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Abstract

Persistent scatterer interferometry (PSI) is a technique to monitor millimeter scale surface defor-
mation from space using stacks of synthetic aperture radar (SAR) images. The method relies on the
identi�cation of point scatterers that show temporally stable re�ection properties. Those point scat-
terers are referred to as as persistent scatterers (PS). As PS are predominantly found at man made
structures, PSI is especially suited for urban areas. Using data of the highest resolution, as provided
by the TerraSAR-X or the COSMO-Skymed satellite, a plethora of PS is potentially available per
structure. That renders the monitoring of single buildings feasible. The spatial distribution of the
PS exhibits regular patterns at frontages caused by the rectilinear arrangement of facade details
(e.g. windows) that induce the PS. Those spatial regularities contain information that is very useful
for PS processing.

The main focus of this thesis lies on the assignment of PS to buildings using a three-dimensional
city model. A method for the assignment of the PS to the bounding surfaces of this three-dimensional
city model is proposed. The main aim of the conducted experiments is the identi�cation of e�ects
hampering such assignment. It turns out that PS and map data compare well at the facades but
less so at roofs. The latter is mostly due to generalization issues, which are more pronounced at
housetops. One of the major �ndings is the presence of PS inside of buildings. The physical nature
of such PS remains unknown. However, such PS could cause major problems in the interpretation
of deformation results.

In order to allow for an assignment of the PS to the bounding surfaces of the city model, an
approach for the alignment of both datasets is proposed. This approach is based on an Iterative
Closest Plane algorithm, which is adapted to the speci�c characteristics of PS point clouds. The
plausibility of the results is demonstrated in case studies and based on the convergence behavior of
the iterative procedure.

The number and distribution of the PS depends on the scene and cannot be chosen to match the
monitoring demands. This is one of the major drawbacks of PSI. As a result, actual deformation
may remain unidenti�ed. In order to mitigate this issue, the established relations between PS and
city model are used to compile a map of the PS density per building face. Although this does
not solve the underlying problem, it enables the identi�cation of structures that are not properly
sampled. This density map is used to identify some of the main factors in�uencing the PS density.
Those factors are discussed in detail using case studies.

In order to utilize the spatial arrangement of PS along facades, a production system that focuses
on the identi�cation of regular horizontal patterns of PS is proposed. The obtained results are
quite heterogeneous. At some facades, many groups can be identi�ed, while at others hardly any
patterns can be detected. This is mostly due to layover e�ects, which can disturb regular patterns
considerably. The obtained grouping information can be used to improve the height estimate of
each pattern. In order to determine this height, the weighted mean value of the heights of the single
PS contained in each group is used. The expected precision gain is assessed on a theoretical basis
starting from the Cramer-Rao Lower Bound (CRLB) of a single height estimate by means of error
propagation.

Finally, the vertical distances between PS groups and horizontal structures in light detection and
ranging (LIDAR) data are evaluated. The aim of this study is the assignment of PS to real world
structures, which are represented by the LIDAR data. The study is limited to the facades of two
buildings featuring a very simple setup.
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Zusammenfassung

Persistent Scatterer Interferometrie (PSI) ist eine Methode zur Erfassung von Deformationen der
Erdober�äche im Millimeterbereich mithilfe eines Stapels von SAR-Bildern. Die Technik beruht auf
der Erkennung von Punktzielen mit zeitlich konstanten Re�exionseigenschaften. Diese Punktziele
werden als Persistent Scatterer (PS) bezeichnet. Da PS überwiegend an künstlichen Objekten zu
�nden sind, ist die Technik vor allem für die überwachung von Städten geeignet. Die Anzahl von
PS pro Gebäude ist üblicherweise recht groÿ, wenn hochau�ösende SAR-Daten (z.B. TerraSAR-
X oder COSMO-Skymed Spotlight-Daten) verwendet werden, so dass eine Überwachung einzelner
Gebäude auf Basis von PSI möglich erscheint. Die PS zeigen oft regelmäÿige Muster an Fassaden,
was durch die rechtwinklige Anordnung der Strukturen bedingt wird, die diese PS erzeugen. Diese
Regelmäÿigkeiten enthalten Information, die für die PS-Auswertung nützlich sind.

Der Schwerpunkt dieser Arbeit ist die Zuordnung von PS zu Gebäuden unter Zuhilfenahme eines
dreidimensionalen Stadtmodells. Es wird eine Methode entwickelt, um die PS den Gebäudegrenz-
�ächen dieses Stadtmodells zuzuordnen. Das Ziel der durchgeführten Experimente ist vor allem die
Erkennung von E�ekten, die diese Zuordnung stören. Es zeigt sich, dass PS und Kartendaten an
Fassaden weitestgehend übereinstimmen, während an Dächern stärkere Unterschiede auftreten. Das
liegt gröÿtenteils an Generalisierungse�ekten, die an Dachstrukturen deutlich stärker ausgeprägt
sind. Eine wesentliche Feststellung ist, dass sich einige PS innerhalb von Gebäuden be�nden kön-
nen. Die Ursachen, die zur Entstehung solcher PS führen, konnten nicht abschlieÿend geklärt werden.
Allerdings könnten diese PS wesentliche Probleme bei der Interpretation von Deformationsergebnis-
sen verursachen.

Um eine Zuordnung der PS zu den Grenz�ächen des Stadtmodells zu ermöglichen, wird ein Ver-
fahren zur geometrischen Registrierung beider Datensätze entwickelt. Die Grundlage der Meth-
ode bildet ein Iterative Closest Plane Algorithmus, der auf die speziellen Charakteristika der PS-
Punktwolke angepasst wird. Die Plausibilität der erhaltenen Ergebnisse wird in Fallbeispielen und
anhand des Konvergenzverhaltens der iterativen Prozedur gezeigt.

Anzahl und Verteilung der PS hängen von der Szene ab und können der Überwachungsaufgabe
nicht angepasst werden. Das stellt eines der gröÿten Nachteile von PSI dar, da auftretende Boden-
Bewegungen unter Umständen nicht erkannt werden. Um dieses Problem zu mildern wird eine
Karte, die die PS-Dichte für jede Grenz�äche des dreidimensionalen Stadtmodells zeigt, aus der
bereits bekannten Zuordnung zwischen PS und Gebäuden erzeugt, was zumindest die Erkennung un-
terabgetasteter Gebiete ermöglicht. Die Dichte-Karte wird zur Erkennung einiger Faktoren genutzt,
die die PS-Dichte wesentlich beein�ussen. Letztere werden anhand von Fallbeispielen diskutiert.

Um die regelmäÿige Anordnung der PS an Gebäudefassaden auszunutzen, wird ein Produktions-
system zur Erkennung regelmäÿiger horizontaler Muster entwickelt. Die erhaltenen Ergebnisse sind
heterogen. Manche Fassaden enthalten eine Vielzahl von Gruppen, während an anderen Fassaden
kaum Muster erkannt werden. Das kann zu groÿen Teilen auf Layover-E�ekte zurückgeführt werden,
die Muster erheblich stören können. Die gewonnene Gruppierungsinformation kann zur Verbesserung
der Höhenschätzung des kompletten Musters genutzt werden. Für die Bestimmung der vertikalen
Position jeder Gruppe wird das gewichtete Mittel der Höhen der einzelnen PS diskutiert. Der er-
wartete Genauigkeitsgewinn wird theoretisch auf Basis des Cramer-Rao Lower Bound (CRLB) einer
einzelnen Höhenschätzung durch Fehlerfortp�anzung bestimmt.

Schlieÿlich werden die vertikalen Distanzen zwischen PS-Gruppen und horizontalen Strukturen in
light detection and ranging (LIDAR) Daten ausgewertet. Ziel dieser Untersuchung ist die Zuordnung
der PS zu real existierenden Strukturen, die durch die LIDAR Daten repräsentiert werden. Die
Untersuchung beschränkt sich auf die Fassaden zweier Gebäude mit sehr einfachem Aufbau.
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1. Introduction

1.1. Motivation

The determination of topography and deformation of the Earth's surface is one of the key points

in geodetic research. Traditionally, terrestrial methods, such as leveling, as well as optical imagery

provided by planes or satellites are used for that purpose. Terrestrial methods usually give very

accurate and reliable results at comparably high costs. Optical imagery is suited for the estimation

of surface topography and large deformations. However, it is not accurate enough to measure small

deformation signals (i.e. millimeters to centimeters). Furthermore, the acquisition of optical imagery

is often hampered by cloud coverage and restricted to day time due to the passive sensor principle.

In order to monitor small deformation signals over long time spans, independent of weather and

lighting conditions, the persistent scatterer interferometry (PSI) has become increasingly popular.

PSI is a relatively new technique, which is based on radio detection and ranging (RADAR). It utilizes

a stack of synthetic aperture RADAR (SAR) images in an interferometric processing framework.

Deformation and topography are estimated on a sparse grid of strong and stable radar re�ectors,

referred to as persistent scatterers (PS). Those are characterized by a high signal to noise ratio (SNR)

during the whole observation time and are usually situated on man-made objects. As a consequence,

the technique is most often limited to urban areas.

In contrast to terrestrial techniques, where the number of measurements and their location is

chosen by a human operator, the distribution of PS is governed by the scene and cannot be increased

by the operator without allowing for estimates of potentially lower quality (i.e. by lowering the

acceptance threshold). This is a principal drawback of the method as comprehensive coverage is

very important for monitoring tasks.

The precision of the obtained parameter estimates is mainly a function of the number of acquisi-

tions, the SNR of the observed PS, and the observation baselines, which characterize the degree of

temporal or spatial separation of the images. As the last two depend on the acquisition and maneu-

vering schedule of the satellite and the scene respectively, they cannot be in�uenced substantially.

Thus, increasing the number of acquisitions is the only way to e�ectively improve the achievable

precision. This obviously increases the costs and requires more data to be available. Under favorable

conditions and assuming a typical stack con�guration, the accuracy of deformation estimates is in

the order of a few millimeters, while the accuracy of the topography estimate ranges from some

decimeters to one meter. The disbalance is due to the di�erent sensitivity of the interferometers

(i.e. all the interferometric pairs in the stack) to topography and deformation signal.
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Typical point densities for medium resolution data (as provided by the ERS and ENVISAT satel-

lites) are in the order of 100-500 PS per km2. This is su�cient to reliably monitor deformation

phenomena of at least some hundreds of meters extension. In case data of the new generation

satellite systems TerraSAR-X or COSMO-Skymed are used, which provide very high resolution of

one meter or even below, PS densities of up to 100,000 PS per km2 are possible. This tremendous

increase in point density enables the estimation of small scale deformation, such as the motion of

single buildings.

Furthermore, as the resolution increases, the PS distribution shows an increasing amount of reg-

ular patterns which is especially true at building facades. Those are usually induced by regularly

distributed building details such as windows, balconies, and chimneys. This patterns contain infor-

mation that is useful for PS processing to constrain the parameters of interest. Practically, such

information results in constraints imposed on the unknowns. Each constraint increases the redun-

dancy of the problem and, thus, the precision of the estimated parameters.

Because of the limited positioning accuracy, an identi�cation of the real world structure that

induces the PS is very di�cult. Besides the scienti�c relevance of this question, it constitutes

a major problem for PSI applications. Without having an association of identi�ed PS to actual

structures in the real world, a check of the obtained PSI results with auxiliary measurements (such

as leveling) is di�cult. Furthermore, interpretation of deformation results can be problematic since

urban deformation processes may exhibit a complex structure and are only understandable if the

physical nature of the observed PS is known.

1.2. Structure of the thesis

This thesis is structured as follows. Firstly, the state-of-the-art in research �elds that are relevant for

this thesis is outlined followed the objectives of the presented work. Within chapter 2, fundamentals

of SAR imaging, interferometric SAR (InSAR), and PSI are addressed. The newly developed meth-

ods for the assignment of PS to buildings and the detection of horizontal PS patterns are described

in chapter 3. In particular, the detection of horizontal PS patterns, the alignment of PS and map

data, and the assignment of PS to building faces are covered. The part dealing with the grouping

approach includes an assessment of the precision gain achievable with the obtained additional infor-

mation. In chapter 4 experimental results are presented. They comprises a validation of the outcome

of the grouping approach, an assessment of the assignment procedure for two exemplary buildings,

a comparison of light detection and ranging (LIDAR) data with horizontal PS patterns, and the

derivation and discussion of the PS density map, derived from the a�liation of PS to building faces.

In chapter 5 the results are summarized and conclusions are drawn. Finally, directions for future

work are proposed.
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1.3. State-of-the-art

This thesis covers topics, which can be mainly attributed to two communities. On the one hand, the

study of PSI is mainly addressed by the remote sensing community. Research on the detection of

regular patterns in image data, on the other hand, has rather been conducted in the computer vision

and pattern recognition community. However, many of the developed methods have been adapted

and applied to remote sensing data. In the following the main ideas leading to the topics covered

within this work are presented and the corresponding publications are addressed.

1.3.1. Persistent Scatterer Interferometry

In this section the developments in PSI that are of interest for this thesis are summarized. It is

divided into �ve parts. The �rst part deals with the signal processing methods used to estimate

deformation and topography from a given stack of interferograms. Subsequently, PSI using high res-

olution data is addressed. In the third part publications on the introduction of additional knowledge

into the PS processing framework are discussed. Recent work on the assignment of PS to real world

structures is presented in the fourth part. Finally, research on the assessment of the PS density is

addressed.

Signal processing

The basic idea of exploiting a subset of su�ciently coherent pixels in a multi-interferogram frame-

work dates back to the pioneering work presented in Ferretti et al. [2000, 2001]. In order to identify

PS and to separate topographic and deformation signal from nuisance terms, like atmospheric phase

screen (APS), a spatio-temporal analysis of the interferometric phase is conducted. Deformation

and topography are represented by a parametric model, which is inverted by means of a periodogram

estimator adapted for irregularly spaced data ([Ferretti et al., 2000]. The original method for reg-

ularly spaced data has been presented in Rife & Boorstyn [1974]). Theoretical and experimental

validations have proven the method to be able to estimate deformation with millimeter precision

[Colesanti et al., 2003a,b].

In Kampes [2006] an alternative method for PS processing, that replaces the periodogram estima-

tor with the least-squares ambiguity decorrelation adjustment (LAMBDA), is proposed. Within the

LAMBDA estimator observations are modeled as Gaussian random variables known up to integer

multiples of 2π. Consequently, a covariance matrix of the measurements can be introduced into the

estimation process and a fully populated covariance matrix of the estimated parameters is available

after processing. The natural handling of imprecise and correlated observations is one of the major

advantages of the LAMBDA method compared to the periodogram estimator.

It is worth mentioning, that PSI can be seen as a special case of SAR tomography (TomoSAR)

[Bamler et al., 2009]. In PSI the presence of only one dominant scatterer per resolution cell is
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assumed. The result is an estimate of this target's height and deformation. It can be, consequently,

regarded as a parametric method. In case the assumption of a single scatterer is not ful�lled, the

resolution cell is most likely rejected since it contradicts the assumed model. Opposed to that,

TomoSAR aims at reconstructing the re�ectivity distribution of a resolution cell along the elevation

direction (i.e. perpendicular to the range-azimuth plane, see section 2.1). The whole problem comes

down to the estimation of a signal from its irregularly sampled fourier transform. Inversion strategies

are presented in Reigber & Moreira [2000], Fornaro et al. [2003], Zhu & Bamler [2010], and Zhu &

Bamler [2011b]. An extension to four dimensional imaging (i.e. reconstruction of the re�ectivity in

the elevation-velocity domain) has been considered in Lombardini [2003], and Fornaro et al. [2009].

Finally, seasonal motion is addressed in Zhu & Bamler [2011a], who reveal deformation due to

thermal expansion.

High resolution PSI

A major step forward for the whole SAR community was the advent of the high resolution satel-

lite systems TerraSAR-X and COSMO-SkyMed. First PS results obtained with TerraSAR-X high

resolution spotlight data are presented in Bamler et al. [2009]. The main �nding is the massive

increase in PS density. In contrast to medium resolution data, plenty of PS can be found on a

typical building. According to model calculations, a trihedral structure has to exhibit a side length

of 30 cm to induce a PS in medium resolution data. This side length is reduced to 8 cm if data

of the highest resolution is used (e.g. TerraSAR-X high resolution spotlight) [Bamler et al., 2009].

Since typical elements of buildings are recognizable in the data, the interpretation of the physical

nature of the PS is also massively supported.

Additional Knowledge in PSI

In all PS processing schemes, assumptions about the spatio-temporal characteristics of the respective

phase contributions are made. Those assumptions are necessary to discriminate the signal of interest

from nuisance terms. Usually, the utilized models are simple and generic. Deformation, for instance,

is often assumed to be a linear or periodic function of time plus a non-parametric, time-dependent

term accounting for deviations from this model (cf. [Ferretti et al., 2000; Colesanti et al., 2003a;

Gernhardt, 2012]).

In Ferretti et al. [1999] the derivation of an optimum �lter for the estimation of non-linear target

displacement from unwrapped phase data is discussed. It is stressed that this requires knowledge of

the underlying physical process that induces the deformation. For example, a �lter expression for

deformation consistent with a di�usion process is derived.

Hooper [2006] models the source of deformation present in the caldera of Volcan Alcedo (Gala-

pagos) as a contracting, �nite ellipsoid. The model is �tted to displacement rates obtained from

an ascending and a descending data stack by means of Markov Chain Monte Carlo sampling. In
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contrast to Ferretti et al. [1999], where the goal is the retrieval of optimal parameter values, the

focus here is on the physical interpretation of the results.

In Ketelaar [2010] a subsidence prognosis (e.g. based on a deformation model) is used to calculate

a variogram of the expected deformation process. This is in turn used to reject PS that are not

consistent with the model. Among others a case study dealing with subsidence of the Rotterdam gas

�eld is presented. The main aim is to distinguish di�erent deformation regimes (i.e. discrimination

of subsidence due to gas extraction from e.g. natural soil compaction).

A radargrammetric approach for the positioning of point scatterers1 based on Bayesian inference

is presented in Goel & Adam [2012]. Those point scatterers which are situated close to each other

in the same range line (i.e. sharing the same azimuth coordinate) are assumed to be located on a

vertical or a horizontal plane. This results in a model linking the height of point scatterers along

range direction.

Although the work presented in Shabou et al. [2012] does not deal with PS, the considered

method is, due to its generality, of interest in this discussion. Furthermore, the employed data and

the application are very similar. The goal is to reconstruct scene topography from multibaseline

InSAR data, which is done by energy minimization. The associated cost function consists of two

terms. The �rst accounts for the �t of the model to the data, while the second imposes a local

smoothness constraint on the solution. This formulation constitutes a markov random �eld (MRF).

For the purpose of inference in MRFs powerful solvers are available.

Gernhardt & Hinz [2008] deal with PS results obtained from high resolution data (i.e. many PS

per building are available). The key idea is to identify groups of PS that are situated on the same

building and to jointly model their deformation. Speci�cally, the model is chosen to correspond to

a non-destructive deformation.

Finally, in Gernhardt [2012] regular horizontal patterns of PS are exploited to estimate the point

localization precision. The patterns are manually selected and introduced into a least-squares ad-

justment (LSA) which models the PS to be situated on a horizontal line at constant distances.

The approaches presented in Ferretti et al. [1999], Hooper [2006], and Ketelaar [2010] are very

similar in that knowledge about the underlying physical process is used to de�ne a re�ned model

for the deformation. Those models are tailored to describe the spatial behavior of the deformation

over hundreds of meters to kilometer scales, which matches the resolution of the data involved in the

conducted case studies. Thus, the expected movement for close PS is very similar (i.e. the model

involves some kind of spatial smoothness). Furthermore, it does not take the a�liation of PS to

scene structures into account. For instance, PS on the ground and at building facades are treated the

same way. Similarly, Shabou et al. [2012] and Goel & Adam [2012] use quite general spatial models

for the parameters. Higher level knowledge about the investigated scene, like all pixels showing a

facade should result in a vertical planar structure, is not involved.

1Note that PS and point scatterers are not necessarily equivalent, as the point scatterers are not required to exhibit
phase stability.
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In contrast to this, higher level knowledge is used in Gernhardt & Hinz [2008] and Gernhardt

[2012]. Both approaches are tailored to high resolution data which provide enough detail to deduce

the additional information. While regular horizontal patterns of PS are manually selected in Gern-

hardt [2012], Gernhardt & Hinz [2008] propose some strategies to infer the required knowledge but

do not present real data examples. Altogether, the focus in both approaches is on the utilization

rather than on the deduction of the additional information.

Assignment of PS to real world structures

An issue of major interest for PSI is the assignment of PS to real world structures. Technically,

the problem consists in the identi�cation and localization of all re�ections contributing to the PS.

Besides scienti�c interest, the question is of practical importance since the measured deformation

may be a superposition of the motions of all structures hit on the respective signal path. Thus, in

order to interpret the obtained results, information about the involved real world objects is very

important. The work that has been done on this topic can be roughly divided into two kinds of

approaches. The �rst is data driven and relies on the estimation of parameters characterizing each

target. The second approach is model driven and aims at reconstructing the complete signal path

with ray tracing simulations.

In Perissin & Ferretti [2007] a data driven approach is presented. In order to determine the

nature of scattering mechanisms, parameters describing the target characteristics are estimated.

Those are, for instance, the radar cross section (RCS), the target extension2, and the height of

the scatterer's phase center. Finally, a comparison with theoretical values of canonical scattering

mechanisms enables a classi�cation into one of the following categories: Roof (monohedral), Grating

(resonating monohedral), Dihedral, resonating Dihedral, Pole, and Trihedral. An investigation using

a mixed stack of ERS1/ERS2 and ENVISAT acquisitions including images of di�erent polarization

(i.e. HH and VV images) of Milan (Italy) is presented. Interestingly, most of the PS are a�liated to

monohedral roof scattering (50%), while only 8% are attributed to trihedral scattering mechanisms.

Gernhardt [2012] deals with the a�liation of PS obtained from high resolution SAR data to the

ground, facades, and roofs. Thereby, only the geopositions of the PS are used. First of all, a �lter

separating facade from non-facade PS is applied. Subsequently, the height histogram of the non-

facade PS is inspected in order to separate targets on the ground and on roofs. In the conducted

case study PS obtained from two high resolution spotlight data stacks of Berlin (Germany) are

examined. The result suggests the following distribution: 50% at facades, 25% at low heights and

on the ground, and 25% on roofs.

In contrast to that, Auer [2011] uses highly detailed building models together with ray tracing

simulations to facilitate the interpretation of urban re�ection scenarios. The focus lies on the

understanding of high resolution spaceborne SAR data. In order to investigate re�ection mechanisms

2To be more precise, the extension of an equivalent, uniformly scattering, and tilted plane in cross-slant range and
azimuth direction is estimated.
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inducing RADAR targets with temporally stable backscattering characteristics, PS identi�ed in real

data are manually compared to bright point-like signatures present in the simulated SAR images.

For each signature the number and location of bounces is determined within the simulation. Thus, a

complete characterization of the scatterers under investigation is provided. The results suggest that

a signi�cant number of PS are induced by triple- or even �vefold re�ections. Furthermore, trihedral

re�ectors inducing PS are often formed by building details, such as window sills. In some cases the

trihedral re�ection is induced by separated building parts forming a section of a trihedral corner

re�ector. The phase centers of those PS do not physically exist leading to targets which seem to

be distributed randomly. The �vefold bounces often involve three re�ections at the building and

two additional re�ections at the ground surface. That gives rise to so called Ghost-PS which are

apparently located underneath the ground level (cf. Auer et al. [2011a]).

Although the approaches presented in Gernhardt [2012] and Perissin & Ferretti [2007], respectively,

are both data driven, the basic idea and the results are quite di�erent. While Perissin & Ferretti

[2007] use a variety of data to enable an estimation of the scattering characteristics per point,

Gernhardt [2012] considers the local spatial distribution of the PS to discriminate facade and non-

facade PS. The former approach assigns each point to one of the de�ned canonical scattering

mechanisms. The latter method is not concerned with the single PS, but gives some insight into

the spatial distribution of PS in an urban environment. It is worth to note that the distinction of

ground and roof PS in Gernhardt [2012] is facilitated by the horizontal ground surface of the test

site. In case of undulated terrain, the height histogram of non-facade PS would, certainly, become

�atter, which would hamper the discrimination of ground and roof points. Although the approach

of Perissin & Ferretti [2007] reveals the type of re�ection, the location of the respective bounces

remains unknown. Consequently, neither Perissin & Ferretti [2007] nor Gernhardt [2012] establish

a connection between single PS and speci�c urban objects. On the contrary the simulation used

in Auer [2011] results in a complete description of the signal path. However, since highly detailed

building models are needed, the approach is limited to few case studies.

Assessment of PS density

One of the major problems of PSI is the opportunistic sampling of the monitored environment.

Classical geodetic techniques refer to benchmarks, which are mounted at locations selected prior

to the monitoring. Opposed to that, the position of PS cannot be chosen by the operator. As

deformation may not be detected due to missing point coverage, it is important to assess the PS

density. So far, just few work has been conducted on this topic.

In Gernhardt [2012] the in�uence of acquisition parameters on the PS density is investigated. For

that purpose, the number of points per unit area is determined for di�erent test sites and several

data stacks. In order to derive the density, a sliding window with a certain width is used. An

a�liation of PS to real world objects is not taken into account.
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The approach has two main disadvantages. Firstly, setting the size of the sliding window is often

critical. If the window is too large, the result is over-smoothed. In case the window is too small,

the density estimate is inaccurate. Secondly, the point density per building or building part cannot

be inferred because no information about the scene objects is available. From a practical point of

view, the density per building part is the important piece of information since it determines if the

structure can be properly monitored.

1.3.2. Detection of regular patterns

For this work pattern recognition techniques aiming at the detection of geometric regularities in

two-dimensional iconic and symbolic data are of interest. Many of such methods are used in remote

sensing to �nd and reconstruct man-made structures. In computer vision applications a lot of related

work has been done on texture analysis.

A production system aiming at the detection and reconstruction of buildings in high resolution

SAR data is presented in Michaelsen et al. [2006]. It essentially encodes principles of human per-

ceptual grouping to assemble complex objects from simpler ones. Those comprise concepts such

as proximity, good continuation, similarity, and symmetry, which originally emerged in perceptual

psychology but proved to be helpful also in computer vision applications [Desolneux et al., 2004].

The whole framework is referred to as Gestalt theory [Wertheimer, 1923]. Technically, those laws

constitute the knowledge base, which is represented by a set of production rules. The order in which

possible productions are applied to primitives or already assembled objects is determined by a control

unit based on a set of assessment rules. More information on the control, including strategies for fast

and approximate image interpretation, can be found in Michaelsen et al. [2009]. As Michaelsen et al.

[2006] use no prior knowledge about building location and orientation (e.g. available map data), the

number of possible productions is large. Thus, the computational complexity of the method is very

high. An alternative approach can be found in Michaelsen et al. [2002], where building locations

and orientations are inferred from InSAR data. A digital elevation model (DEM) is produced from

the �ltered interferometric phase and searched for elevated regions, which serve as building cues.

Building outlines are subsequently obtained by approximating those cues by polygons. Finally, the

resulting outlines are used to guide the grouping of salient spots to rows. This approach is a practical

way to infer prior information about the building location and orientation in case layover induced

problems can be neglected. If the buildings exhibit a complicated setup or several buildings are close

to each other, which is often the case in densely built-up areas, the extraction of building cues (i.e.

the elevated regions) may fail.

The detection of lattices is a major issue in the �eld of texture analysis, which has led to many

sophisticated methods. In case a texture is assembled of periodically appearing texture elements (i.e.

it is not random), one is interested in inferring their position as well as the global topology. All of

that is provided by the underlying lattice. A method based on �nding peaks in the autocorrelation

function of the image is proposed in Liu et al. [2004]. In Hays et al. [2006] the problem is reformulated
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as a correspondence problem. This is advantageous as powerful solvers exist for this sort of task.

Recently, Park et al. [2009] proposed the use of a MRF to model periodicity of appearance and

similarity of texture elements. In this way radiometric and geometric constraints between several

texture elements are dealt with simultaneously, leading to a more robust result. Certainly, the

formulation in a stochastic framework additionally enables the natural handling of uncertainty. The

problem of texture analysis is di�erent from the one presented in Michaelsen et al. [2006] because

the primitive objects are extended image patches and not points. Since the centers of those texture

elements are not known in advance, they have to be determined during processing. This complicates

the problem. On the other hand, for extended image patches more information is available than for

points (e.g. mean and standard deviation of grey values), which facilitates the lattice detection.

Summary

The advent of high resolution spaceborne SAR data has triggered new research directions in PSI.

Due to the high level of detail, constructive elements of buildings are visible in the image data. This

�nding shifted the focus from the assessment of medium to large scale deformation processes to the

monitoring of single buildings, which certainly requires automated methods to assign PS to building

structures. However, just few work has been done on this issue so far. Gernhardt & Hinz [2008]

propose some strategies, but do not provide case studies. In Gernhardt [2012] the movement of the

main train station in Berlin (Germany) is assessed and analyzed in detail. However, the a�liation

of the PS to the building is done manually.

It is important to stress that monitoring of single buildings using high resolution PSI is only

possible if the objects under investigation are properly sampled. As PSI is characterized by an

opportunistic sampling (i.e. the points cannot be chosen by the operator), su�cient coverage is not

guaranteed for all buildings. Thus, an assessment of the PS density is very important for practical

applications. In Gernhardt [2012] the in�uence of the acquisition parameters on the PS density is

investigated. However, no connection to building structures is established.

As constructive elements of the buildings are observable in the SAR data, re�ned models of the

building motion are conceivable. Those models couple the deformation of PS that are situated

on the same building or building part. Since this leads to additional constraints or equivalently

to less parameters, the precision of the motion estimates is increased. An approach addressing

non destructive deformation is outlined in Gernhardt & Hinz [2008]. However, only results using

simulated data are presented.

Similar to the deformation, the topography estimate can be improved by introducing additional

constraints. For that purpose, regular patterns of PS at building facades, which are often encountered

in high resolution SAR data, can be exploited. In Gernhardt [2012] the position of PS arranged in

horizontal rows at constant distances is enhanced using a LSA. The patterns are, however, manually

selected, hampering the operational applicability of the method.
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Pattern recognition techniques aiming at the detection of geometric regularities in image data

could be used to automate the identi�cation of such regularly arranged PS. As the task then becomes

the detection of regularities in a two dimensional point set, approaches focusing on symbolic data

(opposed to iconic or image data), similar to Michaelsen et al. [2006], seem to be suited.

1.4. Objectives

This thesis focuses on the relation of PS to buildings in an urban environment. The PS are a set

of RADAR point targets that show temporally stable re�ection properties. For the investigations

two distinct sets of PS are available which are both obtained from TerraSAR-X high resolution

spotlight data. The buildings are represented by a level of detail (LOD) 2 city model. Each building

is described by its bounding surfaces. Oblique view aerial images are used to obtain information

about the setup of particular facades or roofs. Finally, LIDAR data is utilized as a geometric

reference for both the city model and the PS set.

In order to fully exploit the potential of high resolution PSI results, an a�liation of PS to the

monitored objects is of major importance to allow for advanced modeling and interpretation of

the deformation of single buildings. Therefore, the focus of this work is the assignment of PS to

building structures. This includes the development of an automatic method that relates the PS to

auxiliary map data. Since this is the �rst attempt to systematically investigate the a�liation of

PS to buildings using map data, the experiments are mostly concerned with an assessment of the

comparability of both data sets. Special emphasis is on the identi�cation of e�ects hampering the

assignment procedure.

One of the main drawbacks of PSI is the inherent opportunistic sampling of the scene. For a

practical application, the documentation of the PS density with regard to the structures under

investigation is very important. Furthermore, the factors in�uencing the PS density are far from

being understood. This work aims at tackling both issues using the established relations between

PS and buildings. The latter are used to produce a density map (i.e. a map stating the number of

PS per unit area for every bounding surface).

Regular patterns of PS contain information that is useful to better constrain the parameters of

interest. In this thesis a strategy to improve the height estimate of PS is presented. This involves the

development of a method for the detection of horizontal PS patterns and the proposition of an esti-

mator exploiting the obtained knowledge. Besides an evaluation of the algorithms performance, the

experimental evaluation focuses on investigating the conditions that are required for the emergence

of such regular patterns.

The a�liation of PS to real world structures is very important for the interpretation of the

deformation results. This is especially true in complex scenarios, such as dense build up areas. In

this work the feasibility of such assignment is investigated exemplarily using oblique view aerial

images and a LIDAR point cloud as auxiliary data.
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2. Basics

2.1. Synthetic Aperture Radar

2.1.1. Introduction

This section gives a brief summary of the geometric and radiometric properties of SAR images. For

more information about the process of SAR image formation, the reader is referred to Cumming &

Wong [2005] and Bamler & Schättler [1993]. A comprehensive treatment of SAR imaging properties

as well as geocoding of SAR acquisitions can be found in Raggam et al. [1993], Meier et al. [1993],

and Soergel [2003]. Contrary to optical sensors, RADAR sensors are active devices. They emit

radio waves which are re�ected by objects in the scene. The echos are in turn received and recorded

by the sensor. Since no external radiation source is needed, RADAR sensors can acquire data

independent of lighting conditions. Typically RADAR operates with signal wavelengths ranging

from some millimeters to some decimeters. Since the signal attenuation caused by scattering at

atmospheric water vapor or even rain for wavelengths longer than approximately one centimeter

is practically negligible, most RADAR systems are capable of acquiring data regardless of weather

conditions. The independence of lighting and weather renders RADAR especially useful for rapid

mapping scenarios after the occurrence of natural disasters as well as for military applications.

2.1.2. SAR image resolution

The SAR imaging geometry is sketched in �gure 2.1. While moving on its trajectory, the sensor

repeatedly emits pulses of length τ and records the echos of each pulse. The direction in which

the pulses are sent is called slant range or across track, while the direction along the sensor's

trajectory is referred to as azimuth or along track. Those two axes form the imaging grid of the SAR

acquisition. The direction perpendicular to the range-azimuth plane is termed elevation. Targets

along elevation cannot be distinguished using a single SAR image. The part of the Earth's surface

which is illuminated by one transmitted pulse is called the antenna footprint. In slant range direction

a distance measurement based on the time of arrival (TOA) principle is performed to map the scene.

Objects in slant range can be discriminated if their echos do not overlap. Consequently, the SAR

slant range resolution ρr as a function of the pulse length τ and the speed of light c is given by:

ρr =
cτ

2
. (2.1)
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Figure 2.1.: Illustration of SAR imaging geometry

The ground range resolution additionally depends on the look angle θ of the RADAR system:

ρgr =
cτ

2 sin θ
. (2.2)

In azimuth direction the scene is mapped by the movement of the antenna footprint. The reso-

lution is determined by the width of the footprint, which depends on the target distance and the

angular spread of the radar beam. The latter is determined by di�raction e�ects at the antenna

and is proportional to the wavelength λ of the RADAR and inversely proportional to the length

of the antenna in azimuth direction La. Two objects on the ground sharing the same slant range

coordinate r can be discriminated if they are not both within the RADAR beam at the same time.

Consequently, the azimuth resolution ρRARa is given by

ρRARa ≈ λ · r
La

. (2.3)

This simple con�guration is called a real aperture radar (RAR). For common spaceborne systems

the resulting azimuth resolution would be in the order of some kilometers and would depend on

the target distance. Especially the poor azimuth resolution renders RAR sensors useless for most

remote sensing applications. In order to improve the azimuth resolution and to eliminate the range

dependency, a synthetic aperture is generated by combining many overlapping RAR acquisitions.

The resulting imaging RADAR system is called synthetic aperture RADAR (SAR). While the sensor

proceeds on its trajectory, a point target is illuminated several times. The distance between target

and sensor varies between consecutive illuminations leading to di�erences in the signal runtime and,
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consequently, to phase di�erences of the echos. Since the echos are received and recorded coherently,

the phase history of a point target can be tracked along the �ight path [Bamler & Schättler, 1993].

In order to locate the point target in azimuth, the fact that the phase history is a function of the

targets azimuth position is exploited. Technically, the range variation between sensor and point

target along azimuth, referred to as range cell migration, has to be considered. For simplicity this

e�ect is ignored for the following illustration. The synthetic aperture is generated by correcting

the echos of every point target for the distance variation and coherently summing them up. The

resulting image turns out to be equivalent to a RAR image acquired with an antenna featuring a

large azimuth extent. In case the slant range direction is perpendicular to the �ight path during

data acquisition, the length of the synthetic aperture is Lsyna = λ
La
· r. The azimuth resolution of

the SAR system is the product of the opening angle of the synthetic aperture, being approximately
λ

2Lsyn
a

, and the target distance

ρSARa ≈ λ · r
2 · λLa

· r
=
La
2
. (2.4)

The SAR azimuth resolution only depends on the extent of the actual antenna in azimuth direction,

which is in the order of some meters for typical spaceborn sensors. The acquisition mode with the

slant range direction perpendicular to the �ight path and the antenna beam maintained within a

contiguous swath on the ground is called a stripmap SAR. Virtually all spaceborne SAR systems

operate by default in stripmap mode since it enables the mapping of large areas at relatively high

resolution. Current high resolution SAR satellite missions, like TerraSAR-X, can be operated in a

so called spotlight mode, too. Thereby, the beam of the sensor is steered towards a certain area,

which enables longer illumination time leading to better azimuth resolution at the cost of a smaller

scene extent. More information about possible acquisition modes of TerraSAR-X can be found in

Breit et al. [2010].

The resulting image is complex valued. Thus, for every pixel amplitude and phase information is

available. The amplitude is a measure of the amount of radiation that is scattered back or re�ected

from the observed ground patch and is, as mentioned earlier, hardly attenuated by atmosphere. The

phase is a function of the distance to the observed ground patch and is strongly in�uenced by the

water vapor distribution along the signal path.

2.1.3. Single and multiple scatterers

The complex valued signal of a resolution cell at location x is modeled to be the coherent sum of N

mutually independent re�ections occurring within the observed ground patch:

sx = Ax · exp(j · ψx) =

N∑
i=1

Ax,i · exp(j · ψx,i) , (2.5)

where Ax is the amplitude of the sum signal, Ax,i the amplitude of the i-th target, ψx the phase

of the sum signal, ψx,i the phase of the i-th target. Finally, j denotes the imaginary unit. This
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(a)

(b)

Figure 2.2.: Left: Sketch of targets within one resolution cell that contribute to the measured signal. The
arrows indicate the strength and the phase of each contribution by their length and direction,
respectively. Right: Coherent summation of the signal contributions in the complex plane. While
each targets contribution is approximately equal in situation (a), one target is much stronger
than all others in situation (b).

is sketched schematically for two di�erent situations in �gure 2.2. In the left column the targets

contributing to the sum signal are shown. The size of the targets and the length of the arrows

indicate the strength of the single re�ections, while the direction of the arrows corresponds to the

phase. On the right, the summation of the measured signal in the complex plane is shown. The sum

signal is depicted as blue arrow, whereas the contribution of each target is shown in red. In situation

(a) all targets are almost equally strong. One of the key observations is the strong dependence of

the measured signal amplitude on the phase distribution of the involved scatterers. If all targets

exhibit the same phase, constructive interference occurs and the �nal signal shows a very high

amplitude. Opposed to that, destructive interference may happen, which results in zero amplitude.

The phase of each scatterer depends on its position in the resolution cell (i.e. on the distance to

the sensor) and on its physical properties. Especially for natural surfaces, the spatial distribution

of scatterers can vary strongly from resolution cell to resolution cell even in areas of homogeneous

land cover. Thus, this distribution is often modeled as a random process (cf. [Bamler & Hartl,

1998] for details on distributed scattering). The resulting amplitude �uctuation, causing the grainy

appearance of SAR images, is called speckle e�ect. Even though speckle is not noise, it is often

considered as a disturbance and modeled as multiplicative noise (i.e. the Speckle e�ect is stronger,
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the stronger the average signal is). Typically, situations similar to (a) are found in vegetated areas.

In contrast to that, the resolution element in (b) is dominated by one scatterer. As a result, the sum

signal's amplitude and phase mainly depend on the amplitude and phase of this dominant signal

contribution. Such situations are often but not exclusively observed in urban areas. While case (a)

is an example of distributed scattering, the setting in (b) can be better modeled as point scattering,

approaching the ideal case as the signal strength of the small re�ectors tend to zero. The number of

signal contributions, certainly, depends on the size of the resolution cell. For high resolution data

(resolution in the order of one meter) less scatterers contribute to the measured signal, leading to

a notable reduction of speckle in comparison to medium resolution data (resolution in the order of

ten meter).

The notion of point-like targets, although useful to explain the radiometry of SAR images, consti-

tutes a major simpli�cation of the actual re�ection mechanisms. In reality a target may be spatially

extended and the corresponding signal contribution may itself be an aggregation of several re�ec-

tions occurring at the target. Typical examples in urban areas are double bounce lines and trihedral

corner re�ectors. Both mechanisms are analyzed on a theoretical basis together with single bounce

re�ections in Dong et al. [1997]. As all signal paths share the same length, the resulting echo appears

to originate from a line or a point, respectively. In Auer [2011] simulation studies using ray tracing

techniques and highly detailed models of urban structures have shown that prominent point-like

re�ections are mainly induced by triple bounce re�ections at trihedrals or even �vefold bounces,

often including two additional re�ections on the ground.

2.1.4. Foreshortening, Layover and RADAR shadow

In case the trajectory of the sensor is a straight line, the SAR imaging geometry results in a projection

of the 3D space into a two-dimensional cylinder coordinate system. The coordinate axes are given

by the azimuth (i.e. the sensors trajectory) and the range direction, respectively. Due to the

projection of the real world into a two dimensional coordinate system, information about the three

dimensional distribution of the scatterers is lost. Since the scene is mapped in azimuth direction

without distortions, the discussion of the geometrical e�ects in SAR images will be restricted to

planes perpendicular to the trajectory of the sensor (i.e. planes of constant azimuth). The three

geometric e�ects present in SAR data, foreshortening, layover, and shadow, are shown in �gure 2.3.

The sensor illuminates the scene with a looking angle of θ1. Foreshortening occurs if the surface

is tilted towards the sensor by an angle smaller than θ with respect to the horizontal plane. This

is the case for the slope between the points A and B, slanted by an angle β1. The corresponding

points A' and B' are mapped closer together than their real world counterparts. A plane tilted by

an angle larger than θ gives rise to layover, which is the case between points C and D (β2 > θ).

Although the point C is located in front of D in the real world, C is further away from the sensor

and, thus, mapped to a point C' located behind the point D' in the slant range geometry. Finally,

1For simplicity the wavefronts are assumed to be planar, which is justi�ed by the large target distance.
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Figure 2.3.: Illustration of the three geometrical e�ects present in SAR images. Foreshortening appears be-
tween the points A and B, while Layover arises between the point C and D. Finally, no informa-
tion is acquired between the points D and F due to shadowing.

the side looking geometry of SAR results in shadowing behind elevated objects. Between the points

D and F no signal is measured since the corresponding area in the real world is occluded by the

slope between points C and D. Thus, the point E is not mapped to the SAR image.

2.2. InSAR

In general, InSAR2 refers to techniques exploiting the phase di�erence of two or more SAR images

acquired with slightly di�erent acquisition parameters [Bamler & Hartl, 1998]. Within this work the

term InSAR is used to refer to across-track SAR interferometry, which is capable of measuring surface

topography and deformation. Furthermore, only repeat-pass monostatic systems are discussed,

implying temporally and spatially separated acquisitions. Typically, the time di�erence between two

images is in the order of weeks or months and is called temporal baseline. The spatial separation

between acquisitions ranges from some tens to some hundreds of meters and is referred to as spatial

baseline. For the sake of simplicity, the case involving two images is discussed here. One of the

images is called the master M , while the other is referred to as the slave S. For standard InSAR

the choice of master and slave is arbitrary. After proper pre-processing we assume the slave image

to be geometrically aligned with the master image (i.e. image position x in both images refer to

the same patch of the earth's surface). More information about the pre-processing can be found in

Hanssen [2001], Massonnet & Feigl [1998], DORIS User Manual [1998], and Wilkinson [1997]. For

meter resolution SAR data, which is of speci�c interest for this thesis, special treatment may be

necessary depending on the spatial separation of the the acquisitions [Eineder et al., 2008] (i.e. the

use of an a-priori DEM is very bene�cial).

2In the USA the abbreviation IfSAR is often used instead.
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After resampling of the slave image to the master grid, an interferogram is formed by multiplying

the master image sx,M with the complex conjugate of the slave image s∗x,S on a pixel by pixel basis

leading to

vx = sx,M · s∗x,S = Ax,M ·Ax,S exp(j · (ψx,M − ψx,S)) = Āx exp(j · φx) . (2.6)

Neglecting all disturbances, the interferometric phase φx is a very precise measure of the distance

di�erence between master and slave acquisition

φx = −
4π(rM,x − rS,x)

λ
= −4π∆rx

λ
. (2.7)

For simplicity the fact that the measured phase is actually the 2π-modulus of φ is ignored for the

remainder of this section. The process of estimating the unknown number of complete phase cycles

is called phase unwrapping. More information about problem formulation and solutions can be

found in Goldstein et al. [1988], Ghiglia & Romero [1996], Chen & Zebker [2000], Chen [2001] and

references therein.

If the images are taken at distinct times and from slightly di�erent positions with respect to the

observed scene, the interferometric phase is a sum of three contributions.

φx = −4π∆rx
λ

= φgeom,x + φtopo,x + φdefo,x (2.8)

The geometric phase term φgeom is caused by the oblique viewing geometry and can be thought of

as the phase generated by an ideally �at earth at a given reference height [Bamler & Hartl, 1998].

Topography and deformation give rise to the phase contributions φtopo and φdefo, respectively. Since

φgeom is of no interest, it is removed.

∆φx = φx − φgeom,x = φtopo,x + φdefo,x (2.9)

The basic principle of an across track interferometer is sketched in �gure 2.4 for a plane perpendicular

to the trajectory of the sensor. It observes the point P on the earths surface, which is located at

height hP above the reference surface and moving by δp between both acquisitions3.

The spatial separation of the sensor at the two epochs of data acquisition leads to the topographic

phase term φtopo. The geometrical setup is depicted in �gure 2.4 window win1. Both antennas

are separated by a baseline B. The projection of the baseline onto the slant range is called the

perpendicular baseline B⊥ and directly determines the sensitivity of the interferometer to the topo-

graphic signal. In order to estimate the height of a point P above a reference surface, the parallax

∆θ between P and a point on the reference surface P' at the same distance has to be estimated.

It turns out that ∆θ is related to the distance di�erence ∆r, which can be estimated with high

accuracy from the interferometric phase, leading to the important relation of the terrain height hp

3For simplicity, the dependence of the observed point P on the spatial index x (i.e. P = P (x)) is not denoted.



34 2. Basics

Figure 2.4.: Sketch of the basic principle of SAR interferometry. A point P on the Earth's surface, which is
located at height hP above the reference surface is observed. Window win1 shows the geometrical
con�guration of master and slave acquisition, which are separated by a baseline B. The sensitivity
of the interferometer to topography is determined by the baseline B⊥ perpendicular to the range
direction. Window win2 illustrates the e�ect of deformation. The traversed signal path becomes
longer, leading to a phase di�erence. Only the projection of the deformation vector δp into the
LoS, termed δ′P , is measured.

above the reference surface to the interferometric phase

φtopo,x = − 4π ·B⊥
λ · r1 · sin θ

hP . (2.10)

It is worth to note that the height hp of P is related to the point's elevation sp, which is the distance

between the points P and P' (the arc can be approximated by a straight line due to the large target

distance). Consequently, φtopo,x as a function of the elevation sp can be written as:

φtopo,x = −4π ·B⊥
λ · r1·

sP . (2.11)

As InSAR is concerned with the determination of DEM, the height is usually used for convenience.

However, in SAR tomography the use of the elevation coordinate is more common.

The temporal separation gives rises to the phase term φdefo, which is induced by possible surface

deformation between the two acquisitions. The situation is shown in �gure 2.4 window win2. The

point P moves between the acquisitions by δP in vertical direction. Since the distance di�erence is

measured in slant range direction, only the projection of δP onto the LoS of the sensor, termed δ′P ,

can be measured

φdefo,x = −4π

λ
δ′P . (2.12)
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Finally, by plugging equations (2.10) and (2.12) into (2.9), the �attened interferometric phase can

be expressed as a function of height and deformation of point P

∆φx = − 4π ·B⊥
λ · r1 · sin(θ)

hP −
4π

λ
δ′P . (2.13)

The distinction of topographic and deformation phase using one interferogram only is not possible.

In order to determine topography, a short revisit time is mandatory. If the deformation is to be

estimated, the topographic phase can be removed with an external DEM. Alternatively, methods

involving more images, such as the three- or four-pass method (cf. [Hanssen, 2001]), or more

sophisticated stacking techniques, such as PSI, can be applied.

In order to characterize the sensitivity of an interferometer to topographic or deformation signal,

it is convenient to consider the height or motion corresponding to a full phase cycle4. Expressions

for both can be easily found using equations (2.10) and (2.12), respectively

δ′2π =
λ

2
, (2.14)

h2π =
λ

2
· r1 sin(θ)

B⊥
. (2.15)

The sensitivity to deformation in LoS is by a factor of approximately 1000 better than to topographic

signal. This is due to the ratio of the target distance r1 to the perpendicular baseline B⊥ in (2.15).

The former is at the order of some hundreds of kilometers, while the latter is at most some hundreds

of meters. Therefore, the determination of the deformation of the observed ground patch with

millimeter accuracy is theoretically possible, whereas its location can only be estimated with meter

accuracy.

The assumptions leading to equation (2.7) are virtually never completely ful�lled for a repeat-pass

interferometer. Spatially distributed scattering, temporally variable signal propagation delay, errors

in satellite positioning and attitude control, processing errors, and thermal noise contribute to the

measured phase. The plethora of disturbances limits the operational applicability of InSAR and led

to the advent of more sophisticated methods involving stacks of interferograms. One of the most

prominent examples is PSI, which will be outlined in the next section.

A very important measure for the accuracy of the interferometric phase is the complex correlation

between two SAR images, commonly referred to as coherence [Bamler & Hartl, 1998]. It is de�ned

as:

Γx =
E[sx,M · s∗x,S ]√

E[|sx,M |2] · E[|sx,S |2]
(2.16)

where E[•] denotes the expectation operator. The magnitude of the coherence is con�ned to values

between zero and one (i.e. 0 ≤ |Γx| ≤ 1). Values close to one indicate a very low phase noise, while

values close to zero imply a complete loss of coherence (i.e. no exploitable signal). In practice, the

4In case of the topographic signal, the term height of ambiguity is often used.
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coherence is estimated with a sliding window assuming ergodicity. A discussion of the properties of

this estimator can be found in [Hanssen, 2001] and references therein.

2.3. Persistent Scatterers

The limitations of InSAR can be mitigated by exploiting time series of point-like RADAR targets

exhibiting temporally stable re�ection properties. This is the main idea of persistent scatterer

interferometry (PSI). In order to generate the required time series, a stack of N interferograms is

created from N+1 SAR images. A common master image is chosen and the process of interferogram

generation is performed separately for every master slave pair. The extended model accounting for

all disturbances of a resolution cell at spatial position x and temporal index i can be stated as

[Hooper, 2006]:

φwx,i = W{φdefo,x,i + φtopo,x,i + φorb,x,i + φatm,x,i + φn,x,i} , (2.17)

where φorb,x,i incorporates all phase terms caused by orbit inaccuracies. Phase contributions due

to time varying signal propagation delay are accounted for by φatm,x,i. Thermal noise, e�ects due

to distributed scattering, and processing errors are included in the noise term φn,x,i. Note that

equation (2.17) accounts for the fact, that the measured phase is only known up to integer multiples

of 2π indicated by the superscript on the left side and the wrapping operator W{•} on the right

hand side.

The signal propagation delay φatm,x,i is caused by the variation of the total electron content (TEC)

in the ionosphere and the water vapor concentration of the troposphere along the signal path [Hooper,

2006]. The resulting e�ect exhibits a spatial correlation length much bigger than the size of a

resolution cell [Hanssen, 2001; Zebker et al., 1997] and a temporal correlation length much shorter

than the revisit time [Hooper, 2006]. Orbital inaccuracies give rise to an erroneous determination of

the geometric phase term φgeom,x,i [Hanssen, 2001]. The resulting contribution is spatially smooth

and exhibits no temporal correlation.

All phase disturbances incorporated in φn,x,i exhibit neither spatial nor temporal correlation and

can be treated as noise. According to [Hanssen, 2001], those contributions are collectively referred to

as sources of decorrelation. The most prominent e�ects are due to distributed scattering. The single

targets within a resolution cell may move incoherently or change their electromagnetic properties

between master and slave acquisition. This phenomenon is referred to as temporal decorrelation

and is particularly dominant in vegetated areas. Due to slightly di�erent illumination directions

of master and slave (i.e. B⊥ 6= 0), the distances to the targets change, altering the phase of the

sum signal. The e�ect is referred to as spatial or baseline decorrelation [Hooper, 2006; Zebker &

Villasenor, 1992]. A comprehensive description of the sources of decorrelation including quantitative

evaluations can be found in Hanssen [2001].

It is important to note that the most signi�cant contributions to the phase term φn,x,i vanish if

a temporally stable point scatterer is observed. Temporal stability requires the target to exhibit
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constant electromagnetic properties and deformation which is correlated in time. As shown in

Hooper [2006] for a resolution cell similar to �gure 2.2 (b), the mentioned e�ects are present but

much weaker than for situations similar to �gure 2.2 (a). By focusing on such targets, the estimation

of the topographic and the deformation signal by means of a spatio-temporal analysis becomes

feasible.

A �rst approach to PSI was introduced in the early 2000s by Ferretti et al. [2001]. Since then

several augmentations as well as di�erent processing frameworks by other groups have been pub-

lished [Ferretti et al., 2000; Hooper, 2006; Kampes, 2006; Adam et al., 2003; Liu et al., 2009]. All

approaches basically exploit the di�erent spatio-temporal correlation properties of the phase contri-

butions to discriminate the signal of interest from disturbances. Since PS are less strongly a�ected

by decorrelation e�ects (i.e. φn,x,i is small), the main task is to remove the atmospheric contribution

φatm,x,i and the phase term due to orbital inaccuracies φorb,x,i. As both contributions are spatially

correlated, the e�ects are heavily reduced by taking phase di�erences of neighboring PS, enabling

the estimation of deformation and height increments [Ferretti et al., 2000]. This is done by consid-

ering the time series of double di�erences relative to some model of the temporal evolution of the

deformation phase. In most cases a parametric description of the deformation is employed [Ferretti

et al., 2000; Kampes, 2006], but also non-parametric approaches are possible [Hooper, 2006]. In case

a functional model is used, a parameter estimation problem given phase values which are only known

up to integer multiples of 2π (i.e. the observations are wrapped) has to be solved. This can, for

instance, be achieved by means of a periodogram estimator [Ferretti et al., 2000; Rife & Boorstyn,

1974] or with the LAMBDA estimator, known from GPS processing [Kampes, 2006; Teunissen,

1995]. Deformation and height estimates for the PS are retrieved by integration of the determined

increments. In order to assure a consistent solution, a redundant number of double di�erences is

formed (e.g. by Delaunay triangulation), enabling a proper handling of estimation errors.

In this work results of the PS processor included in the Generic System for Interferometric SAR

(GENESIS) of the German Aerospace Center (DLR) are used. The data have been gratefully

provided by DLR and the remote sensing group of Technische Universität München (TUM) within

the Very High Resolution Synthetic Aperture Radar (VHR SAR) project. It is worth to point out

that GENESIS is a very well tested and reliable PSI algorithms [Adam et al., 2009]. This is very

advantageous for this work as all investigations are based on trustworthy results. A general system

overview is given in Adam et al. [2003]. A detailed description of the processing chain and the

models utilized for the generation of the results employed in section 4 can be found in [Kampes,

2006; Gernhardt, 2012]. The method can be divided into three steps:

1. Detection of PS

2. Reference Network Estimation

3. Final Estimation and Geocoding



38 2. Basics

2.3.1. Detection of PS

In order to detect PS, an estimate of the phase noise φn,x,i is desirable. However, it is hard to

infer this value from the phase observations directly because the noise term is masked by all other

contributions appearing in equation (2.17). Also the interferometric coherence, de�ned in equation

(2.16) and calculated with a sliding window, is not an appropriate measure since it leads to either

low resolution or a large number of false positives [Ferretti et al., 2001]. Instead, the phase noise

can be directly estimated from the amplitude data [Adam et al., 2004; Ferretti et al., 2001]. In this

case the signal to clutter ratio (SCR) is used. It is determined for every pixel using a certain spatial

estimation window5 and is linked to the standard deviation of the phase noise by the following

relation.

σ̂φ ≈
1√

2 · SCR
(2.18)

According to Gernhardt [2012], a SCR of 2 is a reasonable threshold corresponding to PS with

σφ < 0.5. All pixels that exhibit a SCR above threshold are retained and referred to as persistent

scatterer candidates (PSC).

2.3.2. Reference Network Estimation

The locally best PSC are used to build a reference network. As described above deformation and

height increments are estimated employing the di�erence phase of neighboring PSC. In order to

mitigate the in�uence of the atmospheric and the orbital phase contributions, the PSC within the

reference network are chosen su�ciently close to each other. Every point is linked to as many other

points as possible, depending on the distance, to ensure redundancy. The link between two PSC is

called an arc. The wrapped phase di�erence of two neighboring PSC at positions x and y respectively

can be stated as

∆φwx,y,i = W{∆φdefo,x,y,i + ∆φtopo,x,y,i + ∆φnoise,x,y,i} , (2.19)

where ∆φnoise,x,y,i contains all disturbances due to di�erences of the atmospheric and orbital phase

terms and decorrelation noise. The deformation is modeled as a parametric function of time ac-

counting for a linear trend and seasonal motion (cf. [Gernhardt, 2012]).

∆φdefo,x,y,i = −4π

λ
· (∆vx,y · Ti + ∆νx,y · sin(2π · Ti)−∆ξx,y · (cos(2π · Ti)− 1)) (2.20)

where Ti denotes the temporal baseline (in years) and ∆vx,y the di�erence of the deformation velocity

between the points x and y in LoS of the sensor. The parameters ∆νx,y and ∆ξx,y are related to the

di�erential amplitude of the seasonal motion ∆αx,y and the o�set of the estimated sinusoid t0 by:

∆νx,y = ∆αx,y cos(2πt0) , (2.21)

∆ξx,y = −∆αx,y sin(2πt0) . (2.22)

5In contrast to coherence estimation, the size of the window can be chosen quite small.
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The topographic phase can be expressed as a linear function of the perpendicular baseline (cf.

equation (2.10)), where r and θ refer to the target distance and the incidence angle in the geometry

of the master acquisition, respectively.

∆φtopo,x,y = −
4π ·B⊥,i
λ · r · sin(θ)

∆hx,y (2.23)

The estimation is carried out per arc, using the LAMBDA method. The integration of the increments

within the network to obtain estimates for the PSC as well as the rejection of erroneous arcs and

points are performed according to Liebhart et al. [2010]. All PSC consistent with the network are

accepted as PS. The result is an estimate of deformation (i.e. the magnitude of linear and seasonal

motion) and topography of all PS in the reference network relative to a reference point. Additionally,

a covariance matrix is available for the determined parameters.

2.3.3. Final Estimation and Geocoding

Finally, all PSC exhibiting a SCR above a certain threshold which are not already included in the

reference network are processed. Every PSC is linked to the next PS of the reference network and a

parameter estimation as described above is conducted. A PSC is discarded if it shows unrealistic pa-

rameter estimates or residuals to the assumed model above a certain threshold. Otherwise, the PSC

is accepted as PS. In order to account for unmodeled deformation, the residual phase (with respect

to the assumed model) can be further analyzed (cf. [Kampes, 2006] for a detailed description).

For every PS the position in a geographic coordinate system has to be determined. The orbital

state vectors of the satellite and the position of the PS in the range-azimuth plane constrain the

position to a circle. The center of the circle is the point on the satellite's orbit corresponding to

the azimuth position of the PS, while its radius is determined by the slant-range location of the PS.

The �nal position can be found by intersection of this circle with a surface de�ned by the reference

body and the height of the PS.

2.3.4. Precision of PS location

It is convenient to discuss the precision of the PS location in the orthogonal coordinate system given

by the axes range, azimuth, and elevation. Range and azimuth location of a PS are determined via

coherent correlation of the so called meanmap (i.e. the temporal average image of the stack) with

the impulse response function of an ideal point scatterer. In Gernhardt [2012] the precision of such

location estimates in range σr and azimuth σa, assuming uncorrelated clutter, is given as:

σr ≈
0.55√

SNR ·NOA
· ρr , (2.24)

σa ≈
0.55√

SNR ·NOA
· ρa , (2.25)
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where ρr and ρa stand for the range and azimuth resolution, respectively. NOA denotes the number

of acquisitions of the data stack. In contrast to equation (2.18), where the SCR is used to describe

the point quality, the SNR is used here. SCR is de�ned as the ratio between the power re�ected

by relevant targets and the power re�ected by irrelevant targets and can be estimated from a SAR

amplitude image using a spatial estimation window. In contrast, the SNR of a PS is de�ned as the

power of the signal divided by the power of the noise disturbing the signal of the PS. The location in

elevation direction is, in contrast, estimated by analysis of the interferometric phase. The accuracy

of such parameter estimates obtained for a single PS depend on the validity of the applied model,

the stack con�guration, and the noise level associated with the PS. An interesting key �gure in this

context is the Cramer-Rao Lower Bounds (CRLBs) that describes the lower bound on the estimation

variance of any unbiased estimator. In the absence of modeling errors and under the assumption

that the di�erence between signal and model is caused by an additive zero mean Gaussian process

only, an expression for the CRLB of the estimated elevation position is given in [Zhu & Bamler,

2011b]

σs =
λ · r

4π ·
√

2 ·
√
NOA ·

√
SNR · σB

, (2.26)

where σB denotes the standard deviation of the perpendicular baselines within the data stack and,

thus, measures the size of the observational basis. The CRLB of the height estimate σh can be

obtained by multiplying σs with sin θ. Since the localization precision of PS is discussed referring

to the range-azimuth-elevation coordinate system, the use of σs is more convenient than σh. For

a given data stack, equation (2.26) just depends on the SNR of the pixel under investigation. If

disturbances due to temporal decorrelation and inaccuracies in the processing chain can be neglected,

the coherence is mainly governed by the thermal noise of the SAR system [Bamler & Hartl, 1998];

this condition is usually met for PS supposing proper processing. In this case the SNR can be

replaced by the more intuitive coherence using the following relation [Zebker & Villasenor, 1992]

|Γ| = SNR

1 + SNR
. (2.27)

By solving equation (2.27) for the SNR and plugging the result into equation (2.26) one obtains:

σs =
λ · r

4π ·
√

2 ·
√
NOA · σB

·

√
1− |Γ|
|Γ|

. (2.28)

A plot of the CRLB as a function of the coherence is shown in �gure 2.5 as solid line for stack

parameters given in table 2.1. Those are typical parameters for a TerraSAR-X image stack. As

the orbital tube is quite narrow, the spread of the normal baselines is quite small (e.g. σB =

Parameter NOA λ [m] r [m] σB [m]
Value 25 0.031 673308 100

Table 2.1.: Table of acquisition parameters of hypothetical data stack used to illustrate the CRLB of the
elevation estimate as a function of the coherence (cf. �gure 2.5)
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Figure 2.5.: The solid line represents the CRLB of the elevation estimate as a function of the coherence for
a stack characterized in table 2.1. The dashed line shows the CRLB for the b057 stack (cf. table
4.1).

100 meter). Furthermore, a number of 25 images is realistic, especially for very high resolution data.

For comparison, the dashed line represents the CRLB for the b057 ascending data stack used in

section 4 for the experiments. The relevant parameters are reported in table 4.1. Most important,

the number of acquisitions amounts to 79 and the baseline spread is around 150 meters. Especially

the much bigger number of images of the b057 stack but also the notably larger baseline spread

lead to a CRLB being approximately a factor of three smaller than the stack in table 2.1. However,

for most areas that many observations are not available. The precision in range and azimuth (σr
and σa) are not plotted in �gure 2.5 as they are an order of magnitude smaller than the CRLB in

elevation direction. For the b057 stack the ratios σs/σr and σs/σa are approximately 24 and 13

respectively. The disbalance is even larger for the data characterized by table 2.1, where σs/σr and

σs/σa take on values of approximately 34 and 18. Some numeric values of the quantities σs, σr, and

σa for both discussed stacks (i.e. b057 and the hypothetical stack with parameters as displayed in

table 2.1) for di�erent coherence values are outlined in table 2.2.

b057 table 2.1
|Γ| σs[m] σr[m] σa[m] σs[m] σr[m] σa[m]
0.7 0.56 0.024 0.045 1.44 0.042 0.079
0.8 0.43 0.018 0.034 1.10 0.032 0.061
0.9 0.28 0.012 0.023 0.73 0.022 0.040

Table 2.2.: Numeric Values of the quantities σs, σr, and σa for both discussed stacks (i.e. the b057 and the
hypothetical stack with parameters as displayed in table 2.1) and di�erent coherence values.





43

3. Methods

3.1. Grouping of PS at building facades

One of the main aims of this work is the identi�cation of regular horizontal PS patterns. The obtained

grouping information can be used to improve the precision of the PS height estimates by imposing

constraints on the unknowns. Many grouping strategies could be applied to exploit regular PS

pattern: For example, in one dimension (horizontally or vertically), sequentially in both directions

to generate a lattice, or directly in two dimensions [Michaelsen et al., 2006]. A comprehensive

investigation of pros and cons of such approaches is beyond the scope of this work as, as the focus

lies on a grouping scheme that aims at �nding horizontal patterns. This o�ers the opportunity

to improve the height estimate, for instance, along rows of windows. The precision of the location

estimate bene�ts from such an enhancement because the PS height is usually the largest error source

in the geocoding procedure. Initially, the grouping method is outlined (section 3.1.1) followed by

considerations on appropriate parameter settings. Finally, the achievable precision gain is discussed.

3.1.1. Automatic detection of linear PS patterns

Object perception by human vision is believed to be widely governed by rules of Gestalt theory

[Desolneux et al., 2004], which comprise concepts such as proximity, good continuation, similarity,

and symmetry. Already more than two decades ago automatic reasoning systems have been proposed

for computer vision applications taking advantage of such type of rules, like SIGMA [Matsuyama

& Hwang, 1990] and SCHEMA [Draper et al., 1989]. Approaches of this category were applied for

the analysis of SAR data, but only for amplitude images or single interferogramms and not for PSI.

For example, in previous work of our group [Michaelsen et al., 2006, 2010] 2-D grids of salient roof

structures and symmetry axes of extended buildings were extracted using production systems. In

such approaches the Gestalt principles are coded in terms of production rules, which are executed

repeatedly in order to assemble more complex objects starting from a set of primitive objects like

points. However, this reasoning was based on amplitude imagery only, which involves the danger to

incorporate layover induced outliers into the groups. A rejection of those PS is impossible based on

radargrammetric features only. Fortunately, in case of PSI we can use the height estimate of each

PS to overcome layover problems at least to some extent.

A search for vertical groups of PS (e.g. PS induced by windows on top of one another) is simply

a 1-D problem because they share the same azimuth coordinate. In contrast, horizontal rows of
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Figure 3.1.: Work�ow of the grouping procedure. Image coordinates and estimated height values of the PS
are determined within the PSI processing. In order to identify facades visible to the sensor in the
3D city model, the orientations of all vertical faces are compared to the sensors LoS. Facades
that are oriented towards the sensor are projected to the SAR image geometry (i.e. radarcoded)
and serve as prior information for the location and orientation of PS groups. The height is used
to mitigate problems induced by layover.

windows may be oriented arbitrarily in a SAR image. In order to identify such patterns, several

1-D searches in di�erent directions have to be conducted. Depending on the number of PS, this

might become unfeasible. On the other hand, horizontal rows must be parallel to the direction of

the related building facade.

By introducing context information about the location of the facades visible to the sensor, two

advantages arise. Firstly, grouping is facilitated by searching only parallel to the orientation of

facades visible to the sensor. Secondly, the search for regular patterns can be limited to the actual

frontages, which reduces the computational load. Finally, model knowledge about the typical spacing

of �oors and windows within a �oor can be incorporated.

An overview of the grouping procedure developed in this thesis is given in the �owchart depicted

in �gure 3.1. The PS set and a 3-D city model of the scene are input to the method. All facades

visible to the sensor are extracted from the 3-D city model and transformed to the SAR coordinate

system. The result is used as context information as outlined above. Such information can also be

inferred from a 2-D map of the building outlines (e.g. OpenStreetMap). As no information about

the vertical extension of the facades is available in this case, a maximum height has to be assumed

for the whole scene. In most cases this should not pose a big problem as such parameter can be

chosen to be rather large. This involves the danger to group unrelated PS, however, the chance

for that to happen appears quite small because they are unlikely to match the PS pattern of the

investigated facade. Obviously, the main advantage of a 2-D map is its general availability.

The grouping itself consists of three steps. Firstly, PS located at the facade under investigation

are selected. Secondly, possible spatial pattern frequencies are identi�ed. Finally, the horizontal

groups are assembled. A detailed description of the single steps is given in the following sections.
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(a) (b)

Figure 3.2.: (a) Acquisition of a building by a SAR sensor. The focus of attention is on the facade shown
in gray with its vertices a, b, c, and d. The angle between the facade and the �ight direction of
the sensor is α. (b) Schematic representation of the facade in the range-azimuth geometry. The
facade has the shape of a parallelogram with a shear angle of α.

Primitive Selection

The grouping procedure is applied separately to every facade. Consequently, only the PS that are

likely to be located on the facade under investigation are considered. In order to identify those

points, prior knowledge about the location of the facade in the SAR image is used. The principle is

depicted in �gure 3.2. While the situation in the real world is shown on the left (�gure 3.2 (a)), the

right side (�gure 3.2 (b)) illustrates the appearance of the facade in the range-azimuth plane. It is

represented by its four vertices a, b, c, and d and is rotated with respect to the sub satellite track

by an angle α1. In the SAR image the facade has the shape of a parallelogram with a shear angle

of α. Only PS that are located within the area shaded in grey in �gure 3.2 (b) are considered for

the subsequent grouping.

Estimation of pattern frequency

In order to determine the dominant pattern frequencies appearing at a facade under investigation,

the distances along the building outline between PS which are likely to be located at the same

height are evaluated. An example is displayed in �gure 3.3. In (a) the outline of the facade (red

line) and the associated PS (blue dots) are shown in range-azimuth coordinates. As the grouping

is conducted in direction of the outline, the spacing between points having similar distance to the

outline along range direction has to be evaluated. In order to simplify the estimation of pattern

frequencies, the setting in (a) is transformed to a coordinate system with the abscissa pointing in

the direction of the outline (referred to as X′ axis) and the ordinate oriented along range direction

(termed Y′ axis). This is advantageous because the grouping is conducted along X′ direction for rows

of PS having similar Y′ coordinate, which reduces costly geometric operations to the computation of

1The angle α is de�ned within the Universal Transverse Mercator Coordinate System (UTM) grid
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simple coordinate di�erences. The resulting situation is displayed in �gure 3.3 (b). The coordinates(
X′,Y′

)
of a PS located at position (rg, az) in the original range-azimuth coordinate system are

obtained by multiplication with transformation matrix T:[
X′

Y′

]
= T ·

[
rg

az

]
=

[
0 1

cos(α)

−1 − tan(α)

]
·

[
rg

az

]
. (3.1)

Finally, the di�erences in the X′ coordinates of all point pairs exhibiting su�ciently small Y′

distance (i.e. smaller than ∆Y′tol, cf. sections 3.1.2 and 4.2.1) are evaluated. For that purpose

kernel density estimation (KDE) is used (cf. [Bowman & Azzalini, 1997] for a detailed treatment).

The result is displayed in �gure 3.3 (c). All samples (i.e. all X′ di�erences) are illustrated as blue

asterisks, while the resulting density estimate is shown as a blue line. The red asterisks mark the

local maxima of the density estimate, which are used as possible spacings in the subsequent line

assembly. A periodic structure featuring a certain point spacing will, thereby, result in many maxima

located at integer multiples of this basic interval. It is possible to detect and erase those redundant

spatial frequencies. However, single PS are often missed in the generation process. As the proposed

algorithm cannot cope with such situation, some integer multiples of the detected distances have to

be checked. It is worth noting that the range of accepted spatial frequencies is limited by knowledge

of the typical spacing of facade details.

Assembly of Lines

The set of points selected for the facade under investigation is searched for lines parallel to the

building outlines. For simplicity, the procedure is conducted in the (X′,Y′) coordinate system. A

simple approach to enforce rows parallel to the investigated facade is presented in Schunert & Soergel

[2012]. Beginning at the outline, rectangular search regions with a certain width2 are de�ned and

consecutively shifted in Y′-direction. All PS that are located within such a region at the same time

are searched for periodic patterns of PS. This approach has two main disadvantages. Firstly, the

rectangular search areas do not allow for a modeling of the orientation uncertainty of the outline.

Actually, the maximum allowed Y′-di�erence between two PS should depend on their distance along

the outline. Secondly, using a search region which is consecutively shifted in order to �nd horizontal

rows is either computationally intense (in case the shift is small) or involves the danger to miss the

actual Y′-location of the row by far (in case the shift is large). Instead, in an improved approach every

PS located at the facade under investigation is taken to be the starting point of a row hypothesis.

The procedure outlined in the following is conducted for each of those hypotheses. The PS starting

it is called the reference PS. Points located in more than one group are dealt with in post processing.

In a �rst step, the Y′-di�erences, referred to as ∆Y′, between the reference PS and all other PS

are determined. Two PS located at one facade at the same height have to exhibit a similar Y′ (i.e. a

2The length of the search region is determined by the length of the used outline.
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Figure 3.3.: (a) Outline of a facade (red line) and associated PS (blue dots) in range-azimuth geometry. (b)
Associated PS in a coordinate system having its abscissa (X′) in the direction of the outline
and its ordinate in range direction. (c) Resulting density estimate (blue line) of X′-di�erences
of PS pairs exhibiting su�ciently small range di�erences (i.e. smaller than ∆Y′tol). The blue
asterisks show the available samples. The local maxima of the density estimate are marked as
red asterisks.

small ∆Y′ is a necessary condition). Thus, only PS whose Y′-di�erence is below a threshold ∆Y′tol
are considered in the following search for periodic patterns. The employed threshold is not constant

for all PS, but depends on the standard deviation of ∆Y′ which is estimated using a statistical

model. This is outlined in more detail in section 3.1.2.

The search for periodic patterns is schematically displayed in �gure 3.4. Starting from the reference

PS two search areas, one for each direction, for possible successors are de�ned (shown in green).

The distance in X′-direction of the triggering PS to the search areas is determined according to the

identi�ed spatial frequencies of the window pattern. The width of the search area, denoted ∆X′tol,

controls the tolerance to deviations from the assumed point spacing. If a successor is found, its

height estimated in the PS analysis is compared with the height of the triggering PS. In case the

absolute height di�erence is below a threshold, the successor is added to the group and a subsequent

search area is de�ned. This is iterated until no valid successor is found anymore. The consideration

of the height is necessary to eliminate PS which are not located at the facade under investigation
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Figure 3.4.: Illustration of the search process. Starting from the reference PS, a search area is de�ned. If a
PS is found therein, it is added to the group and a new search area is constructed. The process
terminates if no successor is found. Since the reference PS may be located at an arbitrary X′

position, the outlined process is applied equivalently to both sides.

but mapped to the examined part of the image, e.g. due to layover. Using the determined height

during grouping is, admittedly, problematic as we attempt to improve an estimate of the same

quantity. However, the applied threshold is quite relaxed (three meters are used in the experiments)

compared to the dispersion of the height estimates we seek to minimize. It is worth to note that the

obtained solution is not necessarily unique. If two PS feature a very small distance in X′-direction

(i.e. ∆X′ < ∆X′tol/2) and are close to the same set of PS in Y′-direction, the grouping algorithm

returns two contradictory groups of the same lengths. However, in most cases the threshold ∆X′tol
(cf. section 3.1.2) is well below the smallest possible spacing between PS. Thus, such cases are

unlikely to occur.

3.1.2. Parameter Settings

The outlined grouping method is very much based on hard thresholds. Finding suitable values for

those thresholds is critical for the performance of the procedure. Using relaxed tolerances leads to

complete results but may induce many false positives (i.e. unrelated PS are grouped). Applying

strict thresholds causes many false negatives (i.e. actual groups are missed). At this point reasonable

thresholds for the parameters ∆X′tol and ∆Y′tol, which control the tolerance to distance variations

between two PS in X′- and Y′-direction, respectively, are derived. Since all other parameters are

less critical for the performance of the method, appropriate settings are discussed in section 4.2.1

dealing with the grouping experiments.

Useful tolerances can be determined by considering the statistical variation of the di�erences in

X′- and Y′-direction, referred to as ∆X′ and ∆Y′. Their standard deviations, σ
∆X′ and σ

∆Y′ , can

be determined using variance propagation (a detailed treatment of this topic is given in Mikhail

& Ackermann [1982]). Both, σ
∆X′ and σ

∆Y′ , depend on the precision of the PS positions in the

SAR image and the uncertainty of the outline orientation. The former can be estimated using

formulas (2.24) and (2.25), respectively. As the precision of the outline orientation σα is unknown,

a reasonable value is adopted.

In order to apply variance propagation, ∆X′ and ∆Y′ have to be expressed in terms of the PS

positions in the range-azimuth coordinate system and the outline orientation. Here, two PS with

coordinates (rg1, az1) and (rg2, az2) (equivalently
(
X′1,Y

′
1

)
and

(
X′2,Y

′
2

)
in the X′Y′ coordinate
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system) are considered. For simplicity the SNRs of the PS are assumed to be equal. The Y′-

di�erence ∆Y′ can be expressed in terms of range- and azimuth-position and outline orientation

using equation (3.1):

∆Y′ = Y′2 −Y′1 = rg1 − rg2 + (az1 − az2) · tanα . (3.2)

The partial derivatives with respect to the random variables are:

∂∆Y′

∂rg1
= 1 , (3.3)

∂∆Y′

∂az1
= tanα , (3.4)

∂∆Y′

∂rg2
= −1 , (3.5)

∂∆Y′

∂az2
= − tanα , (3.6)

∂∆Y′

∂α
=
az1 − az2

cos2 α
=
X1 −X2

cosα
. (3.7)

The equality in equation (3.7) holds due to the de�nition of the transformation given in (3.1).

Assuming that the random variables are mutually uncorrelated, σ
∆Y′ is given by:

σ
∆Y′ =

√
2 · σ2

r + 2 · tan2 α · σ2
a +

(
X1 −X2

cosα

)2

· σ2
α . (3.8)

Similarly, ∆X′ is related to the range-azimuth coordinates and the outline orientation by equation

(3.1):

∆X′ = X′2 −X′1 =
az2 − az1

cosα
. (3.9)

The partial derivatives with respect to the random variables az1, az2, and α are:

∂∆X′

∂az1
= − 1

cosα
, (3.10)

∂∆X′

∂az2
=

1

cosα
, (3.11)

∂∆X′

∂α
= −az2 − az1

cosα
· tanα . (3.12)

This leads to the following expression for σ
∆X′ :

σ
∆X′ =

√
2 · σ2

a + (az2 − az1)2 · tan2 α · σ2
α

cosα

=

√
2 · σ2

a + (X′2 −X′1)2 · sin2 α · σ2
α

cosα
. (3.13)
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(a) (b)

Figure 3.5.: (a) Estimated σ
∆Y′ as a function of the outline orientation α. Di�erent distances in X′-direction

between the two PS are shown. The distances are chosen according to typical facade lengths. (b)
Estimated σ

∆X′ as a function of the outline orientation α. Di�erent distances between the two
PS are illustrated, which are chosen relative to the typical spacing of facade elements.

By considering the uncertainty of the outline orientation, σ
∆Y′ and σ

∆X′ become dependent on the

X′-di�erence. The e�ect is similar to a leverage. The further the PS are apart, the larger is the

error caused by the outline uncertainty. Numerical examples for σ
∆Y′ and σ

∆X′ as a function of

the outline orientation α are shown in �gure 3.5 (a) and (b), respectively. The standard deviations

of the range- and azimuth-position are taken from table 2.2 for the b057 stack and a coherence of

|Γ| = 0.8 (σr = 0.018 m and σa = 0.034 m). For σα, a quite optimistic value of one degree is

assumed (σα = 1◦). The graphs in �gure 3.5 (a) and (b) refer to di�erent X′-di�erences between the

two considered PS. For σ
∆X′ X′-di�erences matching the typical spacing between facade details are

chosen (i.e. 1.5, 2.5, and 5 meter). In contrast X′-di�erences in the range of typical facade lengths

(i.e. 5, 10, 20, 50 meter) are adopted for σ
∆Y′ . This renders the σ

∆Y′ much larger than the σ
∆X′ .

The tolerance parameters are directly derived from the σ
∆Y′- and σ

∆X′-estimates by:

∆Y′tol = 2 · κ · σ
∆Y′ , (3.14)

∆X′tol = 2 · κ · σ
∆X′ , (3.15)

where κ is a scaling factor controlling the con�dence level (e.g. κ = 1 corresponds to a portion of 68%

of all di�erences located within the search area assuming Gaussian distribution). In the experiments

the X′-di�erence is set according to the expected spatial frequency serving as an estimate of the true

distance.

3.1.3. Accuracy of group height estimation

In PSI the quantities of interest, usually the linear trend of deformation, the height above a ref-

erence point, and in some cases magnitude and phase o�set of a seasonal motion, are estimated

independently for every PS. In this investigation only the height is considered. In section 2.3.4 an
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expression for the CRLB of the elevation estimate is given in equations (2.26) and (2.28) as a function

of SNR and coherence, respectively. As elevation and height are equivalent quantities, di�ering by

a constant factor, the former is discussed for consistency. In the following, the achievable precision

including grouping information is derived using the CRLB of a single PS as starting point. In order

to demonstrate the bene�t of the grouping numerically, the theoretical case of a homogeneous group

of PS (i.e. all PS within the group exhibit the same SNR) is considered. Finally, the general case

of an inhomogeneous group is discussed, which is supposed to be the standard for any real-world

application.

Group of homogeneous PS

To demonstrate the bene�t of the grouping numerically, the simplest case of a group consisting of N

homogeneous PS is considered. Under the hypotheses that all PS share the same elevation position

and the associated estimates are equally precise, the single results can be regarded as N equivalent

measurements of the same quantity.

The grouping algorithm proposed in section 3.1.1 is robust to outliers since unrelated PS are

unlikely to be ful�ll all criteria (i.e. similar Y′, X′ close to the spacing, and similar height). Thus, the

elevation of the group is estimated by simple averaging. This minimizes the residual sum of squares

and is optimal in case the single elevation estimates are normally distributed. Furthermore, this

enables the introduction of weights, which is important in the real data case, where the homogeneity

assumption is hardly ever met. The minimum standard deviation for the group height estimate

obtained by the mean value of N elevation estimates of the individual PS is simply

σŝ =
σs√
N

=
λ · r

4π ·
√

2 ·
√
NOA · σB

·

√
1− |Γ|
|Γ|

· 1√
N
. (3.16)

The resulting lower bounds as a function of the coherence for some values of N (1, 3, 5, and 10) are

shown in �gure 3.6. The geometric parameters are chosen according to table 2.1. For comparison,

the CRLB for the b057 stack (cf. table 4.1) is shown in grey. Since the reduction of the CRLB

with increasing group size is proportional to 1√
(N)

, signi�cant improvement already arises by going

from no grouping (N=1) to quite small groups (e.g. N=3). In this case the CRLBs for a coherence

of 0.9 would be around 80 cm and 46 cm for N equal to one and three, respectively. In order

to match the precision of the b057 stack, the group would need to have eight members, which is

expected to be quite scarce. However, as already mentioned in section 2.3.4, the b057 shows an

outstandingly low CRLB compared to standard stacks, which is due to the many images and the

large baseline spread. The outlined estimation of the group height only attenuates error terms which

are statistically independent among the members of a group. Such error sources comprise thermal

noise and decorrelation e�ects. However, some errors are expected to be correlated or even identical

for the members of one group. Those are either induced by spatially correlated phase disturbances

or due to the way the PS network is set up.
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Figure 3.6.: CRLB of elevation estimate for a data stack as given by table 2.1 for coherence values ranging
from 0.7 to 1.0 and di�erent group sizes (N=1,3,5,10). For comparison the CRLB of the b057
stack (cf. table 4.1) is shown in grey.

The PSI method included in GENESIS (cf. section 2.3 or [Gernhardt, 2012]) establishes a sparse

reference network. Parameter increments between the PS of this network are estimated and sub-

sequently integrated. This leads to correlations among the parameter estimates of those PS. All

PSC which are not contained in the reference network are simply appended on the basis of a single

connection. Spatially correlated phase errors, such as APS, are usually dealt with by estimating

parameter increments between spatially close PS on the basis of phase di�erences. The rationale for

that is the dramatic reduction of spatially smooth phase errors. In case all PS contained in a group

are connected to the same point of the reference network, the residual spatially correlated phase

errors are very similar. This may, in turn, lead to spatially correlated estimation errors. Certainly,

such disturbance could result in a biased estimate of the group height. In case two or more PS of

the reference network are contained in one group, the obtained parameters are correlated. Thus, the

outlined estimator would fail to give optimal results. However, as the reference network is sparse,

this situation is unlikely to occur. If all PS of a group are linked to the same PS of the reference

network, all of them share the estimation error of that one PS they are linked to. This would in-

duce a bias similar to a spatially correlated phase error. As the distance of the PS in the reference

network is large compared to the size of a typical facade, such case is anticipated to occur very

frequently3. More complicated cases may arise. The PS of a group could, for instance, be connected

to di�erent points of the reference network. In this case the resulting bias would be the weighted

3Since geometry and topology of the reference network is not known to the author, the stated assumptions has not
been tested.
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mean of the estimation errors of the involved PS of the reference network with weights determined

by the respective number of connections.

Group of inhomogeneous PS

The previously outlined case, where all elevation estimates in a group feature the same standard

deviation, is hardly found in reality. To account for this inhomogeneity, the simple mean value is

replaced with a weighted mean value. The generic formulation of the corresponding estimator is:

ŝ =
1∑N
i=1wi

N∑
i=1

wi · si , (3.17)

where si and wi denote the elevation estimate and its associated weight for the ith PS, respectively.

In order to minimize the variance of the estimated group height, the weights have to be chosen

proportional to the reciprocal of the variance of the respective observations. Advantageously, the

GENESIS PSI processor returns variance estimates σ̂2
s,i for the elevation positions, which can be

used for weighting. Consequently, the following scheme is adopted in all real data experiments:

wi =
1

σ̂2
s,i

. (3.18)

Alternatively, an estimate of the SNR, referred to as ŜNRi, may be used for weighting. It can

be obtained by inversion of equation (2.27), whereas the coherence is replaced by the inter-image

coherence |γ̂i|. The latter, essentially, measures the �t between the model phase and the measured

interferometric phase per PS across all interferograms. More information on this issue can be found

in Ferretti et al. [2000], and Ferretti et al. [2001], where the ŜNRi are used to assess the PS quality.

In Colesanti et al. [2003a] it is shown, that these values are very close to the actual coherence
∣∣∣Γ̂i∣∣∣

for high SNR targets

wi = ŜNRi =
|γ̂i|

1− |γ̂i|
. (3.19)

In case ŜNRi ≈ SNRi and σ̂2
s,i ≈ σ2

s,i, both weighting schemes lead to the same result as the single

weights are proportional. An expression for the CRLB for the the weighted mean can be inferred

using the law of variance propagation [Mikhail & Ackermann, 1982]

σ2
ŝ =

N∑
i=1

(
∂ŝ

∂si

)2

· σ2
s,i =

(
1∑N

j=1wj

)2

·
N∑
i=1

w2
i · σ2

s,i . (3.20)

It is convenient to employ the weighting scheme given by equation (3.19):

σ2
ŝ =

(
1∑N

j=1 ŜNRj

)2

·
N∑
i=1

ŜNR
2

i ·
(

λ · r
4π ·
√

2 ·
√
NOA · σB

)2

· 1

SNRi
. (3.21)
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In case ŜNRi ≈ SNRi equation (3.21) simpli�es to:

σ2
ŝ =

(
λ · r

4π ·
√

2 ·
√
NOA · σB

)2

· 1∑N
i=1 ŜNRi

=

(
λ · r

4π ·
√

2 ·
√
NOA · σB

)2

· 1

N · SNR
(3.22)

where SNR denotes the mean SNR of the group. The result stated in equation (3.22) is analogous

to the result for the homogeneous group, stated in equation (3.16), save that the SNR, which is

assumed constant in this case, is replaced by the average SNR of the group.

3.1.4. Improvement of the group localization

For each group one height value is estimated as outlined above. In order to improve the localization

accuracy of the group members, the anisotropic dispersion of the PS positions is exploited. According

to section 2.3.4, the standard deviation of the estimated location in elevation is at least an order of

magnitude larger than in range and azimuth direction. Thus, the true PS position is approximately

situated on a line along elevation direction passing through the originally estimated spot. Each group

member is shifted along that line until its z-coordinate matches the determined group height. This

is equivalent to repeating the geocoding with the group height instead of the originally estimated

PS height.
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3.2. Alignment of Persistent Scatterers with 3D city model

In order to relate the PS with a three dimensional city model, potential misalignments between

both datasets have to be removed. Although, the PS distribution is correlated with the occurrence

of buildings (cf. [Gernhardt, 2012] and section 4.1.1), variable systematic o�sets between building

model and PS are expected. Those are caused by generalization of the city model and systematic

di�erences between the building structures and the (true) PS locations. For that reason a manual

registration, for example using a single or just few tie points, is not recommended as systematic

di�erences may bias all later investigations. Typically, this problem is mitigated as more PS to

model correspondences are used, assuming that the systematic e�ects throughout the scene exhibit

some kind of zero mean symmetric distribution. Thus, the registration seeks to minimize the sum of

the squared distances between all PS and the building model. Within the alignment, the city model

is considered �xed and referred to as the target or model dataset. Contrary, the PS point cloud is

termed the source dataset and is transformed in order to match the target.

In the iterative closest point (ICP) algorithm, originally published in Besl & McKay [1992], two

successive steps, namely correspondence and transformation estimation, are iterated until some con-

vergence criterion is met. Firstly, point correspondences between source and target are established.

Those are used to estimate a rigid transformation in the second step. Finally, the transformation

is applied to the source data, which in turn changes the point correspondences. In each iteration

every source element is associated with the closest target element. The approach inherently assumes

a one to one correspondence between source and target.

Of course, the latter assumption is not realistic in our case. This is mainly due to PS that are

not related to any building, such as those which are induced by virtual corner re�ectors (cf. section

4.1.1). This issue is addressed by requiring every PS to be located inside the bu�ered outline of

the building it is associated with (cf. section 3.2.1). In this way the most prominent outliers are

removed.

3.2.1. Correspondence Estimation

The correspondence estimation is conducted according to Besl & McKay [1992]. The target (i.e. the

city model) is given as a set of polyhedrons, described by their bounding surfaces. The set of all such

faces is denoted with F = {Fq, q = 1...Q}, where each element Fq = (nq, cq, polyq) is represented by

the plane it is located in and a polygon polyq, indicating the extension of the face within the plane.

Each plane is described in Hessian normal form by a unit normal vector nTq = [nx,q, ny,q, nz,q] and

the distance to the origin in direction of the normal cq. The source P (i.e. the PS) is a set of M

points, P = {pi, i = 1...M} with pTi = [px,i, py,i, pz,i].

A simpli�ed case of the assignment of one generic PS pi to a rectangular building is shown in

�gure 3.7. The vertical bounding surfaces of the building and the associated normal vectors are

F1 and n1, F2 and n2, F3 and n3, and F4 and n4, respectively. In order to �nd the closest face,
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the distance of the PS to all bounding surfaces is determined. The latter is measured along the

respective normal vectors (e.g. dpi,F1). The PS is, �nally, assigned to the closest bounding surface,

which is F3 in the depicted case. In order to limit the computational cost and to eliminate outliers,

a PS is only associated with the bounding surfaces of close buildings. For that reason a bu�ered

outline around each building is constructed (indicated by the grey rectangle in �gure 3.7). Only the

bounding surfaces of those buildings that contain the PS in their bu�ered outline are considered.

The width of the bu�er is referred to as Wol (cf. section 3.3).

The outcome of this step is a set of K ≤ M correspondences C =
{

(pk, Fnn(pk)), k = 1...K
}
,

where the pk are the PS that are situated in at least one bu�ered outline. Each of those PS is

assigned to exactly one building face Fnn(pk). The function nn(pk) returns the index of the closest

face for any given input PS pk, that is nn(pk) = argminq
{
dpk,Fq

}
. For simplicity, the building

surface Fnn(pk) is referred to as Fk in the following section. Finally, it is worth to note that the

Figure 3.7.: Simpli�ed case of the assignment of one PS to a rectangular building, shown as a topview. The
building is bordered by four vertical faces F1 to F4 with associated normal vectors n1 to n4. In
case a PS is located within the bu�ered outline (indicated by a grey rectangle), all distances to
the bounding surfaces of this building are evaluated. The width of the bu�er is referred to as Wol.
The PS is associated with the closest face.

correspondence estimation is very similar to the �nal assignment of PS to building models (cf. section

3.3). However, there are two main di�erences. Firstly, within the correspondence estimation it is
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not checked if the perpendicular projection of a PS onto the plane associated with closest bounding

surface is located inside the corresponding polygon. Since the correspondence estimation has to be

performed in every iteration of the alignment procedure, this check is omitted in order to lower the

computational load.

3.2.2. Transformation Estimation

The aim of this step is to determine a transformation that aligns the PS with the assigned building

faces. The approach is similar to the one outlined in Low [2004]. However, there are one main

di�erence. The transformation is modeled as a three dimensional shift only (Low [2004] models

shift and rotation). Secondly, the error metric is changed to account for the speci�c covariance

structure of the PS positions, i.e. the position is much more precise in range and azimuth compared

to elevation.

The three dimensional shift is represented by vector ∆

∆T =
[
∆x ∆y ∆z

]
, (3.23)

where ∆x, ∆y, and ∆z denote the components in x-, y-, and z-direction, respectively. Similar to

Low [2004], the transformation is estimated by minimization of the quadratic sum of the point to

plane distances. The representation, however, di�ers as the target dataset is not given as a point

set. The distances are found to be:

dk,∆ = nk (pk + ∆) + ck . (3.24)

Thus, the optimization problem takes the following form:

∆̂ = argmin∆

{
K∑
k=1

(dk,∆)2

}
. (3.25)

In order to take the speci�c covariance structure of the PS into account, a weight wk is introduced

for every correspondence leading to:

∆̂ = argmin∆

{
K∑
k=1

wk (dk,∆)2

}
. (3.26)

The weights are, basically, chosen to be inverse to the expected variances of the point-to-plane

distances, which can be deduced by variance propagation using equation (3.24). For simplicity,

the normal vectors are assumed to be error free. Thus, only the plane parameter ck and the PS

coordinates are modeled as random variables. Obviously, the PS position pk and the associated ck
are independent and are, consequently, treated separately. The position pk of a PS is assumed to be

normally distributed with zero expectation and covariance matrix Σpk
. According to section 2.3.4,
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the precision of the PS location is much worse in elevation-direction than in range- and azimuth-

direction. In order to account for this fact, the covariance matrix is constructed to have eigenvectors

parallel to the elevation-, range-, and azimuth-direction of the SAR system, referred to as xs,k, xr,k,

and xa,k, respectively (cf. equations (A.9)-(A.11) in appendix A). Using the eigendecomposition of

Σpk
one obtains:

Σpk
=
[
xs,k xr,k xa,k

]
·


σ2
s 0 0

0 σ2
r 0

0 0 σ2
a

 ·


xTs,k

xTr,k

xTa,k

 . (3.27)

The plane parameter ck is assumed to be normally distributed with zero expectation and variance

σ2
ck
. The joint covariance matrix Σpk,ck in block matrix notation reads:

Σpk,ck =

[
Σpk

0

0 σ2
ck

]
. (3.28)

In order to apply variance propagation, the Jacobian matrix J containing the partial derivatives of

equation (3.24) with respect to the PS position and the plane parameter ck is required.

JTk =
[
∂dk,∆
∂px,k

∂dk,∆
∂py,k

∂dk,∆
∂py,k

∂dk,∆
∂ck

]
=
[
nx,k ny,k nz,k 1

]
(3.29)

The variance of the point-to-plane distance σ2
dk

is �nally given by:

σ2
dk

= JTk ·Σpk,ck · Jk = nTk ·Σpk
· nk + σ2

ck

=
(
nTk · xe,k

)2
σ2
e +

(
nTk · xr,k

)2
σ2
r +

(
nTk · xa,k

)2
σ2
a + σ2

ck
(3.30)

The optimization problem stated in equation (3.26) is equivalent to the weighted least squares

solution of the over-determined linear system of equations derived in appendix A. Solution strategies

for such systems can be found in Mikhail & Ackermann [1982].

3.3. Assignment of Persistent Scatterers to city model

The main topic of this work is the assignment of PS to buildings. The approach for this task is

similar to the correspondence estimation outlined in section 3.2.1. Furthermore, also the notation

of PS locations (i.e. pi, i = 1...N) and building faces (i.e. F = {Fq, q = 1...Q}) is equivalent. In

particular, each bounding surface is described by a plane and a polygon located within this plane.

A PS is attributed to the building face which has the smallest normalized perpendicular distance.

The latter is the ratio between the geometric perpendicular distance (cf. equation (3.24) for ∆ = ~0)
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and its expected variance (cf. equation (3.30)). Thus, the assignment can be stated as:

nn(pi) = argminq

{
dpi,Fq

σdpi,Fq

}
(3.31)

where q ∈ [1, Q] is an index to the set of all building faces (cf. section 3.2.1). To lower the

computational complexity, a PS is only related to a building model if its planimetric position lies

inside the bu�ered outline of the model (cf. �gure 3.7). In compliance with section 3.2.1 the width

of the bu�er is referred to as Wol.

Using the normalized instead of the geometric distance is advantageous for two reasons. Firstly,

the variable precision of the PS locations and the building faces (cf. section 4.3.1) can be con-

sidered. Secondly, normalizing the distances increases their comparability among each other. In

case the geometric distances are zero mean Gaussian random variables and the expression for the

respective standard deviations hold, all normalized distances are distributed according to a unit

normal distribution (see appendix B for a discussion of the validity of this assumption). In order to

exclude unreliable assignments, the normalized distance is required to be smaller than a pre-de�ned

threshold.

By only considering the normalized distances to the planes, the actual extensions of the associated

building faces are ignored. In order to avoid false correspondences, the perpendicular projection of a

PS onto the plane associated with a bounding surface has to be located inside a bu�ered version of

the polygon that is a�liated to every bounding surface. Otherwise, the potential relation is rejected.

The width of the polygon bu�er is referred to as Wpl.
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4. Experiments

In this chapter experimental results for the detection of horizontal groups of PS and for the as-

signment of PS to buildings are presented. The aim of the evaluation regarding the former topic

is twofold. First, the performance of the proposed method is assessed. Secondly, the conditions

that lead to the emergence of regular patterns of PS at building facades is investigated. Regarding

the assignment of PS to buildings, the main objective is to analyze the comparability of the PS

point cloud with the city model. Focus lies clearly on the identi�cation of e�ects hampering such

assignment. Besides those two main investigations, the alignment of the PS point cloud to the city

model, the assessment of the PS density at buildings, and the relation of PS to facade details are

addressed. The alignment is a prerequisite for the assignment procedure. The corresponding discus-

sion demonstrates the convergence behavior of the iterative registration scheme. A very important

product derived from the established relations between the PS and the city model is the density

map. In this work the latter is used to identify the driving factors in�uencing the PS density. Fi-

nally, the relation of grouped PS (i.e. PS that are part of a horizontal pattern) to facade details

is investigated. Focus lies on the geometrical comparison of horizontal structures in LIDAR data,

representing the facade details, with a subset of the identi�ed PS groups. In all experiments, PS

results obtained from TerraSAR-X high resolution spotlight data are used.

4.1. Test site and datasets

The test site is located around Potsdamer Platz in the city center of Berlin (Germany). A map of

the area, overlaid with building outlines taken from OpenStreetMaps, is displayed in �gure 4.1. The

red rectangle marks the area which is covered by the SAR image sections displayed in �gure 4.2.

All experiments are conducted using two PS point clouds. One is based on SAR images acquired

in ascending pass direction, while the other is obtained from descending data. Additionally, two

reference datasets are available: a three dimensional city model and a point cloud acquired with

LIDAR. The former is used as main geometric reference and to derive prior information (cf. section

3.1.1) about the location and orientation of building facades used in the grouping procedure. The

latter is, among others, used to identify generalization e�ects present in the city model, which is

necessary for the evaluation of the assignment procedure. In the following, the key characteristics

of these datasets are introduced.
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Figure 4.1.: Map of the test site ( c©Microsoft R©BingTMMaps), overlaid with building outlines taken from
OpenStreetMaps. The red rectangle marks the area which is covered by the SAR image sections
displayed in �gure 4.2.

4.1.1. Persistent Scatterers

Two PS point clouds, featuring di�erent pass directions (i.e. ascending and descending), are used

within this work. Both have been processed according to section 2.3 using the LAMBDA method

included in the GENESIS PSI processor. The images forming either stacks have been acquired in

high resolution spotlight mode (i.e. the �nest available resolution). The main acquisition parameters

of both stacks are summarized in table 4.1. Especially the large number of images contained in both

datasets is remarkable. The data are analyzed in two di�erent domains, in SAR image coordinates

(i.e. in range-azimuth coordinates) and in real world coordinates (i.e. in the UTM referring to the

World Geodetic System 84 (WGS84)). The comparative analysis with respect to the building model

is conducted in real world coordinates, while the grouping is done in the SAR image coordinates. It

would be conceivable to conduct the latter in real world coordinates. However, the large uncertainties

of the elevation coordinates of the PS would complicate the problem tremendously.

Sections of the amplitude mean maps (i.e. the pixelwise incoherent mean value of the amplitudes

over all stack acquisitions) of the ascending and the descending dataset for the test site are shown in

�gure 4.2 (a) and (b), respectively (the complete amplitude mean maps are displayed in �gure C.1

and �gure C.2 in appendix C). Two e�ects immediately strike the eye. Firstly, a lot of layover,

induced by tall buildings, is present in the scene. Layover areas are often bright and located in front

of a salient line (i.e. in negative range direction), which is referred to as the double bounce line [Dong

et al., 1997]. It is induced by the summation of all echos involving a re�ection on the ground and at

the facade. The summation occurs because the length of the traversed paths of all comprised echos



4.1. Test site and datasets 63

Parameter b057 b042
Pass direction Ascending Descending

θ 41.6◦ - 42.2◦ 35.7◦ - 36.4 ◦

Heading 350◦ 191◦

NOA 79 94
r 673308 [m] 626190 [m]
σB 156 [m] 89 [m]
δsr 0.59 [m] 0.59 [m]
δSARa 1.1 [m] 1.1 [m]
λ 0.0311 [m] 0.0311 [m]

Start/End date 2008-02-12/2012-03-07 2008-02-04/2012-02-28

Table 4.1.: Table of acquisition parameters of both SAR data stacks

is equal. The respective phase centers are located at the facade ground intersection (i.e. coincident

with the building outline). The tower of the German railway service, which is marked by a green

rectangle in �gure 4.2 (a) and (b) is a good example. As the tower's outline is curved, the double

bounce line is bent. The layover e�ect is stronger for the descending dataset due to the smaller

incidence angle. Secondly, a lot of dominant point scatterers are visible, which are very likely to

induce PS as their signal is very strong making the phase measurement robust to noise.

The areas marked by the red rectangles are shown as close-ups, including the identi�ed PS, in

�gure 4.3 (a) and �gure 4.4 (a) for ascending and descending dataset, respectively (the data for the

complete test area are displayed in �gure C.3 and �gure C.4 in appendix C). The colors (blue - low

altitude to red - high altitude) indicate the estimated height values. A lot of PS are arranged in

lattice-like structures, which are aligned with the building outlines visible to the sensor. A typical

example is framed by the red rectangle in �gure 4.3 (a). The height of the PS that are contained in

such patterns mostly increases when going in negative range direction which suggests the patterns

to be located at facades. In order to illustrate the connection between the distribution of PS and the

facade structures, oblique view aerial images showing roughly the same building parts are presented

in �gure 4.3 (b) and �gure 4.4 (b), respectively. The correspondence is best visible from the building

complex covering the complete right half of �gure 4.3 (a) and (b). The characteristic lattice-like

arrangement of PS transfers almost directly to the PS distribution. The other side of this building

complex is visible in the left and lower left part of �gure 4.4 (a) and (b), respectively. The PS

pattern is present, but not as distinct as in the ascending dataset. A more detailed discussion about

this fact is given in section 4.2.2.

In �gure 4.5 the area marked by the red rectangle in �gure 4.3 (a) is shown on the right. On

the left, a terrestrial image of the building facade is shown. The SAR data are rotated in order to

roughly match the optical data. As the facade is not perpendicular to the LoS of the sensor, it is

skewed in the SAR data. Except for one missing point in the lower left, the number and arrangement

of PS matches with the windows at the facade. However, a spot which is slightly in contrast to the

dark background (marked by the red circle) is visible, implying that the PS has been missed due to

noncompliance with the assumed phase model.
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(a)

(b)

Figure 4.2.: Mean amplitude maps of ascending (a) and descending (b) data stack. The green rectangles
encompass the tower of the German railway service, which induces massive layover due to its
height. The red rectangles enclose an area which is shown as a close up in �gure 4.3 and
�gure 4.4, respectively, including the identi�ed PS.
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(a)

(b)

Figure 4.3.: Close-up of the area framed by the red rectangles in �gure 4.2 (a). (a) The PS identi�ed in the
ascending data stack overlaid with the respective section of the mean map. The colors indicate
the estimated PS heights (green - low to yellow - high). The facade framed by the red rectangle
is discussed in detail in �gure 4.5. (b) Oblique view aerial image having approximately the same
viewing direction as the SAR data in (a).
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(a)

(b)

Figure 4.4.: Close-up of the area framed by the red rectangle in �gure 4.2 (b). (a) The PS identi�ed in the
descending data stack overlaid with the respective section of the mean map. The colors indicate
the estimated PS heights (green - low to yellow - high). (b) Oblique view aerial image having
approximately the same viewing direction as the SAR data in (a).
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Figure 4.5.: Terrestrial photograph of the facade marked by the red rectange in �gure 4.3 (a) on the left and
the corresponding SAR data on the right. The SAR data are rotated to approximately match the
photograph. The identi�ed PS are shown as colored points. The color indicates the height(green
- low to yellow - high). The correspondence between the arrangement of windows and the lattice-
like structure of the PS is clearly visible.

The UTM coordinates of the PS are obtained by geocoding. Due to unknown or imperfect

knowledge of the height of the reference PS, both point clouds may be shifted from their true

position in the respective elevation directions. Since the fusion approach outlined in [Gernhardt

et al., 2012] has been applied to the data, this e�ect is largely eliminated. In this approach two PS

point clouds are aligned based on pairs of corresponding PS. As the directions of the residual shifts of

both point clouds is known (i.e. elevation), their absolute position can be estimated. The accuracy of

such correction is demonstrated in Gernhardt [2012], where di�erences of the shifts estimated for one

PS set in two di�erent con�gurations (i.e. Ascending/Ascending opposed to Ascending/Descending

con�guration) around one to two meters are reported. It is worth to note that the PS height, despite

the remaining shift, refers to the purely geometric reference surface used to calculate the geometric

phase term (cf. section 2.2). In most cases the WGS84 is used for this purpose.

In �gure 4.6 both PS sets are displayed as topview. The ascending data are displayed in green,

while the descending data are shown in red. Image bottom-top corresponds to map north. In

comparison with the map displayed in �gure 4.1, it is apparent that most PS are located at building

structures. In total, roughly 75000 points are available, 35000 for the descending and 40000 for

the ascending dataset. As already assumed on the basis of the range-azimuth data, the majority

of the building PS is situated at facades. Since the LoS directions of both datasets are roughly

opposed to each other1, they are complementary. The ascending datasets contains facades facing to

the west, while the descending dataset covers frontages oriented to the east. Finally, the alignment

1The sensor is always looking to the right with LoS perpendicular to the �ight direction.
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Figure 4.6.: Ascending (green) and descending (red) PS displayed as topview. Most PS correspond to building
structures. Facades, in particular, contain the majority of the PS. The descending data consist
of approximately 35000 points, while the ascending dataset is composed of roughly 40000 points.
Due to the fusion, both PS solutions are well aligned.

between ascending and descending PS result is clearly visible from the match between the respective

facade PS. As outlined above, the majority of the PS are located close to buildings. Experiments

based on ray-tracing simulations show that many of those are induced by a threefold re�ection at

building details that happen to form a trihedral re�ector [Auer, 2011]. Usually, the surfaces involved

in this re�ection are located close to each other or are even adjacent. Of course, PS attributable

to buildings may also be induced by other mechanisms. One example is the strong double bounce

re�ection involving parts of the ground surface and the building facade. Those PS are situated at

the intersection between facade and ground (i.e. at the building outline). However, in some cases

PS are caused by interaction with buildings, but are located away from all involved structures.

Two scenarios are described in the literature to explain such �ndings: virtual corner re�ectors2,

and ghost PS. The former are constituted by unrelated planar surfaces that form a section of a

trihedral re�ector. For example, two completely unrelated facades that are perpendicularly oriented

with respect to each other and the (plane) ground surface may constitute a corner re�ector provided

there is some clear space between them. Obviously, the phase center of such corner has no real world

2The term ghost corner is used synonymously. In this work the term virtual corner is utilized to avoid confusions
with ghost PS.
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(a) (b)

Figure 4.7.: Histogram of the a-posteriori standard deviations of the elevation estimates for the descending
(a) and the ascending (b) dataset. The estimates using the ascending data are more accurate
due to the larger baseline span (cf. table 4.1).

correspondence [Auer & Bamler, 2010]. The location of a potentially induced PS depends on the

spatial arrangement of the three planes and may be far away from any of the involved buildings.

Moreover, the estimated deformation is a mixture of the movement of all three surfaces. Such PS

appear to be distributed arbitrarily throughout the scene. Ghost PS, on the other hand, involve

two re�ections at the ground in addition to the interaction with the building (mostly a threefold

re�ection) [Auer et al., 2011a]. Due to the longer path length, the PS are seemingly located below

ground level. This is similar to the mirror e�ect observed for bridges over water reported by Soergel

et al. [2008]. Both, virtual corner re�ectors and ghost PS, disturb the following investigation.

Whereas the former are very di�cult to identify, ghost PS can be easily recognized and removed

using a digital terrain model (DTM), which is done to facilitate the subsequent studies.

One of the main advantages of the LAMBDA estimator (cf. section 2.3) is the inclusion of

measurement and parameter uncertainties. Histograms of the a-posteriori standard deviations of

the elevation estimates are shown in �gure 4.7 (a) and (b) for the descending and ascending dataset,

respectively. Although the descending stack contains slightly more images, the results obtained for

the ascending dataset are more accurate due to the larger baseline span (cf. table 4.1).

4.1.2. Reference data

Three dimensional city model

The city model available for our investigation has been mostly generated from airborne LIDAR

data by automatic building reconstruction and features LOD 2. It has been produced by virtualci-

tySYSTEMS using an automatic reconstruction algorithm based on [Kada, 2009]. Each building is

represented as a triangulated three-dimensional mesh containing a few dozen triangles. In total, all

building models comprise approximately 13000 triangles. Two buildings, namely the Kollho� Tower
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and the Sony Center, are modeled in LOD3. The former model contains roughly 12000, while the

latter incorporates around 30000 triangles.

According to the Open Geospatial Consortium (OGC) standard CityGML (cf. [Kolbe, 2007]),

LOD2 models have to exhibit an absolute accuracy of at least two meters. Furthermore, structures

having a footprint larger than 4x4 m2 have to be included. Similarly, for LOD3 models the maximum

allowable error is 0.5 meters and the maximum size of an uncharted object is 2x2 m2.

Each building is given in its own local coordinate system and is transformed to UTM coordinates

using a tie point. In order to position the single buildings at the correct height, a DTM, which is

referenced to the o�cial German height reference system (i.e. Deutsches Haupthöhennetz (DHHN)),

is used. The altitudes are given as normal heights, referring to the quasi-geoid (cf. Torge [2001]).

The planimetric reference of the DTM is the Bessel ellipsoid. Thus, a change of datum is necessary

to transform the DTM to WGS84.

LIDAR data

The LIDAR data have been acquired using an airborne sensor. Most of the points are located on

horizontal surfaces (i.e. on the ground and on building roofs). In order to better match the city

model, the ground points are removed by simple height thresholding, assuming a horizontal ground

surface. The point density of these data (after thresholding) is around three to four points per square

meter on standard buildings. Approximately 90% of the points are located on the roof, which makes

a comparison with the PS point clouds di�cult as those feature a much denser sampling at the

facades. Height as well as position refer to the WGS84. Due to the di�erent datums of LIDAR and

the building models, a shift is observable between both datasets, which is strongest in z-direction.

Both datasets are aligned using the registration algorithm described in section 3.2. The dispersion of

the LIDAR points is assumed to be isotropic, implying equal weights (i.e. wk = 1 in equation (3.26)).

This is a simpli�cation as the precision of the point locations may be non isotropic depending on

the acquisition geometry and the system parameters of the LIDAR sensor (cf. [May & Toth, 2007]).

After alignment the signed distances of the LIDAR data to the city model are calculated. In

�gure 4.8 (a) and (b) histograms of those distances to the vertical and horizontal faces, respectively,

are shown. The red lines indicate Gaussians �tted to the histograms. The estimated standard

deviations of the bell curves are 0.8 meters and 1.2 meters for (a) and (b), respectively. The mean

values are close to zero (10 cm for the facades and -20 cm for the roofs). Especially the distances to

the horizontal structures (i.e. to the roofs) show the e�ects of generalization. Roofs are often quite

complicated due to many small superstructures. Fitting simple models (e.g. �at or gable roofs) in a

least squares sense, results in systematic underestimation of the superstructures and overestimation

of the actual roof. Since facades are typically simpler, the e�ect is not as strong. This fact is clearly

visible in �gure 4.8. While the horizontal distances (a) are not strictly distributed according to a

gaussian curve, the vertical distances are far from being normally distributed.
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(a) (b)

Figure 4.8.: (a): Histogram of signed distances between vertical faces (i.e. horizontal distances) and LIDAR
data, (b): Histogram of signed distances between horizontal faces (i.e. vertical distances) and
LIDAR data. Gaussians �tted to the histograms are shown in red. The standard deviations are
0.8 and 1.2 meters, respectively. The estimated shift has been applied before calculation of the
distances.

4.2. Grouping of PS at building facades

The grouping method outlined in section 3.1 is applied separately to the ascending and the descend-

ing dataset. The performance of the procedure is assessed for one test area. In �gure 4.5 an instance

of a lattice-like PS distribution is illustrated. The considered facade is a textbook example for a

regular arrangement of PS. This may convey the impression that grouping the PS is simple and

completely solved using basic methods. As a matter of fact, such clean patterns are quite rare. Con-

sidering the other facades in �gure 4.3 (a) and �gure 4.4 (a), horizontal rows of PS are discernible.

However, often the patterns seems to be interrupted or impaired by other PS. In some cases the

PS distribution even seems to be completely random. Possible explanations for this behaviour are

discussed along with the evaluation of the grouping results. Finally, the grouping information is

used to improve the geocoding of the identi�ed horizontal patterns. Although an evaluation of more

test areas would be preferable to infer the transferability of the grouping procedure and to identify

the critical parameters, results for only one site are presented here. This is due to the fact that

no real ground truth is available to automatically assess the algorithms performance. Instead the

plausibility of the results has to be determined for every facade using terrestrial photographs or

oblique view aerial images.

4.2.1. Parameter Settings

The grouping procedure is mainly in�uenced by the two tolerance parameters ∆X′tol and ∆Y′tol. In

section 3.1.2 theoretical considerations on appropriate settings are given and numerical examples

are illustrated. As ∆X′tol and ∆Y′tol depend on the precision of the outline orientation and the PS

localization, suitable values for the latter quantities have to be determined. The standard deviation
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of the PS positions in range and azimuth are given by equations (2.24) and (2.25), respectively.

Both depend on the SNR of the PS at hand. Since no direct information about the PS quality is

supplied3, a mean SNR corresponding to a coherence of |Γ| = 0.8 (cf. equation (2.27)) is assumed

for all PS. It is worth to note, that σr as well as σa are di�erent for the two PS results as the number

of SAR images in the stacks di�ers (i.e. the precision of stack b042 is slightly better). Analogous to

the numerical experiments conducted in 3.1.2, the standard deviation of the outline orientation is

set to σα = 1◦. The outlines projected to the ascending and the descending mean amplitude images

are illustrated in �gure 4.9 (a) and (b). Each facade takes the shape of a parallelogram. The vertical

boundaries are always oriented along range-direction, while the direction of the horizontal boundaries

depends on the alignment between facade and �ight path of the sensor (cf. �gure 3.2). A comparison

of such horizontal borders with the bright double bounce lines, which are quite pronounced in some

cases, shows good alignment. In view of that, the assumed σα appears to be appropriate. In order

to numerically evaluate the uncertainty of the line orientation, the double bounce signatures could

be identi�ed and contrasted with the map data. Automatic methods for the detection of double

bounce lines exist [Tupin et al., 1998; Touzi et al., 1988]. However, such investigation is beyond the

scope of this work as it would require intensive study of such line detectors to separate errors in the

map data from shortcomings in the detection process.

Finally, two di�erent scaling factors κ, namely 2 and 3, are considered. Provided that the quan-

tities ∆X′ and ∆Y′ are normally distributed with zero mean and standard deviation as given in

equations (3.13) and (3.8), κ = 2 and κ = 3 imply that roughly 95% and 99.5% of all realizations

are within the tolerances. If ∆X′ and ∆Y′ follow a Gaussian distribution is di�cult to investigate

analytically. Alternatively, numerical simulations can be used to generate empirical distribution

functions for ∆X′ and ∆Y′. However, as the number of parameters that potentially in�uence the

shape of the probability density functions (PDFs) of ∆X′ and ∆Y′ is large, many simulations have

to be conducted to cover all possible con�gurations. Therefore, no further investigation on the

probability distributions of ∆X′ and ∆Y′ is conducted within the framework of this thesis. Thus,

the con�dence intervals stated above, remain hypothetical.

The reason for adopting such high con�dence level is that in the developed approach one missed

PS already stops the line assembly. If a pattern is composed of N PS, the probability of �nding it

completely, decreases exponentially with the number of elements in the group. This is due to the

fact that the number of necessary comparisons is proportional to N4.

Besides ∆X′tol and ∆Y′tol, the bandwidth of the KDE has to be adjusted. It is set to a quite

small value of 10 centimeters in order not to miss any actual pattern frequency. The impact of

this parameter on the accuracy of the frequency estimation is not evaluated experimentally as it is

not considered to be critical. Of course, X′-di�erences of unrelated PS ful�lling the ∆Y′-constraint

3Only indirectly via the height standard deviation.
4Of course, heuristics can be found to mitigate such behavior. For instance, if one PS slightly exceeds a threshold,
it could be accepted under the condition that it allows the detection of a longer pattern. For simplicity, such
heuristics have not been considered.
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σr [m] σa [m] σα [◦] κ BWKDE [m]
b057 0.018 0.034 1.0 2/3 0.1
b042 0.017 0.031 1.0 2/3 0.1

Table 4.2.: Table of settings used for the grouping experiments

(i.e. which are close in Y′ direction) may be contained in the data used to estimate the pattern

spacing. Given a small kernel bandwidth, two cases are conceivable. Firstly, one or more erroneous

X′-di�erences are located close to an actual pattern spacing. This may bias the estimate. However,

as the kernel function decreases quickly, the e�ect is unlikely to distort the results dramatically.

Secondly, virtual spacings may arise due to wrong X′-di�erences. Those spurious frequencies are,

fortunately, not likely to produce groups in the line assembly step. An overview of all applied

settings is given in table 4.2.

4.2.2. Results

The grouping results obtained with the parameter settings outlined in the preceding section are

discussed for the test areas depicted in �gure 4.3 and �gure 4.4. In order to guide the grouping,

the facades visible to the sensor are projected to the SAR geometry. This is illustrated in �gure 4.9

(a) and (b) for the ascending and the descending dataset, respectively. The facades are depicted as

colored parallelograms. In the background the mean amplitude maps are shown. The identi�ed PS

are illustrated as blue dots. In most areas the re�ections of several facades mix. One exception is

the building complex visible in the right half of �gure 4.9 (a), where most facades are isolated from

each other.

Ascending data

The grouping results for the ascending dataset using κ equal to 2 and 3 are presented in �gure 4.10

(a) and (b), respectively. The outlines of facades that triggered the detection of at least one pattern

are shown as colored line segments. The corresponding groups are indicated by large connected dots

of the same color. In the background the mean amplitude image is depicted. Only PS that are

located within at least one facade footprint are considered in the grouping. Those are illustrated

as small blue dots. In either result the majority of groups are identi�ed at the building complex in

the right half. There are two reasons for the plethora of groups identi�ed there. Firstly, the very

regular distribution of windows at the facades leads to remarkably regular patterns (cf. �gure 4.3).

Certainly, the design of the windows itself is also of importance, since many other facades exhibit a

very regular distribution of windows but do not accommodate many useful PS patterns. Secondly,

as outlined above, the facades of this building complex are quite isolated (cf. �gure 4.9 (a)). In

this way the regular patterns are not disturbed by layover. Regarding the in�uence of the window

setup, it is interesting to consider the facades in �gure 4.10 (a) marked by the dashed red rectangles

(1)-(3). Close-ups of the corresponding windows are displayed in �gure 4.11. All setups lead to
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(a)

(b)

Figure 4.9.: Facades visible to the sensor for ascending (a) and the descending (b) dataset in the respective
range-azimuth plane. The facades are depicted as colored parallelograms. In the background, the
mean amplitude maps are shown. The blue dots represent the identi�ed PS.
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(a)

(b)

Figure 4.10.: Grouping results for the ascending dataset using κ = 2 (a) and κ = 3 (b). The outlines are
shown as colored line segments. The a�liated groups are indicated by connected dots of the
same color. The mean amplitude image is depicted in the background. All PS located in at least
one facade footprint are illustrated as blue dots.
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(1) (2) (3)

Figure 4.11.: Close-ups of the windows present at the facades marked by the frames in �gure 4.10 (a). The
numbers (1)-(3) correspond to the rectangles (1)-(3).

characteristic signals and PS patterns. Windows of type (1) produce a sharp point-like response,

which is most likely due to a trihedral re�ection mechanism, having its center in the lower left or

right corner depending on the facade orientation. The dominance of such scattering mechanisms

in urban areas and its importance for the PS technique has already been reported elsewhere [Auer

et al., 2011b; Auer, 2011]. The resulting PS pattern is outstandingly regular. In contrast, windows

of type (2) are not as dominant regarding their manifestation in the amplitude data as those of type

(1). Furthermore, the scattering mechanism is not as straight-forward as for window type (1) since

considerable re�ection may occur at the vertical structure dividing the window or the horizontal bar

close to the window sill. The patterns formed by windows of type (2) are not as regular as those

formed by type (1), which is discernible from the considerable number of missed line parts (especially

for κ = 2). Finally, at facade (3) which accommodates windows of type (3) no regular patterns are

observable at all. From the geopositions of the PS it becomes obvious that none of them are located

at the facade. Figure 4.11 reveals the reason for that: The window plane is almost aligned with the

facade and the o�set of the two planes is too small to serve as corner re�ector. It is worth to note

that the behavior of window type (3) seems to depend strongly on the aspect. The facade that is

located between facades (1) and (2) (with groups colored in light green) also accommodates such

windows but contains several PS that form regular patterns.

On the left side of �gures 4.10 (a) and (b), considerably less groups are identi�ed. Except for some

very short lines, those groups are located at two structurally identical buildings marked by rectangle

(4) (cf. lower part of �gure 4.3 (b) for an oblique view optical image of those buildings). It is obvious

that the PS distribution is not nearly as regular as it is at the just considered building complex. To

a large extent this is, presumably, due to layover e�ects. In most areas the signals of two or more

facades mix up, leading to incomplete or disturbed patterns. However, also the distribution of facade

structures itself is more complicated (cf. �gure 4.3 (b)) than the simple lattice-like arrangement of

windows at the building complex on the right side. In many instances the very same arrangement

of facade structures appears periodically along a facade. Each facade element can induce several

PS which results in a distinct pattern of points that repeatedly appears at the facade. Obviously,
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the model used in the outlined procedure (i.e. periodically appearing points) is too simple for such

cases. A possible extension are shape or facade grammars, which have been applied for facade

reconstruction from terrestrial photographs [Ripperda & Brenner, 2006; Riemenschneider et al.,

2012].

The di�erence between the two grouping results (κ = 2 and κ = 3) is relatively small within the

test area. Quite di�erent results arise only at the facade marked by rectangle (2). For κ = 3, the

outcome is relatively complete except for one PS missing in the third row (counting from left to

right). In contrast, the result using κ = 2 shows considerably less groups.

The results obtained at facade (2) for κ = 2 as well as at facades (5) and (6) for κ = 2 and

κ = 3, are surprisingly incomplete. All those facades accommodate windows of type (2). In case the

stochastic model of the coordinate di�erences is valid and the PS are arranged in a perfectly regular

lattice, the probability for �nding the complete pattern should be quite high. On the other hand, the

facades (1) and (7), which both accommodate windows of type (1), show complete results for κ = 2

and κ = 3. Furthermore, the three facades oriented almost along range direction and located above

the facades (2), (5), and (6), respectively, contain windows of type (2). They, nevertheless, show

quite complete and in particular long patterns. Obviously, the deviation from a lattice-like point

distribution is stronger at facades (2), (5), and (6) than elsewhere at the building complex. Whether

the point positions are less precise or their true locations deviate stronger from a perfectly regular

arrangement is di�cult to assess. However, the fact that the PS at those facades which show poor

results are somehow related is obvious. By missing those correlations, a lot of usable information

is lost. Finally, it is worth to mention in this context that the presumption of σα being a sensible

estimate seems reasonable, as several long groups are found. Otherwise those groups would have

been split into shorter segments.

Descending data

The grouping results for the descending dataset are illustrated in �gure 4.12 (a) and (b) for κ = 2

and κ = 3, respectively. Similar to the left half of �gure 4.10, not many groups are identi�ed in

either results. A major reason for that is layover, which becomes obvious from �gure 4.9 (b). In

most areas the signals from two or more facades mix. Consequently, the PS distribution appears to

be mostly irregular. The areas marked by the rectangles (1)-(3) in �gure 4.12 (a) are particularly

interesting since they show the back side of the building complex containing many regular patterns

in the ascending dataset. An oblique view aerial image of the area is depicted in the lower left half

of �gure 4.4 (b). The lattice-like arrangement of windows is clearly recognizable. The facades (2)

and (3) in �gure 4.12 contain windows of type (2), while facade (1) accommodates windows of type

(1). In contrast to the results in the ascending data, the PS distribution is hardly regular, except

for some small groups at facade (1) and two longer lines at facade (2) close to the outline (depicted

in cyan). The irregularity in the upper part of facade (2) is surprising as no other facades interfere

in this area. Most likely, the disturbance of the regular pattern is due to signals from the building
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(a)

(b)

Figure 4.12.: Grouping results for the descending dataset using κ = 2 (a) and κ = 3 (b). The outlines are
shown as colored line segments. The a�liated groups are indicated by connected dots in the
same color. The mean amplitude image is depicted in the background. All PS located in at least
one facade are illustrated as blue dots.
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roof mixing with re�ections from the facade. This assumption is supported by the fact that many

of the PS a�liated to facade (2) are situated on the roof of this building as visible from the height

indicated by the color in �gure 4.4 (a). For such facades exhibiting a regular PS arrangement in

some parts and an irregular distribution everywhere else, the estimation of the pattern frequencies

may become a problem, because the KDE is applied to a dataset containing comparatively many

random di�erences. That may impair the accuracy of the estimated pattern spacings giving rise to

an additional error term which is not considered in the stochastic model (cf. section 3.1.2). As a

result patterns are lost or only detected in parts. This may be one reason for the poor performance

of the grouping procedure on the two long lines close to the outline of facade (2). Those are only

partly detected (in particular for κ = 2), although both patterns appear to be fairly regular.

4.3. Alignment of PS to city model

As outlined in section 4.1, a misalignment between the two PS point clouds and the city model is

expected. The main in�uence is presumed to be induced by the di�erent vertical datums. Conse-

quently, the shift in z-direction is anticipated to be much larger than in x- or y-direction. Certainly,

residual errors in the fusion process lead to errors in all three dimensions, which are expected to

have a maximum of about one meter. In order to work with one consistent dataset, the two PS

point clouds are aggregated for the alignment. A separate alignment of the the two point clouds

would only make sense if the shift between them is signi�cant with respect to the precision of the

alignment procedure. This is unrealistic due to the strong di�erences between the PS point clouds

and the building models.

4.3.1. Parameter Settings

In order to achieve optimal results, the parameters controlling the stochastic model have to be chosen

reasonably. The latter mainly consists in �nding sensible values for σ2
ck
(denoting the variance of the

plane parameter c of the face involved in the kth point to face correspondence) as precision estimates

for the PS positions are available. Since σ2
ck

is believed to to be mostly in�uenced by generalization

e�ects, it is inferred from the di�erences between the building models and the LIDAR data shown

by the histograms in �gure 4.8 (a) and (b) for roofs and facades, respectively. As facades and roofs

show quite distinct behavior, di�erent σ2
ck

are assumed. The most reasonable choice is to use the

variances of the bell curves shown in �gure 4.8 in red as estimates of the σ2
ck
.

σ2
ck,Roof

= 1.5 m2

σ2
ck,Facade

= 0.6 m2 .

The uncertainty of the PS locations in elevation is described by the a-posteriori standard deviations

of the elevation estimate, obtained from the LAMBDA estimator. Histograms for both stacks are
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Figure 4.13.: The solid lines indicate the shifts estimated in the single iterations. The dashed lines represent
the ±2 · σ intervals. The vertical axis is cut at 0.5 meters for presentation purposes. The
iteration is converged after iteration 7.

shown in �gure 4.7. In range and azimuth direction, no information per PS is available. However,

since σr as well as σa are at least an order of magnitude smaller than σs, their in�uence on σdl is

negligible. Thus, the terms containing σ2
r and σ

2
a in equation (3.30) are ignored. Finally, the width

Wol of the bu�er constructed around every outline is set to two meters.

4.3.2. Results

The convergence behavior of the ICP procedure is illustrated in �gure 4.13. Overall, 26 iterations are

performed. The vertical axis of �gure 4.13 is cut at 0.5 meters for presentation purposes. The shifts

are shown as solid lines, while the dashed lines indicate the ±2 · σx, ±2 · σy, and ±2 · σz intervals,
respectively. The error estimates are derived by variance propagation conducted in each iteration

on the basis of the problem formulation given in appendix A. It is apparent that the procedure has

converged after iteration seven. The �nal transformation can be derived by integration of the shifts

displayed in �gure 4.13. ∑
∆̂
T

=
[
−0.1 −0.2 3.6

]
[m]

As expected the main misalignment is present in vertical direction due to di�erent height references.

The determined horizontal shifts are relatively small. The accuracy of the alignment is assessed in

the following section dealing with the assignment of PS to buildings. The estimates of the standard

deviation do not change much from iteration to iteration. Only σz decreases slightly after the �rst

iteration due to the alignment in z-direction. The precision of the shift in vertical direction is



4.4. Assignment of Persistent Scatterers to buildings 81

roughly a factor of two worse than in horizontal direction. The reason for that may be the smaller

number of PS corresponding to horizontal building faces. Compared to the order of magnitude of

generalization e�ects or the dispersion of the PS positions in elevation direction, the imprecision of

the shift seems to be negligible.

4.4. Assignment of Persistent Scatterers to buildings

In this section experiments dealing with the assignment of PS to buildings are treated. The discussion

is subdivided into two main parts. Firstly, the a�liation of PS to building models is considered.

Secondly, relations between facade structures discernible in the LIDAR data and horizontal groups of

PS (cf. section 4.2) are addressed. Since the location of a PS in the range-azimuth grid is ambiguous

with respect to the real world (due to layover), all investigations are conducted using the geocoded

point clouds. Finally, the established relations between PS and building faces are used to compile a

density map which reveals the number of PS per unit area building surface. Such map is of major

practical importance as it shows if the sampling is su�cient for monitoring applications. Besides

this practical importance, such map is useful to identify some of the driving factors in�uencing the

PS density which constitutes the main part of this �nal section.

4.4.1. Matching of Persistent Scatterers to building model faces

The a�liation of PS to building models is conducted according to section 3.3. For this investigation

the bu�er widths Wol and wpl are set to two and one meter, respectively. Since the former threshold

only controls the exclusion of PS that are far from buildings, it is set to a rather big value compared

to the PS positioning accuracy. The second threshold is chosen to be on the order of the maximum

elevation standard deviation occurring in the PS sets (cf. �gure 4.7), to remove the majority of the

assignments where the perpendicular projection of the PS onto the building face is located too far

away from the polygon associated with the building face. The threshold on the normalized distance

is chosen to be three which corresponds to a con�dence level of 99.5% given that the distribution

assumption (i.e. standard normal distribution) holds. The study focuses on one main question: How

reliable is such an assignment using the available datasets and the outlined assignment procedure?

As mentioned in section 4.1.1 (cf. �gure 4.1 and �gure 4.6) a correlation between the PS point

clouds and building outlines is recognizable. However, several issues have to be considered when

PS are assigned pointwise (i.e. the single assignments are independent of each other) to building

faces of a generalized city model based on a purely geometric criterion. Two problems are of major

importance. Firstly, a PS may be related to some structure at a building, but this structure is

not properly represented in the building model. Such cases may occur due to generalization or

deviations of the phase center of a PS from the actual (i.e. not generalized) building surface.

Secondly, closeness of PS to a building does not necessarily imply a relation. In section 4.1.1 virtual

corners are discussed. Those are constituted by unrelated surfaces forming a section of a trihedral
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re�ector. The phase centers of the resulting PS have no real world correspondence but may happen

to be located close to buildings.

The area considered for the following study coincides with the test site addressed in section 4.2.2

(cf. �gure 4.9). In �gure 4.14 the resulting assignment of PS to buildings for this test site is

illustrated. The building models are indicated by the thin black lines. The point colors represent

the a�liation to buildings. All points shown in brown color, are unassigned5. At �rst glance, the

many PS which are located almost exactly at the facades strike the eye. This suggests that both

datasets are in good alignment in x- and y-direction. Since the precision of the PS position estimates

is high compared to the typical spacing between buildings, an assignment as shown in �gure 4.14 is

unproblematic in most cases.

Figure 4.14.: Assignment of PS to buildings. The colors indicate the determined relations. Dark brown PS
are unassigned. The used building models are shown as thin black lines.

However, inside the outlines of each of the six shown building models a couple of PS remain

unassigned. This is due to the fact that their normalized distances to any bounding surface are

5For this study only the shown building models are used. The PS in the left half relate to building models which
are not considered here
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above the threshold. Such points are actually located in the inside of the respective building models

which hints to one of the two issues outlined above (unrelated PS close to a building or PS that are

not properly represented by the building model). Some of those PS are examined in more detail in

the following case studies.

For further investigation, the two buildings framed by the rectangles (a) and (b) are inspected in

detail. The assignment of PS to building faces is demonstrated for (a). Furthermore, the problem

with PS which are close to a building model but are potentially unrelated is discussed. Generalization

issues are addressed by means of building (b).

Case study (a)

The PS assigned to the vertical and the horizontal faces of building (a) are shown separately in

�gure 4.15 (a) and (b), respectively. The red arrow in (a) displays the viewing direction in (b).

Black lines connecting the points to the building faces indicate the a�liation. An oblique view

aerial image ( c© Microsoft BingTMMaps) of the building is depicted in �gure 4.16. Some of the

facades have already been discussed in section 4.2. The building exhibits a lattice-like distribution

of windows which are likely to induce a large portion of the facade PS. Along the facades the PS

compare well with the map data. Small systematic e�ects are only visible at the facades (f1) and (f2)

(the PS are slightly left of the model face). The reason for this behavior is most likely generalization.

However, also deviations of the PS phase centers from the actual building surfaces are a possibility.

The dispersion around the building faces (f3) to (f6) is much stronger than at the other facades.

This is surprising since all facades feature a similar setup. It is noticeable that most PS located

at facades oriented horizontally in �gure 4.15 (a) show a larger deviation than the facades oriented

vertically. However, the PS at the two horizontally aligned facades at the bottom of �gure 4.15 (a)

exhibit a low dispersion. Furthermore, it is important to stress that the PS at the facades (f4) to (f6)

result from the descending b042 datastack while the PS at the facades (f1) to (f3) result from the

ascending b057 datastack. Thus, the orientations of the horizontally oriented facades (f4) to (f6) on

the one hand and (f3) on the other hand with respect to the LoS of the sensor are di�erent. Given

those observations, it is hard to assess if the dispersion of those PS is related to di�erent facade

orientations. In general, the investigation of PS behavior as a function of acquisition parameters

(e.g. the relative orientation between building face and LoS of the sensor) is di�cult because the

re�ection mechanisms inducing the PS are unknown in the majority of the cases. This makes the

formation of groups of comparable PS very di�cult.

In contrast, PS and building model do not compare well at the horizontal faces (see �gure 4.15).

At �rst glance, the deviation of the points from the modeled surface is much larger than at the

facades. Furthermore, the points tend to be located rather underneath the modeled surface. The

opposite (i.e. points above the surface) could be explained by superstructures not contained in the

reference data, such as antennas. For comparison and to exclude generalization e�ects, the centerline

of the LIDAR data is depicted as dashed red line. Surprisingly, a considerable number of LIDAR
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(a)

(b)

Figure 4.15.: (a) PS assigned to the facades. (b) PS assigned to the horizontal bounding surfaces. The
red arrow in (a) indicates the viewing direction in (b). The point colors and the black lines
connecting the PS to the building faces show the a�liation. The red dashed line in (b) depicts
the building surface as discernible in the LIDAR data. Note that a considerable number of
LIDAR points are located underneath the roof superstructure, which is indicated by the thin red
line.
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Figure 4.16.: Oblique view aerial image of the building addressed in �gure 4.15 ( c© Microsoft BingTMMaps).

points are situated underneath the roof superstructure (indicated by the thin red line). The reason

for this e�ect and the reliability of the corresponding data are unknown. However, it fairly well

explains the distribution of the PS shown in light green. Still, also the PS attributed to the main

roof plane (indicated by the black points) are, except for a few PS, located underneath the modeled

surface. It is very questionable if such points are related to the building roof. Similarly, some PS are

attributed to the bottom surface of the building (beige points). Although many of them are located

close to one of the facades and may, thus, be mismatches, some are located right in the inside of

the building. Such PS may, of course, be induced by structures within the building. However, a

corresponding signal path that persists over a longer time span is hard to imagine.

In �gure 4.17 the unassigned PS located inside building (a) and those PS with large normalized

distance (i.e. 2.5 to 3) are displayed as red and green points, respectively. Figure 4.17 (a) and

(b) show the building as top- and side-view (analogue to �gure 4.15 (a) and (b)), respectively.

Surprisingly, few PS exhibit a normalized standard deviation between 2.5 and 3. The most noticeable

feature of �gure 4.17 is the large number of unassigned PS located inside the building. In contrast

to the already addressed cases where such points are allocated to one of the faces, many of the PS

are situated far from any bounding surface. Furthermore, those points do not seem to be distributed

completely arbitrarily. As visible from �gure 4.17 (a) the points are concentrated in the central part

of the building. Figure 4.17 (b) proofs that the majority of them is situated in the upper half of the

building.

Considering the large number of PS inside the addressed building, the question if there is any

relation between the two arises. As argued above points in the inside would require a signal path

within the building or some of the bounding surfaces to be transparent to the RADAR wave. While
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Figure 4.17.: Unassigned PS and PS with large normalized distance (i.e. 2.5 to 3) shown as green and red
points, respectively. (a) depicts a topview, while (b) shows the scene as side view.

the former is conceivable in a few isolated cases, the latter appears to be completely unrealistic.

Alternatively, the PS could be induced by virtual corner re�ectors or similar mechanisms. In this

case, the proximity is basically random. However, the large number and distribution of those PS

would suggest those re�ectors to be related. A closer examination of this issue is subject to future

work.

Case study (b)

The situation for case study (b) is displayed in �gure 4.18. An oblique view aerial image is displayed

in �gure 4.18 (c). The following study focuses on the building part marked by the red polygon.

The side view shown in �gure 4.18 (a) illustrates the scene from the perspective indicated by the

red arrow in (c). In (a) all PS that are attributed to the building with large normalized distance

(i.e. between 2.5 and 3) and unrelated PS are shown. The former are displayed in green, while the

latter are displayed in red. The established assignments are shown as black lines connecting the PS

with the building model. Finally, the surface visible from the LIDAR point cloud is depicted as blue

dashed line. In between there is a gap where no LIDAR points are available. This part coincides

with the image section marked by the green polygon in (c). In the optical data, four indentations

are visible. The rest of the area seems to contain windows. However, this is not clearly recognizable

due to the relatively low resolution of the aerial image. The kink in the lower left of the LIDAR

surface is caused by the roof of a shopping mall in front of the considered building.

The region framed by rectangle r1 perfectly illustrates the e�ects of generalization. By comparing

the LIDAR surface with the building model, it becomes obvious that the modeled roof is several
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Figure 4.18.: (a) Side view of the building part marked in (c) by the red rectangle. The red arrow in (c)
marks the viewing direction in (a). Green and red points depict the attributed and unassigned
PS, respectively. The black lines show the a�liation of the PS to the faces of the building
model. The building surface as discernible in the LIDAR data is displayed by the dashed blue
line. The rectangles r1 and r2 distinguish the areas discussed in more detail. (b) The facade
of the investigated building together with the PS relevant for area r2 are shown. The dashed
lines signify PS located approximately at the same height. (c) Oblique view aerial image of the
investigated building ( c© Microsoft BingTMMaps).
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meters above the actual one. The PS compare much better with the LIDAR data. However, similar

to the assignment to the roofs presented in �gure 4.15 (b), the dispersion of the PS around the

reference is quite large. This makes a de�nite statement on the validity of the alignment in z-direction

di�cult. Those PS whose estimated positions are above the blue line, happen to be related to one

of the building faces. All other PS remain unassigned. Such strong generalization e�ects are mainly

encountered for building roofs since they generally exhibit more complex shapes than frontages.

However, large facade structures such as balconies may also lead to strong generalization e�ects.

Contrary to r1 rectangle r2 marks a section of the building facade. Two rows of PS with almost

equal distance (approximately two meters) to the building facade are visible. The situation is shown

from a di�erent perspective in �gure 4.18 (b). The dashed lines indicate the vertical locations of

the two rows consisting of three (the uppermost row) and six PS, respectively, including the two

unassigned PS. From �gure 4.18 (a) it is obvious that the uppermost row coincides with the edge of

the LIDAR surface. Those PS may be related to the four indentations present in the area encircled

by the green polygon in �gure 4.18 (c). This would imply that the PS at the second indentation

from the left is missing. The deviation of the bottom row from the facade is, however, peculiar.

At this location, the modeled facade and the LIDAR data are in good correspondence suggesting

generalization e�ects to be negligible. Two explanations are possible. Firstly, the phase centers of

the PS are located inside the building. In case the area indicated by the green rectangle in (c)

contains windows, the radar signal could enter the building and be re�ected at some structure in

the inside. Alternatively, the PS are not related to the building at all. However, this would raise

the question why those PS are arranged so regularly.

4.4.2. Assignment to facade details

In this section horizontal facade structures discernible in the LIDAR point cloud are related to groups

of PS. The aim of this study is to investigate the physical nature of PS by geometric comparison

with the horizontal LIDAR patterns, which are in turn related to real world structures. Approaching

the assignment of PS to facade details in this indirect way is easier since it is much more intuitive

to assign LIDAR data to real world structures than PS.

The LIDAR points forming those horizontal structures are extracted manually. In order to es-

timate the vertical location of each LIDAR pattern, the mean height of the correponding LIDAR

points is calculated. To remove the PS that are not relevant for this study and to enhance the loca-

tion precision of the remaining points, the grouping information is used. Only the results obtained

for the ascending dataset using κ = 3 are employed (cf. �gure 4.10 (a)). The investigation focuses

on two buildings, referred to as (b1) and (b2), respectively. Those buildings are chosen because of

their simple facade design. Both are depicted in the oblique view aerial image shown in �gure 4.19.

Building (b1) has already been discussed in section 4.4.1 (cf. Case study (a)). Since the windows are

the only salient features at the facades of both buildings and one horizontal row is visible per �oor

(the vertical distance between consecutive rows is constant), a relation of the LIDAR patterns to
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the windows is very likely. Closeups of the occurring window designs are presented in �gure 4.11 in

section 4.2.2. At building (b1), only windows of type (2) appear, while building (b2) accommodates

windows of type (1) and (3). Sort (1) appears at the red brick stone facades, type (2) occurs at the

light sand stone frontages (i.e. all facades facing the inner yard). The window designs (1) and (2)

feature broad window sills, which are presumed to be the cause for the horizontal LIDAR patterns

at the corresponding facades. This presumption is reasonable as the patterns have a very small

extent in vertical direction implying the re�ection at a horizontal structure.

Figure 4.19.: Oblique view aerial image ( c© Microsoft BingTMMaps) of the two buildings analyzed in �g-
ure 4.20. The red arrows indicate the viewing direction used in the latter depiction.

The comparison of the grouped PS with the facade structures present in the LIDAR data are

shown in �gure 4.20 (a) and (b) for the buildings (b1) and (b2), respectively. Both images exhibit

the same scale. The viewing direction is represented by the red arrows in �gure 4.19. The relevant

bounding surfaces of the 3D models are depicted as bold and dashed black lines. Along the facades

of either building, the LIDAR data are arranged along horizontal rows. Those are indicated by the

dotted lines and the black rectangles. The latter mark the location and extension of the LIDAR

patterns at facades extending into the image plane. Finally, the grouped PS are illustrated as red

squares. Potential relations between the PS and the windows have already been discussed in section

4.2.2. At both buildings the correlation between PS and LIDAR is clearly visible. However, at

building (b1) the PS are located systematically above the LIDAR data. In contrast, both datsets

seem to match quite well at (b2). In order to quantify potential systematic e�ects, the vertical
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(a)

(b)

Figure 4.20.: Comparison of the grouped PS with the facade structures present in the LIDAR data for the
buildings (b1) in (a) and (b2) in (b). Either image exhibits the same scale. The viewing
direction is represented by the red arrows in �gure 4.19. Bold and dashed black lines depict the
relevant faces of the building models. The LIDAR patterns are indicated as dotted lines and
black rectangles. The latter mark location and extension of the LIDAR structures extending into
the image plane. The grouped PS are depicted as red points. The colored rectangles illustrate
the a�liation of the encircled PS to front or side facades (cf. table 4.3).

distance between both datasets is evaluated. Since the location of the PS phase centers may depend

on the orientation of the target with respect to the sensors viewing direction, only groups at facades

of equal orientation are evaluated jointly. At either building, two di�erent orientations occur: fronto-

parallel and perpendicular to the image plane. The corresponding groups are encompassed by blue

and green rectangles, respectively. As the left and right facade perpendicular to the image plane

at building (b2) accommodate di�erent window types, they are also assessed separately. For the

investigation, the mean vertical o�sets between the PS patterns and the LIDAR data are determined.

Each group height is weighted by the number of comprised PS. The results are reported together

with the corresponding standard deviations σ∆ in table 4.3. The latter are estimated on the basis

of the expected dispersion of the group height (cf. equation (3.21)) using the law of variance

propagation. The standard deviation of the vertical locations of the LIDAR patterns is �xed to

four centimeters. This �gure is inferred from the standard deviation of the vertical row spacing (i.e.

from the standard deviation of the z-di�erences). The two occurring orientations are referred to

as Front and Side corresponding to the fronto-parallel facades (blue rectangles) and the frontages

perpendicular to the image plane (green rectangles). At building (b1) a clear o�set between the



4.4. Assignment of Persistent Scatterers to buildings 91

(b1) (b2)
Front Side Front Side left Side right

∆ 71 cm 48 cm -7 cm 25 cm 22 cm
σ∆ 5.3 cm 4.9 cm 6.6 cm 7.1 cm 6.3 cm

Table 4.3.: Mean vertical distances and corresponding error estimates for PS groups located at fronto-parallel
facades (Front) and frontages perpendicular to the image plane (Side). Those are marked by blue
and green rectangles in �gure 4.20, respectively.

LIDAR and the PS patterns is measurable. This is expected since PS related to windows of type

(2) are unlikely to be located directly at the window sill. The latter is due to possible re�ections

at the vertical structure dividing the window and the horizontal bar close to the window sill. It

is worth to mention that the re�ection mechanism inducing the PS seems to be slightly aspect

dependent leading to di�erent ∆ for front and side. This is plausible due to the complex design

of windows of sort (2). At building (b2) the facades front and side right contain windows of type

(1). They are anticipated to act as a trihedral re�ector, having its phase center in the lower left

or right corner depending on the facade orientation. This implies that ∆ for the facades front and

side right should be close to zero. This can be veri�ed for the front facade, where, a small ∆ is

observed. However, the facade side right exhibits a signi�cant ∆, which is not expected given the

assumed re�ection mechanism. Furthermore, the estimated o�sets for the facades side left and side

right are very similar although the corresponding window designs ((3) and (1) respectively) are quite

di�erent. Assumptions about the re�ection mechanism leading to PS at windows of type (3) remain

very speculative, as the the windows structure in the inside of the building is unknown. However,

the fact that horizontal LIDAR patterns occur suggests the presence of a horizontal plane in the

inside of the building (e.g. a window sill). In case such horizontal structure in the inside exists, the

case is similar to the facade side right. The estimated ∆ does not support a relation between the

PS and this structure.

Of course, some issues have to be kept in mind when interpreting the results presented in �gure 4.20

and table 4.3. Firstly, the comparison is conducted under the assumption that the misalignment

in vertical direction has been completely removed (cf. section 4.3). The estimate of the shift in

the vertical is expected to be less reliable than in x- and y-direction. This is due to generalization

e�ects, which are much stronger for the roofs than for the facades. As already outlined the quality

of the registration in z-direction is hard to verify. Thus, a remaining misregistration in the vertical

in the order of a few decimeter cannot be excluded. This has to be considered when interpreting

the results for building (b2) Side left and right.

Furthermore, it is assumed that the accuracy of the determined group height is well below one

decimeter. For this assumption to hold two requirements have to be ful�lled. Firstly, all PS contained

in a group have to exhibit the same height and, secondly, the weights utilized in the estimation

process (cf. equations (3.17) and (3.18)) have to be reliable. The former condition may be violated

in case false positives are included in the groups or if the PS along a �oor feature di�erent heights.

The latter is elusive as only the readily processed point clouds are available within this study. It is
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worth to note that, if the precision measures of the PS are incorrect, not only the estimated o�sets

∆ but also the respective standard deviations σ∆ become inaccurate (equation (3.21) involves the

PS accuracy estimates). The latter are very important for the discussion outlined above as they

allow to assess the signi�cance of the estimated o�sets.

An example for an erroneous group height estimation is recognizable at the very right facade of

building (b1). The second row from the top is located underneath the corresponding LIDAR row

and is approximately aligned with the face of the building model. In contrast, all other comparable

groups (i.e. those groups framed by the green rectangles) are situated slightly left of the models

bounding surface and above the LIDAR patterns. It is worth to note that an erroneously estimated

group height also impairs the quality of the planimetric position since the group height is used to

improve the PS positions (cf. section 3.1.4). The reason for the strong deviation of this group is

not known. Certainly, it is too large to be explained by random errors (the group contains 16 PS).

A closer inspection of the result suggests that the determined grouping information is correct. In

case this pattern is left out of the determination of ∆ ((b1) Side), the �gure changes from 48 to 59

centimeters. This would, in turn, render the di�erence between Front and Side hardly signi�cant.

4.4.3. Density Map

From the assignment of the PS to the faces of the building models a density map is compiled (cf.

section 4.4.1). It is shown for the ascending and the descending PS results in �gure 4.21 (a) and (b),

respectively. The viewing directions roughly correspond to the LoS of the respective data stacks.

The colors of the bounding surfaces illustrate the density. For both results the same colorscale is

used which is depicted in �gure 4.21 (b) in the upper right corner. For displaying purposes values

above 0.1 PS per square meter are clipped. It is apparent that hardly any building contains no PS

at all. One of such few cases is discussed below (case study (5)). However, there are lots of sparsely

populated faces. This is especially true for building roofs. Most exhibit densities below 0.05 PS per

square meter (i.e. colors ranging from black to light blue). The majority of the facades exhibits a

medium density ranging from 0.04 to 0.06 (light blue to green). However, there is also a noticeable

number of frontages which feature quite low values (i.e. below 0.02 PS per square meter). The results

for the ascending and the descending datasets do not show a signi�cantly di�erent behavior. Mean

value (µ) and standard deviation (σ) of the determined PS densities are reported separately for roofs

and facades in table 4.4. The low mean values for facades may be surprising at �rst glance. The

reason for that is the considerable number of facades which exhibit PS densities below 0.02 PS per

square meter. The other �gures support the already outlined observations. Cumulative histograms

for the ascending and the descending dataset are shown in �gure D.1 and �gure D.2, respectively.

In the following, the main factors driving the PS density are discussed using case studies (1)-(5),

marked by the white dashed rectangles in �gure 4.21. Those factors comprise: surface structure

(1)-(2), shadowing (3), aspect dependency (4), and quasi-random in�uences (5).
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(a)

(b)

Figure 4.21.: Map of PS density for the ascending (a) and the descending (b) dataset. The viewing direction
roughly correspond to the LoS of the respective data stacks. The colorscales used in (a) and
(b) are equal. For displaying purposes values above 0.1 PS per square meter are clipped. The
numbered rectangles mark the case studies presented in the following.
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Facade Roof
Stack µ σ µ σ
b057 0.033 0.020 0.021 0.021
b042 0.030 0.021 0.022 0.022

Table 4.4.: Mean values and standard deviations of the PS densities for both data stacks separately for facades
and roofs.

Surface structure

PS are often induced by small structures located at facades or roofs. In the preceding sections,

examples that show the connection of PS to windows have been presented. Of course, any structure

that induces a strong re�ection which is stable over time is likely to cause a PS. As shown in

Auer [2011] many point targets can be attributed to three- and �ve-fold re�ection mechanisms. In

comparison, direct and double-bounce re�ections are quite weak. Thus, a large number of facade or

roof details is required for high point densities. Whether a structure, �nally, induces a PS depends,

of course, on its shape.

(a) (b)

Figure 4.22.: Dependence of the PS density on the surface structure. (a) Density map of the descending
PS result. (b) Corresponding oblique view aerial image ( c© Microsoft BingTMMaps). The two
facades marked by the dashed red rectangles are completely plain which leads to a very low PS
density.

In �gure 4.22 two completely plain facades are examined. The PS density is displayed in �gure 4.22

(a), while an oblique view aerial image of the area is presented in (b). Both investigated frontages are

marked by dashed red rectangles. From (b) it becomes obvious that both facades are �at (the blue

horizontal strip at the facade on the lower left in �gure 4.22 (b) is due to a billboard). Obviously,

only single- or double-bounce re�ections can originate from such surfaces which are quite unlikely

to induce PS. The resulting densities are very close to zero as clearly visible in �gure 4.22 (a).

The dependence of the PS density on the shape of the surface structures is illustrated in �gure 4.23.

Some of the facades recognizable in the oblique view aerial image presented in (b) are highlighted

by colored polygons. The colors indicate di�erent setups. Frontages enclosed by green and blue
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(a) (b)

Figure 4.23.: Dependence of the PS density on the surface structure. (a) Density map of the ascending PS
result. (b) Corresponding oblique view aerial image ( c© Microsoft BingTMMaps). The colors
of the polygons in (b) indicate facades of similar structures. In (a) the correlation in density
between similar facades is recognizable.

polygons exhibit medium densities. They are made of �at concrete slabs interrupted by windows.

In contrast, facades marked in red show exceptionally high densities. They accommodate balconies.

Certainly, also other factors are involved which becomes obvious from the deviation in density among

apparently equal facades. For instance, one of the facades framed in red di�ers in density from the

others. While all show values around 0.9 PS per square meter, the one on the lower left features a

density around 0.8.

Shadowing

The impact of shadowing is illustrated using the two buildings marked by rectangle (2) in �gure 4.21

(a). In �gure 4.24 (a) the corresponding density map for the ascending dataset is presented. The

arrow indicates the sensors LoS. The building on the right causes shadowing of the bottom part

of the left building leading to a quite low point density at the facade marked by the dashed red

rectangle. The few identi�ed PS are all located at its left edge, which is not occluded. The upper

part which is marked by the bold red rectangle is visible to the sensor and shows a higher density.

It is worth to note that the structures of the upper and the lower frontages di�er. In �gure 4.24 (b)

the descending density map of the same buildings is shown. The frontage indicated by the dashed

red rectangle features the same setup as the one marked accordingly in (a) and shows a high density

of around 0.7 PS per square meter. This suggests that also the sparsely populated frontage visible

in (a) would accommodate a plethora of points if it was not occluded.

Aspect dependency

The number of identi�ed PS at facades depends on their orientation with respect to the sensor LoS.

This is demonstrated in �gure 4.25. An oblique view aerial image of the considered building complex

is displayed in (b). The projection of the LoS of the sensor onto the ground roughly coincides with the

direction of the street (traversed from right to left) visible at the bottom of the image. The frontages
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(a) (b)

Figure 4.24.: Impact of shadowing on the PS density. (a) Density map of the ascending PS result. The
bottom part of the left building is occluded by the building on the right. Only the upper part is
visible to the sensor (red rectangle), which results in a very low density (dashed red rectangle).
(b) Density map of the descending result showing the other side of the building. The facade
marked by the dashed red rectangle exhibits a quite high density and accommodates the same
structures as the facade indicated accordingly in (a).

of the building complex accommodate structures that are quite likely to induce PS. Figure 4.25 (a)

depicts the corresponding section of the ascending density map. Clearly, the number of identi�ed

PS is much higher at facades oriented almost perpendicular to the viewing direction of the sensor.

This is due to the dependence of the size of the facade in the SAR image on the surface orientation

with respect to the sensor's LoS. Of course, the frontages located on the right side of �gure 4.25

do not contain any PS at all since they are not visible to the SAR system. Those facades at the

central part are seen at an acute angle, which leads to low densities. It is worth to mention that

particular re�ection mechanisms exhibit a more complicated angle dependency. If one plane of a

corner re�ector is, for instance, aligned with the LoS of the SAR, the re�ection mechanism is dihedral

instead of trihedral which potentially leads to a much weaker signal. Obviously, an investigation of

such issues would require building models of higher LOD and is, thus, out of the scope of this work.

(a) (b)

Figure 4.25.: Dependence of the PS density on the aspect. (a) Density map of the ascending PS result. (b)
Corresponding oblique view aerial image ( c© Microsoft BingTMMaps). The PS density depends
on the orientation of the facade with respect to the sensor's LoS. This is nicely illustrated by
the increase in point density at the facades going from right to left.
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(a) (b)

(c) (d)

Figure 4.26.: In�uence of quasi-random processes on the PS density. (a) and (b) Density map of the ascend-
ing and the descending PS result. (c) and (d) Corresponding oblique view aerial images ( c©
Microsoft BingTMMaps). One half of the building complex shows medium densities, while the
other hardly accommodates any PS. The reason is ongoing construction during the acquisition
of the data stacks. This becomes apparent from the sca�olds visible in the oblique view aerial
images.

Quasi-random in�uences

Finally, it is important to stress the variety of factors in�uencing the PS density. A good example

for that is a trihedral re�ection mechanism at a facade formed by the window sill, a part of the

wall, and the frame of the window. If the window is always closed during the acquisition of the data

stack, a PS is likely to be induced. However, if the window is opened once during an acquisition,

the PS may be lost. In essence, a lot of "random" factors in�uence the persistence of a re�ection

mechanism over time. A nice example for this fact is shown in �gure 4.26. One half of the shown

building complex exhibits an average density, while virtually no PS are found at the other half

(except for a few located on the roof). This becomes obvious from the ascending and descending

density maps presented in �gure 4.26 (a) and (b), respectively. The reason for such low density

becomes apparent from the corresponding oblique view aerial images displayed in �gure 4.26 (c) and

(d). At both sides of the building sca�olds are discernible. That implies that the building has been

under construction while the stack was acquired, which led to the loss of all facade PS. Since both

stacks cover a time-frame of four years, the construction, most likely, only disturbed a subset of the

interferograms. The resulting phase �uctuations are interpreted as noise and the PS are rejected.





99

5. Summary

In this chapter the major �nding of this thesis are summarized and conclusions are drawn. Finally,

directions for future work are discussed. Four main topics are addressed separately: Grouping of the

PS set, assignment of PS to building models, relations of identi�ed PS patterns to facade structures,

and the determination of the point density at building faces.

5.1. Findings

Grouping

The most noticeable feature of the grouping results is the heterogeneous outcome at di�erent facades.

In the ascending dataset, one building complex contains a large number of groups. This density of

patterns is unique within the obtained results. At some of the related facades, the majority of

points is a�liated to one of the groups (i.e. above 60% of the PS). The point distribution at

most other buildings is considerably less regular resulting in a small number of identi�ed groups

(i.e. 0 to 30% of the PS are grouped). Cases where around 30% to 60% of the PS at a facade

are contained in a group are rare (e.g. two of the facades marked by rectangle (4) in �gure 4.10).

However, some degree of alignment with the related building facades is observable in most cases.

Only few buildings exhibit a point arrangement that seems completely random. A major factor is

layover. The facades that show the highest pattern densities are those with the least intersection

with other frontages in the range-azimuth plane. The e�ect of layover is two-fold. Firstly, PS may

be lost due to interference. Secondly, patterns may be superimposed on each other. In general, both

e�ects mix, which leads to a seemingly random point distribution in the worst case. Another factor

are the real world structures that induce the PS. Some lead to more regular patterns than others,

although their distribution along the facades is very similar. Furthermore, di�erent behavior of

facades accommodating the same structures but seen under a di�erent angle by the sensor has been

observed. In essence, the PS distribution is very often correlated with the setup of the facade (e.g.

horizontal lines are recognizable) but does not constitute a perfectly regular lattice. The latter is

required in order to obtain good results with the proposed grouping method. A very good example

for that are the facades (2), (5), and (6) in �gure 4.10. The PS are clearly arranged regularly.

However, the algorithm fails to detect those patterns.

The main problem is the restrictive requirement imposed on the points distribution in the utilized

algorithm. Firstly, the de�nition of regular patterns is too narrow. Demanding single PS to be
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equally spaced is especially critical since it inherently assumes the arrangement of facade details to

be lattice-like. However, most frontages show a more complicated setup which often consists in a

periodic appearance of groups of structures (e.g. two windows of probably di�erent setup and a

balcony appear periodically along one �oor). Secondly, the utilized method is based on thresholds.

Although the latter are derived using statistical considerations, the involved hard decisions render

the algorithm in�exible. PS are either related or unrelated. Patterns that do not perfectly match

the assumed regularity are completely lost with all the information comprised in them.

In conclusion, the proposed grouping algorithm is designed to �nd patterns at facades that exhibit

a very regular point distribution. Since most facades do not ful�ll this condition, the number of

identi�ed patterns is too small in the majority of areas to really support the parameter estimation.

Certainly, the improvement in the geolocation of some PS is a step forward. However, more �exible

pattern recognition methods could obtain much more information comprised in the arrangement of

the PS and help to exploit the full potential of high resolution SAR data stacks.

Assignment of PS to building models

The assignment of PS to building faces is conducted point by point using a purely geometric criterion.

It has been shown that the a�liation of PS to facades is quite unproblematic. This is due to the fact

that the utilized building models compare quite well with the actual building surfaces at frontages

and the locational accuracy of the PS is su�cient. Furthermore, the planimetric alignment of both

datasets is relatively reliable. The situation for building roofs is quite di�erent. In the shown case

studies, the PS do not compare well at the relevant faces. This is primarily due to generalization of

the building models. The main e�ect are missed correspondences caused by large distances between

the PS and the modeled roofs. However, in some cases roof PS are assigned to those faces. Such

relations are not wrong. However, their use in view of the motivated exploitation of the assignment

for improved deformation modeling is questionable as the building is not represented properly with

respect to the real word. Furthermore, the validity of the registration in vertical direction remains

questionable. A residual misalignment in the decimeter range, may lead to some misallocations or

missed correspondences.

In case study (a) (cf. �gures 4.15 and 4.17) surprisingly many PS are located within the considered

building model. Most of them are not assigned to any of the building faces. Thus, those points do not

constitute a big problem for the assignment result. It appears implausible that such PS are induced

by re�ection mechanisms located inside the building as the required signal path would be unlikely to

be persistent over time. This raises the question concerning their physical nature. Virtual corners

are a possibility. However, the large number of such points does not support this explanation since

virtual corners are expected to be rather rare. It is very important to note that such PS may lead to

major problems in deformation monitoring if they are, actually, induced by virtual corner re�ectors

or similar mechanisms. In case those points exhibit deformation, the corresponding building (i.e.

the closest building) is assumed to be somehow unstable. In fact, the estimated motion is due to
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the movement of di�erent scene structures, which may be located far away. This would pose a big

problem for the assessment of small scale deformation with PSI.

The obtained assignment results are de�nitely su�cient for the compilation of a meaningful den-

sity map. It has to be kept in mind that the results may be less reliable at building roofs if strong

generalization e�ects are present. Even the utilization of the determined correspondences for the ex-

tension of the applied deformation model appears possible (cf. [Gernhardt & Hinz, 2008]). However,

as outliers and insu�cient building representations may appear in some instances, robust estimation

procedures should be applied.

Assignment of PS to facade structures

The comparison of horizontal facade structures present in LIDAR data with groups of PS shows a

clear correlation between them. Two building are investigated that exhibit a lattice-like arrangement

of windows which becomes obvious from oblique view aerial images. Both, PS and LIDAR points,

are very likely to originate from those windows. The assessment of the vertical distances between

both datasets revealed a signi�cant systematic di�erence at one of the investigated buildings. This

di�erence seems to be dependent on the relative orientation between sensor and facade which implies

an aspect dependency of the scattering mechanism. Both �nding are not surprising since the windows

at this building feature a complex design. At the other building, two of the investigated facades

contain very plain windows. The corresponding PS are assumed to be induced by trihedral re�ection

mechanisms involving the window sills. At those facades, the PS groups are expected to exhibit very

small (i.e. not signi�cant) vertical distances to the LIDAR patterns, which are also anticipated to

be induced by re�ections at the sills of the windows. While the mean distance is not signi�cant

for one of those facades, it turns out to be signi�cant at the other facade. This implies an aspect

dependency of the respective re�ection mechanisms which is unexpected. One of the main questions

concerns the signi�cance of the determined o�sets. For instance, at one of the facades at building (a)

(cf. �gure 4.20), one of the group shows implausible results. By removing it from the evaluation, the

di�erence at building surfaces of distinct orientation becomes hardly signi�cant. As an uncertainty

of the registration of the PS in z-direction or even a systematic o�set of the LIDAR point cloud

cannot be excluded, a clear assessment of systematic vertical distances between PS and LIDAR is

di�cult.

Point density

The estimation of the point density shows that most buildings accommodate at least a few PS.

However, many building faces are only sparsely sampled, which is especially true at roofs. Among

the four addressed driving factors determining the PS density, the structure of the bounding sur-

face as well as quasi-random in�uences are the most interesting. Two completely plain facades are

illustrated. From those, only single and double re�ections can originate. Both are not very likely to
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induce PS. Consequently, those surfaces show very low densities. Furthermore, faces of alike struc-

ture feature similar point densities. If roofs or facades accommodate a large number of small details

and only few areas that are completely plain, they are likely to exhibit high PS densities. However,

quasi-random in�uences may accompany all sudden scene changes during the acquisition of the data

stack. The corresponding example shows a building whose facade was under construction while the

data was collected. Consequently, all corresponding PS are lost. This may be a major problem

as PSI is especially interesting for rapidly evolving cities to monitor the e�ects of construction or

increased ground water removal.

In some instances facades of identical setup show a signi�cantly di�erent density (cf. �gure 4.23).

Whether this is due to the assignment procedure or an actual di�erence in density has not been

investigated. However, in case the latter applies, a closer investigation may be interesting. Finally,

the list of factors that in�uence the PS density is, of course, not complete. For instance, the impact

of layover between building facade, roof, and the ground surface in front is not assessed due to the

highly complicated inter-dependencies.

5.2. Future Work

As outlined, the proposed grouping method has some limitations. Because of that a lot of useful

information comprised in the spatial arrangement of the PS is lost. A simple way to improve the

performance of the grouping is to add a search for regular patterns in range direction. Contrary to

the grouping parallel to the building outlines, this approach aims to identify periodic arrangements

of structures with the same planimetric positions but located on top of one another. Finally, the

results of the two 1-D searches could be fused. As both grouping approaches share similar limita-

tions, a signi�cant improvement of the results cannot be expected. Thus, the application of more

�exible methods is necessary. In order to address complex patterns, shape or facade grammars are

a possibility. Those have already been used for facade reconstruction from terrestrial photographs

[Ripperda & Brenner, 2006; Riemenschneider et al., 2012]. Furthermore, several methods dealing

with the identi�cation of lattices in photographs, which are quite robust, are available. For instance,

the method proposed by Park et al. [2009] uses a MRF framework, which allows for a natural incor-

poration of uncertainty. Moreover, by considering several point pairs at a time, the method is very

robust. As this procedure uses extended image patches as primitive objects, it has to be adapted

to �t the problem at hand. Finally, for the incorporation of model knowledge in the parameter es-

timation process of PSI an approach similar to [Shabou et al., 2012] may be bene�cial. The chance

that PS aligned parallel to a building outline feature a similar vertical position is quite high. This

knowledge could, for instance, be represented in the smoothness term of a MRF. As in [Shabou

et al., 2012] this may lead to a regularization of the obtained parameter estimates.

The main problem in the assignment procedure is the generalization of the building models. Of

course, this could be tackled by using more detailed models. However, such data are very expensive
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and rarely available. In order to avoid false correspondences, spatially related PS could be assigned

jointly to the building surfaces. This would additionally give some information about systematic

di�erences between PS and city model. Such spatial relation between the PS could be inferred from

their distribution in the range-azimuth plane or by segmenting the geocoded point clouds.

In order to understand the physical nature of the PS that are located inside the building shown

in �gures 4.15 and 4.17, SAR simulation could be used (cf. Auer [2011]). However, to include

all possible re�ection mechanisms, a large number of highly detailed building models around the

investigated location have to be available.

To enhance the assignment of PS to facade details, the use of more detailed reference data appears

bene�cial. One possibility is the exploitation of mobile mapping data which features a much higher

point density at facades. This would facilitate the assessment of potential relations between PS and

real world structures.

5.3. Conclusion

Within this work, four topics were addressed: The assignment of PS to buildings, the detection

of horizontal patterns of PS at building facades, the compilation of a PS density map, and the

assignment of PS to facade details. The focus of this thesis lay on the �rst two topics.

The main objectives concerning the �rst topic were the development of an algorithm assigning the

PS to the building model and the assessment of the comparability of both datasets. In summary

those objectives have been met. It was shown that such assignment is relatively straightforward

(i.e. using a nearest neighbor criterion) in the majority of the cases. Within the investigation, a

signi�cant number of PS located inside of buildings was detected. This is a very important �nding

as it shows the necessity of an assignment of the PS to the objects under investigation to avoid

misinterpretation of the obtained deformation results.

Regarding the detection of horizontal PS patterns, the targets were the development of a grouping

method and the investigation of the conditions that are required for the emergence of such patterns.

The latter objective has been clearly met. The strong in�uence of layover as well as the importance

of the re�ection mechanism inducing the PS were shown. However, the �rst objective has been met

only partially. The proposed grouping method is only suited for very simple settings which includes

only a subset of the facades encountered in a typical scene.

A density map has been compiled using the assignment of PS to buildings with the aim to

study the main factors in�uencing the PS density. Although those factors were not investigated

comprehensively (e.g. the in�uence of the surface in front of facades could not be assessed), this

study provides a major improvement in the understanding of the PS distribution in urban settings.

Finally, an investigation with the target to relate PS to facade details, represented by LIDAR data,

was conducted. Within this study the mean vertical distances between groups of PS and horizontal
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LIDAR patterns for facades at two di�erent buildings were estimated. The obtained vertical o�sets

remain very uncertain which renders de�nite conclusions di�cult. As it is challenging to reduce

those uncertainties (especially the one due to inaccuracies of the alignment), other strategies, such

as SAR simulation, seem to be better suited to investigate the relation of PS to real world structures.
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Estimating the shift

In section 3.2.2 a transformation is to be estimated from the determined correspondences. The

derivation given in the following is based on Low [2004]. The solution ∆̂ is determined as the shift

that minimizes the objective function given in equation (3.26) and restated here for convenience.

∆̂ = argmin∆

{
K∑
k=1

wk (dk,∆)2

}
. (A.1)

Each distance dk,∆ can be expanded into:

dk,∆ = nk (pk + ∆) + ck

= nx,k ·∆x + ny,k ·∆y + nz,k ·∆z + nx,k · px,k + ny,k · py,k + nz,k · pz,k + ck (A.2)

All K distances can be arranged in a matrix expression:

d = A · x− b (A.3)

where the K×1-vector d contains the weighted misregistrations along the elevation direction for all

point correspondences. The design matrix A is of size K × 3 and set up as follows:

A =


nx,1 ny,1 nz,1

nx,2 ny,2 nz,2
...

...
...

nx,K ny,K nz,K

 . (A.4)

The unknowns ∆x, ∆y, and ∆z are contained in the 3× 1-vector x.

x =


∆x

∆y

∆z

 (A.5)
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Finally, b is a vector of size K × 1 containing the measurements.

b =


−nx,1 · px,1 − ny,1 · py,1 − nz,1 · pz,1 − c1

−nx,2 · px,2 − ny,2 · py,2 − nz,2 · pz,2 − c2

...

−nx,K · sx,K − ny,K · sy,K − nz,K · sz,K − cK

 (A.6)

The weights wk are comprised in a K ×K weight matrix P:

P = diag (wk) (A.7)

The shifts can be �nally estimated by minimizing the weighted sum of residuals (i.e. the a-posteriori

point to plane distances):

x̂ = argminx

{
(A · x− b)T ·P · (A · x− b)T

}
(A.8)

which can be easily achieved using standard algorithms. A comprehensive treatment of this topic

can be found in Mikhail & Ackermann [1982].

The SAR coordinate system

The parametrization of the SAR coordinate system with respect to a geographic system with x-axis

oriented eastwards and y-axis pointing to the north is de�ned in the following. It is determined by

the heading- and the look-angle of the sensor. The latter, referred to as θ, is de�ned in �gure 2.1.

The heading-angle H of the satellite is measured from the x-axis counter-clockwise1 (i.e. from east

to north). The situation is illustrated in �gure A.1. The elevation-, azimuth-, and range-direction

Figure A.1.: De�nition of Heading Angle H

1In contrast to common practice, a right handed system is used.
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are de�ned as:

xTs,k =
[
sin(H + 90) · cos(θ) cos(H + 90) · cos(θ) sin(θ)

]
(A.9)

xTa,k =
[
sin(H) cos(H) 0

]
(A.10)

xTr,k =
[
sin(H + 90) · sin(θ) cos(H + 90) · sin(θ) − cos(θ)

]
. (A.11)
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B. Appendix B

For single PS it is not possible to verify the distribution assumption stated in section 3.3. However,

in case it holds for most of the PS, the histogram of the normalized distances resembles a zero mean

standard Gaussian distribution. Such histograms for the ascending and the descending datastack

(cf. section 4.1.1) are shown in �gure B.1 and �gure B.2, respectively. Due to the di�erent behavior,

facade and roof PS are treated separately ((a) facades and (b) roofs in both �gures). The assignments

corresponding to those distances are determined as described in section 3.3. In contrast, to section

4.4.1 a relaxed threshold of 10 is chosen for the normalized distances to give a better impression of

the data statistics. Values above 10 are excluded due to displaying purposes.

The normalized distances at facades show a symmetric distribution around zero for both datas-

tacks. Neither the ascending nor the descending data are strictly normally distributed. In table

B.1 the portion of PS contained within the bounds ±1, ±2, and ±3, respectively, are presented.

For comparison, the corresponding values for a standard normal distribution are given. It is ap-

parent that the histograms feature a heavy tail, i.e. the spread of the data are larger compared to

a Gaussian. Although not all of the considered assignments are valid, the results imply that the

approximation of the actual distributions of the normalized distances by a standard Gaussian leads

to inaccurate results for the determination of con�dence intervals (cf. section 4.4.1).

The histograms of the normalized distances to roofs are strongly asymmetric. This is most likely

due to generalization e�ects which are particularly pronounced at roofs. Thus, the distribution

assumption for the corresponding normalized distances is far from being valid. It is worth to note

that the obtained results are similar to the results obtained for LIDAR data (cf. section 4.1.2).

Normalized Distance Standard Normal Ascending Descending

±1.0 68.2 69.7 62.7

±2.0 95.4 88.2 85.0

±3.0 99.6 95.1 93.3

Table B.1.: Probability that the normalized distances are within the bounds ±1.0, ±2.0, or ±3.0 for facade PS
from both datastacks (cf. �gure B.1 (a) and �gure B.2 (a)). For comparison the corresponding
values of a standard normal distribution are given.
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(a)

(b)

Figure B.1.: Histogram of the normalized distances for facades (a) and roofs (b) for the ascending datastack.
Only those PS that are located inside at least one bu�ered outline are considered. Furthermore,
an assignments is rejected if the perpendicular projection of the PS onto the bounding surface
is located outside the polygon associated with this bounding surface. Note that for displaying
purposes normalized distances above 10 are excluded.
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(a)

(b)

Figure B.2.: Histogram of the normalized distances for facades (a) and roofs (b) for the descending datastack.
Only those PS that are located inside at least one bu�ered outline are considered. Furthermore,
an assignments is rejected if the perpendicular projection of the PS onto the bounding surface
is located outside the polygon associated with this bounding surface. Note that for displaying
purposes normalized distances above 10 are excluded.
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Figure C.1.: Mean amplitude map of the complete ascending dataset.
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Figure C.2.: Mean amplitude map of the complete descending dataset.
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Figure C.3.: PS obtained for the complete ascending dataset overlaid to the mean amplitude map. The colors
indicate the estimated PS heights (green - low to yellow - high).
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Figure C.4.: PS obtained for the complete descending dataset overlaid to the mean amplitude map. The colors
indicate the estimated PS heights (green - low to yellow - high).
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(a)

(b)

Figure D.1.: Cumulative Histograms of the PS density for the ascending dataset (b057). Facades (a) and
roofs (b).



125

(a)

(b)

Figure D.2.: Cumulative Histograms of the PS density for the descending dataset (b042). Facades (a) and
roofs (b).
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