segments, 

respectively. Most of the common classifiers solely take into 

account local features in order to assign a point to one of the 

classes to be discerned. 
 

However, some improving hints can be integrated into decision 

process by considering contextual knowledge. Especially in 

computer vision an approach for image classification has 

become increasingly popular: Conditional Random Fields 
(CRF). Lafferty et al. (2001) originally introduced CRFs for 

labeling one-dimensional sequence data. Since the approach 

was adapted to the classification of imagery by Kumar and 

Hebert (2003), CRFs have been applied to various tasks in 

computer vision. Recently, in remote sensing, some applications 
dealing with object detection by using CRFs were published. 

Nevertheless, this works mainly focus on optical images. As 

learning and inference CRFs are computational expensive, the 

classification of large LiDAR point clouds is a challenging task. 

Some initial applications dealing with terrestrial point clouds 
can be found in the fields of robotics and mobile laser scanning. 



 

For instance, Anguelov et al. (2005) perform a point-wise 
classification on terrestrial laser scans. Lim and Suter (2009) 

present an approach which first over-segments a terrestrial point 

cloud acquired by mobile mapping and then perform a segment-

wise classification based on CRFs. One approaches dealing with 

a CRF applied to airborne LiDAR point cloud is described from 
Shapovalov et al. (2010). However, they first perform a 

segmentation on the point cloud and classify  the segments in a 

second step. This aspect helps to cope with noise, but small 

objects with sub-segment size cannot be detected. A more 

accurate method would be a point-wise classification. 
Compared to segment-based labeling this approach requires 

higher computational costs, but more small objects can be 

detected correctly.  

 

In this paper we propose a method for a point-based 
classification to approach of full waveform airborne LiDAR 

data based on Conditional Random Fields. In Section 2 the 

basic theory of CRFs is described. After that, we present our 

methodology to implement the CRF-framework in Section 3. 

Finally, some classification results of an urban area are 
presented (Section 4). 

 

 

2. CONDITIONAL RANDOM FIELDS (CRF) 

CRFs provide a probabilistic framework for the estimation of 
random variables that depend on each other, and can be used for 

classification tasks. In contrast to common classifiers the results 

can be improved by modelling the influence of the 

neighbourhood on an object. Context knowledge is generically 
learned by training, so that a CRF-based approach is more 

flexible than a model-based method.  

 

Belonging to the group of undirected graphical models, a CRF 

represents a scene by a graph consisting of nodes S and edges E. 
Given the observed data x and unknown class labels y, these 

discriminative models estimate the posterior distribution P(y|x) 

directly. All nodes are associated to corresponding labels 

simultaneously. The main equation for CRF is given by 
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where  i, j = nodes 
 Ai = association potential for node i 

 Iij = interaction potential of nodes i and j 

 Z = partition function 

 Ni = neighbourhood of node i 

 
CRF are a generalisation of Markov Random Fields (MRF), 

because more contextual knowledge conditioned to the data can 

be integrated in the interaction of nodes.  

 

 
2.1 Association Potential 

The association potential determines the most likely class label 

yi of a single node i given the observations x. It is related to the 

probability P: 
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Theoretically, the result of any classifier can be used. We utilize 

a generalized linear model (GLM, Eq. 3) here. It depends on the 

corresponding node feature vector hi(x). 
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Parameter vector w contains weights for the features associated 

to each class l. It is derived in the training step (Section 2.3). 
 

 

2.2 Interaction Potential 

The pairwise potential Iij (Eq. 4) provides a possibility to model 

the interaction of contextual relations of neighbouring objects in 
the classification process. Therefore, for each edge connecting 

two nodes i and j an edge feature vector µij depending on the 

data x is generated.  
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In our implementation we use generalized linear models again 

(Eq. 4). Relations of the local neighbourhood can be considered 

by using the following function:  
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In Eq. 5, the first term δ compares the two node labels yi and yj. 
Different labels are penalized, whereas corresponding labels are 

preferred. The degree of penalization depends on the edge 

feature vector µij and weight vector v, which is learned in 

training.  

 
 

2.3 Training and Inference 

The weights wl for node features in association potential (Eq. 3) 

and v for the edge features in interaction potentials (Eq. 5) can 
be derived by training. For this purpose, a part of a fully labeled 

point cloud is required. The training task is a nonlinear 

numerical optimization problem, in which a cost function 

(optimization objective) is minimized. This topic has been 

widely discussed in literature. For instance in (Nocedal & 
Wright, 2006) several approaches are presented.  
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A basic task for training step using graphical models is to find 

the value of the partition function Z(x) (Eq. 6), which 
normalizes the potentials to a probability value. Since our graph 

structure is complex and may have cycles, no explicit 

computation by message passing algorithms is possible. As a 

consequence it must be solved approximately. According to 

Vishwanathan et al. (2006) we use Loopy-Belief-Propagation 
for message passing and the common quasi-Newton limited 

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method 

for optimization of objective f=-log(P(θ|X,Y)) with θT=(  
   vT). 

 

 
3. METHOD 

Our approach starts with a pre-processing step based on the 

original LiDAR point cloud. It computes the input required for 

the CRF and includes two operations: First, the graphical model 

is constructed. In particular, each point corresponds to a node 
and is linked by edges to the points in its spatial vicinity. We 



 

get a list of all nodes and edges. In the second part of the pre-
processing step, several features are extracted. In training stage, 

the parameter weights are learned. Therefore, a labeled training 

site is necessary. Finally, these learned weights are used for the 

classification process of an unlabeled scene. The result is a fully 

labeled point cloud of the test site together with the probabilities 
of these classes’ assignments. In the following sections the 

methodology of our classification approach is described in 

detail. 

 

 
3.1 Pre-processing 

3.1.1 Graph construction: As already mentioned in 

Section 2, a CRF is a graphical model consisting of nodes S 

being linked by edges E. This representation is required for 

message passing algorithms in training and classification stage 
to estimate the most likely label configuration. Graph 

construction is only based on the geometrical information given 

by x, y, z-coordinates of the points.  

 

There is a notable difference to CRFs in field of computer 
vision. Images are typically aligned in a regular grid. Common 

methods deal with classification tasks of pixels or pixel-blocks 

(Kumar & Hebert, 2003), which are still in lattice form. This 

property enables a simple graph structure, since each pixel 

(block) has the same number of neighbours, usually four or 
eight. In contrast to this, a 3D LiDAR point cloud is irregular 

and has a more complex topology , so the structure of the 

undirected graph must be different from the type of graph that is 

generally used for image-based classifications.  
 

Unlike Shapovalov et al. (2010), we want to classify every 

LiDAR point rather than segments. Thus, each point 

corresponds to a node in our graph. Accordingly, edges link the 

points/nodes that are geometrically close to each other. 
Compared to other approaches, this methodology enables an 

accurate classification in which small objects described by a 

few points are preserved, because there is no smoothing in 

segmentation step and we use the original point cloud. 

However, computational complexity is a drawback due to the 
fact that the resulting graph structure may consists of hundreds 

of thousands of nodes and edges. 

 

For the graph construction, each point is linked to its nearest 

neighbours within a manual defined distance by edges. Thus, 
the number of edges per node may vary. In a 3D point cloud it 

is obvious to search neighbours within a sphere. A very local 

vicinity would be considered in this case. Nevertheless, our 

experiments have shown that especially the height differences 

improve object classification. This is why links to points at 
other height levels are important, which often belong to another 

object class. This significant information is not necessarily 

available with search inside spherical volumes or by k nearest 

neighbour approach. In our method the neighbouring points are 

searched within a cylinder of radius 1 m perpendicular to the 
xy-plane. Thus, more points are linked by edges. 

 

Both nodes and corresponding edges of the graph are 

represented in list form and get associated with features in order 

to enable classification. This is described in the next sections. 
 

3.1.2 Node Features: The classification of the point cloud is 
based on LiDAR features only . Since full waveform laser 

scanners provide additional information, we decided to classify 

a point cloud acquired by such sensors. Thus, more features per 

point are available describing the shape of the received signal 

(e.g. amplitude A and width σ, Fig. 1) and the number of echoes. 
Especially the classification of vegetation may be improved by 

these features. 

 

 
Fig. 1: Backscattered signal recorded by full waveform laser 
scanner. Gaussians are fitted to the sampled signal. The features 

amplitude A and width σ can be used to characterise the echoes. 

 

 

The selection of suitable features is an important field of 
research. In our previous work (Mallet et al., 2008) we 

presented eight LiDAR features and determined their 

contribution to classification results. Accordingly, we separate 

our features into two groups. The first one contains features 

obtained from full waveform laser scanning. The second group 
consists of features based on the local point geometry.  

 

Amplitude: The term intensity is not yet defined clearly  

(Wagner et al., 2008), but the amplitude A of the estimated 

Gaussian is most commonly referred to as intensity. Thus, this 
value is related to the reflectivity of the illuminated object. 

Here, the values were corrected by the approach presented from 

Höfle and Pfeifer (2007) in order to eliminate the dependency 

between amplitude and incidence angle of laser beam and object 

surface.  
 

Echo width: For full waveform laser scanning usually 

Gaussians are fitted to the waveform to model the echoes. In 

addition to amplitudes, the widths σ of the Gaussians can be 

used to describe echoes (Fig. 1). This feature is especially 
important for detection of vegetation since branches widen the 

echoes. Advanced object information concerning the type of 

vegetation can be derived. (Mallet et al., 2008) 

 

Normalized echo number: With the new generation of laser 
scanner sensors, several backscattered echoes of vertically 

distributed objects in the beam can be recorded now from a 

single pulse. For each echo we get information about the 

number of the current echo and the total number of echoes 

within the waveform.  
 

Difference first-last pulse: This feature describes the 

geometrical height difference between the first and the last echo 

of a single emitted pulse. High differences hint primarily at 

vegetation or at the edges of building roofs. If there is only one 
echo, the value of this feature is zero. 

 

In addition to the full waveform features some geometric 

features are extracted for every LiDAR point cloud, too: 

 
Distance to Ground: According to Mallet (2010), for each 

echo the height above ground can be approximated without a 

need of a Digital Terrain Model (DTM) in almost flat areas. 

Therefore, the height of the lowest 3D-point within a cylinder 

centred at the current point is used to approximate ground level. 



 

This feature is very important to separate objects like vegetation 
and building roofs from ground. A flat plane, for instance, 

might be part of a roof or of the ground. Since the chosen radius 

of the cylinder is bigger than the largest building in the scene 

(here 20 m), the points of this plane can be classified correctly. 

 
Variance normals: The variance of normal vectors in a local 

spherical neighbourhood (radius 1.25 m) will be small for 

smooth areas like roofs, or ground. 

 

Elevation variance: The variance of the point elevations in the 
current spherical neighbourhood indicates whether significant 

height differences exist, which is typical for vegetated areas. 

 

Residuals of planar fit: Points in the local neighbourhood of 

each current point are used to fit a plane (L2 norm) by a robust 
M-estimator. Information about roughness can be derived by 

analysing the residuals. The value will be high in vegetation 

areas and near zero for points describing ground and roofs. 

 

Omnivariance: Gross et al. (2007) show that the distribution of 
points in a local neighbourhood (radius 1.25 m) can be an 

significant feature for point cloud classification. For the point 

distribution within this neighbourhood a covariance-matrix Σ 

and its three eigenvalues λ1-3 are computed. This allows us to 

distinguish between a linear, a planar or a volumetric 
distribution of the points. The feature omnivariance is defined 

as 

              √∏  

 

   

 

 
(7) 

 

Low values will correspond to planar regions (ground, roofs), 

and linear structures whereas higher values are expected for 

areas with a volumetric point distribution like vegetation. 
 

Planarity: Another relevant eigenvalue-based feature is the 

planarity (λ2-λ3)/λ1, which is high for roofs and ground, but low 

for vegetation. 

 
Altogether, we use 10 features for our classification task. They 

are computed for each 3D point and associated to each node in 

the CRF by a feature vector hi(x) (Eq. 3) of dimension 10 in this 

case. Note that the values are not homogeneously scaled due to 

the different physical interpretation and units of these features. 
For instance the normalized echo number ranges from 0 to 1, 

whereas the amplitude has a much higher variance and ranges 

up to 120. For getting representative parameter weights in CRF-

training step, a normalisation to standard normal distributed 

features is required to align the ranges.  
 

 

 

3.1.3 Edge Features: Having determined the node features 
hi(x) in the way described in the previous section, the edge 

feature vector µij(x) used for the interaction potential (Eq.5) 

need to be obtained. We use the difference between the feature 

vectors of two adjacent nodes I and j for that purpose, thus: 

 

µij(x) = hi(x) - hj(x) (8) 
 

Depending on the current node labels configuration, several 
combinations are more likely and typical structures can be 

learned. As a result, the interaction potential causes a smoothing 
effect.  

 

 

3.2 Training and Inference 

Following Vishwanathan et al. (2006), we utilize the iterative 

Loopy Belief Propagation (LBP) algorithm, which is a 

frequently used message passing algorithm for graphs with 

cycles. 
The weight parameters wl and v are determined by training. 

Therefore, nonlinear optimization is done with the quasi-

Newton method L-BFGS (Vishwanathan et al., 2006). The 

result of inference with an unlabeled point cloud and trained 

weights is a probability value for each point belonging to each 
class. Maximum a posteriori estimation (MAP) selects the 

highest probability and finally labels the point to the 

corresponding object class. 

 

 
4. EVALUATION 

4.1 Dataset 

Our classification framework is validated with a flight strip of a 

rural scene called Bonnland (see Fig. 3a). The test area consists 

of scattered buildings with different shapes, streets, grassland, 

  

  

  
 

Fig. 2: Sampled feature characteristics in different object 
classes. Plots show a) aerial image as reference, b) amplitude, 

c) echo width, d) distance to ground, e) variance of heights and 

f) omnivariance. 

 

 



 

some single trees and forested regions. In 2008, data acquisition 
was done with a RIEGL LMS-Q560 full-waveform laser 

scanner. In an area of about 2.02 ha nearly 760,000 points were 

recorded. This corresponds to a mean echo density of about 3.7 

points/m2. The raw data points are delivered with 3D 

coordinates and the attributes amplitude, echo width, number of 
echo and total echoes within the waveform. Table 1 depicts the 

distribution of the echo numbers in the area, whereas Table 2 

demonstrates the distribution for the three object classes of 

interest ground, buildings and vegetation in the scene.  

 

# echoes 1 2 3 4 5 

Distribution (%) 87.4 11.1 1.4 0.08 <0.01 

Table 1: Distribution of multi echoes 

 

reference class # points percentage 

ground 432449 56.9 % 

building 59728 7.9 % 

vegetation 267613 35.2 % 

Table 2: Distribution of object classes in ground truth. 
 

We divided the whole area into three parts, namely North, 

Middle, and South, which were used to perform cross-validation 

(red lines in Fig. 3a). The manually labeled point cloud for 

ground truth is shown in Fig. 3b. 
 

  
Fig. 3: (a) Aerial image of scene consisting of three parts North, 
Middle, and South. (b) Ground Truth of LiDAR point cloud 

(grey = ground, red = building, green = vegetation). 

 

 

4.2 Computational complexity 

For this data set we used a radius of 1 m for the search of 

neighbouring points in the point cloud. Especially the points 

representing vegetation have a low voluminous density, and the 

height of the point above ground is an important hint to assign it 

to the correct object class. We chose a cylinder for vicinity 
search in order to take care of vertical restrictions due to the 

topography of objects (Section 3.1.1). This results in a large 

graphical structure. As can be seen in Table 3, we constructed a 

separate graph structure for each of the three subsets. 

Altogether, the 760K points were connected by 4.6 million 
edges. Since the number of neighbours depends on a radius and 

is not fixed, it may vary. In the mean a point is linked to six 

neighbours. 

 

 North Middle South Sum 

#nodes 321,575 224,669 213,546 759,790 

#edges 1,951,603 1,376,441 1,291,278 4,619,322 

Table 3: Number of nodes and edges of 3 test parts in Bonnland. 
 

 

4.3 Results 

In this study our approach is evaluated by three-fold cross-

validation. Parameters are trained on two parts of the data and 

tested on the third. This is done three times (i.e., folds), each 

time with another combination of the data subsets. Finally, we 

report the mean performance parameters of all three subsets. 
The result is shown in Fig. 4. Altogether, the classification 

performed well for the three object classes ground, building and 

vegetation. It is expressed by the overall accuracy of 94 % 

(Table 4). Correctness as well as completeness rates are 

between 91.2 % and 95.3 %. Only the correctness rate of 
buildings is a bit lower (87.7 %) due to some misclassifications 

in the South-East (Fig. 5a, red arrows). Here, terrain slopes are 

assigned to building instead of ground. The reasons are 

broadened echo widths and high distance-to-ground values, due 

to the underlying terrain. This topography does not appear in the 
other two training folds which were used for training, so it could 

not be learned and leads to misclassifications. 

 

 
Fig. 4: Result CRF-classification (grey = ground, red = 
building, green = vegetation). 

 

 

The other main problems are three undetected buildings in the 

Northern part (yellow boxes Fig. 5a). Their roofs consist of 
different materials and have completely other reflectivity 

properties. Those buildings are not contained in the other two 

subsets which were used for training, so the errors are due to 

unlearned feature characteristics again. Fig. 5b depicts this 

issue. All misclassified points are displayed in blue. Many 
errors appear on the building roof at the left side with strongly 

reflecting material, while the buildings at the right are classified 

correctly. Points have similar features to most other buildings 

here. 

 

 Classified 

R
ef

er
en

ce
 

 ground building vegetation corr. 

ground 95.3 1.0 3.7 95.3 

building 7.4 87.7 4.9 87.7 

vegetation 6.5 0.2 93.3 93.3 

compl. 95.0 91.2 93.0 94.0 

Table 4: Confusions matrix [%] with completeness (comp.) and 

correctness (corr.) rates. 



 

 

 

Fig. 5: Distribution of classification errors in the entire scene (a) 

and subset of one misclassified building (b). Incorrect assigned 

points are displayed in blue. Slope is marked by red arrow, 

buildings with different features are marked by yellow boxes. 
 

 

5. CONCLUSION AND OUTLOOK 

Our work introduced a probabilistic method for a point-wise 

classification approach of a LiDAR point cloud based on 
Conditional Random Fields (CRF). The assignment to one of 

the three object classes vegetation, building and ground is based 

on two groups of features: On the one hand, for each 3D point 

some features can be derived that describe the geometry . On the 

other hand, new full waveform laser scanning sensors provide 
additional parameters like amplitude, echo width and number of 

echoes. The good results yielded in this work demonstrate that 

Conditional Random Fields seems to be a powerful method for 

classification of point clouds. 

 
Further investigations will concentrate on a more sophisticated 

model of the interaction potential to incorporate global context . 

We live in man-made environments and all the objects are well 

structured. Therefore, in urban areas, the objects arrangements 

provide useful hints on the nature of these objects. For instance, 
buildings and trees are allocated along the streets. This context 

knowledge can be used to improve point cloud classification. 

Moreover, we are going to validate the CRF approach with 

more complex data sets and compare the results with different 

classifiers. 
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