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ABSTRACT: 

 

In many publications the performance of different classification algorithms regarding to agricultural classes is evaluated. 

In contrast, this paper focuses on the potential of different imagery for the classification of the two most frequent 

classes: cropland and grassland. For our experiments three categories of imagery, high resolution aerial images, high 

resolution RapidEye satellite images and medium resolution Disaster Monitoring Constellation (DMC) satellite images 

are examined. An object-based image classification, as one of the most reliable methods for the automatic updating and 

evaluation of landuse geospatial databases, is chosen. The object boundaries are taken from a GIS database, each object 

is described by means of a set of image based features. Spectral, textural and structural (semivariogram derived) features 

are extracted from images of different dates and sensors. During classification a supervised decision trees generating 

algorithm is applied. To evaluate the potential of the different images, all possible combinations of the available image 

data are tested during classification. The results show that the best performance of landuse classification is based on 

RapidEye data (overall accuracy of 90%), obtaining slightly accuracy increases when this imagery is combined with 

additional image data (overall accuracy of 92%). 
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1. INTRODUCTION 

The discrimination of cropland and grassland during 

classification of remote sensing data is still an unsolved 

problem, even though these classes play an important role in 

GIS databases in the field of agricultural policy and ecological 

sustainability. 

 

The idea of the proposed approach is to use a wide range of 

object-based calculated features as input for classification to use 

as much information of the data as possible. In contrast, many 

other approaches rely only on some empirically determined 

features. To deal with the amount of features the data mining 

and classification tool C5.0 (Quinlan, 1993) is used. 

 

To address the interesting question what image resolution is 

necessary to make the discrimination between cropland and 

grassland possible we use different image resolutions starting 

with high resolution aerial images and ending with imagery of 

32m GSD. 

 

The classification results that are achieved with the proposed 

approach are used for a change detection of an existing GIS 

database. Change detection means in this context a simple 

comparison of the classification outputs with the content of the 

GIS database, because the object boundaries of the classified 

regions are identical to the GIS object boundaries. 

 

In the following section approaches dealing with the 

classification of cropland and grassland are analyzed in 

consideration of image type and used features. In section 3 the 

data used for the proposed approach is presented. Section 4 

describes the complete approach including feature extraction, 

classification and evaluation of GIS objects. An evaluation of 

the approach is done in section 5 using all possible 

combinations of input data described in section 3. At the end of 

the paper in section 6 a short conclusion is given. 

 

2. RELATED WORK 

In this section we briefly review approaches for the 

classification of cropland and grassland based on different 

imagery. Not only the images resolutions but also the used 

features have a deep impact on the classification results. For this 

reason, the used features are described in detail as well. 

 

First, we start with a review of approaches which use high 

resolution images such as aerial images or satellite images with 

a resolution of one meter or better. Rengers and Prinz (2009) 

use the neighbourhood grey-tone difference matrix (NGTDM) 

to classify cropland, forest, water, grassland and urban areas in 



 

aerial and IKONOS images. This method is based on the 

differences of the grey values of two pixels and the differences 

of the grey values of the local neighbours, from which textural 

features such as coarseness, complexity and textural strength are 

derived. The results presented in Rengers & Prinz (2009) show 

that with the exception of grassland and cropland the classes 

mentioned above can be distinguished well. A similar 

conclusion is drawn by Busch et al. (2004), who apply a 

texture-based classification method based on Markov random 

fields (Gimel’farb, 1996) to aerial and IKONOS images. Their 

method is well-suited to classify settlement areas, industrial 

areas, forests, and the combined class cropland/grassland. The 

results reported in (Rengers & Prinz, 2009) and (Busch et al., 

2004) show that using high resolution imagery but a purely 

textural analysis is not sufficient for separating cropland and 

grassland. Spectral and / or structural information is required 

for that purpose. 

 

Compared to (Rengers & Prinz, 2009) and (Busch et al., 2004) 

Trias-Sanz (2006) uses only structural features to discriminate 

objects with similar spectral and textural properties, namely 

cropland, forest, orchards, and vineyards using aerial images 

with a resolution of 0.5m. Trias-Sanz (2006) distinguished 

between these objects only by orientation characteristics. A 

small window is extracted randomly inside an object to be 

classified, and this window (called texton) is used to compute a 

variogram of the image. A histogram of directions is derived 

from the Radon transform of the variogram. The maximum of 

this histogram corresponds to the primary direction of edges in 

the image, and it is used in the classification process. Using the 

semivariogram an overall accuracy of 95.5% could be achieved.  

 

A similar result with an overall accuracy of 96.0% could be 

achieved from Balaguer et al. (2010) who also used aerial 

images of a resolution of 0.5m to classify different crops and 

grassland in the area of Spain using a decision tree 

classification. Compared to Trias-Sanz (2006), Balaguer et al. 

(2010) use not only a semivariogram but also spectral (means 

and standard deviation of all available bands) and textural 

features (Haralick features (Haralick, et al., 1973)). Similar to 

Balaguer et al. (2010), Helmholz et al. (2010) use a 

combination of spectral (mean and standard deviation of all 

available bands), textural features (Haralick features) and 

structural features using IKONOS with a SVM classification. In 

different to Balaguer et al. (2010) for the structural features no 

semivariogram is used. Helmholz et al. (2010) instead observe 

parallel lines visible in cropland through the cultivation to 

separate cropland from grassland which does not have such 

parallel lines. The parallel lines are detected using a histogram 

of directions after the calculation of a Canny edge image 

(Canny, 1986). Similar to Balaguer et al. (2010), Helmholz et 

al. (2010) achieves an overall accuracy of 96%. Both, Balaguer 

et al. (2010) and Helmholz et al. (2010) use an object-based 

approach. 

 

Müller et al. (2010) use compared with all other approaches so 

far a multi-temporal high resolution dataset of images taken 

from a UAV (resolution of 0.17m). Similar to Balaguer et al. 

(2010) and Helmholz et al. (2010) spectral, textural and 

structural features were used. But instead to use the 

semivariogram or a histogram of directions for structural 

features, a much simpler algorithm for the detection of lines left 

from agriculture machines were used. An overall accuracy of 

91.3% could be achieved. 

 

In summary, with a combination of spectral, textural and 

structural features classification results of over 90% overall 

accuracy can be achieved using aerial and high resolution 

images of at least 1m resolution whereas the selection of the 

features are more important than the available of a multi-

temporal dataset by comparing the results of Müller et al. 

(2010) and Balaguer et al. (2010) / Helmholz et al. (2010). 

 

Next, we will briefly review approaches using medium 

resolution images such as IRS, Landsat TM or DMC. Haralick 

et al. (1973) used textural features derived from the grey level 

co-occurrence matrix (GLCM) such as energy, contrast, 

correlation and entropy along with the mean and standard 

deviation of the gray values of all four available channels to 

classify coastline, forest, grassland, urban areas and irrigated 

and non-irrigated cropland in California using a linear 

discriminate function method. By combining a textural analysis 

with the spectral features the classification accuracy could be 

improved over a purely radiometric analysis and could be 

achieved an overall accuracy of 83.5%.  

 

More recently, Itzerott and Kaden (2007) tried to distinguish 

various types of farmland using solely the Normalised 

Difference Vegetation Index (NDVI) that is computed from the 

near infrared and the red bands of a multispectral image. Itzerott 

and Kaden (2007) used in their approach four different Landsat 

images covering a test site in Brandenburg, Germany. An 

overall accuracy of 65.7% using a box classifier and an overall 

accuracy of 72.8% using a ML-Classifier could be achieved.  

 

Similar results could be achieved from Janssen and van 

Amsterdam (1991) who also worked with Landsat images, 

employing spectral features for the classification of different 

crops and grassland with a ML-classifier. Using a pixel-based 

approach an overall accuracy of 79.1% and using an objected-

based approach an overall accuracy of 76.3% could be 

achieved. 

 

In a nutshell, a combination of spectral, textural and structural 

is necessary to achieve the best classification result. Because of 

the reduction of the image details using medium or low 

resolution images, especially structural features cannot be used, 

so the approaches dealing with these images is more focused on 

textural and spectral features. Hence, the overall accuracy 

decrease by using lower images resolutions as it is not possible 

to use as much features as using high resolution images. The 

review above also made clear that the used features have a deep 

impact on the result – not only the imagery. Hence, we want to 

use in this paper the same set of features for the classification of 

different imagery to actually evaluate the potential of different 

types of images and their combination for the classification of 

the GIS objects cropland and grassland. The best classification 

result could be achieved by Balaguer et al. (2010) and 

Helmholz et al. (2010). In this paper, we decided to use the 

features introduced in Balaguer et al. (2010) for the 

classification of different imagery. 

 

3. DATA 

In this paper we use different imagery covering a wide range of 

different resolutions, and the CORINE Land Cover GIS (CLC) 

to verify the objects cropland and grassland. The test site is 

situated in Halberstadt, Germany. 

 

All used images are orthorectified. Detailed information is 

given in Table 1. The DMC images mentioned in this table are 



 

images of the Disaster Monitoring Constellation operated by the 

company DMC International Imaging (DMCii). To describe the 

bands available from the different data sources the common 

abbreviations are used (red: R, green: G, blue: B, near infrared: 

NIR, red edge: RE).  

 

Images Bands Resolution Acquire date 

Aerial R, G, B 0.2m 2009-April 

RapidEye NIR, RE, R,  

G, B 

5m 2009-08-20 

DMC NIR, R, G 32m 2009-04-24, 

2009-08-24 

Table 1: Overview of image data 
 

The European CLC GIS data model was set up to be used in the 

scale of 1:100.000; its minimum mapping unit is 25 ha for new 

polygons and 5 ha for changes on existing polygons. The main 

landcover class in our test site is cropland. Out of 191 km2 with 

3455 objects, 1506 urban objects covering 19.7 km2 with an 

average size of 1.3ha, 701 cropland objects covering 132.1 km2 

with an average size of 18.8ha, 323 grassland objects covering 

9.9 km2 with an average size of 3.1ha and 925 forest objects 

covering 30 km2 with an average size of 3.2ha can be found.  

 

For the evaluation we added 10% of errors randomly to the GIS 

reference dataset. The reference dataset was produced using 

field inspection and visual interpretation of the images. 

 

4. APPROACH 

In this work, each object, defined by its boundaries in a GIS 

database, is described by means of a set of image based features. 

Subsequently, it is classified with a set of decision trees and the 

assigned class is compared with the information contained in 

the database in order to detect changes in the landuse.  

  

4.1 Features 

The representation of each object in the images is described by 

means of a set of features extracted with the feature extraction 

software FETEX 2.0 (Ruiz et al, in press) specifically designed 

for the analysis of agricultural polygons. 

The employed descriptive features are grouped in three 

categories: spectral, textural and structural. 

 

4.1.1 Spectral Features 

Spectral features inform about the distribution of digital values 

of pixels inside the objects in each channel of the images, which 

depends on land coverage types, soil composition, state of 

vegetation etc. For each available band, mean, standard 

deviation, minimum and maximum values, range, summatory 

and mode are computed. Besides, when near infrared band is 

available; the same features are extracted from the Normalized 

Difference Vegetation Index (NDVI). 

 

4.1.2 Textural Features 

Texture features describe the spatial distribution of the intensity 

values in the image, quantifying properties such as contrast, 

heterogeneity, or uniformity related to each object (Ruiz et al., 

2004). For each object a grey level co-occurence matrix 

(GLCM) characterizing the entire object is computed. From this 

matrix, the following features proposed by Haralick et al. 

(1973) are computed: uniformity, entropy, contrast, inverse 

difference moment, covariance, variance and correlation. 

 

Texture description is completed with the values of skewness 

and kurtosis of the histogram obtained from the intensity values 

of the pixels belonging to each object in the analyzed channel. 

For each plot, the density of edges present in a neighborhood is 

described by the mean and the standard deviation of the 

edgeness factor (Laws, 1985).  

 

In this work, texture descriptive features are derived from the 

red channel of each image. 

 

4.1.3 Structural Features 

Structural features quantify the spatial arrangement of the 

elements contained in the objects. In this study, the structural 

features are calculated only for the aerial orthoimages. The 

limited spatial resolution of the rest of the images do not enable 

to detect spatial patterns in the parcels. 

 

These features are extracted from the semivariogram graph 

computed for the red band of the orthoimages. The 

semivariogram curve quantifies the spatial associations of the 

values of a variable, and measures the degree of spatial 

correlation between different pixels in an image. This is a 

particularly suitable tool in the characterization of regular 

patterns. The expression that describes the experimental 

semivariogram for continuous variables is: 
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where: 

z(xi) = value of the variable in position xi. 

N = number of pairs of data considered. 

h = separation between elements in a given direction. 

 

The experimental semivariogram representing each object is 

obtained by computing the mean of the semivariograms 

calculated in six directions, ranging from 0º to 150º with a step 

of 30º. Afterwards, each semivariogram curve is filtered using a 

Gaussian filter with a stencil of 3 positions, in order to smooth 

its shape and to eliminate experimental fluctuations. Eight 

structural features, whose description in detail is in Balaguer et 

al. (2010), are extracted for each object and are computed 

considering the singular points of the semivariogram, such as 

the first maximum, the first minimum, the second maximum, 

etc. 

 

In summary, for each object in the database, 40 features (21 

spectral, 11 textural and 8 structural) are extracted from the 

orthoimages, 39 features (28 spectral and 11 textural) from the 

DMC images and 53 features (42 spectral + 11 textural) from 

the RapidEye image. 

 

 

4.2 Classification 

After the feature extraction process, the described objects are 

classified by means of decision trees created with the C5.0 

algorithm (Figure 1). The C5.0 algorithm creates a set of 

decision trees from a set of training data using the concept of 

information entropy (Quinlan, 1993) and employing only those 

features that are relevant, avoiding the use of redundant 

information. In each classification, ten decision trees, created 

with C5.0 and the multi-classifier algorithm boosting, are 

employed. In order to avoid overfitting of the trees to the 

training samples, a minimum number of ten elements for the 



 

resulting classified objects sets is imposed to the algorithm. The 

training sample set is composed by 400 objects, with 100 

objects describing each class. 

 

In total 15 classifications are done with different descriptions of 

the objects obtained as the possible combinations of the features 

derived from the available images. Figure 1 shows the two first 

decision trees used in the classification of the objects combining 

the aerial and the RapidEye images.  In the first decision tree, 

three spectral features (ST_DEV_R_Aerial, 

MEAN_RE_RapidEye and MEAN_G_RapidEye) are combined 

with two texture features derived from the aerial image 

(KURTOSIS_Aerial and ST_DEV_EDGENESS_Aerial) 

whereas in the second tree, five spectral features 

(MINIMUM_NDVI_RapidEye, ST_DEV_R_RapidEye, 

SUMMATORY_G_RapidEye, MINIMUM_NIR_RapidEye and 

ST_DEV_NDVI_RapidEye) are used with two textural features 

(MEAN_EDGENESS_RapidEye and 

MEAN_EDGENESS_Aerial).  

 

 
Figure 1. Two first decision trees used in the classification of 

the objects combining the aerial and the RapidEye images.   

 

4.3 Change Detection 

Once the objects are classified, the comparison of the new 

assigned landuse with the old database enables for the detection 

of mismatches, that is, those parcels in which the previous 

landuse is different from what is classified. In this way, parcels 

with coincident landuse in both sources are accepted, whereas 

parcels with non coincident landuse are rejected. 

 

The results of the change detection process are expressed using 

a confusion matrix (Table 2). The efficiency of the approach is 

estimated by the addition of the percentage of unchanged 

objects accepted by the system and the percentage of changed 

objects rejected by the system. There will be undetected errors if 

objects which have been accepted by the system correspond to 

changed objects. The percentage of undetected errors has to be 

as small as possible. The false alarms are the unchanged objects 

rejected by the system.  

 

 

 

 

  System 

  Accepted Rejected 

Reference 

Unchanged Success False alarms 

Changed 
Undetected 

errors 
Success 

Table 2: Confusion matrix 

 

 

5. EVALUATION 

The evaluation sample set is made up by the parcels in the 

database not used for training purposes. The performance of the 

methodology is analyzed in two aspects: accuracy of 

classifications and results of change detection process. 

 

5.1 Classification 

The relevance of the features in the classification process is 

analyzed for the four classifications based on the employment of 

only one image. In each case, the percentage of parcels which 

are classified according to a rule derived from a feature is 

computed. As each classification is made with the combination 

of ten decision trees, the average usage of each feature in the ten 

decision trees of the classification is calculated. 

 

Figure 2 shows the percentage of parcels classified considering 

the most relevant features in the case of the classification of the 

aerial image. In this case, the most relevant feature is the mean 

of the semivariogram values up the first maximum (MFM), 

being evaluated for the classification of 52.6% the parcels. 

Following, textural and spectral features are combined, 

dominating the spectral features extracted from the red band. 

 

 
Figure 2: Relevance of features in classification of aerial image. 

 

In the classification of the RapidEye image, the most relevant 

feature is the mean of edgeness factor (Figure 3). The great 

majority of following features are spectral and none of the 

GLCM texture features are employed. 

 



 

Figure 3: Relevance of features in classification of RapidEye 

image. 

 

In the case of the first DMC image, the most employed features 

describe the spectral information, using only one texture 

descriptor (Figure 4). 

 

 
Figure 4: Relevance of features in classification of the first 

DMC image. 

 

For the classification of the second DMC image, Figure 5 

confirms that the most relevant features are the spectral based 

and only one texture descriptor is included in the classification 

with a low relevance. 

 

 
Figure 5: Relevance of features in classification of the second 

DMC image. 

 

The analysis of the relevance of features in every classification 

reflects that the importance of spectral features increases when 

spatial resolution of the images decreases. Texture and 

structural descriptors are mainly used in the classification of 

images with high spatial resolution.  

 

Figure 6 shows the overall accuracies obtained for the 

classifications based on the entire possible combinations of the 

input data. When only one image is employed, the best results 

are obtained with the RapidEye image. Its spectral resolution 

enables to describe the spectral properties of the objects more 

accurately than the rest of the images. Being the features 

derived from the red edge channel frequently used in the 

classification of the objects. Besides, its spatial resolution is 

suitable for the representation of the objects in this database. 

Comparison of the two classifications based on DMC images 

reveals that the different acquisition dates of these images 

(spring and summer) have not influenced significantly in the 

results. 

 

When two images are combined, the most accurate 

classifications are obtained in combinations of RapidEye image 

with the other images. The most accurate classification is 

obtained with the combination of RapidEye image and the aerial 

orthoimage. In this case, the overall accuracy of the 

classification with both images is 91.58%, two points higher 

than the obtained with only the RapidEye Image. 

 

The combination of three images produces slightly accuracy 

increases when the RapidEye and the aerial images are 

combined with the DMC1 image. This increase is so short that 

addition of the DMC image is not justified. In the rest of 

combinations the overall accuracies obtained are smaller than 

the obtained with the RapidEye and the aerial images. 

 

 
Figure 6: Global accuracies obtained for the classifications 

based on the entire possible combinations of input data. 

 

To join the features derived from the four available images does 

not increase the overall accuracies obtained in the previous 

tests.  

 

 
Figure 7: Relevance of features in classification of the aerial 

image combined with the RapidEye image. 

 

The relevance of features in the most accurate classification 

(Figure 7) shows that aerial image based features are combined 

alternately with RapidEye derived features. Features derived 

from aerial image describe mainly the texture of the objects, 

whereas the RapidEye based features provide the spectral 

description. 

 

Table 3 shows the confusion matrix for the most accurate 

classification obtained in combination of RapidEye with the 

aerial image. In this classification, urban and forest objects are 

classified accurately, obtaining the biggest confusion ratios 

between the cropland and grassland objects. 

 



 

 REFERENCE 

CLASSIF. Urban Cropland Grassland Forest TOTAL 

Urban 1467 12 13 7 1499 

Cropland 4 565 45 2 616 

Grassland 14 115 250 34 416 

Forest 18 9 15 882 924 

TOTAL 1506 701 323 925 3455 

Table 3: Confusion matrix for the classification of the aerial 

image combined with the RapidEye image. 

 

5.2 Change detection 

In this work, the amount and type of occurred changes with 

respect to the database is known, therefore it is possible to 

analyse the efficiency of the change detection methodology. The 

highest efficiency in the change detection process based on 

classifications of only one image is obtained with the RapidEye 

image (Figure 8) reaching a value of 90%, obtained as the 

addition of correctly detected categories. Slightly increases in 

efficiency are obtained when RapidEye image is combined with 

the aerial image or with the aerial image and the first DMC 

image, achieving 92.1%. 

 

 
Figure 8. Performance of the change detection method in the 

whole dataset. 

 

In the same way, the lowest percentage of false alarms (7.6%) 

and the lowest percentage of undetected changes (0.64%) are 

obtained with the combination of RapidEye and the aerial 

image. In this case, the percentage of parcels rejected from the 

system is 17.5%, detecting the 9.9% of changed parcels and 

remaining a 0.64% of undetected changes.  

 

The confusion matrices of the change detection with the 

combination of the aerial and the RapidEye images for the 

classes croplands and grasslands are shown in the tables 4 and 

5. In both classes, efficiency is around 80%, the percentages of 

false alarms are relatively high and these are parcels to be 

reviewed unnecessarily, whereas the percentages of undetected 

changes are quite low ensuring a high degree of accuracy of the 

change detection process.  

 

 

  System 

  Accepted Rejected 

Reference 

Unchanged 67.33% 16.83% 

Changed 2.14% 13.70% 

Table 4: Confusion matrix for the cropland objects. 

 

  System 

  Accepted Rejected 

Reference 

Unchanged 74.30% 20.74 

Changed 0.93% 4.03% 

Table 5: Confusion matrix for the grassland objects 

 

6. CONCLUSION 

We describe an object-based methodology for the automatic 

discrimination of the farmland types cropland and grassland 

combining multitemporal images with different spatial 

resolutions. The object-based approach enables to combine 

effectively different data sources for the description of the 

objects contained in a geospatial database. 

 

The most accurate classifications are obtained with the features 

derived from the RapidEye imagery. The combination of 

RapidEye image derived spectral features with aerial image 

texture features produces a slightly accuracy increase.  

 

When an accurate classification is available, the change 

detection method proposed enables to reduce significantly the 

amount of objects rejected from the system ensuring a low 

degree of undetected changes. 
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