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ABSTRACT: 

 

Airborne laser scanning has become a standard method for recording topographic data. A new generation of laser scanners digitises 

the complete waveform of the backscattered signal and thus offers the possibility of analysing the signal shape. As a product of the 

laser scanning, a digital surface model (DSM) or a digital terrain model (DTM) can be derived. In water regions, data acquisition by 

laser scanning is limited to the water surface because the near-infrared laser pulses hardly penetrate water. Therefore, a height model 

generated from laser scanner point clouds over water regions does not represent the actual terrain. The generation of a DTM thus 

requires the detection of water surfaces. In this study, a method for the detection and classification of water surfaces in airborne laser 

scanning data is proposed. The method works with both geometrical features (e.g. height or height variation) and characteristics of 

the pulses derived from the full waveform of the returned signal (e.g. intensity or pulse width). In our strategy, based on fuzzy logic, 

all classification parameters are derived automatically from training areas. According to their statistical distributions, the features are 

considered with individual weights. The aim of this paper is to analyse crucial features for classification and to investigate the 

potential of full waveform laser scanning data for this application. We present results from different areas with lakes and rivers, 

analysing the contribution of the individual groups of features for the detection of water surfaces. 

 

 

1. INTRODUCTION 

The extraction of water surfaces is of great interest for several 

applications in the field of waterway and coast protection. In 

order to monitor flooding areas, the courses of rivers have to be 

observed (Brügelmann, et al., 2004). For the understanding of 

hydrological systems and their changes the continuous 

monitoring of water is particularly important (Thoma, et al., 

2005). These and other applications require highly accurate 

elevation data as well as information about the existence and 

location of water surfaces. Airborne laser scanning (ALS) has 

become a standard technique for the acquisition of large-scale 

elevation information (Baltsavias, 1999). Based on the three-

dimensional point cloud, a digital surface model (DSM) and, 

consequently, a digital terrain model (DTM) can be derived, and 

objects situated on the terrain can be automatically detected. In 

addition to the so-called signal intensity (usually the maximal 

echo amplitude), full waveform laser scanner systems deliver 

further signal features (Wagner, et al., 2004). Due to recording 

and digitising of measured signal, multiple reflections and 

signal width of a received pulse can be derived, which may 

provide insight about the characteristics of the illuminated area 

(Jutzi, 2007).  

 

This paper is focused on the classification of full waveform 

laser scanning data for water surface detection. In Section 2 an 

overview on related work is presented. We show a method to 

classify laser data into water and non-water surfaces in Section 

3. The approach is demonstrated by experiments, which are 

described in Section 4. The paper concludes with a discussion 

about the potential of the different features for water detection 

and directions of future work.  

 

 

2. RELATED WORK 

There are only a few studies investigate the direct classification 

of water surfaces from airborne laser scanning data. For 

instance, Brzank (2008) presents a fuzzy logic based 

classification as a first step towards DTM generation in the 

Wadden Sea. Due to the fact that the laser pulse in near-infrared 

hardly penetrates the water, the laser data deviate from the 

actual terrain in tidal trenches where water surfaces remain even 

during low tide. According to the features height, intensity, and 

point density, a membership value to the class water is 

determined for each laser point. The classification into water 

and land is performed using a threshold for membership. All 

parameters of the method are derived automatically from 

training areas. The method reflects the influence of height for 

the separation of water and land points, especially in the areas 

of transition. Classification errors are mainly caused by low 

height variation and low intensity values due to high incidence 

angles.  

 

A supervised object-based workflow to classify ALS data into 

different vegetation and ground classes as well as water is used 

by Antonarakis et al. (2008). Based on a triangulated network 

different models, for example an average intensity model, are 

derived. Low values for height variation and intensity are used 

as criteria for water detection. Areas where no ALS points are 

recorded due to specular reflection of the laser pulse at the 

water surface are classified based on satellite images. In this 

case, water is modelled to be characterized by low colour 

values. Missing ALS points due to specular reflection also 

affect the determination of the triangulated network in a 

negative way.  

 

 



 

 

A segment-based method for water surface detection using ALS 

data was proposed by Höfle et al. (2009). In a preprocessing 

step, intensity values are corrected for the incidence angles, and 

the positions of missing laser reflections due to specular 

reflection or decreasing target reflectance are modelled by using 

the pulse repetition frequency. The variations of height and 

intensity provide criteria for a region growing segmentation and 

the ensuing classification. Water-land-boundaries are defined by 

the segment borders. Because of similar intensity values, water 

and asphalt surfaces cannot be separated by this approach. 

Classification errors also occur with multiple reflections, 

because in general they show lower intensity values for the last 

pulse compared to the first echo, so that low signal intensity is 

not always caused by water surfaces. 

 

Briese et al. (2001) use a DSM and a digital model of the water 

surface (DWM) for the determination of water-land-boundaries. 

In their method, the DWM is derived by averaging 

representative river heights from the laser data in regard to the 

known coordinates of the river axis. The water-land-boundary 

corresponds to the line of zero height after subtracting the 

DWM of the DSM. 

 

 

3. METHODS 

In order to extract water surfaces in ALS, data a fuzzy logic 

concept is developed which is based on an approach for water 

detection in the Wadden Sea (Brzank, 2008). The methodology, 

the classification features, and the way these features are 

derived are described in the following sections. 

 

3.1 Feature extraction 

Full waveform laser data are used for the separation of water 

and land, where the echo signal is digitized online during data 

acquisition. The waveform analysis is accomplished in post 

processing (RIEGL, 2010), by fitting echoes with an appropriate 

modeling function. Unfortunately, the method used by the 

company for that purpose is not clearly documented.  

Eight different features are derived from the data, which are 

exemplarily presented for a section of the second test site in 

Figure 1. The features are grouped as follows: 

 

 

(1) Features proposed by Brzank (2008):  

 height  

 intensity 

 point density   

  

(2) Area-based features:  

 height variation  

 intensity variation 

(calculated as the standard deviations of height and 

intensity, respectively, inside a circular area with 

radius R = 5 m around each point) 

   

(3) Full waveform features:  

 signal width  

 total number of echoes  

(i.e., the number of backscattered signals per emitted 

pulse) 

 normalised number of echoes 

(the ratio of echo number to total number per emitted 

pulse) 

 

 

 
a) Orthoimage 

  

        
          b) height [m]                                c) intensity 

 

       
     d) point density [1/m]                 e) height variation [m] 

 

       
     f) intensity variation                     g) signal width [ns] 

 

       
  h) total number of echoes          g) normal. number of echoes 

  

Figure 1: Orthoimage and feature distribution illustrated for a 

segment of the test site Bonnland 

 

 

The first three features have been found to be well-suited for 

separating water from dry mud areas in the Wadden Sea 

(Brzank, 2008). That algorithm relies on the assumption that  

water surfaces possess a lower height compared to land surfaces 

and a lower intensity due to a lower reflectance. Because of 

specular reflection (dependent on the incidence angle) the 

number of laser pulses without any received return is 

significantly higher in water surfaces, which leads to a 

decreasing point density. The assumptions on the height are 

only suitable for coastal areas: in non-coastal areas, standing 

waterbodies may easily correspond to different height levels if 

they are not connected.  

 

The model by Brzank (2008) thus has to be expanded by 

additional features. Instead of a decreasing height, a low local 

height variation is assumed for water surfaces. Depending on 

the characteristics of water, the intensity variation is expected to 

decrease in smooth water surfaces and to increase in coastal 



 

 

areas. The determination of these area-based features requires a 

fast access to the nearest neighbours of each ALS points. This is 

obtained by indexing the ALS point cloud by a k-d-tree 

(Bentley, 1990) with a dimension of two. 

 

Due to full waveform data acquisition, additional classification 

features can be derived from the laser scanning point cloud. 

Surface characteristics such as slope, reflectance, and roughness 

influence the received waveform (Jutzi, 2007). The 

investigation of pulse spreading leads to the assumption of low 

signal width on water surface because the reflected pulse hardly 

broadens on horizontal surfaces. Multiple reflections have been 

commonly attributed to vegetation and can be investigated by 

the total number and normalised number of echoes.  

 

 

3.2 Fuzzy classification 

The classification method is based on fuzzy logic. In fuzzy 

logic, the membership of an element to a set is no longer a 

binary variable, but the concept allows partial membership by 

defining a membership function that models the degree of 

membership of that element to a set by a number between 0 and 

1 (Traeger, 1994). In our classification method, such a 

membership function to the set water is defined for each of the 

features described in Section 3.1. By a combination of the 

membership values according to the individual features, a total 

membership of an ALS point to the set water can be 

determined, which forms the basis for the final classification.  

 

First, membership functions have to be defined for the eight 

features. For this purpose, mean feature values for each class are 

derived from training areas. Due to the variations of the features 

based on land cover, the class land is divided into building, 

vegetation, artificial ground and natural ground. The 

membership value to the class water according to the feature i is 

denoted by µi. The maximum membership value water is 

provided by the mean     of the feature in the water training 

area (µ = 1), whereas the minimum membership value water (µ 

= 0) is given by the mean     of the land class with most similar 

features values. Figure 2 shows the membership functions of the 

features height variation and intensity as an example in the test 

area. If the mean feature value for water surfaces is larger or 

smaller than for all other classes, the membership function is a 

ramp function (Figure 2a), otherwise it is a triangular 

membership function (Figure 2b).  

 

 
 

Figure 2: Membership functions of feature height variation (a) 

and intensity (b) 

 

The separate membership values µi are combined in a weighted 

sum approach. Concerning an individual weight factor di(xi) the 

entire membership of class water µw is defined as: 

 

                                         
          

 
   

       
 
   

           (1) 

The weight factor di(xi) reveals the suitability of feature i taking 

the value xi for water detection, based on a model that assumes a 

Gaussian distribution of the respective feature for water and  the 

different land classes (Figure 3). In case the distributions for the 

land classes and water do not overlap much, the feature i is 

well-suited for classification, which should lead to a high 

weight factor di(xi). The definition of the weight functions thus 

is based on a statistical test of the mean values of the 

distributions of the feature for the water and the nearest land 

class, respectively, using the null hypothesis H0:     ≠    . The 

test variable t which follows a student distribution is  

  

                                       
       

 
  
 

  
 

  
 

  
 

                         (1) 

In Eq. 2,     and     are the mean values of the feature i for the 

class water and the land class being closest to water. sw and sl 

are the respective standard deviations, and nw and nl are the 

numbers of water and land points. Because the point numbers 

are high, the student-distribution can be approximated by a 

normal distribution. Depending on the significance level α  

 

                                                                               
(2) 

where T denotes the random variable of t, the weight factor di(x) 

is calculated by linear interpolation. In case of full significance 

level (α = 0) the weight factor amounts to 1. For α ≥ 0.5 the 

weight is 0. 

 

 
Figure 3: Probability density functions of feature intensity 

 

To classify the laser data into water and land, a threshold for the 

entire membership of class water µw is finally determined. The 

threshold is determined as the point of intersection of the 

Gaussian probability densities of the entire membership of 

water and land in the training areas.  

 

 

4. EXAMPLES 

For the evaluation, our classification method was applied to two 

test data sets (cf. Section 4.1), and the classification results were 

compared to a reference that was generated by manually 

delineating water areas in orthoimages. The classification 

accuracy is assessed by the completeness and the correctness of 

the results. Completeness is the ratio of the correctly extracted 



 

 

water points to the number of water points in the reference data, 

whereas correctness is defined as the ratio of correctly classified 

points to the total number of points classified as water (Heipke, 

et al., 1997):  

 

                                        
  

     
                (3) 

 

                                         
  

     
                (4) 

  

In Eqs. 4 and 5,  TP denotes the number of true positives (water 

points matching the ground truth data), FN the number of false 

negatives (missing water points) and FP the number of false 

positives (land points classified as water).   

 

4.1 Data 

In order to test our method, two test sites were selected which 

differ in the size and characteristics of the including water 

surfaces. The first test site covers the eastern part of the Kiel 

Channel in Germany and its estuary in the Kiel Fjord. The data 

were acquired using a RIEGL LMS-Q560 ALS system. The 

total area of this test site is about 1,3 km x 3,5 km, of which 

about 50% are covered by water. Information about 3D 

coordinates and intensity are available for the backscattered 

signal of each laser pulse as well as its signal width, echo 

number and the total number of echoes. The second test site is 

located in the village of Bonnland (Germany), covering an area 

of about 0,8 km x 1,8 km. It contains three small lakes. Again, 

full waveform data were carried out with a RIEGL LMS-Q560 

sensor, and the same features as for Kiel were derived from 

these data. In both cases, the decomposition of the full 

waveform and the derivation of the full waveform features were 

carried out by the company acquiring the data.  

   

4.2 Results of Kiel  

In Table 1 feature values for water and land surfaces are 

compared by showing the minimum, maximum, mean, and 

standard deviation of these variables. The height of waters in 

the data set possesses a clear lower mean and standard deviation 

than for land surfaces. This becomes also evident for the height 

variation which tends to be zero for water areas. The behaviour 

of signal intensity strongly varies for the data of the Fjord. This 

leads to a high average intensity variation. Due to pulse 

spreading on vegetation, the maximum signal width of land data 

is distinctly higher than on water areas. However, the mean 

values are close together can hardly be used for the distinction 

between both classes (Figure 4a). This is also apparent for the 

normalised and the total number of echoes, because there is 

only a low rate (10%) of multiple reflections for land surfaces.  

 

The classification performance was tested by using each of the 

three feature groups described in Section 3.1 separately. In 

Figure 5 - 7 the orthoimage and the results of the classified land 

and water points are presented. For classification with the 

features proposed by Brzank (height, intensity, point density)  

the completeness was determined to be 99.9 % and the 

correctness 95.5 %. Considering the clear distinction of the 

height distributions for land and water (Figure 4b), height 

receives a particularly high weight in the algorithm. A few 

classification errors occur in the region of the lock in the middle 

of the test site. For the area-based features (height variation, 

intensity variation), the correctness is about 75 %, whereas 

completeness is 99 %. The relatively low correctness is caused 

by surfaces devoid of any elevated objects, for example sport 

fields to the northwest. A classification based only on the full 

waveform features cannot be realised. Our model for the full 

waveform features is hurt by land cover classes such as bare soil 

and buildings, which do not necessarily cause a higher signal 

width or a larger number of echoes. As a consequence, the 

probability densities of these features for water and land show a 

high overlap, so that our algorithm quantifies the features being 

not suited for water detection: the respective feature weights are 

all set to zero.   

 

 

Feature Min Max Mean Std 

height [m]        water                                                                                               

land  

0.13 

2.25 

2.57 

66.75 

2.42 

16.16 

0.04 

7.96 

intensity            water                           

land 

4.02 

1.10 

255 

255 

41.89 

30.20 

49.03 

16.14 

point density     water 

[1/m²]                 land                

0.01 

0.01 

3.39 

4.95 

1.47 

2.04 

0.60 

0.61 

height               water 

variation [m]      land 

0.01 

0.01 

2.57 

15.44 

0.04 

0.79 

0.14 

0.55 

intensity            water 

variation             land 

0.10 

0.10 

95.6 

58.88 

41.38 

10.91 

15.26 

6.57 

signal width      water 

[ns]                     land               

0.10 

0.10 

6.70 

9.90 

4.04 

4.31 

0.28 

0.89 

total number     water  

of echoes            land   

1.00 

1.00 

3.00 

4.00 

1.00 

1.12 

0.02 

0.34 

norm. number   water  

of echoes            land 

0.50 

0.25 

1.00 

1.00 

1.00 

0.97 

0.00 

0.12 

 

Table 1: Classification features and statistical quantities 

(minimum, maximum, mean, standard deviation) for water and 

land surfaces 

 

 
 

Figure 4: Distribution of features signal width (a) and height (b) 

for water (blue) and land (red) 



 

 

 
Figure 5: Orthoimage of the test site Kiel 

 
Figure 6: Water (blue) an land (yellow) points after 

classification by height, intensity, point density 

 
Figure 7: Water (blue) an land (yellow) points after 

classification by height variation, intensity variation 

 

4.3 Results of Bonnland 

In comparison to the Kiel data, the second test site contains 

more than a single contiguous water body. Thus, the behaviour 

of height is ambiguous, because obviously, each of the lakes in 

the scene has a different height level. As a consequence, the 

model that the lowest heights must correspond to the water is 

hurt. Furthermore, if only one lake is used for training, none of 

the other lakes can be detected; if training points are identified 

on each lake, height will not be relevant for classification. This 

is also shown by a rather low accuracy for the classification 

with the features proposed  by Brzank (height, intensity, point 

density). The results of classification by area-based features is 

presented in Figure 8 where the detected water points are 

highlighted in blue. For water surfaces the average height 

variation tends to be zero (9a). Due to the smooth water 

surfaces, the intensity variation decreases in comparison to the 

first test site. In Figure 9b, the distributions of the intensity 

variance for land and water points are compared. The water 

areas are characterised by a lower average intensity variation. 

For classification with these features the correctness was 

determined to be 93.6 % and the completeness 61.4 %. The low 

rate of completeness is caused by errors at the lake boundaries 

where surrounding vegetation causes high variations of both 

height and intensity, an effect that is aggravated by the fact that 

the computation of these features has to take into account not 

only a point to be classified itself, but also its neighbours. The 

completeness measured on the object-level is 100%, because all 

water surfaces could be extracted. Full waveform features are 

again found not to be suited for water detection. The distinction 

between water and vegetation points becomes feasible, but land-

water separation cannot be realised in general.   

 
Figure 8: Orthoimage and classified water surfaces (blue) 

considering height variation and intensity variation 

 

 

 
 

 
Figure 9: Distribution of features height variation (a) and 

intensity variation (b) for water (blue) and land (red) 

 



 

 

5. CONCLUSION AND OUTLOOK 

In this paper a method for water detection in full waveform 

laser scanning data and the influence of features for 

classification accuracy have been presented. Each collected 

laser echo is classified into water and land, taking into account 

geometrical and physical features. It was shown that by using 

height information the classification works well for a 

contiguous water surfaces. In case of several water bodies 

height variation and intensity variation deliver a good result. 

However, full waveform features were found not to improve 

water detection in the proposed approach.  

 

Further investigations are planned concerning the general 

methodology for water detection. By using a fuzzy logic 

concept in the way described in this paper, information about 

feature correlation cannot be utilized. Thus, the transition to a 

probabilistic method that is also able to take into account local 

dependencies between the data e.g. conditional random fields 

(Kumar, et al., 2006),  is promising and should be investigated 

in future. 
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