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Abstract 

The estimation of position and attitude of a camera, addressed as image orientation in 

photogrammetry, is an important task to obtain information on where a platform is located in 

the world or relative to objects. Unmanned aerial vehicles (UAV) as an increasingly popular 

platform led to new applications, some of which involve low flight altitudes and specific 

requirements such as low weight and low cost of sensors. Image orientation needs additional 

information to retrieve not only relative measurements but position and attitude in a world 

coordinate system. Given the requirements on sensors and especially for flights in between 

obstacles in urban environments classically used information of Global Navigation Satellite 

Systems (GNSS) and Inertial Measurement Units (IMU) or specially marked ground control 

points (GCP) are often inaccurate or unavailable. 

The idea addressed within this thesis is to improve the UAV image orientation based on an 

existing generalised building model. Such models are increasingly available and provide 

ground control that is helpful to compensate inaccurate or unavailable camera positions 

measured by GNSS and drift effects of image orientation. Typically, for UAV applications in 

street corridors, the geometric accuracy and the level of detail of such models is low compared 

to the high accuracy and high geometric resolution of the image measurements. Therefore, 

although the building model differs from the observed scene due to its generalisation, relations 

of the photogrammetric measurements to the building model are formulated and used in the 

determination of image orientation. 

Three approaches to assign tie points to model planes in object space are presented, and a 

sliding window as well as a global hybrid bundle adjustment are set up for image orientation 

aided by a generalised building model. The assignments lead to fictitious observations of the 

distance of tie points to model planes and are iteratively refined by bundle adjustment. 

Experiments with an image sequence captured flying between buildings show an improvement 

of image orientation from the metre range with purely GNSS measurements to the decimetre 

range when using the generalised building model with the simplest assignment method based 

on point-to-plane distances. No improvement by searching planes in the tie point cloud to 

indirectly find the relations of tie points to model planes is observed. The results are compared 

to a building model of higher detail and systematic effects are investigated.  

In summary, the developed method is found to significantly improve UAV image orientation 

using a generalised building model successfully. 
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Kurzfassung 

Die Schätzung von Position und Lage einer Kamera, die in der Photogrammetrie als 

Bildorientierung bezeichnet wird, ist eine grundlegende Aufgabe, um Informationen darüber zu 

erhalten, wo sich eine Plattform in der Welt oder relativ zu Objekten befindet. Zunehmend 

führen unbemannte Luftfahrtsysteme (UAV) als Plattform zu neuen Anwendungen, die zum 

Teil geringe Flughöhen und spezifische Anforderungen wie Gewicht und Kosten der Sensoren 

mit sich bringen. Für die Bildorientierung werden zusätzliche Informationen benötigt, um nicht 

nur relative Messungen, sondern auch Position und Lage in einem Weltkoordinatensystem 

bestimmen zu können. Angesichts dieser Anforderungen und insbesondere für Flüge zwischen 

Hindernissen in städtischen Gebieten sind die klassisch verwendeten Informationen von 

Navigationssatelliten- (GNSS) und Intertialmesssystemen (IMU) oder auch speziell markierten 

Passpunkten (GCP) oft nicht verfügbar oder zu ungenau. 

Die hier behandelte Idee ist daher, die Bildorientierung von UAVs auf der Grundlage eines 

bestehenden generalisierten Gebäudemodells zu verbessern. Solche Modelle sind in 

zunehmendem Maße verfügbar und bieten eine Möglichkeit, ungenaue oder nicht verfügbare 

GNSS-Kamerapositionen und Drifteffekte der Bildorientierung zu kompensieren. Bei UAV-

Befliegungen in Straßenschluchten sind die geometrische Genauigkeit und der 

Detaillierungsgrad solcher Modelle im Vergleich zur hohen Genauigkeit und hohen 

geometrischen Auflösung der Bildmessungen typischerweise gering. Obwohl das Modell also 

aufgrund seiner Generalisierung von der beobachteten Szene abweicht, können Beziehungen 

der photogrammetrischen Messungen zum Gebäudemodell formuliert und in der 

Bildorientierung verwendet werden. 

Es werden drei Ansätze zur Zuordnung von Verknüpfungspunkten zu Modellebenen im 

Objektraum sowie eine hybride Bündelausgleichung zur Bildorientierung mit Hilfe eines 

generalisierten Gebäudemodells, die global oder fensterbasiert abläuft, vorgestellt. Die 

Zuordnungen führen zu fiktiven Beobachtungen für den Abstand von Verknüpfungspunkten zu 

Modellebenen und werden während der iterativen Bündelausgleichung verfeinert. Experimente 

mit einer zwischen Gebäuden aufgenommenen Bildsequenz zeigen eine Verbesserung der 

Bildorientierung vom Meterbereich rein mit GNSS-Messungen in den Dezimeterbereich bei 

Verwendung des generalisierten Gebäudemodells mit der einfachsten Zuordnungsmethode auf 

Basis von Punkt-zu-Ebene-Distanzen. Eine Verbesserung der Punkt-zu-Ebene-Zuordnungen 

durch die Suche von Ebenen in der Punktwolke wird nicht beobachtet.  

Zusammenfassend lässt sich sagen, dass die entwickelte Methode die UAV-Bildorientierung 

mit Hilfe eines generalisierten Gebäudemodells signifikant verbessert. 
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1 Introduction 

The estimation of position and attitude of a platform is an essential task in many areas such as 

robotics, autonomous driving, aviation, surveying and also for mobile phones. Position and 

attitude are also referred to as pose or exterior orientation and typically are described by six 

parameters: The 3D coordinates of the origin of the platform coordinate system and a 3D 

rotation that describes the attitude of the platform. The retrieval of these parameters is addressed 

as pose estimation. The goal is to gather information on where a platform is located in the world 

or relative to objects. Exploiting this information is also essential for unmanned aerial vehicles 

(UAV) which are used as a flexible platform in a broad range of civil applications. Applications 

of UAVs include 3D reconstruction for visualisation and planning, monitoring, inspection, 

cultural heritage, agriculture, search and rescue, security and logistics.  

While the retrieval of pose information has been studied for a long time and applied in 

aviation and for example in aerial surveying, specific limitations occur when using UAVs. 

Requirements concerning low weight, low power consumption and low cost limit the choice of 

sensors. In addition, new application scenarios with new challenges for pose estimation such as 

the possibility of very low flying heights in between obstacles arise.  

An approach to pose estimation often used in aerial applications but also on ground platforms 

is the direct orientation using Global Navigation Satellite Systems (GNSS) and Inertial 

Measurement Units (IMU). As a result of the cost considerations and limited payload capability 

of UAVs and consequently of inferior sensor quality, and also due to higher flight dynamics, 

such directly measured data for the pose are typically not accurate enough for precise 

positioning. As an alternative to direct orientation or in combination with it, optical sensors, 

e.g. a camera or a laser scanner, can be used to observe ground control information such as 

Ground Control Points (GCP) to derive the platform pose indirectly. This indirect orientation 

is based on the knowledge about the position of the control information.  

The characteristics of GNSS and GCPs lead to limitations in the pose estimation for UAVs. 

As GNSS depend on the visibility of satellites, in contrast to aerial applications, problems 

comparable to those of ground platforms like in mobile mapping or autonomous driving occur: 

If the UAV flies at low altitude in urban canyons the buildings can limit or completely block 

satellite signals. Considering control information, GCPs have to be marked and defined in a 

coordinate frame, and their use is therefore infeasible for many scenarios typically due to cost 

or time considerations. 
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Due to their low weight and low cost, cameras are often used as sensors to capture the 

surroundings. A camera on a UAV can be considered as an instrument to derive the pose relative 

to objects in its field of view. However, from camera observations only, the scale of the scene 

and the pose in a world coordinate system cannot be derived without the aid of additional 

sensors or ground control information. In addition, purely camera-based orientation procedures 

like visual odometry are affected by unfavourable error propagation leading e.g. to block 

deformations if loops are not closed for single flight strips. The orientation of images relative 

to each other one after the other in a sequence suffers from the accumulation of errors from 

uncertain image coordinates of homologous points. This type of error propagation is addressed 

as “drift” and is also well known from, e.g., wheel odometry in robotics or the tachymetric 

measurement of open traverses in surveying. 

1.1 Motivation 

Many scenarios face the problems mentioned above, GNSS signal loss, inaccurate 

measurements from low-cost GNSS/IMU sensors, drift effects and unavailable GCPs. As an 

example, the following scenario requires these problems to be addressed: a flight of a UAV 

equipped with a camera in an urban environment from a starting point to a target location, e.g. 

to make a delivery or carry out measurements. Typically, there will be no ground control 

information available, GNSS signal quality will be low and the reduction of drift effects by 

flying loops is undesirable. Given the scale and the start pose of the UAV and the target in the 

same coordinate frame, relative measurements of the camera could be used in principle to 

navigate from start to target. If there were no drift effects, this navigation would not require 

additional sensors or specially placed ground control information. The idea addressed within 

this thesis is to reduce drift effects and improve the UAV pose based on an existing generalised 

building model. Here, generalisation of the building model typically refers to generalisation 

during data acquisition, e.g. of building footprints for cadastre that are used to derive the 

building model. Whereas both the geometric accuracy and the level of detail of such models 

may be limited, the integration of this information into the pose optimisation is helpful to 

compensate inaccurate camera positions measured by GNSS and drift effects of purely image-

based pose estimation.  

More and more generalised building models are produced for cities all over the world. For 

instance, Germany is on the way to store all buildings at a certain level in a generalised building 

model that gradually becomes free of charge and is relatively small in terms of storage needed. 

Therefore, such models provide a promising source to improve pose estimation if neither GCPs 

nor GNSS measurements are reliable or available. The result of a bundle adjustment that 

integrates a generalised building model is not limited to an improved pose but further supports 

applications that make use of the reconstructed tie points. An example is the 3D reconstruction 

of buildings in several epochs for monitoring purposes, in which the epochs can only be 

compared if the results are available in the same coordinate system or are related to the same 
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model. Another possibility is the refinement and rendering of the building model based on the 

captured data. 

1.2 Problem Statement and Contributions  

Two central problems that result from the task of integrating a generalised building model into 

camera-based pose estimation are addressed in this thesis: 

- Can relations of tie points to building models be found although the model deviates 

from the observed scene due to the generalisation of the model? 

- How can found relations be considered in pose estimation despite the deviations of the 

simplified model from the observed scene and do they improve the estimated poses? 

The first problem leads to the objective to find suitable features to relate the photogrammetric 

measurements and the building model to each other. The second problem tackles the 

mathematical description of these relations, taking the deviations due to generalisation effects 

into account, and the integration of these found relations between images and building model 

into pose estimation. 

Bundle adjustment as the standard photogrammetric procedure to retrieve image poses and 

object points is chosen as the basis. A hybrid bundle adjustment is set up that integrates a 

generalised building model by fictitious observations. These fictitious observations require 

object points to lie on building model primitives and are considered by soft constraints. Two 

types of points in object space are used: Tie points are the object points reconstructed from 

observed homologous points in the images. The second type of object points are vertices, i.e. 

the 3D corner points given by the building model.  

While the vertices’ relation to model planes is given by the model itself, the relation of tie 

points to model primitives has to be found. Three strategies to relate reconstructed tie points to 

planes as primitives of the building model are introduced and evaluated. Instead of directly 

matching features observed in the images, e.g. points or lines, with features of the model, the 

assignments are found in object space. The reason for this approach is the generalisation of the 

model: Its representation differs from the observed scene. Vertices or edges of the generalised 

building model do not have to correspond to vertices and edges present in the real scene. 

Generalisation leads to simplification and aggregation of model structures that, in reality, are 

more detailed and might consist of several vertices and edges. 

The process of finding the relations of tie points to model primitives is addressed as 

“assignment” within this thesis. Tie points are assigned to planes as primitives of a building 

model. Differences between planes derived from tie points and model planes due to 

generalisation effects of the model are taken into account during the assignment and in the 

hybrid bundle adjustment. Tie points found to be related to a model plane add a soft constraint 

in the form of a fictitious observation with a certain standard deviation. In the assignment, 

thresholds on point-to-plane distances are used, which accounts for the generalisation effects. 
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Assignment takes place in object space. The first assignment method uses a simple distance 

criterion to directly relate tie points to model planes. The second and third methods indirectly 

relate tie points to model planes: They aim at finding individual planes in the tie point cloud 

and relate them to model planes based on certain criteria. In the second method, planes are 

found in the tie point cloud independently from the building model. In the third method, planes 

are only searched for in a subset of the tie points that is inside a region of interest (ROI) defined 

by each existing model plane. 

In difference to the classical bundle adjustment as a post-processing step where all poses are 

optimised after the flight, a sliding window hybrid bundle adjustment is set up to allow for pose 

estimation during data capturing, e.g. to correct poses already during a UAV flight. In contrast 

to a filter approach, in which only the current pose is estimated, sliding window approaches 

estimate a “window” of several poses until the current pose and “slide” this window along the 

sequence of poses. The concept of sliding windows is realised as a sequence of hybrid bundle 

adjustments along the image sequence and the building model. 

1.3 Structure 

Chapter 2 analyses existing work related to the addressed problems. Then, the proposed 

method to integrate a generalised building model into photogrammetric pose estimation is 

described. Chapter 3 introduces the relevant entities of the scenario and describes the setup of 

a hybrid bundle adjustment with workflows for global and sliding window optimisation. In 

chapter 4, the focus is set on the assignment of 3D points to generalised model planes. 

Experiments based on different scenarios calculated with a captured image sequence are set up 

to investigate the performance of the developed method (chapter 5). The scenarios start with a 

best-case where a detailed building model is available, proceed with the generalised building 

model and end with a worst case where no building model is used. The results of the 

experiments are presented and discussed in chapter 6, structured by subsets of the captured 

image sequence for the analysed scenarios. The outcome of the thesis is summarised in chapter 

7, which ends with an outlook on future work.
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2 State-of-the-art 

Trajectory estimation using a single camera is a fundamental problem in photogrammetry as 

well as in the fields of robotics and computer vision. The trajectory regularly is described by 

the parameters of the exterior orientation, the pose. Whereas approaches exist to estimate 

continuous trajectories, e.g. for satellite line scanners, this thesis aims at the orientation for 

frame camera images of an image sequence and uses the term trajectory to address sequences 

of image poses. The standard method for estimating the pose parameters as well as a typically 

sparse representation of the reconstructed scene in the form of tie points with their object 

coordinates is bundle adjustment. Traditionally, bundle adjustment is applied offline to blocks 

of captured images to estimate the parameters given image observations in post-processing. For 

online pose estimation, sequential methods have been developed that range from filter 

approaches, which predict and estimate only the current pose, to so-called smoothing or sliding 

window approaches that reduce the optimisation to only the most recent poses. These 

approaches are used in robotics to solve problems like visual odometry, where a camera is used 

for online trajectory estimation by dead reckoning, or simultaneous localisation and mapping 

(SLAM). The term visual odometry often used in robotics and computer vision corresponds to 

image orientation and reconstruction used in photogrammetry to address the task of retrieving 

the pose parameters of images and the retrieval of object coordinates of tie points, respectively. 

In SLAM, image orientation and 3D reconstruction are carried out simultaneously to retrieve 

camera poses and a map of the environment. Förstner and Wrobel (2016) give a comprehensive 

insight and details of the statistics and geometry for image orientation and reconstruction from 

both a photogrammetric and computer vision point of view. Strasdat et al. (2012) discuss 

differences in filtering and sliding window approaches for visual SLAM. In this thesis the 

classical offline bundle adjustment is used first. Then, it is extended to work in a sliding window 

manner; filtering is not addressed and remains for future work on improving processing speed 

while sacrificing geometrical accuracy of the hybrid optimisation. 

Bundle adjustment typically does not only minimise residuals of image measurements to 

estimate the parameters of the exterior orientation and tie point 3D coordinates. To solve for 

the missing scale and to add absolute datum information, additional observations and unknowns 

must be considered. Bundle adjustment typically integrates other sensor measurements, e.g. 

from GNSS/IMU, and/or additional information, like GCP coordinates, constraints on 

planarity, parallelism, and so on. In this thesis, additional information comes from a building 

model of the captured scene. In general, one can distinguish between soft constraints and hard 

constraints that are used to model additional knowledge in an adjustment procedure (e.g. 

Rottensteiner, 2006). Hard constraints refer to constraints between the unknowns that have to 

be fulfilled exactly. McGlone et al. (1995) provide the generic mathematical framework to 
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integrate constraints into bundle adjustment: Soft constraints are set up as observation equations 

for so-called fictitious observations with an a priori standard deviation. Therefore, the 

constraints must not be fulfilled exactly but rather their standard deviation sets their strictness. 

Also, the residuals of these observations can be analysed to detect wrong constraints as outliers.  

Camera-based pose estimation is addressed in different fields of research and application for 

various platforms from indoor robots over self-driving cars and flying platforms to satellites. 

This work aims at UAVs as a platform that recently received growing attention. Colomina and 

Molina (2014), Pajares (2015) and Nex and Remondino (2014) give an overview of UAV 

applications, platforms and sensors in photogrammetry. This thesis aims at a scenario where a 

UAV operates in an area not fully covered by other platforms: Images are captured from low 

altitude looking at building façades while the platform flies between the buildings. This scenario 

leads to the aforementioned problems in pose estimation.  

In the following, existing approaches to pose estimation in conjunction with additional object 

knowledge are investigated, and open problems for the scenario of this thesis are identified. 

First, approaches are described, which integrate object knowledge by finding correspondences 

between features from image space and object knowledge (section 2.1). Then, work is analysed 

in which correspondences between image features and object knowledge are established in 3D 

object space (section 2.2). The related work in the sections is structured according to the type 

of object information, type of observations, application scenarios and methods to match 

measurements to object information. Tables give an overview of the related work. The chapter 

ends with a discussion of the related work in the context of this thesis.  

The focus of this literature review is on geometry rather than on radiometry, brightness or 

methods that require visual object knowledge like feature descriptors or texture information, 

e.g. street view imagery or textured building models.  

2.1 Integration of Object Knowledge in Image Space 

The integration of a priori known information about the captured objects, other than GCPs, is 

addressed by many authors by using features like points or lines that are detected in captured 

images and are matched to the same features known from object information. Often, known 

object information is projected into 2D image space to find corresponding features observed by 

a camera. The methods described in the following are listed as an overview in Table 1. 

A basic case of integrating object knowledge is the consideration of general information 

about captured objects to retrieve constraints, e.g. knowledge about parallelism, orthogonality, 

right angles or vertical and horizontal lines. Gerke (2011) presents such an approach: The 

knowledge that building outlines detected in oblique aerial images in urban areas feature 

vertical and horizontal lines and right angles is integrated into camera pose estimation and self-

calibration by additional fictitious observations as soft constraints. 
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Elevation models and building models provide knowledge about a captured scene. Avbelj et 

al. (2015) address the orientation refinement of hyperspectral aerial images using a digital 

surface model (DSM). They extract building outlines from the DSM and match them to lines 

detected in an image. Line pairs are statistically tested and counted in an accumulator for a 2D 

shift and a rotation between the DSM and the images projected onto the same plane. Line pairs 

of the accumulator cell with the highest number of correspondences are used to derive 

constraints for a Gauss-Helmert adjustment of the parameters of an affine transformation 

between the projected DSM and the image. 

Several authors consider building models as object knowledge that is projected into image 

space to match features like points and lines. Läbe and Ellenbeck (1996) match lines between 

an aerial image and a projected wireframe building model using pose clustering and robust 

spatial resection to filter outliers. Their goal is to enable the use of such models as ground 

control feature. Hsu et al. (2000) alternate pose prediction and model-based orientation 

refinement. Their pose prediction is based on tracked image feature points in frames of a video. 

For the pose refinement, a cost-function is minimised that compares projected model lines to 

oriented gradient images derived from the images.  

Frueh et al. (2004) align an oblique aerial image to a building model to texture the model. 

Exhaustive search is used to adjust the image pose parameters and the focal length by rating 

matches of lines. Lines are projected from the building model based on GNSS and IMU 

measurements for the initial image pose and compared to lines extracted from the image. 

Texturing of a building model is also the goal of Hoegner et al. (2007), but they use a terrestrial 

infrared image sequence and relate corner points calculated from horizontal and vertical lines 

detected in the images to vertices of the building model. The exterior orientation of an image is 

then calculated based on three 2D/3D corner point pairs. The authors mention the problem that 

due to generalisation, the level of detail of the building model is limited, and they propose a 

second method for the case that an image does not show enough corner points. In this case, the 

pose is not calculated per image but for a sequence of images that are assumed to observe a 

common plane in object space that covers most of each image. This plane is used to calculate 

relative homographies between the images and the façade based on homologous points.  

Ding et al. (2008) determine a coarse image pose using vertical vanishing points to estimate 

roll and pitch angles using measurements of a compass for the yaw angle and GNSS for the 

position. Points as corner features from intersecting orthogonal edges are matched between 

image and model, assuming many horizontal and vertical lines from buildings in the captured 

scene. Matching candidates are first reduced by a Hough transform, and then Random Sample 

Consensus (RANSAC) (Fischler and Bolles, 1981) is used to find the best homography between 

image and model features. The image pose finally is estimated using the corresponding point 

features. Wang et al. (2013) find line segments close to projected model edges and refine image 

pose parameters in an adjustment with the coplanarity equation. In this way, they avoid the 

matching of line endpoints.  
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Reference Object 

Knowledge 

Matching 

Primitives 

Matching Method Pose 

Estimation  

Gerke (2011) Generic Lines/points Manual Bundle 

adjustment 

Avbelj et al. (2015) DSM Lines Accumulator Image-wise 

Läbe and Ellenbeck 

(1996) 

Wireframe Lines Pose clustering Image-wise 

Hsu et al. (2000) Wireframe Lines Energy field Sequentially 

Frueh et al. (2004) Wireframe Lines Exhaustive search Image-wise 

Hoegner et al. (2007) Wireframe Points Corner point pairs/ 

homography 

Image-wise 

Ding et al. (2008) Wireframe Points Hough transform/ 

RANSAC 

Image-wise 

Wang et al. (2013) Wireframe Lines Geometrical 

reliability measure 

Image-wise 

Jung et al. (2016) Wireframe Points Geometric 

hashing/scoring 

Image-wise 

Iwaszczuk et al. (2012) Wireframe Lines Counting/RANSAC Image-wise 

Arth et al. (2015) Wireframe Lines RANSAC/scoring Image-wise 

Urban (2016) Wireframe Lines Nearest neighbour/ 

particle filter 

Sequentially 

Eugster (2012) Wireframe Lines Line features/ 

relational matching/ 

energy function 

Sliding 

window 

adjustment 

Li-Chee-Ming and 

Armenakis (2018) 

Wireframe Lines/points Random sampling/ 

resection 

Image-wise 

Table 1: Overview of related work that integrates object knowledge in image space. 

Points and their edge context are used as corresponding features between an image and a 

building model by Jung et al. (2016), but they focus on corners at building roofs as satellite 

images are used. The context of the so-called edged corner features is taken into account in a 

geometric hashing to find corresponding corners and adjust the image pose parameters. In 

geometric hashing, a representation of model objects is stored in a hash table. This table is then 

used in a vote-counting scheme for observed objects to find correspondences. The authors 

replace the vote-counting by a scoring function that takes into account corner position distances 

as well as length and angle differences of edges at the corner features. 

The uncertainty of lines of the building model is taken into account by Iwaszczuk et al. 

(2012). They set up a line based least squares adjustment to estimate the pose parameters of one 

aerial infrared image. The uncertainty of building model vertices is set in their covariance 

matrix and propagated to a covariance matrix of line parameters. The uncertainty of detected 

Canny lines (Canny, 1986) in the image takes into account line length and edge strength to 

calculate line weights. Lines with high weight are taken into account in a matching procedure 
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in image space based on buffers around lines as search space. The buffer size depends on the 

accuracy of given initial image poses from GNSS and IMU measurements. Before the 

adjustment, outliers in line correspondences are eliminated using RANSAC. In the follow-up 

work (Iwaszczuk and Stilla, 2017), neighbouring images of an image sequence are taken into 

account to restrict line matching by tracking lines. The adjustment is still done per image only.  

Arth et al. (2015) use building outlines and height information to refine the pose of a mobile 

device to initialise the first frame of a visual SLAM system. Several sensors are used to retrieve 

a rough initial pose of the frame, and the height over ground is set manually. The scene is 

assumed to consist of horizontal and vertical edges. Image segmentation is used to restrict 

detected edges to façades in the image and exclude windows to support the matching of detected 

and projected edges. The SLAM system is only initialised using the building information and 

does not further integrate the model information to refine the pose iteratively. 

Urban (2016) integrates a building model into indoor pose estimation of a multi fisheye 

camera platform. Possible platform poses are sampled on a plane within the model, and 

synthetic views are rendered offline to extract and cluster edge-based descriptors. These 

descriptors are then used to find the best matching pose from the sampled poses for captured 

fisheye images with two approaches online: Nearest neighbour search or a particle filter. The 

model is taken into account to refine the pose of key frames using point-based orientation 

between frames. The key frame pose parameters are refined by minimizing the reprojection 

error of edge points that are projected from the building model to the images and are found to 

correspond to detected edges. 

Eugster (2012) addresses the model-based refinement of direct orientation using low-cost 

sensors for a UAV. Three methods to relate observed images to a building model are described: 

Line-based feature matching, line-based relational matching and optimisation of an energy 

function on distance images. Due to an inaccurate pose from direct sensor orientation, relational 

matching is chosen to find corresponding image and projected building model edges. Relational 

matching evaluates the mapping of two model descriptions. These model descriptions take into 

account line features and their topology and are derived for a captured image and for the 

projected building model. Tree search is used to optimise the mapping between image and 

projected model descriptions. The found optimal mapping leads to matches of image lines to 

model lines that are known in 3D space from the building model. These matches are used as 

hard constraints in a sliding window adjustment with homologous points between key frames 

of an image sequence. Such refined pose parameters of a current key frame are then input to a 

Kalman filter that fuses them with the GNSS/IMU measurements to estimate the final pose 

parameters. 

Li-Chee-Ming and Armenakis (2018) present an approach for UAV pose estimation using 

mono camera image sequences in- and outdoor. Given an approximate camera pose, they apply 

a line-to-line space resection for pairs of horizontal and vertical lines. Lines are detected in a 

frame and projected into image space from a building model using a simulation environment. 

The space resection makes use of the known 3D model lines corresponding to the lines in image 

space to estimate the camera’s pose parameters. The estimated pose is further refined by the 
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resection of line endpoints and estimation of their object space coordinates followed by point-

to-point resection with these points. A SLAM system’s current pose is reset for frames where 

the model-based pose refinement is successful. Experiments show a sub-meter positioning 

accuracy for in- and outdoor images. 

2.2 Integration of Object Knowledge in Object Space 

Some authors directly use the object knowledge in object space instead of projecting it into 

image space to find correspondences. The methods described in the following are listed as an 

overview in Table 2. Rodriguez and Aggarwal (1990) propose to use so-called cliff maps to 

refine the pose parameters of an aerial image. The problem of finding image features 

corresponding to the cliff map is reduced from 3D to 2D as the 3D object knowledge is reduced 

to 2D assuming a nadir image. The cliff map is derived as a 2D map of edges and points of high 

curvature extracted from a digital elevation model (DEM). Edges and points are matched to 

image features.  

A DEM is integrated by Strunz (1993) and by Spiegel (2007) into the orientation of satellite 

line-camera images. The height of reconstructed object points is restricted to lie on the DEM 

surface using soft constraints in a hybrid bundle adjustment to improve the parameters of the 

continuous satellite trajectory. Briskin et al. (2017) intersect image rays with a mesh 

approximation of a DEM to generate soft constraints for a bundle adjustment to refine the pose 

parameters of a UAV mono camera image sequence. 

Matches of lines in 2D image and 3D object space are used by Talluri and Aggarwal (1996) 

and Stamos and Allen (2001) in terrestrial applications to estimate the pose parameters of single 

images that capture buildings. Talluri and Aggarwal (1996) reduce the pose parameters to be 

estimated for a robot to the 2D position in the ground plane and one angle, and use only building 

roof edges, assuming flat roofs and vertical façades. So-called edge visibility regions are used 

to restrict the assignment of edges. Candidate regions are identified by a Hough transformation. 

Stamos and Allen (2001) exploit constraints like parallelism and orthogonality that are assumed 

to occur at buildings in urban areas to retrieve the relative orientation of single optical to depth 

camera images. Lines as common features of images and a model are also used by Aider et al. 

(2005), but they address the localisation of an indoor robot. They match lines by searching an 

interpretation tree that originally holds all possible combinations of two sets of lines. Before 

the search, correspondences in the tree are reduced by introducing knowledge about edge 

visibility from an approximate robot pose, and the robot is assumed to move on a plane. 

A matching that takes place in object space completely is realised by Zhao et al. (2005). 

Their goal is to align oblique aerial images taken from a height of 90 m over ground to a building 

model which they manually derive from a laser scanning point cloud. They manually retrieve 

an initial pose for the first two key frames based on corresponding image points and model 

vertices and image and model edges. Homologous points are then used for relative orientation 
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of further key frames sequentially. A point cloud calculated by dense stereo matching is 

matched against the laser scanning point cloud using the iterative closest points (ICP) algorithm 

(Besl and McKay, 1992) to retrieve a refined camera pose for key frames. Relative image 

orientations and refined orientations per key frame are input to an adjustment to estimate refined 

and smoothed pose parameters for each frame. They apply the line based method of Hsu et al. 

(2000) described in section 2.1 to their data and show an example where the line matching fails 

due to a bad initial image pose while their ICP-based approach is successful. Another 

experiment shows that the usage of a reference point cloud and ICP allows for image pose 

corrections at irregular structures like a bridge and trees.  

The integration of object knowledge is also done for laser scanning data. Kager (2004) does 

not integrate a DEM or a building model but instead uses homologous planar patches in aerial 

laser scanning point clouds as tie features for strip adjustment. Planar features between flight 

strips are used to derive fictitious observations as soft constraints that require points to lie on 

the planes in the adjustment. Hebel and Stilla (2012) address the pose refinement of a helicopter 

equipped with an oblique forward-looking line laser scanner. They propose to find 

corresponding planar patches between flight strips or between captured data and given planes 

from a database. They apply their method to the adjustment of the relative orientation of the 

scanner to GNSS/IMU sensors (mounting calibration) if these sensors provide sufficiently 

accurate measurements. They also use the plane database to refine the helicopter pose if 

GNSS/IMU measurements are of low accuracy or unavailable. Planar patches are matched to 

planes concerning distances of their centre of gravity (COG), angle between normal vectors and 

similarity of eigenvalues of covariance matrices. Plane matches are filtered using RANSAC, 

and a least-squares adjustment that weights planar shapes depending on their size is carried out. 

Laser scanning with a mobile mapping platform in an urban environment is examined by 

Monnier et al. (2013). They relate scanned object points to vertical façade planes of a 3D 

building model. A point is assigned to a façade plane if their distance is below some threshold 

and if the point’s and the plane’s normal head in a similar direction. A point normal is calculated 

based on neighbouring points. Assuming good initial pose parameters and stable attitude, drift 

parameters for the 3D platform position are estimated offline using a non-rigid ICP: ICP 

between scanned points and model planes is carried out on time-dependent parts of the 

trajectory assuming slowly varying translational drift. Non-façade points are filtered out by a 

geometric descriptor as well as points at which the measurement ray does not intersect a façade 

plane. Non-rigid ICP drift parameter adjustment and the assignment of points to planes are 

iterated alternatingly. Monnier et al. (2013) mention that the problem could be reduced to 2D 

as only vertical façades are used. This is what Vysotska and Stachniss (2017) propose in their 

constraint sliding window adjustment. They align terrestrial laser scans to building façades from 

a given map to estimate the 2D position and the heading of a robot moving on the ground. A 

new window is issued every 25 m. Correspondences of points at lines identified in the laser 

scan and lines from building outlines are found using ICP. They also analyse the localisability 

of possible robot positions in the map to avoid localisation problems before moving there. 
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The combination of laser scanner and camera observations for pose estimation with object 

knowledge for an aerial platform is addressed by Glira (2018). He describes a hybrid adjustment 

that can take into account correspondences in object space (strips from laser scanning, known 

3D point clouds like a DEM, photogrammetric tie points) and in image space (homologous 

points, GCPs) to estimate the pose parameters as a continuous trajectory of an aerial platform. 

A trajectory from direct orientation using a Kalman filter with GNSS and IMU measurements 

is assumed to be given. Correction parameters for this trajectory as well as for the sensor 

mounting calibrations are estimated in the hybrid adjustment. Correspondences in object space 

are found for laser scanner points as well as for sparse photogrammetric tie points using adapted 

ICP. The point-to-plane distance is used in ICP instead of relaxing the requirement of finding 

point-to-point correspondences. The author calculates a tangent plane for a laser point and its 

neighbouring points using a principal component analysis of the covariance matrix of their 

coordinates. Points are rejected during ICP if their normal vector is unreliable in terms of a high 

measure of roughness calculated using the neighbourhood of the point, and if angles of normal 

vectors of corresponding points or the point-to-plane distance exceed a threshold. The distance 

threshold is set dynamically as a tolerance around the median of the point-to-plane distances. 

Correspondences are weighted based on their roughness and measurement precision and lead 

to soft constraints in the robust hybrid adjustment. Correspondences are searched for iteratively 

in each iteration of the adjustment. 

Lothe (2011) improves the pose parameters of a car moving along urban streets using a 

forward-looking wide-angle camera mounted on the car. The results of a SLAM approach are 

corrected in two steps. The firsts step is a non-rigid ICP that estimates concatenated 

transformations of linear parts of the trajectory placing joints at curves of the trajectory. The 

height of the camera is kept at a fixed height above the ground, assuming a horizontal ground 

plane for the whole image sequence as an elevation model. An approximate initial pose is set 

manually. The metric used for ICP is the orthogonal distance of 3D tie points to model planes. 

Points are assigned to their closest model plane. M-estimation (Huber, 1981) is used for a robust 

estimation by reducing the weights of wrong assignments of tie points to model planes per 

trajectory segment. In the estimation of the transformation parameters, segments are weighted 

depending on an estimated threshold and the number of corresponding tie points. As the non-

rigid ICP leads to discontinuities between segments and cannot correct for drift effects on linear 

trajectory segments, a second step refines the results. An adjustment is set up that minimises 

residuals of image observations for back-projected intermediate points. Intermediate points lie 

in an associated model plane. The classical reprojection error is combined with an error induced 

by triangulated points that lie exactly on the model planes. Lothe (2011) uses M-estimation to 

identify outliers concerning the combined reprojection criterion. As in the first step, tie points 

are assigned to their closest model planes, and the assignments are kept fix during optimisation. 

Therefore, the assignment and the consecutive adjustment is iteratively repeated. Points  
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Reference Measurements Object 

Knowledge 

Matching 

Primitives 

Matching Method Pose Estimation  

Rodriguez and Aggarwal (1990) Image DEM Edges/points Alignment/ consistency checks 2D, resection 

Strunz (1993); Spiegel (2007) Line image DEM Point/plane Height over DEM Bundle adjustment 

Briskin et al. (2017) Image DEM Ray-to-plane Surface intersection Bundle adjustment 

Talluri and Aggarwal (1996)  Image Wireframe Edges Hough transformation 2D, resection 

Stamos and Allen (2001) Image Depth camera Edges  Vanishing points, line clustering Resection 

Aider et al. (2005) Image Wireframe Edges Interpretation tree Resection 

Zhao et al. (2005) Image Point cloud Points  ICP Bundle adjustment 

Kager (2004) Laser Point cloud Point/plane Overlapping patch candidates Adjustment 

Hebel and Stilla (2012) Laser Point cloud Point/plane Overlapping patch candidates, 

RANSAC 

Adjustment 

Monnier et al. (2013) Laser Wireframe Point/plane Non-rigid ICP Adjustment 

Vysotska and Stachniss (2017) Laser Building 

outlines map 

Point/line ICP 2D, adjustment 

Glira (2018) Image, laser Point cloud Point/plane ICP Hybrid adjustment 

Lothe (2011) Image Wireframe Ray-to-plane non-rigid ICP Adjustment 

Tamaazousti et al. (2011) Image Wireframe Ray-to-plane non-rigid ICP Bundle adjustment 

Table 2: Overview of related work that integrates object knowledge in object space. 
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identified as outliers or not related to any plane are excluded from the adjustment. The height 

of the image projection centres is again kept at a fixed height above ground. The approach is 

reported to have problems in areas with too many objects occluding building façades, where 

the robust elimination of tie points fails, and in areas where there are not enough model planes, 

because only assigned tie points are part of the adjustment. Unassigned points are excluded due 

to unsolved problems in weighting two types of reprojection errors for assigned and unassigned 

tie points. 

This problem is addressed by Tamaazousti et al. (2011), who extend the work of Lothe 

(2011). They integrate tie points not related to model planes in a bundle adjustment by 

combining two cost functions that are weighted according to a rejection threshold of the robust 

estimator. Tie points related to a plane are estimated with two degrees of freedom whereas 

unrelated tie points are classically represented by three degrees of freedom.  

2.3 Discussion 

The collection of related work shows that the topic of integrating a priori knowledge of the 

captured scene for pose estimation is addressed for different sensors on platforms operating 

from ground to space. Geometric object knowledge taken into account includes height models, 

wireframe models and point clouds. Constraints are retrieved from a variety of features such as 

points, lines, planes and information about their topology. Correspondences between features 

are found using various strategies from simple geometrical assignments to voting schemes, 

hashing and tree search. The methods aim to refine a platform pose for several goals like 

navigation, model texturing, sensor calibration, strip adjustment, error identification, loop 

closing, drift reduction and reduction of the need for other ground control information.  

The most limiting problem for the application of these existing methods to the scenario 

addressed here is the impact of model generalisation effects given a much higher geometrical 

resolution and accuracy of the captured photogrammetric data compared to the model 

representation of the captured scene. It cannot be assumed that enough building model corners 

or edges are visible in a captured image to estimate its pose without considering additional 

observations. Due to the proximity of the camera to the façades, it is likely that there will be 

images not observing any model vertex or edge, as only a part of one façade is captured. This 

excludes methods that estimate single image poses based on such an assumption to produce 

usable results. The closer the façades are to the sensor, the larger the difference between 

relatively accurate photogrammetric measurements and the generalised building becomes. 

Methods are less affected by the generalisation effects if they are applied to data captured from 

a larger distance to buildings, given the same geometrical resolution and degree of 

generalisation. 

It cannot be assumed that building corners or edges observed in an image of relatively high 

resolution correspond to model features due to the generalisation of the model. Typically, the 
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complexity of a real building will be reduced to an aggregated simpler representation. The 

camera captures the complex structure while the generalised model only shows the simpler 

representation. For this reason, direct matching of vertices as point or edges as line features 

between image and model is avoided here. Therefore, many of the listed methods, especially 

those that match features in image space, are not suitable to solve the given problem. 

Addressing a UAV as sensor platform means that several assumptions which are applied for 

other platforms cannot be used: The UAV does not move on a ground plane or in a fixed height, 

nor can the images be assumed to be taken with some constant attitude although the camera is 

gimbal-stabilised, so that the roll angle is close to zero.  

The type of generalised building model considered in this thesis consists of planes of 

arbitrary orientation. Assumptions on e.g. orthogonality, verticality, horizontality and 

parallelism of planes are avoided (although façades theoretically are known to be vertical).  

Only the sparse photogrammetric tie point cloud is used here. As object points are assigned 

to model planes, the related work using laser scanning data, especially Glira (2018), is close to 

the model addressed here. However, the irregular distribution and spacing of points from 

images likely prevent normal estimation. Therefore, no point normal, as described by some 

authors for laser scanning point clouds, is employed in the assignment of points. As the goal is 

to reduce drift effects and block deformations, no rigid transformation, like ICP, is conducted 

here. Instead, soft constraints that relate tie points to model planes in object space are set up in 

a hybrid adjustment. This adjustment estimates pose parameters for each image, tie point 

coordinates and other parameters. Related papers close to the model described here are Lothe 

(2011) and Tamaazousti et al. (2011), but the authors use the information that their platform 

moves on a ground plane and assume locally rigid transformations in their trajectory estimation. 

In addition and also in contrast to Glira (2018), the amount of generalisation is explicitly 

handled in this thesis during the assignment of tie points to model planes and in the adjustment 

by a standard deviation of the soft constraints.  
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3 Photogrammetric Pose Estimation with a 
Generalised Building Model 

At the beginning of this chapter the mathematical model of photogrammetric pose estimation with 

a single camera using a priori knowledge of the observed scene in the form of a generalised 

building model is described. The method uses a hybrid bundle adjustment integrating planes as 

primitives of the building model. An overview of the mathematical model is presented in section 

3.1. In section 3.2, the functional and stochastic models of the hybrid bundle adjustment for pose 

estimation are described. The integration of a generalised building model into the hybrid bundle 

adjustment in terms of relating observed object points to primitives of the generalised building 

model is covered in detail in section 3.2.1. In section 3.2.5, the retrieval of initial values for the 

optimisation is described. In section 3.3, the workflow is described and the method is extended to 

a sliding window approach to be applied to image sequences. 

3.1 Overview 

Pose estimation using prior object knowledge consists of an optimisation that integrates a building 

model. Entities of the model relevant to the method are described in the following.  

The model consists of a single camera that observes objects in multi-view stereo configuration 

while moving along the scene. Buildings of that scene are known in the form of a generalised 

building model represented in boundary representation. The building model consists of planar 

elements that are represented as faces defined by vertices. The vertices are given as a list of 3D 

coordinates. The topology of the model is represented by a list of the vertex indices that belong to 

each model plane. The vertices of a plane describe the boundary of the face. A face thereby is a 

bounded portion of the plane.  

Figure 1 depicts relevant entities to describe image poses and the building model as well as the 

relation of tie points to model planes with respect to their orthogonal distance. This geometric 

distance of tie points to model planes in object space describes the relation between points 

observed in the images and model planes without the need to recognise the model vertices in the 

images.  
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Figure 1: Relevant entities in the model: Three poses Ii of the same camera with focal length c, 

orthogonal image coordinate axes (ui, vi), projection centres PCi and three rotation angles (i, i, i) 

with i  {1, 2, 3} (shown only for image 1) represent the multi-view model. Two captured tie points are 

denoted as TPm (orange) with m  {1, 2}. The generalised building model is represented by its vertices 

VTk (blue) with k  {1, 2, …} and by j planes Plj (green), the VTk are situated in, with j  {1, 2, 3, 4}. 

Camera poses, tie point and vertex coordinates are described in the world coordinate system with axes 

X, Y, Z. TP1 is not assigned to any plane while TP2 is related to Pl1 by the orthogonal distance d shown 

in red. 

The mathematical model that relates image coordinates u, v to the parameters of interior and 

exterior orientation and to the object coordinates X, Y, Z is given by the well-known collinearity 

equations (Eq. 1). 

 
𝑢 = 𝑢0 − 𝑐

𝑟11(𝑋 − 𝑋0) + 𝑟21(𝑌 − 𝑌0) + 𝑟31(𝑍 − 𝑍0)

𝑟13(𝑋 − 𝑋0) + 𝑟23(𝑌 − 𝑌0) + 𝑟33(𝑍 − 𝑍0)
 

 

𝑣 = 𝑣0 − 𝑐
𝑟12(𝑋 − 𝑋0) + 𝑟22(𝑌 − 𝑌0) + 𝑟32(𝑍 − 𝑍0)

𝑟13(𝑋 − 𝑋0) + 𝑟23(𝑌 − 𝑌0) + 𝑟33(𝑍 − 𝑍0)
 

(1) 

 

The exterior orientation (pose) of an image is given by the coordinates 𝑋0, 𝑌0, 𝑍0 of its projection 

centre PC and the elements 𝑟𝑖𝑗 of a rotation matrix which are functions of three rotation angles 𝜔, 
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𝜑, 𝜅. The coordinates of the principal point 𝑢0 and 𝑣0 (not shown in Figure 1) and the camera 

constant c are referred to as interior orientation parameters. 

The mathematical description of the relations of tie points to model planes and the 

parameterisation of the planes is covered in section 3.2.1. 

3.2 Hybrid Bundle Adjustment 

Pose estimation of an image sequence and a building model is based on nonlinear relations between 

observations and unknowns and requires an iterative solution. Bundle adjustment is an established 

method that iteratively estimates unknowns using the underlying nonlinear functional relations 

(Eq. (1)). The adjustment is hybrid because it uses different observation types, not only image 

coordinates. The hybrid adjustment uses the Gauss-Markov model.  

The entities shown in Figure 1 are interpreted as observations and unknowns. For the sake of 

clarity, indices that differentiate between single realisations of entities of variables are not used in 

the following. 

The following observation types that lead to observation equations f are used as inputs to the 

adjustment: 

- 𝑓𝑇𝑃: image coordinates of tie points (𝑢, 𝑣)𝑇𝑃 

- 𝑓𝐶𝑃: image coordinates of check points (𝑢, 𝑣)𝐶𝑃 

- 𝑓𝑝𝑜𝑠𝑒: direct observations (𝑋0, 𝑌0, 𝑍0)𝑝𝑜𝑠 and (ω, φ, κ)𝑎𝑡𝑡 for the pose of the images 

- 𝑓𝑉𝑇: direct observations for the vertices of the building model (𝑋, 𝑌, 𝑍)𝑣𝑒𝑟𝑡𝑒𝑥 

- 𝑓𝑑𝑇𝑃
: fictitious observations 𝑑𝑇𝑃 relating object space coordinates of a tie point to one plane 

of the building model 

- 𝑓𝑑𝑉𝑇
: fictitious observations 𝑑𝑉𝑇 relating object space coordinates of a vertex to planes of 

the building model 

These observations are used to estimate the following unknowns: 

- 𝑋0, 𝑌0, 𝑍0, 𝜔, 𝜑, 𝜅:  the pose parameters for each image I (projection centre coordinates 

    and rotation angles ) 

- (𝑋, 𝑌, 𝑍)𝑇𝑃:   the object space coordinates of each tie point TP  

- (𝑋, 𝑌, 𝑍)𝐶𝑃:   the object space coordinates of each check point CP  

- 𝛼, 𝛽, 𝛿:   the parameters of each plane Pl of the building model 

- (𝑋, 𝑌, 𝑍)𝑉𝑇:   the object space coordinates of each vertex VT of the building model 
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The fictitious observations fd and the plane parameterisation are covered in detail in section 

3.2.1. 

A simplified version of the model is shown in Figure 2 with a corresponding graph aside. This 

example will be used to describe the workflow of pose estimation we apply. The upper part of the 

graph represents images I and tie points TP. Homologous point observations are represented by 

blue edges between key frames and reconstructed 3D tie points. Check points are handled similar 

to tie points and are not represented in the figure. The lower part represents the vertices VT of the 

building model that span the model planes Pl.  

Figure 2 follows the concept of a factor graph (Kschischang et al., 2001). The graph consists of 

unknown random variables (large circles) and probabilistic information (small circles). 

Measurements (e.g. image coordinates, GNSS positions) and prior knowledge (coordinates of 

vertices of the building model) are probabilistic information that corresponds to observations in 

the adjustment. 
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Figure 2: Example model from Figure 1 with corresponding graph representation (for simplification, 

only two planes of the building model are considered). The graph consists of the scene entities shown as 

circular nodes and edges that indicate which entities are related to each other. TP2 is related to Pl1 by 

the orthogonal distance d, indicated in the graph as a red edge between TP2 and Pl1. TP2 is observed 

(blue edges) by the images I2 and I3. The vertices VTk are connected (black edges) to the planes they 

belong to. No tie point is assigned to Pl2 which means that Pl2 is defined only by its three vertices k = 2, 

3, 4. Small circles on edges represent the observations 𝑓𝑝𝑜𝑠𝑒, 𝑓𝑇𝑃, 𝑓𝑑𝑇𝑃
, 𝑓𝑑𝑉𝑇

 and 𝑓𝑉𝑇. 
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Observations are represented by the small circles on the edges. The underlying observation 

equations 𝑓𝑝𝑜𝑠𝑒, 𝑓𝑇𝑃, 𝑓𝑑𝑇𝑃
, 𝑓𝑑𝑉𝑇

 and 𝑓𝑉𝑇 mathematically describe the relations between 

observations and unknowns visualised by the edges and thereby represent the functional model of 

the adjustment (section 3.2.2). 

3.2.1 Modelling Relations of Object Points to Model Planes 

The relation of an object point to a plane of the building model occurs twice (𝑓𝑑𝑇𝑃
, 𝑓𝑑𝑉𝑇

) in Figure 

2. The mathematical description of both types is identical. The relation is described as a so-called 

fictitious observation of the orthogonal distance of a point to a plane. As this distance is “observed” 

to be 0 if a point lies in the related plane, the observations are called “fictitious”.  

The relation shown in the graph in red stands for the group of fictitious observations that relate 

object space coordinates of tie points to planes of the building model 𝑓𝑑𝑇𝑃
. The relations between 

model vertices and model planes constitute the group of fictitious observations relating object 

space coordinates of a vertex of the building model to the planes of the building model 𝑓𝑑𝑉𝑇
.  

Figure 3 shows two planes and a related tie point. The relationship between object point and 

model plane is expressed in a local coordinate system. Similar to Kraus (1996), a local coordinate 

system (xj, yj, zj) is attached to each plane in which the fictitious observation equations are 

formulated. Six parameters describe the pose of this local plane coordinate system in the object 

 
Figure 3: Each plane j has a local coordinate system (xj, yj, zj) where initially the local zj-axis is the 

plane normal nj and xj, yj are axes in the plane. The origin of the coordinate system of plane j is 𝑃0,𝑃𝑙𝑗
; 

each plane coordinate system is rotated relative to the world coordinate system (X, Y, Z) by a rotation 

matrix R, not shown in the figure. Two angles α, β and a shift δ (bold arrow) along the local z-axis (only 

shown for Pl1) represent the parameterisation of the local plane. TP2 is shown in orange with its distance 

d to Pl1 (red). 
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coordinate system (X, Y, Z). These parameters are a 3D-shift 𝑃0 from the object coordinate system 

to the local one for each plane and three rotation angles (used to parameterise a 3D-rotation matrix 

𝑅). Initially, the x-y plane of the local system corresponds to the model plane, and the z-axis 

corresponds to the plane normal 𝑁.  

As stated before, vertex coordinates per model plane represent the building model. The local 

coordinate system per plane is defined as follows. The origin of the local system P0 is the centre 

of gravity of all vertices that belong to a plane. The matrix of second moments (variance-

covariance matrix) M of the plane vertices VT is calculated according to Eq. (3) interpreting the 

vertex coordinates per coordinate axis as observations (random variables).  

 

𝑐𝑜𝑣(𝐴, 𝐵) =
1

𝑁 − 1
∑(𝐴𝑖 − 𝜇𝐴)(𝐵𝑖 − 𝜇𝐵)𝑇

𝑁

𝑖=1

 (2) 

with the mean 𝜇𝐴 and 𝜇𝐵 of two random variables A and B of length N  

 

𝑀 = (

𝑐𝑜𝑣(𝑉𝑇𝑋, 𝑉𝑇𝑋) 𝑐𝑜𝑣(𝑉𝑇𝑋, 𝑉𝑇𝑌) 𝑐𝑜𝑣(𝑉𝑇𝑋, 𝑉𝑇𝑍)
𝑐𝑜𝑣(𝑉𝑇𝑌, 𝑉𝑇𝑋) 𝑐𝑜𝑣(𝑉𝑇𝑌, 𝑉𝑇𝑌) 𝑐𝑜𝑣(𝑉𝑇𝑌, 𝑉𝑇𝑍)
𝑐𝑜𝑣(𝑉𝑇𝑍, 𝑉𝑇𝑋) 𝑐𝑜𝑣(𝑉𝑇𝑍, 𝑉𝑇𝑌) 𝑐𝑜𝑣(𝑉𝑇𝑍, 𝑉𝑇𝑍)

) (3) 

 

The eigenvalue decomposition of M (Eq. (4)) is used to retrieve the rotation matrix R that 

describes the rotation from the object coordinate system of the vertices to the local coordinate 

system. R results as the matrix of eigenvectors sorted along columns according to the size of the 

eigenvalues in the diagonal matrix 𝐷. As R is a rotation matrix, 𝑅−1 = 𝑅𝑇. 

 𝑀 = 𝑅 ⋅ 𝐷 ⋅ 𝑅−1 = 𝑅 ⋅ 𝐷 ⋅ 𝑅𝑇 (4) 

 

The third column of R corresponds to the smallest eigenvalue and represents the normal vector 

which points in the direction of the z-axis of the local coordinate system. 

The graph in Figure 2 at the bottom shows the vertices and, 𝑓𝑑𝑉𝑇
, the type of fictitious 

observations that relate the vertices to the planes. Direct observations of the object coordinates of 

the vertices are introduced. Vertex coordinates are part of the adjustment as unknowns. The change 

of a plane due to adjusted vertex and tie point coordinates is described within the local plane 

coordinate system: P0 and R are constant during an iteration of the adjustment and instead, the 

plane is parameterised in the local system by two angles 𝛼, 𝛽 defining the direction of the normal 

and a translation 𝛿 along the (local) z-axis. Consequently, 𝛼, 𝛽 and 𝛿 are the entities to estimate as 

unknowns. Using this plane parameterisation, the relation between a point and a plane is described 

following Eq. (5).  

 𝑑 = 𝑁(𝛼, 𝛽)𝑇 ⋅ 𝑃̅(𝑋, 𝑌, 𝑍) + 𝛿 (5) 

with 𝑁(𝛼, 𝛽) = [

sin 𝛼
− sin 𝛽 cos 𝛼
cos 𝛽 cos 𝛼

] and 𝑃̅(𝑋, 𝑌, 𝑍) = 𝑅𝑇(𝑃 − 𝑃0)  

𝑁(𝛼, 𝛽) is the normal vector of the plane as a function of the two angles. 𝑃̅(𝑋, 𝑌, 𝑍) is the object 

point expressed in the local coordinate system defined by R and P0. 𝛼, 𝛽 and 𝛿 are initialised as 
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zero. Whenever the parameters 𝛼, 𝛽 and 𝛿 are changed in the iterative adjustment, these values are 

used to update R and P0. After the parameter update, the adjusted plane again corresponds to the 

(slightly shifted and rotated) x-y coordinate plane of the local system. 𝛼, 𝛽 and 𝛿 are reset to zero 

after updating 𝑅 and 𝑃0 for each iteration. 

As stated before, the distance d between a point and a plane is assumed to be zero, i.e. the point 

is assumed to lie in the plane. For the vertices of the building model, the model defines in which 

plane they are situated in. In contrast, relations between tie points and model planes must be 

established prior to carrying out the adjustment (see chapter 4).  

3.2.2 Functional Model 

The Gauss-Markov model, according to Eq. (6), is used to minimise the sum of squared residuals 

v of the given observations l. l and v are n x 1 vectors. n refers to the number of observations; u is 

the number of unknowns. The n x u design matrix A consists of the derivatives of the observation 

equations with respect to the unknowns. The observation equations mathematically describe how 

the observations contribute to the estimation of the parameters 𝑥̂. The hat symbol ^ denotes 

estimated variables. 

 𝑙 + 𝑣̂ = 𝐴𝑥̂ (6) 

 

The following observation equations are the mathematical formulation of the adjustment: 

- fTP: 𝑣̂(𝑢,𝑣)𝑇𝑃
= 𝑓(𝑋̂, 𝑌̂, 𝑍̂, 𝑋̂0, 𝑌̂0, 𝑍̂0, 𝜔̂, 𝜑̂, 𝜅̂) − (𝑢, 𝑣)𝑇𝑃 and  

fCP: 𝑣̂(𝑢,𝑣)𝐶𝑃
= 𝑓(𝑋̂, 𝑌̂, 𝑍̂, 𝑋̂0, 𝑌̂0, 𝑍̂0, 𝜔̂, 𝜑̂, 𝜅̂) − (𝑢, 𝑣)𝐶𝑃 

for the image observations of tie points and check points according to the classical collinearity 

equations (Eq. (1)). The interior orientation of the sensor is considered as known and constant. 

- fpos: 𝑣̂(𝑋,𝑌,𝑍)𝑝𝑜𝑠𝑒
= (𝑋̂0, 𝑌̂0, 𝑍̂0) − (𝑋, 𝑌, 𝑍)𝑝𝑜𝑠 and  

fatt: 𝑣̂(ω,φ,κ)𝑎𝑡𝑡
= (ω̂, φ̂, κ̂) − (ω, φ, κ)𝑎𝑡𝑡 

for the direct observations of the image poses.  

- fVT: 𝑣̂(𝑋,𝑌,𝑍)𝑉𝑇
= (𝑋̂, 𝑌̂, 𝑍̂) 𝑉𝑇 − (𝑋, 𝑌, 𝑍)𝑣𝑒𝑟𝑡𝑒𝑥  

for the direct observations of the building model vertices. 

- fd: 𝑣̂𝑑 = 𝑁(𝛼̂, 𝛽̂)
𝑇

⋅ 𝑃̅(𝑋, 𝑌, 𝑍) + 𝛿̂  

for fictitious observations according to Eq. (5). 

 

The collinearity equations represent the photogrammetric model. Absolute information can be 

added by including observations for the parameters of exterior orientation fpos, fatt, e.g. GNSS 

and/or IMU measurements. The offset of the GNSS receiver to the camera pose is neglected in 

this thesis due to the expected relatively low accuracy of the receiver. An IMU is not used in this 

thesis, but all six parameters of the exterior orientation for some images are set to be directly 

observed based on already estimated parameter values in the sliding window approach to transit 

from one window to the next (see section 3.2.5).  
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The direct observations for vertex coordinates of the building model fVT add the building model, 

which must be available in the same coordinate system, to the adjustment. The building model is 

formed by the second type of fictitious observations 𝑓𝑑𝑉𝑇
 that denote the topology of the model by 

relating vertices to model planes. The first type of fictitious observations 𝑓𝑑𝑇𝑃
 is the connection 

between the building model and the photogrammetric model. 

3.2.3 Stochastic Model 

The stochastic model represents the stochastic information of the different observations. 

Uncorrelated observations and a constant a priori level of accuracy for each observation type are 

assumed. The a priori variance factor 𝜎0
2 is set to 1. This leads to a diagonal cofactor matrix 𝑄𝑙𝑙 of 

the observations that is equal to the variance-covariance matrix Σ𝑙𝑙 (Eq. (7)). 

 Σ𝑙𝑙 = 𝑑𝑖𝑎𝑔(𝜎𝑇𝑃
2 , 𝜎𝐶𝑃

2 , 𝜎𝑝𝑜𝑠
2 , 𝜎𝑎𝑡𝑡

2 , 𝜎𝑉𝑇
2 , 𝜎𝑑𝑇𝑃

2 , 𝜎𝑑𝑉𝑇

2 ) 

Σ𝑙𝑙 = 𝜎0
2𝑄𝑙𝑙 = 𝑄𝑙𝑙 

(7) 

   

 𝑃 = 𝑄𝑙𝑙
−1 (8) 

   

The weight matrix P is used in the parameter estimation to minimise the weighted squared 

residuals 𝑣𝑇𝑃𝑣 according to Eq. (9). 

 𝑥̂ = (𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃𝑙 (9) 

 

In Eq. (7), the variances of the measured image coordinates of tie points and check points are 

denoted by 𝜎𝑇𝑃
2  and 𝜎𝐶𝑃

2 . The variance of direct measurements of the camera poses is reflected by 

𝜎𝑝𝑜𝑠
2  and 𝜎𝑎𝑡𝑡

2 . The variance 𝜎𝑉𝑇
2  is related to the accuracy of the coordinates of the building model 

vertices. For the two groups of fictitious distance observations different variances, namely 𝜎𝑑𝑇𝑃

2  for 

tie points and 𝜎𝑑𝑉𝑇

2  for vertices, are used. As stated before, the mathematical model of both groups 

of fictitious observations is equal, but the parameters of the stochastic model are different.  

According to the building model, the vertices are known to lie exactly on the planes to which 

they belong. Therefore, their fictitious distance observations conceptually should be zero (for 

numerical reasons a small variance 𝜎𝑑𝑉𝑇

2  resulting in high weights of these observations is used). 

On the other hand, the variance 𝜎𝑑𝑇𝑃

2  of the observed distance of tie points to their related planes 

mainly depends on the degree of generalisation of the building model and has to be selected 

accordingly. The geometrical accuracy of the building model is represented by 𝜎𝑉𝑇
2  while 

generalisation effects affect 𝜎𝑑𝑇𝑃

2 . 

Depending on the scene and the window size, not enough planes with different orientations 

might be visible. At least four planes with different orientations are needed to fix the 7 parameters 

of the datum. To correct drift effects of the image block or block deformations, even more planes 

might be needed. If the planes are inaccurate, redundancy in the planes is a requirement. 

Redundancy in the planes is also needed to improve not only the trajectory but also the model 
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planes. Therefore, 𝜎𝑉𝑇
2  by default is set to a small value, to almost fix the building model. The 

photogrammetric block then is adjusted with respect to the model. This means that model planes 

cannot move towards the tie points instead of correcting the potentially erroneous trajectory. On 

the other hand, correspondences of tie points to erroneous model planes directly influence the 

trajectory instead of changing the coordinates of the vertices of the model planes.  

The assumption of a constant level of accuracy for the individual observation groups simplifies 

the model. This is especially the case for 𝜎𝑑𝑇𝑃

2 , which in reality is likely to vary between the 

fictitious observations for tie points. These variations are not known and they are mainly caused 

by generalisation effects of the building model. The reconstructed tie points represent the real 

scene without generalisation and therefore differ from the generalised planes. In addition, the 

differences between generalised model and captured real scene are not covered by the assumption 

of random errors as they likely consist of systematic offsets of groups of points from a plane. 

Therefore, this kind of stochastic model poses a simplification of the real situation. The possible 

influences of systematic effects are neither covered by the functional nor by the stochastic model. 

They have to be taken into account when interpreting the outcome of the hybrid adjustment. 

3.2.4 Robust Estimation 

The number of outliers is already reduced when generating the initial values for the adjustment. 

Outliers in the image observations are largely reduced beforehand by using RANSAC to retrieve 

relative image orientations based on a set of inlier homologous points removing outliers of the 

image matching procedure. The assignment of tie points to planes of the building model also has 

the goal to minimise the number of outliers in the fictitious observations. Only tie points close to 

model planes are assigned, which means that no large residuals are accepted already before and 

also between iterations of the adjustment.  

Remaining outliers have to be detected by the adjustment procedure. This is done following the 

iteration scheme for robust estimation described by Förstner and Wrobel (2016). The iteration 

scheme allows for the separation of inliers and outliers first, before removing observations based 

on a threshold on their residual. This prevents the removal of observations that initially show large 

residuals, although being inliers.  

Assuming good initial values, the weights of observations originally retrieved using Eq. (8) are 

varied during iterations of the iteration scheme based on the residuals. The initial Σ𝑙𝑙 is not 

changed. The residuals are normalised by dividing them by the a priori standard deviation of their 

observation type. The normalisation allows for the usage of a weight function for all observation 

types.  

Outliers can only be detected if their residual is large enough and if there is enough redundancy 

to distinguish between outliers and inliers. The implemented hybrid adjustment allows to turn on 

robust estimation for every observation type individually.  
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3.2.5 Determination of Initial Values 

Initial values for the adjustment are retrieved by sequential structure from motion. The goal is 

to derive homologous points in the images and to estimate image poses and 3D object coordinates 

of tie points in an arbitrarily chosen coordinate system. Not every frame of the image sequence is 

taken into account: At the beginning, based on a given time interval key frames are chosen along 

the image sequence. Points are extracted for the first and the second key frame. Image matching 

for the found points is carried out to identify homologous points. Based on those point pairs, the 

parameters of the relative orientation of the two key frames are retrieved and the base length is set 

to 1 to fix the scale.  

One key frame after the other is added along the sequence using matches to already 

reconstructed tie points to estimate relative image poses by spatial resection. New tie points are 

triangulated as soon as they are found in at least three images. To reduce the number of outliers 

already before the adjustment, tie points with reprojection errors exceeding a threshold are 

rejected. Distant tie points with nearly parallel image rays are also rejected based on a low base-

to-height ratio. Frames are skipped based on several criteria such as the number of inliers in image 

resection and the total number of found tie points (see section 5.3 for details). 

To be able to integrate the building model, the image poses and object points must be available 

in the same coordinate system as the building model. Therefore, the results of the first step must 

be transformed from the arbitrarily chosen coordinate system into the desired object coordinate 

system using a 3D similarity transformation (Helmert transformation) with 7 parameters.  

Due to the low-cost sensor setup, direct sensor orientation can be used only to some extent: 

Measurements of the on-board GNSS receiver for positions of image projection centres can be 

used to roughly define the object coordinate system.  

At least three pairs of projection centres that are not situated on a straight line and have 

sufficient base length are needed to calculate the seven parameters of the Helmert transformation. 

As the measurements are noisy, pairs of projection centre positions of the first few key frames, 

measured by GNSS and estimated during image orientation, are used to rescale the local coordinate 

system. Then, frames of the image sequence are only accepted as key frames if after resection their 

base length to the previous image of the sequence exceeds a certain threshold. This prevents the 

usage of frames captured from a close-by position in situations where the flying speed is low. Only 

after a certain number of key frames has been oriented, the parameters of the Helmert 

transformation are calculated using these image positions. 
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3.3 Workflow 

3.3.1 Global Adjustment 

Table 3 shows the processing steps for the simultaneous estimation of all available key frames. 

The results of the coarse image orientation (step 1) described in section 3.2.5 are optimised in step 

2. This bundle adjustment does not include the building model and is robust with respect to outliers 

in the image coordinates of homologous points (see section 3.2.4).  

Table 3: Workflow of global pose estimation. Steps 3 and 4 are carried out in a loop for the adjustment 

iterations. 

Step 1 Image matching between key frames and retrieval of 3D tie point coordinates and 

parameters of image poses. This step includes the transformation into the coordinate 

system of the building model. 

Step 2 Optimisation using only tie point coordinates and, if available, GNSS/IMU 

observations of pose parameters (upper part of the graph of Figure 2 only). 

 Step 3 Establishment of relations between tie points and model planes (edges between 

TPm and Plj in the graph). 

Step 4 Hybrid adjustment including images, tie points, vertices and the planes 

(complete graph). 

In step 3, tie points are assigned to planes of the building model based on their 3D positions 

estimated as described in section 3.2.5. Step 4 consists of the hybrid adjustment, including the 

images, the building model and the found assignments. Steps 3 and 4 are iterated: In each iteration 

of the hybrid adjustment, the assignment of the tie points to the planes of the building model is 

recomputed (step 3) based on the current optimisation result. In contrast, the known relations of 

vertices to planes are not changed.  

In step 2 of the workflow, the ability of the adjustment to turn on robust estimation for each 

observation type individually is used to do a robust estimation with respect to the observations of 

homologous points only. Outliers found are excluded directly before step 3. Step 4 then is carried 

out robustly with respect to the first type of fictitious observations only. The separation and 

elimination of outliers in image coordinates and fictitious observations is done under the 

assumption that the image block has enough redundancy in image observations to identify outliers. 

The relatively inaccurate and generalised building model is assumed not to add information that 

helps in identifying additional outliers in the image observations. In contrast, the separation of 

outlier detection assures that no image observation is eliminated where wrong assignments to 

model planes lead to large residuals of a tie point at an image coordinate. 

3.3.2 Sliding Window Adjustment 

The workflow for global adjustment determines the orientation parameters of all key frames, the 

tie points and the building model at once. Therefore, in terms of computational load the solution 

grows with the number of observations and unknowns, which makes it unfeasible for large 
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numbers of images. An often-seen solution is to split the optimisation into smaller parts. The so-

called sliding window approach splits a sequence of N images into smaller subsets corresponding 

to windows that overlap each other in terms of images and tie points. This simplification of the 

optimisation is based on the assumption, that only neighbouring images show the same scene and 

the same planes and therefore are connected. This connection consists of homologous tie points 

between the neighbouring images and commonly observed model planes. Note, that the 

simplification to only taking into account neighbouring images typically prevents to close loops 

of the image sequence. However, with the integration of a building model into sliding window 

estimation, the results are still related to a common coordinate system, so that loop-closure is 

expected to become easier or even unnecessary. 

Another motivation to process the image sequence and the building model with the sliding 

window approach are block deformations and drift effects that contradict the assumption (see 

chapter 4) of having good initial values for the assignment of tie points to model planes: Block 

deformations due to drift become larger with the length of the image sequence if no absolute 

information like GNSS is available. If only parts of an image sequence are processed as windows, 

drift effects are limited in each window before the next window is processed as long as valid 

correspondences of tie points to model planes are found. 

The size of a window in terms of the number of key frames that are considered is denoted as 

Nws. The sliding window approach computes local optimisations that overlap and therefore are 

assumed to lead to results close to the outcome of a global optimisation.  

Table 4 lists parameters for the sliding window estimation. Nnew new key frames are added per 

window. Therefore, the number of old, already adjusted key frames to keep per window is Nold = 

Nws - Nnew. Parameters and observations of older key frames are removed from the new window. 

Thereby, the parameters of the older key frames are assumed not to be affected by the new images. 

The Nold key frames are part of the new window estimation again. Their already estimated 

parameters might potentially benefit from additional observations thanks to the Nnew key frames.  

Figure 4 shows an extension of the exemplary scene and the corresponding graph representation 

from section 3.2. Two new images observe two new points. Image I3 observes the new tie point 

TP3. Image I4 adds an additional observation of TP2. TP3 is related to the second plane Pl2. Whereas 

images I1 - I3 from the previous section and the building model are shown as window 1, one old 

and the two new images, tie points TP2 - TP3 and relations to the building model are optimised as 

window 2. I1, I2 and TP1 do not belong to this new window. In this example 𝑁 = 5, 𝑁𝑤𝑠 = 3, 

𝑁𝑛𝑒𝑤 = 2 and therefore 𝑁𝑜𝑙𝑑 = 1. 

N Total number of key frames 

Nws Number of key frames per window: window size. 

Nnew Number of new key frames to add per window. 

Nold Number of recently adjusted key frames to keep for a new window: Nold = Nws - Nnew 

Table 4: Parameters of windowed pose estimation. 
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Table 5 describes the steps of the sliding window pose estimation. Steps 1 and 2 are similar to 

those of the global workflow (Table 3) but only use the first Nws images. In the example, the first 

window refers to images 1-3. The images of the first window are oriented, and image poses and 

tie point coordinates in the world coordinate system are retrieved. Based on these results, the 

iterative procedure starts which processes images in a sliding window manner. Steps 3 to 6 are 

repeated for every window of the sequence.  

Step 3 consists of relating the reconstructed tie points of the current window to the building 

model (red connections in the graph in Figure 4). Step 4 is the hybrid bundle adjustment on the 

current window including the found relations and the building model. Steps 3 and 4 are iterated 

together, as for each iteration of the hybrid optimisation the assignments of tie points to model 

planes are re-established. 

After convergence of the hybrid optimisation, the current window has been processed, and step 

5 follows: Nnew new images are added to the adjusted images to carry out image orientation and 

reconstruction. The Nnew and the Nold images form the new window. In step 6, this new window is 

then input to an optimisation like in step 2 without considering the building model. The model is 

added again in step 3, which restarts the cycle for a new window.  

The estimated parameters of the exterior orientations of some oldest images with their estimated 

variances are used in steps 3 and 6 as direct observations for the parameters of the exterior 

orientation of those images. This is due to two reasons: To define the datum of the block in step 6 

if no GNSS measurements are used and to transfer some information from the previous window 

to the new window. This assumes Nold to be at least three, and if it is larger, the exterior orientation 

Window 1 Window 2

TP1

I3

I4 I5

I2

I1 TP2 TP3

TP4

Pl1

Pl2
VT4

VT2

Z

Y
X

VT1

VT3

 
Figure 4: Extended example with corresponding graph representation from Figure 2. Two new images 

and two new tie points are added. Windows 1 and 2 denote the entities that are part of a sliding window.  
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parameters of the old images after the oldest three are estimated again. This allows the block to be 

corrected even if the parameters for the old images were estimated inaccurately. If no GNSS 

measurements are available for a window and no corresponding model planes are found within the 

window, these direct observations for the parameters of the exterior orientation are the only 

absolute information and prevent the normal equation system from becoming singular. 

Steps 2 and 6 are made robust with respect to outliers in the observations of homologous points. 

Step 4 keeps image coordinates that are inliers in step 2 or step 6 and it is made robust only with 

respect to outliers within the fictitious observations of tie points lying on model planes. Direct 

observations for parameters of the exterior orientation or for coordinates of model vertices and 

fictitious observations for the connection of model vertices and model planes are not checked for 

outliers, assuming they are not affected by gross errors. 

After all images have been processed in windows, a global hybrid optimisation can be carried 

out as an optional post-processing step. This can have two goals: It does a global optimisation, and 

it can be used to find optimal shift and rotation parameters of the model planes by increasing the 

a priori standard deviation of the direct observations of model vertices.  

The final global optimisation includes all optimised image poses, all image observations and 

the building model and is done robustly with respect to outliers in image observations and fictitious 

observations of tie points to model planes. The relations of tie points to model planes are updated 

in each iteration of the global adjustment and are subject to outlier identification and elimination.  

Step 1 Image matching between key frames and retrieval of 3D tie point coordinates and 

parameters of image poses for the first window of key frames (images 1 to Nws). This 

step includes the transformation into the coordinate system of the building model. 

Step 2 Optimisation using only tie point coordinates and, if available, GNSS/IMU 

observations of pose parameters.  

  Step 3 Establishment of relations between tie points and model planes (edges between 

TPm and Plj in the graph).  

Step 4 Hybrid optimisation including images, tie points, vertices and the planes. 

Step 5 Based on the last Nold adjusted image poses, add Nnew key frames of the next 

window and retrieve image poses and tie point coordinates. 

Step 6 Optimisation for a window of Nold remaining and Nnew key frames without 

considering the building model. The already optimised parameters of the exterior 

orientation of some of the oldest images are included as direct observations with 

their estimated variances and covariances from the window before. 

Step 7 If all N key frames are optimised, a post-processing step can follow to refine the 

results: Final global hybrid adjustment including all key frames, the planes and 

found relations of tie points to model planes.  

Table 5: Workflow of the sliding window pose estimation. Steps 3 and 4 as well as steps 3 to 6 are 

carried out in loops for adjustment iterations and per window. 
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4 Assignment Under Generalisation Effects 

The second important problem addressed by this thesis is how the relation of tie points to building 

model planes can be established. This problem corresponds to step 3 in the global (Table 3) as well 

as in the sliding window workflow (Table 5). Main factors to consider when setting up methods 

to find the relations are the inaccuracy of image pose parameters and tie point coordinates as well 

as the generalisation effects and inaccuracy of the building model. An established relation of a tie 

point to a model plane leads to the assignment of this point to the plane and is represented in the 

optimisation as a fictitious observation 𝑓𝑑𝑇𝑃
 (section 3.2.1).  

In this chapter, first, the generalisation effects that are to be expected for a typical generalised 

building model are described. Requirements for the assignment of tie points to model planes are 

derived, and three different strategies to relate tie points to planes of a generalised building model 

are presented. The building model and the tie point cloud are inputs to the assignment process.  

The first method, abbreviated as method (a), uses a simple distance criterion to assign points to 

model planes directly. The second method (b) is based on finding planes in the entire tie point 

cloud independent of the building model and matching these planes to the planes of the building 

model. The third method (c) uses the model planes to generate regions-of-interest (ROIs) around 

the model planes and thereby considers only points in the vicinity of a model plane in order to find 

a corresponding extracted plane; explicit plane matching is thus avoided, and the search of planes 

in the tie point cloud is restricted to the ROIs near the given model planes. Method (a) is set up as 

the simplest and fastest method, while (c) potentially adds robustness and (b) has the highest 

potential for situations where the assumption of a good initial position of the object points that are 

matched to the building model is violated. 

The fictitious observations for vertices are given as a part of the model's topology and are not 

changed during adjustment. The strategies to establish fictitious observations for tie points on 

model planes require that both, the tie points and the building model vertices, must be given in the 

same coordinate system. 

Note that the assignment strategies are not limited to tie points observed by a camera but can 

be applied for any sensor that delivers 3D points. In addition, other primitives of a 3D model than 

planes could be used in matching if a suitable distance function is set up for them, and, for method 

(b), if these primitives are identified in the tie point cloud. 
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4.1 Generalisation Effects  

The building model consists of planes that are defined by vertices which are often not visible in 

the images. The reason for this is the generalisation of the real world that is employed for the 

building model. The building model is a simplified representation of the scene: vertices do not 

have to correspond to real features of the captured scene and most model planes are a simplified 

representation of more complex structures, e.g. a façade with windows and doors or a roof that 

consists of tiles. In contrast, the observed tie points directly correspond to features of the captured 

scene. 

The amount of generalisation of building models is often defined by their level of detail (LOD). 

The widely used City Geography Markup Language (CityGML) encoding standard, version 2.0 

applies 5 levels of detail (Open Geospatial Consortium, 2012). While level 0 represents building 

footprints or roof edge polygons, level 1 is a simple 3D block model. Level 2, in addition, 

represents roof structures. Higher levels add wall and roof details, e.g., windows or doors (LOD3), 

and building interiors (LOD4). Typically, the minimal dimension of modelled objects becomes 

smaller, and the geometrical accuracy increases from lower to higher levels of detail. More and 

more cities are entirely modelled in LOD1 or LOD2.  

The level of detail of a given building model and specification of the minimal dimension of 

objects and their geometrical accuracy are needed to quantify the degree of generalisation. Often, 

information about methods used to capture and process the data are also given. Generalisation 

effects of the models typically stem from generalisation during data capturing rather than from 

simplifying a model of higher detail. LOD1 can be generated from building footprints out of a 2D 

GIS database and building height information. Uncertainties from digitising such data from paper 

maps have to be considered. LOD2 often is produced by adding parameterised roof structures from 

a catalogue of standardised roof types. These roof structures are reconstructed based on detailed 

height information, e.g., captured by aerial photogrammetric or laser scanning flights. Therefore, 

the degree of generalisation and the geometrical accuracy can differ within the same model 

between wall and roof surfaces.  

In this work, the difference between the captured scene and its generalised representation is 

taken into account by the way relations between captured tie points and the model are designed. 

Intersections of two planes of the generalised building model do not have to correspond to an edge 

of the captured scene. As mentioned before, an intersection of three (or more) planes leads to a 

vertex that might not correspond to a corner of the real building. Therefore, direct use of point 

features for corners or line features for edges is avoided in contrast to most related work 

(chapter 2).  

Instead, the relation of tie points to generalised model planes is addressed. A tie point is related 

to a plane by its orthogonal distance as described in section 3.2.1. Instead of using a constraint that 

restricts a point to lie on a plane by forcing the distance to be zero, fictitious observations, as soft 

constraints, allow to set an accuracy for this requirement. Ideally, the distance of a tie point to a 

model plane should be zero, but due to generalisation and other measurement uncertainties, it is 
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allowed to deviate in a specific range. The a priori standard deviation 𝜎𝑑𝑇𝑃
 of the fictitious 

observations 𝑓𝑑𝑇𝑃
 represents the degree of generalisation whereas the a priori standard deviation 

of the direct observations of vertex coordinates 𝜎𝑉𝑇 represents the geometric accuracy of the 

model. 

Each tie point is allowed to be related to only one plane in one iteration of the adjustment: A 

maximum of one fictitious observation per tie point is established. Therefore, tie points on plane 

intersections and corners are not explicitly modelled, as they must be related to only one of the 

planes. On the contrary, model vertices usually are related to more than one plane and, therefore, 

have several fictitious observations per point.  

4.2 Direct Assignment: Point-Plane-Matching 

A direct way to establish relations of tie points to model planes is the assignment of a tie point to 

the closest plane in terms of a distance criterion. Consequently, tie points are assumed to be related 

to the closest plane provided that their Euclidean distance from the plane is below a given 

threshold. Figure 5 exemplarily shows the tie points (black), the model planes with their vertices 

(blue) and their distances. The distance threshold (shown in green) has to be selected in accordance 

with the accuracy and degree of generalisation of the building model and the accuracy of the tie 

points including potential datum problems of the point cloud.  

Only if the distance of a tie point to the nearest plane is below the threshold, the relation is 

established. The larger this threshold is chosen, the more points are assigned to planes, but the 

higher is the probability to set up wrong assignments. During iterations of the optimisation, the 

threshold is recalculated and lowered to a pre-defined minimum value. This minimum value is 

related to the a priori standard deviation of the fictitious observations that relate tie points to model 

planes 𝜎𝑑𝑇𝑃
: The minimum distance threshold is set to 2 ⋅ 𝜎𝑑𝑇𝑃

. As described in section 3.2.3, 𝜎𝑑𝑇𝑃
 

is set in accordance with the size of the generalisation effects that are expected to occur. The setting 

of the minimum threshold reflects the assumption, that tie points exceeding a distance of 2 ⋅ 𝜎𝑑𝑇𝑃
 

  
Figure 5: Sketch of the direct assignment (a). Black points are assigned to the closest blue plane if their 

distance is below a threshold (green dashed-dotted line). Red lines show rejected assignments. 
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to a model plane are not related to these planes as soon as a potential overall datum error is 

corrected.  

In the first iteration, the distance threshold has to account for potential datum problems of the 

point cloud, which are assumed to become smaller during adjustment iterations. Causes for such 

datum problems can be bad initial values and/or inaccurate GNSS measurements for the camera 

positions. The threshold is recalculated in each iteration by calculating the mean distances of 

assigned tie points to the model planes per model plane. If the mean distance over all plane mean 

distances is smaller than the specified minimum value, the minimum value is set as the new 

threshold. If the mean distance is above the minimum value, the threshold is set to the calculated 

mean distance.  

Small planes are likely to be removed in the generalisation of the building model. Therefore, 

the assignments are only kept if a minimum number of tie points is found to potentially correspond 

to a plane. To avoid assignments of points not forming a valid plane the planarity is checked. An 

example of assignments that do not form a valid plane are points at the top of a façade that are 

erroneously assigned to the roof plane and therefore are distributed almost along one line (see 

Figure 6). The planarity is calculated using the eigenvalues 𝜆𝑖 of the variance-covariance matrix 

of these points as (𝜆2 − 𝜆3)/𝜆1 where 𝜆1 ≥  𝜆2 ≥  𝜆3 and 𝜆𝑖 ≥ 0 (West et al., 2004). Planes should 

have relatively large values of 𝜆1 and 𝜆2 and a small 𝜆3. Only if the planarity is below a threshold, 

these assignments are accepted, and the corresponding fictitious observations are added to the 

optimisation. 

4.3 Indirect Assignment: Plane-Plane-Matching 

With the indirect strategies, points that form a plane are searched in the tie point cloud instead of 

assigning single tie points to model planes. Two indirect strategies have been developed: The first 

searches for planes in the whole tie point cloud. The aim is to find model planes that correspond 

to the extracted planes. The other indirect method uses ROIs around model planes to restrict the 

plane search directly to a corresponding plane in the ROI of each model plane. Planes found in the 

  
Figure 6: Sketch of a façade and a roof plane as cross-section (left) and in side view (right) with façade 

points (red) erroneously assigned to the roof plane, resulting in detections for the roof plane distributed 

almost along a straight line. 
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point cloud are referred to as extracted planes. Based on the detected plane-to-model 

correspondences, tie points are assigned to model planes: If a corresponding plane is found, a point 

belonging to the extracted plane leads to a fictitious observation that relates this tie point to the 

corresponding model plane. Compared to the direct assignment, this indirect approach only relates 

tie points to the model which together form a plane. The first indirect method requires the building 

model only in a second step to match the extracted planes to the model. The indirect assignment 

has been developed to check if it improves robustness of the assignment of tie points to model 

planes compared to the direct method. 

Planes are detected in the tie point cloud using M-estimator SAmple Consensus (MSAC) (Torr 

and Zisserman, 2000). MSAC is a variant of RANSAC that weights inliers based on their fit to the 

model. Points closer to a plane, therefore, have a larger weight than points further away. The 

algorithm requires the maximum allowable distance of points to a plane as a parameter. The 

proportion of outliers is automatically estimated by the algorithm. 

4.3.1 Indirect Assignment without ROIs 

This first variant of the indirect assignment applies MSAC to the whole point cloud of tie points 

to sequentially extract planes without considering the building model. For each plane thus 

detected, the related points are projected onto that plane, and connected components are found 

using alpha shapes (Edelsbrunner et al., 1983) with a given radius 𝜗𝛼 that defines the maximum 

distance of points to the shape. Alpha shapes are a generalisation of the convex hull: If 𝜗𝛼 = ∞, 

the resulting connected component is the convex hull of all points. Only points which are part of 

the largest connected component are kept as inliers to exclude points belonging to other structures. 

The inliers are then used to determine the plane parameters. The points of the boundary of the 

connected component in the refined extracted plane define its boundary polygon.  

Inlier tie points with respect to the largest connected component are excluded from the tie point 

cloud, and in the remaining point cloud the next plane is searched. This is done until no more 

planes are found, or the number of points found per plane is repeatedly smaller than a threshold. 

Figure 7 shows the tie point cloud (black) with a detected vertical plane (red) in top view. In 

stage 2, the connected component analysis of the plane points is shown, where two points are 

removed due to the gap to the other plane points. The connection (yellow in Figure 7) to the 

removed point is marked by a black cross. Stage 3 shows three found planes.  

Only after the planes have been found, the building model is considered to find correspondences 

between the extracted planes and the model planes (stage 4). Multiple extracted planes per model 

plane are allowed. This reflects the fact that only parts of a larger generalised model plane might 

be found in the tie point cloud.  

Each combination of an extracted plane and a model plane is checked for correspondence. For 

each such pair, an angle and a distance are computed that must be smaller than predefined 

thresholds for this pair to become a candidate for a correspondence. The angle is computed 

between the normal vectors, and the distance is the orthogonal distance of the centre of 
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gravity (COG) of the boundary points of the extracted plane from the model plane. In Figure 7, 

two planes are shown that correspond to model planes, whereas one extracted plane is not assigned 

to any model plane (black cross, stage 4). 

As an additional criterion, the polygon and the model plane must overlap. To check this 

requirement, the COG of the boundary points of the extracted plane is projected orthogonally to 

the model plane. If the projection of the COG lies outside the boundary polygon of the model plane 

the candidate is eliminated. 

In the last step, tie points of extracted planes are eliminated if their orthogonal projection onto 

the matching model plane falls outside the model plane's boundary polygon. Then, the remaining 

points are checked for the minimum number of points per plane and for their planarity as described 

in assignment method (a). If enough tie points are found inside the boundary of the model plane 

which fulfil the planarity constraint, they finally lead to fictitious observations that relate those 

points to the corresponding model plane. 

  

X

 

 

X

 
Figure 7: Sketch of the indirect assignment with the plane search without ROIs. Stage 1: First found 

plane (red) in the point cloud. Stage 2: Check of gaps between points of the plane using alpha shapes 

(yellow) where two points are removed from the plane. The parameters of this plane are recomputed 

based on the inlier points. All found plane candidates are shown in stage 3. In stage 4, the candidates 

are matched to the blue planes of the building model. One plane is removed as no corresponding model 

plane is found. 

Stage 1     Stage 2 

Stage 3     Stage 4 
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4.3.2 Indirect Assignment with ROIs 

In the second variant of the indirect assignment, for each plane of the building model, a 

corresponding extracted plane is searched for directly in the points in its vicinity (ROI). Therefore, 

all candidate points defined by the ROI are assumed to be potential candidates for the model plane. 

Figure 8 shows two model planes (blue) with their ROIs (green). No separate matching step 

between extracted planes and model planes is required. For each model plane, all points having a 

distance to that plane smaller than a given threshold are selected as being inside the ROI. Again, 

MSAC is employed to the points that are inside the ROI of each model plane individually with the 

configuration to only find planes with normal vectors that do not exceed a given angular distance 

to the normal of the model plane to reduce the search space. Similar to the indirect assignment 

without ROIs, only points inside the plane’s boundary polygon that fulfil the planarity constraint 

are kept, and their number has to exceed the threshold for the minimum number of points per 

plane. No check for connected components is done, as the ROI already restricts the points to the 

vicinity of the model plane. Points of the extracted plane then lead to the fictitious observations 

relating tie points to model planes.  

Points inside the ROIs are identified in the same way as in the direct assignment method, but 

the ROI potentially can be chosen larger than the distance threshold assuming that outliers are 

removed due to the subsequent plane search. 

 

 

  

 
Figure 8: Sketch of the indirect assignment with plane search in ROIs. Planes similar to model planes 

are directly searched for only within the points closer than a threshold (ROI, green dashed-dotted line) 

to each plane. Points falling in ROIs of more than one plane are only used in the ROI of their closest 

plane. 
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4.4 Summary of the Assignment Parameters 

The parameters for the assignment procedures are documented in the following overview. 

 

Parameters common to all three assignment methods: 

Minimum number of tie points per plane: 

The indirect assignment methods (b) and (c) conceptually depend on groups of points describing 

a plane, as the assignment is based on the identification of planes in the point cloud. It would be 

possible to only assign one tie point to a model plane, as the plane is already defined by its vertices. 

To limit the influence of false assignments of tie points to model planes, assignments are only 

accepted if at least a minimum number of tie points is found to correspond to a model plane. A 

higher minimum number of points per plane prevents planes to be related to tie points if the planes 

are too small or are not covered by enough tie points. Setting this threshold too high prevents 

correct assignments.  

Planarity: 

The planarity is calculated using the eigenvalues of the variance-covariance matrix of the tie points 

assigned to a model plane. Regardless of the assignment method, the planarity constraint is used 

to only accept assignments to planes if the object points form a plane themselves. Cases in which 

the assigned points lie almost on a line or their orthogonal deviations from the plane are large are 

filtered out. Such cases would add correspondences that have a high probability of insufficiently 

describing a plane; see also the example of false detections along a line in Figure 6, section 4.2. 

The constraint threshold has to be chosen adequately to neither accept unstable planes nor exclude 

too many correct assignments. 

 

(a) Parameters for the direct assignment: 

Maximum distance: 

This is the maximum distance to assign a point to a plane. The maximum distance in the first 

search for point-plane assignments is set to an upper value that has to be chosen according to the 

accuracy of the initial solution and the accuracy and degree of generalisation of the building model. 

In further iterations, the maximum distance is calculated as a multiple of the overall mean distance 

of all distances of assigned tie points to the model planes. If a lower limit is reached, the maximum 

distance is set to this lower limit. The lower limit has to be set according to the differences of the 

scene observed by tie points and the building model. Differences originate from the inaccuracy of 

tie point measurements and the building model, but are assumed to mainly depend on the amount 

of generalisation effects present in the building model. Setting the maximum distance too large 

increases the number of false assignments. If the distance is set too small, correct assignments are 

more likely to be missed. As described in section 4.2, the lower limit is set as 2 ⋅ 𝜎𝑑𝑇𝑃
. The upper 

limit can be related to the generalisation effects of the building model and the accuracy of the 
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GNSS receiver, if direct observations for projection centre positions are used as absolute 

information.  

 

(b) Parameters for the indirect assignment: Plane Search without ROIs 

Maximum inlier distance: 

A parameter of the plane search is the maximum distance of a point to a plane to be accepted as 

an inlier by MSAC. The maximum inlier distance has to be set according to the same 

considerations as for the lower limit of the maximum distance in the direct assignment. 

Radius 𝜗𝛼 of alpha-shapes: 

The radius 𝜗𝛼 defines how close tie points must be to each other to belong to a connected 

component of an extracted plane. The larger 𝜗𝛼 is set, the more points are part of the detected 

plane by accepting larger gaps between tie points. The parameter has to be set smaller than gaps 

between different planes with similar orientation: A gap due to a window in a façade should be 

bridged, but a gap from one building façade to the façade of a neighbouring building should lead 

to separate planes. The larger 𝜗𝛼 is chosen, the higher the risk becomes to include points of 

neighbouring buildings or structures that do not belong to the same model plane. Smaller values 

increase the risk to erroneously exclude points of the same plane due to gaps because of low texture 

areas or openings like doors, windows, etc. 

Maximum distance of 𝑃0 to a model plane: 

Tie points as part of extracted planes are only assigned to model planes if the orthogonal distance 

of the extracted COG 𝑃0 to the model plane is smaller than a threshold. The higher this threshold 

is chosen, the more corresponding planes are accepted, but the higher will be the risk of accepting 

wrong plane correspondences. 

Maximum angle of normal vectors: 

Tie points as part of extracted planes are only assigned to model planes if the angle between the 

normal vectors of the extracted and the model plane is smaller than a threshold. The higher this 

threshold is chosen, the more corresponding planes are accepted, but the higher will be the risk of 

falsely accepting plane correspondences. 

 

(c)  Parameters for the indirect assignment: Plane Search with ROIs 

Maximum search distance: 

Only points closer to a model plane than the maximum search distance are considered for the plane 

search. Comparable to the maximum distance of assignment method (a), the maximum search 

distance starts at an upper limit that has to be set according to the accuracy of the initial solution 

and ends at a lower limit that mainly corresponds to the size of generalisation effects to be 

expected. Compared to the maximum distance in assignment method (a) the setting of the 

maximum search distance does not directly define assignments but only acts as a threshold to 
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define points that are considered for the plane search with MSAC. If this threshold is chosen too 

small, plane points are falsely excluded from the plane search. Too large values are critical if points 

of non-corresponding nearby planes become dominant in the ROI and are identified as 

corresponding plane points. 

Maximum inlier distance: 

This is the same parameter as in method (b). 

Maximum angle of an extracted normal vector to the normal of a model plane: 

An additional parameter of MSAC is the maximum angle between normal vectors when searching 

for a plane with an orientation constraint in form of a roughly known normal vector: It only 

searches for planes with a normal vector that does not differ more than the specified angle from 

the given normal. The same considerations as for the maximum angle of normal vectors of method 

(b) apply.  
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5 Experiments 

In section 5.1, this chapter defines the goals and setup of the investigation of the method introduced 

in chapters 3 and 4. The experiments are structured as scenarios with different setups of integrating 

building models and are run on subsets of one image sequence. Data acquisition is described in 

section 5.2, including an overview of the platform and sensors used to capture the data. Section 

5.3 outlines relevant implementation details, including parameter settings. The results of the 

experiments are presented and discussed in chapter 6. 

5.1 Setup of the experiments 

The goal of this thesis is to integrate a generalised building model into the orientation of a 

monoscopic image sequence captured by a flying platform and to investigate if this integration 

improves the estimation of the platform pose and how generalisation effects influence the results. 

No model texture or visual descriptors of the captured scene and no ground control points are used 

in the process. 

Experiments are set up to evaluate if an improvement of drift effects and deformations of the 

image block is achieved using the described hybrid bundle adjustment compared to not using a 

building model. In general, ground control points or ground control planes of, e.g., a detailed 

building model, improve the estimation of an image block. However, positive effects when using 

a building model with generalisation effects have not yet been shown. The experiments will show 

if pose errors can be reduced to the accuracy range and size of generalisation effects of the 

integrated generalised building model.  

The experiments are set up with different scenarios, described in the next section, starting from 

a best-case with the best available building model. This best-case scenario is then degraded to 

scenarios with generalisation and systematic effects to a worst-case scenario that does not integrate 

any building model. The best-case scenario corresponds to a scenario given a detailed building 

model. The worst-case scenario on the other hand represents the application of a UAV flight along 

a street corridor given a starting pose and image measurements. The intermediate scenarios are the 

scenarios of interest according to the motivation of this thesis, as they integrate a widely available 

type of generalised building models.  
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For the purpose of comparison of all scenarios, check points are used to evaluate errors in terms 

of coordinate differences at known object points. From these check points, errors of the pose are 

inferred indirectly. For each scenario, systematic effects of the whole image block are analysed.  

All experiments use subsets of the same image sequence (see section 5.1.2). One small subset 

is used to analyse all scenarios with respect to the adjustment as a post-processing step. The results 

of this adjustment are then compared to those of the sliding window workflow that potentially 

allows for pose estimation already during data capture on a longer subset of the image sequence. 

These experiments are done using the direct assignment method. In further experiments, the three 

introduced assignment strategies are compared to quantise their ability to set up the relations of tie 

points to model planes.  

5.1.1 Scenarios 

The following inputs are used in the experiments: 

- Image coordinates of homologous points retrieved by image matching and orientation for 

an image sequence. 

- Synchronised GNSS measurements for the 3D coordinates of image projection centre 

positions, if available. 

- A generalised building model of the captured scene represented by the vertices of the 

buildings and a list of indices of vertices that define boundary polygons of the model 

planes. Due to systematic offsets of the original model, a corrected version of it is 

produced. 

- A detailed building model: A model (in the same representation as the generalised building 

model) that is assumed to be at least as detailed and accurate as the photogrammetrically 

reconstructed object points. Ideally, all details of the scene represented by reconstructed 

object points should be represented in the building model, too. 

- Check points: Well-marked points in the captured scene distributed all over the image 

sequence with known object coordinates a magnitude more accurate than the 

photogrammetrically reconstructed object points. 

# Image 

coordinates 

GNSS Image 

Positions 

Generalised 

Building 

Model 

Detailed 

Building 

Model 

Check Points 

Scn1 (a, b, c) x all  x x 

Scn2 (a, b, c) x all  x (corrected)  x 

Scn3 (a, b, c) x all x  x 

Scn4 (a, b, c) x beginning x  x 

Scn5 x all   x 

Scn6 x beginning   x 

Table 6: Inputs of the scenarios. 
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Table 6 lists the scenarios with their inputs set up for the experiments and Table 7 lists potential 

comparisons of the scenarios. Some scenarios only use GNSS measurements for the coordinates 

of projection centre positions for the first 50 key frames. The other scenarios use such GNSS 

measurements for all key frames, which allows for an investigation of the influence of the GNSS 

measurements on orientation results. There are six scenarios: 

Scn1: Best case with a detailed building model. 

Scn2: Generalisation effects and reduced systematic effects using a corrected version of the 

generalised building model. 

Scn3: Uncorrected generalised building model. 

Scn4: Uncorrected generalised building model and GNSS observations for projection centre 

positions only at the beginning of the image sequence. 

Scn5: Scenario without any building model. 

Scn6: Worst case without any building model and with GNSS observations for projection 

centre positions only at the beginning of the image sequence. 

 

Scn1 vs. Scn2  Detailed vs. corrected 

generalised building model 

 Influence of generalisation effects 

Scn1 vs. Scn3 Detailed vs. original 

generalised building model 

 Influence of generalisation effects in 

combination with systematic effects 

Scn2 vs. Scn3 corrected vs. original 

generalised building model 

 Influence of systematic effects  

Scn2 vs. Scn5 Corrected generalised 

building model vs. no 

building model 

 Result of using a generalised building 

model with reduced systematic effects 

Scn3 vs. Scn5 Original generalised 

building model vs. no 

building model 

 Result of using a generalised building 

model 

Scn3 vs. Scn4 All GNSS observations vs. 

only the first ones 

 Influence of GNSS observations in 

combination with a generalised building 

model 

Scn5 vs. Scn6 All GNSS observations vs. 

only the first ones 

 Influence of GNSS observations without the 

usage of any building model 

Table 7: Comparison of the scenarios. 

The first scenario (Scn1) as an optimal case uses a detailed building model to support image 

orientation. The second scenario (Scn2) adds generalisation effects by only using a generalised 

building model. To investigate systematic effects of the planes of the generalised building model, 

the given model is corrected for systematic effects as described in section 5.2.2. Note that the 

remaining generalisation effects still consist of remaining local systematics. The influence of the 

generalisation effects is investigated by comparing Scn1 and Scn2.  
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The next scenarios (Scn3 and Scn4) use the uncorrected original generalised building model, 

which means that systematic as well as generalisation effects are present. Differences between 

Scn3/Scn4 and Scn2 are due to systematic effects. The comparison of Scn3/Scn4 to Scn1 reveals 

differences between using the original generalised building model and a detailed one. To analyse 

the influence of the GNSS observations of projection centre positions in combination with the 

building model, Scn3 uses all GNSS observations, while Scn4 only uses them in the beginning of 

the sequence.  

Scenarios that integrate a building model are processed with the three assignment strategies and 

are therefore called 1a, 1b, 1c, 2a, etc. The direct assignment is addressed as (a), the indirect 

assignment without using the building model ROIs for the plane search as (b) and the indirect 

assignment with reduced search space by using the ROIs as (c). 

Finally, the image orientation without the aid of any model with all GNSS observations (Scn5) 

and with using them only in the beginning of the sequence (Scn6) is investigated and compared to 

the scenarios that use a building model as additional information.  

5.1.2 Sequences 

Key frames of the same image sequence are used in different subsets (Table 8). The term “full 

sequence” refers to all frames of the used sequence. The full sequence covers a trajectory of 400 m 

and consists of 10812 frames resulting in approximately 535 key frames. The number of key 

frames varies between runs due to the usage of RANSAC procedures in the retrieval of relative 

orientation parameters and the elimination of outliers of the image matching.  

Sequence  Scenarios #Key frames Length [m] 

short 1, 2, 3,     5   ~90   70 

long     2, 3, 4, 5, 6 ~340 320 

full     2, 3, 4, 5, 6 ~535 400 

Table 8: Scenarios and parameters of the sequences. 

The detailed building model is visible only in a small part of the full sequence as the given 

detailed building model only covers one building. The frames in which the detailed building model 

is visible form a subset which is addressed as the “short sequence” and consists of approximately 

90 key frames covering a trajectory of 70 m. Consequently, Scn1 is only considered with the short 

sequence, which includes the detailed building model. For this short sequence, the computations 

are carried out according to the global workflow (see section 3.3.1). For Scn2 all 90 GNSS 

observations are used and Scn4 and Scn6 are not considered for the short sequence as the relevance 

of the GNSS measurements is investigated with a longer sequence. 

Scenarios 2 - 6 are also run with the full sequence and a second subset of this full sequence of 

around 340 key frames, called the “long sequence”. The long sequence consists of all images of 

the full sequence except those at the beginning and in the end. The images not considered in the 

long sequence are influenced by unfavourable coverage of model planes and insufficient 

observations of homologous points. The full sequence with these potentially unstable parts is 
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investigated in comparison to the long sequence to further analyse the limitations of the presented 

approach in combination with these effects. For the full and the long sequences, the sliding window 

workflow (see section 3.2.5) followed by a global optimisation is carried out.  

5.1.3 Evaluation 

For the evaluation, measures of internal and external diagnostics (Förstner and Wrobel, 2016) are 

used. Internal diagnostics refer to measures derived from the adjustment itself, typically from the 

variance-covariance matrix. These measures represent the precision. Internal diagnostics cannot 

reveal deviations that occur because of systematic effects and correlations not modelled by the 

employed stochastic model. Such deviations can only be revealed by using external reference 

information. Measures that are derived using such independent external information are related to 

the accuracy and represent the external diagnostics. 

Coordinate differences at check points lead to external diagnostics whereas a posteriori standard 

deviations represent internal diagnostics. Theoretically, if functional and stochastic models are 

correct and no systematic errors exist, external and internal diagnostics should lead to identical 

results. 

Check Point Error 

For all scenarios check points allow for a comparison of their estimated tie point coordinates 

(𝑋̂𝐶𝑃, 𝑌̂𝐶𝑃, 𝑍̂𝐶𝑃) to precisely known coordinates (𝑋𝐶𝑃, 𝑌𝐶𝑃, 𝑍𝐶𝑃) as independent reference values. 

The difference of estimated and known check point coordinates (Eq. (10)) is addressed as check 

point error 𝛥𝐶𝑃 in this thesis. The check point errors and their root mean square (RMS) (Eq. (11)) 

are the main indicators used in the evaluation to compare the scenarios to each other and for sliding 

window and global workflow.  

 𝛥𝑋𝐶𝑃
=  𝑋𝐶𝑃 − 𝑋̂𝐶𝑃 

𝛥𝑌𝐶𝑃
=  𝑌𝐶𝑃 − 𝑌̂𝐶𝑃 

𝛥𝑍𝐶𝑃
=  𝑍𝐶𝑃 − 𝑍̂𝐶𝑃 

(10) 

 

 

𝑅𝑀𝑆 Δ𝑋𝑌𝑍𝐶𝑃
 = √

1

𝑁𝐶𝑃
∑ (Δ𝑋𝐶𝑃𝑖

2 + Δ𝑌𝐶𝑃𝑖

2 + Δ𝑍𝐶𝑃𝑖

2)
𝑁𝐶𝑃

𝑖=1
 

with 𝑁𝐶𝑃 = number of check points 

(11) 

 

Estimated Standard Deviation 

As a measure of internal diagnostics, a posteriori standard deviations of the coordinates of the 

estimated check points 𝜎̂𝐶𝑃 are computed and compared to the check point errors. Analogously to 

the notation of check point errors, standard deviations are denoted as 𝜎̂𝑋𝐶𝑃
, 𝜎̂𝑌𝐶𝑃

, 𝜎̂𝑍𝐶𝑃
 for specific 

coordinate axes and as 𝜎̂𝑋𝑌𝑍𝐶𝑃
 for the three axes combined. The values of 𝜎̂𝐶𝑃 result from the 

variances 𝜎̂𝐶𝑃
2  on the diagonal of the variance-covariance matrix Σ𝑥̂𝑥̂ as 𝜎̂𝐶𝑃 = √𝜎̂𝐶𝑃

2 . Σ𝑥̂𝑥̂ is derived 
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from the cofactor matrix of the unknowns 𝑄𝑥̂𝑥̂ (Eq. (12)) by multiplication with the empirical 

variance factor 𝜎̂0
2 (Eq. (13)), according to Eq. (14). 𝑄𝑥̂𝑥̂ and 𝜎̂0

2 are calculated using the Gauss-

Markov adjustment described in section 3.2. 

 𝑄𝑥̂𝑥̂ = (𝐴𝑇𝑃𝐴)−1 (12) 

 

 
𝜎̂0

2 =
𝑣̂𝑇𝑃𝑣̂

𝑛 − 𝑢
 (13) 

 

 Σ𝑥̂𝑥̂ = 𝜎̂0
2𝑄𝑥̂𝑥̂ (14) 

 

Helmert Transformation 

To further analyse datum effects that affect the whole image block, pairs of estimated and 

reference check point coordinates are used to calculate a 3D similarity transformation with three 

shift (𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡) and three rotation (𝑒𝑋𝑡 , 𝑒𝑌𝑡 , 𝑒𝑍𝑡) parameters and one scale parameter 𝑠𝑡 (Helmert 

transformation). The COG of the estimated check point coordinates is set as the rotation centre of 

the transformation.  

5.1.4 Structure of the Experiments 

The evaluation is organised as follows. First, the short sequence is analysed with respect to 

generalisation and systematic effects using the detailed, the corrected generalised and the original 

generalised building model and only assignment method (a).  

Then, the long sequence is used to analyse generalisation and systematic effects in combination 

with block deformations. Here, no detailed building model is available. Deformations occur due 

to drift effects and varying quality of the configuration of tie points and model planes along the 

captured sequence.  

Check point errors of the scenarios of the short sequence are compared to their estimated 

standard deviations to investigate the influence of the stochastic model with its assumptions on 

error distribution especially of the generalisation effects. Afterwards, the results of the global 

optimisation are compared to those of the sliding window approach with the long sequence to 

examine the impact of partial optimisation along the trajectory.  

Up to that point, only assignment method (a) is investigated,. In further experiments, the long 

sequence is then also used to compare the results of the three assignment strategies to each other.  

Finally, the full sequence is analysed with respect to the influence of unstable configurations in 

tie points and model planes on the results. 
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5.2 Dataset 

The dataset required for the evaluation consists of an image sequence of a calibrated camera, 

captured by a UAV flying between buildings. For buildings, a generalised building model is 

available. Check points and a detailed building model for parts of the captured buildings are also 

available, as well as synchronised measurements of a low-cost GNSS receiver for the images. As 

the method should be able to cope with unfavourable GNSS conditions or signal loss, some 

experiments do not use all GNSS measurements. No benchmark data were found, that meet these 

criteria; own hardware was used to capture data and to set up the needed control information. 

5.2.1 Hardware 

 UAV 

The UAV used for the experiments is a Matrice 1001 of the company DJI. The quad-copter includes 

a low-cost GNSS receiver, IMU and barometer and has a weight of 2.5 kg including batteries. The 

maximum take-off weight is specified to be 3.4 kg. DJI states a hovering (position hold) accuracy 

of 0.5 m in vertical and 2.5 m in horizontal direction. In addition, the copter is equipped with DJI 

guidance (Zhou et al., 2015), which contributes to the relative positioning with a downward 

looking camera and serves as an obstacle avoidance system using stereo cameras and ultrasonic 

sensors to detect obstacles around and below the copter, to warn the pilot and to stop automatically 

before colliding with other objects.  

GNSS measurements are downloaded from the copter’s on-board memory in post-processing. 

The output binary files, amongst other data, contain time stamps and position information with a 

100 Hz sampling rate that are retrieved using the software tool DatCon2. No exact documentation 

of the outputs is available. Investigations of the trajectories for several flights lead to the 

assumption that no raw positions of the GNSS receiver are given but only filtered positions for the 

platform that lead to a smoothed trajectory. The retrieved values are probably a fusion of GNSS 

observations with barometer and IMU measurements. For the height component relative heights 

w.r.t. the starting position are used. The approximate height of the starting position is applied as 

an offset to all relative heights to retrieve heights approximately in DHHN2016. 

 Camera 

The camera used is the DJI Zenmuse X33 with an EXMOR 1/2,3” CMOS sensor. The camera has 

a pixel size of 1.5 μm and a fixed-focus lens with 3.6 mm focal length, resulting in a horizontal 

field of view of 90°.  

The camera is integrated into a three-axis gimbal that stabilises the camera in all three 

coordinate axes and is mounted on the copter. The gimbal is configured to smoothly follow the 

copter’s heading (yaw, rotation around vertical axis) and keep the camera stable in roll and pitch 

axis. The weight of the camera, including the gimbal, is 262 g. The camera is powered by the 

                                                 
1 https://www.dji.com/de/matrice100, accessed January, 2020  
2 https://datfile.net/DatCon/downloads.html, accessed January, 2020 
3 https://www.dji.com/de/zenmuse-x3, accessed January, 2020 

https://www.dji.com/de/matrice100
https://datfile.net/DatCon/downloads.html
https://www.dji.com/de/zenmuse-x3
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copter batteries and is connected to the copter’s flight controller which allows for remote 

configuration and commands. 

Image sequences are captured in 24 Hz video mode, as single image shots can be triggered 

shortest every 2 seconds, which is not enough for the scenario. From the 4k Full HD video, two 

frames per second with a size of 4096 x 2160 pixels are extracted in post-processing. These frames 

are the input image sequence to the algorithm developed in this thesis. Experiments showed that 

key frames extracted from the video sequence typically were not closer to each other than 1 second.  

5.2.2 Data 

The data set used for the experiments consists of several entities described in the subsequent 

paragraphs: 

Image Sequence: 

A flight was carried out with the UAV and camera described in section 5.2.1 in an area that 

consists of several different buildings with varying façade and roof characteristics in a distance of 

approximately 5 to 15 m from the buildings . The camera was mainly looking sideways relative to 

flight direction and almost orthogonal to the building façades, slightly tilted downwards to also 

capture roof parts from above. The height profile of the flight is given in Figure 9. 

The ground sampling distance (GSD) for 5 to 15 m object distance is 2 to 6 mm. Image overlap 

and base length depend on the choice of key frames. With a standard deviation of 𝜎𝑇𝑃 = 1 𝑝𝑥 of 

measured image coordinates and a base length of 3 m, the precision of triangulated 3D tie point 

coordinates of an image pair in the photogrammetric normal case is 2 to 6 mm across viewing 

direction and 5 to 46 mm along viewing direction for 5 to 15 m object distance, respectively. This 

high precision shows that the image block can be expected to have a superior precision compared 

to the observations that define the datum, namely GNSS observations and planes of a generalised 

building model. 

Without the building model, errors of the trajectory in the range of meters are likely to occur, 

due to only using images and GNSS measurements. Even larger errors can occur if GNSS becomes 

unavailable during data capture. For a generalised building model of LOD2, trajectory errors in 

the range of accuracy and generalisation effects of the building model - sub-metre down to 

decimetre level - are expected.  

 
Figure 9: Height profile of the key frames of the full sequence. Key frames of the long sequence are 

marked in orange and key frames of the short sequence are marked in green. 
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Figure 10 shows four examples of areas captured in the image sequence with corresponding 

images from the sequence and with the generalised building model and reconstructed tie points.  

 

   

   

   

   
Figure 10: Examples of façade types covered by the image sequence with their corresponding 

representation in the generalised building model and reconstructed tie points (black points) in top (left 

column) and side views (mid column): a) a dome modelled in the generalised building model by only 

four triangles, a façade with spikes, windows and a flat roof with balustrades not present in the model; 

b) a building with various details not present in the model like roof top structures and roofs over building 

entries orthogonal to the façade; c) garage gates situated several decimetres behind the façade plane 

shown in the model; d) an office building with vegetation in front of the façade. 

a) 

b) 

c) 

d) 
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Check Points 

37 check points are set up in the captured area in different heights on façades and at roofs. 

Mounts to magnetically hold corner cube reflectors or non-coded planar photogrammetric targets 

are glued to the buildings. The cubes were used in a tachymetric measurement campaign including 

precisely measured GNSS control points to retrieve check point coordinates in a network 

adjustment. The coordinate system is ETRS89/UTM zone 32N with heights in the DHHN2016. 

The coordinates are determined with an estimated mean standard deviation of 3.19 mm. During 

image data capture, the mounts are equipped with photogrammetric targets which are produced to 

have the same centre point as the corner cube reflectors in the mounts. The image coordinates of 

the check points were measured automatically using the commercial software Metashape4 

(formerly PhotoScan). The results were refined manually by deleting obviously wrong 

measurements and adding some missed measurements. Check point identifiers were assigned 

manually to the targets, as these were non-coded. 

                                                 
4 https://www.agisoft.com/, accessed January, 2020  

 
Figure 11: Visibility (blue) of check points in the key frames along the full image sequence. Check point 

12 is observed by several key frames two times in the sequence, because a loop of 80 key frames was 

flown. Key frames of the long sequence are marked by an orange arrow and key frames of the short 

sequence are marked by a green arrow. 

https://www.agisoft.com/
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The visibility of check points within the full sequence consisting of about 535 key frames is 

shown in Figure 11. There are gaps in check point coverage of up to 50 key frames. Figure 12 

shows the trajectory between key frames 170 and 270, where a loop along a large façade was 

flown, which is the reason why check point 12 is seen in the beginning and at the end of this loop. 

25 of the 37 check points are seen in the full, 21 in the long and 8 in the short sequence. The orange 

arrow marks key frames belonging to the long sequence; the green arrow marks those belonging 

to the short sequence.  

 

Generalised Building Model 

The generalised building model is the publicly available LOD2 building model of the city of 

Hannover. It is published under Creative Commons 4.0 DE by the city of Hannover, Department 

of Planning and Urban Development, Department of Geoinformation. The model is given in the 

ETRS89/UTM zone 32N coordinate system with heights in DHHN2016, and the data format is 

CityGML 2.0. According to the documentation of the model, building footprints from the cadastre 

(Automatisierte Liegenschaftskarte (ALK)) are combined with an aerial laser scanning dataset for 

building heights and roof modelling. The height accuracy is specified as +/- 1 m. The horizontal 

accuracy of the building footprints in ALKIS depends on the data acquisition method. The 

buildings used in this thesis where digitised from a paper map in a scale of 1:1000, which implies 

an accuracy in the decimetre range. Buildings with a footprint of at least 15 m2 are represented in 

the model. A horizontal ground plane per building is set to the height of the lowest building corner. 

Therefore, per building, all vertices on the ground have the same height. The model vertex 

coordinates and the topology in form of a list of vertex indices per plane are extracted from the 

CityGML files to generate the input format of the building model described in section 3.1. 

Figure 13 shows the generalised building model, the image positions of the full sequence and 

the check points seen by the full sequence in top and side view. In addition, the four example 

locations displayed in Figure 10 are indicated in the top view as a) to d).  

 

 
Figure 12: Orthogonal view of a façade (light grey). The positions of key frames 170 to 270 are shown 

in colour along the sequence from red to yellow, respectively. The façade is captured in a loop which is 

why check points 6 (blue, upper left) and 12 (blue, bottom) appear twice in the sequence. The tie points 

are shown in grey. 
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Figure 13: Key frame positions (blue) for the full sequence, generalised building model (light grey) and 

positions of check points (blue dots) in top and side view. A green ellipse marks the area selected as the 

short sequence. A red ellipse marks the façade shown in Figure 11. The example areas from Figure 10 

are marked as a) – d) in the top view. The side view shows some check point IDs. 
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Corrected Generalised Building Model 

To investigate systematic effects of the planes of the generalised building model, an image 

block with the measured (check) points as ground control points was set up as a reference. A hybrid 

adjustment with the generalised building model was then carried out, using all estimated tie points 

of this block as ground control points: Direct observations of the 3D tie point coordinates were 

introduced with high accuracy. The direct observations for coordinates of model vertices received 

a low a priori standard deviation of 𝜎𝑉𝑇 = 0.5 m and assignment method (a) was used. This results 

in a corrected generalised building model where the planes of the generalised building model are 

fitted into the reference point cloud. The model's topology is not changed in that process as the 

vertices move according to plane corrections and as no planes are removed or added. Therefore, 

the level of generalisation stays unchanged, but systematic effects of the model planes are reduced. 

The correction of systematic effects mainly consists of shifts up to several decimetres per plane. 

The difference of normal vectors between original and corrected model planes mainly is below 1°. 

Detailed Building Model 

The detailed building model was produced based on architectural plans of the building 

footprints and façades to retrieve a 3D representation of much higher detail than the generalised 

building model. Part of the building roof was modelled based on laser scans and some distances 

along building façades were measured by tachymetry. The resulting detailed building model was 

shifted from a local coordinate system into ETRS89 coordinates using a dense point cloud from 

terrestrial laser scanning of parts of the building and the reference tie point cloud already used for 

the correction of the generalised building model. The laser scanning point cloud is given in 

ETRS89 with DHHN92 heights. The height difference of 3 mm between DHHN92 and 

DHHN2016 is negligible. 

Remaining errors of the shift from local to ETRS89 coordinates and errors due to potential 

differences between the architect’s plan and the real building were corrected using the hybrid 

bundle adjustment: The terrestrial laser scan and the reference tie point cloud were used to correct 

the building model analogously to the correction of the generalised building model. The 

parameters were set according to the accuracy and low degree of generalisation of the detailed 

building model. The topology was not changed. Remaining generalisation effects and uncorrected 

planes especially at the building roofs not covered by laser scanning or not modelled in detail due 

to missing details in the architectural data are to be expected in the produced detailed building 

model. Examples are non-planar roof surfaces and circular shapes of the domes shown in Figure 

10a. 

5.3 Parameter Settings and Implementation 

The methods described in chapters 3 and 4 contain several thresholds and free parameters. They 

are summarised in the following, and standard settings used for the experiments are listed. The 
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first step is the retrieval of initial values for the adjustment by image orientation and point 

triangulation. 

Image orientation (section 3.2.5): Standard Value 

Maximum number of best candidate feature points approximately 

uniformly distributed throughout the image to use for image 

matching 

6000 points per frame 

Minimum base length between last and current key frame 1 m 

Maximum number of tie points per image (if more matches are 

found, the frame is skipped under the assumption to still have 

sufficient matches in the next frame, even if min. base is >1 m) 

500 tie points 

Minimum number of known tie points per new key frame (if less 

already known tie points are found, the minimum base length 

criterion is ignored to assure not to lose too many tie points due to 

skipping frames) 

100 tie points 

 

Tie point triangulation (section 3.2.5):  

Base to height ratio (excludes tie points that are too distant from the 

camera compared to the longest base length calculated for each tie 

point individually) 

1/10 

Minimum number of views (rejects tie points observed by fewer key 

frames due to redundancy considerations) 

3 images 

 

The parameters used for the sliding window processing and the adjustment are set as follows. 

The window size and overlap are chosen according to experience with several image sequences. 

They are set to be large enough to provide enough correspondences of tie points to different model 

planes in many situations. The smaller the window size is chosen, the higher will be the probability 

of not finding sufficient plane correspondence as absolute information to fix the datum and correct 

drift effects of the window image block.  

Sliding window (section 3.3.2): Standard Value 

Window size (the more images are processed per window, the more 

plane correspondences potentially can be found, but the more 

processing resources will be needed) 

Nws = 100 images 

Window overlap (the more already adjusted images are taken into 

account for a new window, the higher is the overlap and the lower is 

the risk of too large drift effects, but the more windows will have to 

be adjusted) 

Nnew = 33 images 

Bundle Adjustment:  

Convergence limit (adjustment iterations stop if the relative change 

of the RMS of the residuals is smaller) 

10-5 

Maximum number of iterations (adjustment iterations stop if this 

number of iterations is reached) 

10 iterations 

 

The setting of a priori standard deviations for the stochastic model follows assumptions about 

the accuracy of the different observation types. As no absolute accuracy of the GNSS observations 

is available, the standard deviation of observations of the projection centre positions is set to 

several meters with a lower assumed accuracy in Z-direction to give a relatively low weight to the 

GNSS observations. 
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In the experiments, the building model is nearly fixed by setting 𝜎𝑉𝑇 to 1 cm. 𝜎𝑉𝑇 is only 

released to .5 m to allow for model corrections to produce the detailed and the corrected 

generalised models.  

The standard deviation of fictitious observations for tie points 𝜎𝑑𝑇𝑃
 is set to 20 cm as this is the 

expected typical size of generalisation effects. 𝜎𝑑𝑇𝑃
 is lowered to 5 cm for Scn1 as the detailed 

building model is assumed to have reduced generalisation effects. 

Standard Stochastic Parameters (section 3.2.3) 

Image coordinates of tie points 𝜎𝑇𝑃 ±1 pixel 

Image coordinates of check points 𝜎𝐶𝑃 ±1 pixel 

Direct observations of projection 

centre coordinates 

𝜎𝑝𝑜𝑠 ±[3, 3, 5] m in X, Y, Z 

Direct observations of building 

model vertex coordinates 

𝜎𝑉𝑇 ±0.01 m (±0.5 m to correct the detailed and the 

generalised model) 

Fictitious distances for tie points 𝜎𝑑𝑇𝑃
 ±0.2 m (±0.05 m with the detailed model) 

Fictitious distances for vertices 𝜎𝑑𝑉𝑇
 ±0.01 m 

 

The parameters of the assignment method mainly depend on the accuracy and the amount of 

generalisation effects of the building model but also on the quality of absolute information used to 

set up the initial image block before the assignment is carried out. Therefore, the maximum point-

to-plane distance, the maximum distance of P0 and the maximum search distance of the ROIs of 

methods (a), (b) and (c) start at an upper and are reduced to a lower limit. The upper limit represents 

the larger differences between tie point cloud and model planes to be expected due to inaccurate 

datum information of the image block. The upper limit is set more restrictive, 2 m, for the direct 

assignment than for methods (b) and (c) as they already restrict the search to points forming a 

plane. 

The lower limit mainly accounts for differences due to generalisation effects and is set to twice 

𝜎𝑑𝑇𝑃
, the standard deviation of the fictitious observations of distances that represent the 

assignments. In each iteration of the adjustment, the maximum distance is calculated as 3.5 times 

the overall mean distance of all distances of assigned tie points to the model planes. If this mean 

distance becomes smaller than the lower limit of the distance threshold, the maximum distance is 

set to its lower limit. The factor of 3.5 results from experience with several different image 

sequences.  

In method (a), the assignment of tie points to model planes is directly limited by the maximum 

distance. Methods (b) and (c) have a maximum inlier distance that defines, how close to an 

extracted plane tie points have to be to become inliers of the MSAC-based plane search. As method 

(b) searches for planes in the whole tie point cloud, the threshold is set to 30 cm, which is more 

restrictive than the 40 cm for method (c).  

For all three assignment methods, a minimum number of 15 tie points per model plane is set. 

Experiments with varied minimum numbers of points per plane were carried out. They suggested 
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that planes with fewer assigned tie points more often consist of erroneous assignments and do not 

positively influence the results of the hybrid adjustment, while larger thresholds might lead to 

missing correct assignments of planes covered by fewer points. Thresholds of the maximum angle 

of normal vectors, alpha shape radius and planarity are set based on the investigation of their 

influence with some example planes and plane parts that had to be removed as false assignments 

compared to a solution without the thresholds.  

Point-Plane Assignment:   

(a) Direct (section 4.2):  

Maximum distance (upper and lower limit) 2 m (upper), 0.4 m (lower) 

Minimum number of points per plane 15 points (5 for Scn1) 

Planarity 0.001 

  

(b) Indirect without ROIs (section 4.3.1):  

Maximum inlier distance 0.3 m 

Radius of alpha-shapes 1 m 

Maximum distance of 𝑃0 to a model plane (upper/lower limit) 3 m (upper), 0.4 m (lower) 

Maximum angle of normal vectors 10° 

Minimum number of points per plane 15 points 

  

(c) Indirect with ROIs (section 4.3.2):  

Maximum search distance (upper/lower limit) 3 m (upper), 0.4 m (lower) 

Maximum inlier distance 0.4 m 

Maximum angle of normal vectors 10° 

Minimum number of points per plane 15 points 

 

The method developed in this thesis was implemented in Matlab5 and C++ code. Data 

handling, image matching, orientation and reconstruction as well as the assignment of object points 

to model planes are done in Matlab. Image matching, orientation and reconstruction are 

implemented based on the Matlab vision package. Matlab Engine is used to interoperate with the 

C++ code. The hybrid bundle adjustment is based on a robust bundle adjustment as part of an in-

house developed toolbox of the Institute of Photogrammetry and GeoInformation (IPI) at Leibniz 

University Hannover. As part of this thesis, the bundle adjustment was extended to handle a 

building model and the fictitious observations and to run in a sliding window manner. For the 

bundle adjustment, the toolbox uses the SimplicialLLT sparse matrix solver of the Eigen6 library. 

                                                 
5 https://www.mathworks.com/, accessed January, 2020 
6 http://eigen.tuxfamily.org, accessed January, 2020 

https://www.mathworks.com/
http://eigen.tuxfamily.org/
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6 Results and Discussion  

In section 6.1, this chapter compares the results for the short sequence referring to RMS coordinate 

differences of check points addressed as RMS check point errors ΔCP. The influence of the building 

models of different quality onto pose estimation with a single building is investigated. In section 

6.2, the results of the global adjustment of the long sequence with several different buildings are 

compared to the results of the short sequence. The influence of the generalised building model on 

pose estimation is further discussed. Block deformations due to systematic effects and insufficient 

absolute information are investigated with the estimated Helmert transformation parameters. Table 

9 gives an overview of the sections that deal with the results of different combinations of scenarios, 

sequences and processing modes. 

Section 6.1 6.2 6.3 6.4 6.5 6.6 6.7 
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Short Seq. 

Global 

Scn1a, 

Scn2a, 

Scn3a, 

Scn5 

 Scn1a, 

Scn2a, 

Scn3a, 

Scn5 

    

Long Seq. 

Global 

 Scn2a, 

Scn4a, 

Scn5, 

Scn6 

 Scn2a, 

Scn4a, 

Scn5, 

Scn6 

Scn2 (a,b,c), 

Scn4 (a,b,c) 

  

Scn4a 

Long Seq. 

Windows 

   Scn2a, 

Scn4a, 

Scn5, 

Scn6 

Scn2 (a,b,c), 

Scn4 (a,b,c) 

  

Full Seq. 

Global 

     Scn2a, 

Scn3a, 

Scn4a, 

Scn5, Scn6 

 

Table 9: Overview of scenarios, sequences and sections of chapter 6. 
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In section 6.3, for the short sequence, the estimated standard deviations of check points are 

discussed in comparison to the check point errors to put measures of internal and external 

diagnostics into perspective. In section 6.4, results of the sliding window processing are presented 

and discussed in comparison to the results of the global adjustment shown in section 6.2. Until 

here, only the results of the direct assignment strategy are considered. In section 6.5, the three 

assignment strategies are investigated with respect to coordinate differences at check points. In 

section 6.6, the results for the full sequence with additional challenges are presented and discussed. 

Finally, variations of the essential parameters are analysed in section 6.7. 

6.1 The Short Sequence: Generalisation & Systematic 
Effects 

The short sequence, i.e. the part of the full sequence that consists of the images that observe the 

building represented by the detailed building model, is used to analyse the influence of the different 

types of building models on pose estimation. Only results with assignment method (a) are shown 

in this section.  

Scn1: The best case with a detailed building model 

The best case investigated for pose estimation is the usage of the detailed building model with 

reduced generalisation and systematic effects. This Scn1a leads to an RMS of check point errors 

Δ𝑋𝑌𝑍𝐶𝑃
 at the eight check points of this sequence of 10 cm.  

Scn2: Generalised building model 

In comparison to a generalised building model the detailed building model is expected to lead 

to improved results of the adjustment. Adding generalisation effects in Scn2a results in an 

RMS Δ𝑋𝑌𝑍𝐶𝑃
of 19 cm. This means the errors almost double because of the generalisation effects. 

This improvement is assumed to be mainly related to generalisation effects. 

Scn3: Generalised building model including systematic effects 

Using the original generalised building model, which does not only have generalisation effects 

but also systematic effects at model planes (Scn3a), results in a higher RMS Δ𝑋𝑌𝑍𝐶𝑃
 of 25 cm for 

the short sequence. Note that generalisation effects that can be corrected as systematic effects per 

plane are likely adjusted in the corrected generalised model. This means that systematic and 

generalisation effects cannot be strictly separated in this discussion. 

Scn5: Scenario without any building model 

Figure 14 depicts these RMS Δ𝑋𝑌𝑍𝐶𝑃
 and additionally shows them in relation to the RMS check 

point errors of the scenario using GNSS observations for the image projection centre positions, 

Scn5. As expected, check point errors are largest when only using GNSS as absolute information; 

with <1 m they are smaller than the GNSS accuracy of 3 metres set by the a priori standard 
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deviation 𝜎𝑝𝑜𝑠. In the area of the short sequence, the flight was done approximately at building 

height, which leads to a relatively good GNSS configuration.  

Figure 15 shows an example of the differences between the captured scene and the generalised 

building model. While the local detailed structure is preserved in the tie points, the points and thus 

also the image poses are moved closer to the building model as a result of the adjustment. In 

contrast to using hard constraints, the soft constraints described through the standard deviation of 

the fictitious distance observations prevents tie points e.g. at the prongs of the façade to be forced 

to lie exactly in the façade plane. 

 
Figure 14: Comparison of the check point errors of the 8 check points per scenario of the short sequence. 

 

  

Figure 15: Combination of the detailed scene (black tie points) and the generalised building model 

(grey). Top: Frame of the image sequence. Bottom: Corresponding top view before (left) and after (right) 

adjustment. Prongs of the façade visible in the image highlighted by red arrows. 



 

66 Results and Discussion   

 

 

Discussion 

Check point errors of around 25 cm with the generalised building model are in the expected 

range given the amount of generalisation and accuracy of the building model. The improvement 

to errors below 20 cm using the corrected version of the generalised model consequently is not 

very large but still shows that deviations of the generalised building model were lowered by 

correcting the model planes.  

The decimetre level of check point errors with the detailed building model is not in the range 

of errors at the centimetre level predicted for the flight configuration. The detailed building model 

does not cover all details down to the accuracy level that can be expected for the photogrammetric 

block and the topology is not refined in the correction of the detailed model using the reference 

point cloud. Moreover, the details of the building present in the captured tie points is limited: Many 

planes of the detailed model are covered by less than three tie points, which is not sufficient to 

reconstruct those planes based on the observed tie points. The direct assignment method (a) used 

here theoretically can relate a single point to one plane, but the low coverage of the model with tie 

points still can pose problems: The smaller the planes are, the more likely a tie point is assigned 

to a close-by wrong neighbouring plane. Furthermore, as mentioned before, the lower the number 

of points per plane is, the higher is the influence of an outlier due to low redundancy. Assuming a 

regular distribution of tie points, for larger planes, fewer tie points might fall on the edges of the 

planes where the potential of wrong assignments to neighbouring planes is highest. Consequently, 

also for method (a), a minimum number of points per plane is established but lowered to 5 points 

for Scn1 instead of the 15 set for Scn2 and Scn3. 

As described in section 5.2.2, the accuracy of the detailed building model at roof structures is 

limited. If split into the different coordinates, the main RMS check point error of Scn1 turns out 

to be in Z-direction with 9 cm while the X- and Y- directions are smaller with 3 and 4 centimetres 

respectively. Roof planes are the primary source of absolute support for image orientation in Z-

direction. The captured façade consists of mainly vertical model planes which do not contribute to 

the Z-direction, i.e. the assigned tie points can freely move along vertical planes in Z-direction. 

Small planes in the façades of the detailed model, like window sills, theoretically could contribute 

to the Z-direction, but in most cases are not covered by enough tie points to obtain assignments 

that lead to fictitious observations of such planes. This behaviour can be seen in Figure 16, where 

the assignment results for one façade are shown with the detailed building model, the corrected 

and the original generalised building models.  

As the assignment distance threshold is set smaller for the detailed building model than for the 

generalised model, fewer points are assigned to the horizontal roof plane (e.g. magenta coloured 

tie points for the corrected generalised model in the middle of the figure). Points not assigned to 

any plane of the generalised model are mainly part of the balustrade of the building’s roof. The 

balustrade is represented in the detailed model only. In the top views, zigzag elements of the façade 

are visible in the tie point cloud and in the detailed model. In the generalised models, 
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Figure 16: Short sequence: Comparison of the scenarios 1 (top of figure), 2 (mid) and 3 (bottom) at one 

façade in top (left) and orthogonal (right) views. Planes of the building models are shown in transparent 

grey. Assigned points are coloured per corresponding plane, unassigned points in grey. 

Scn1 

Scn2 

Scn3 
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Figure 17: Top of figure: Histogram of the residuals of the fictitious observations linking tie points to 

the façade plane shown in Figure 16 as a result of Scn2a (left) and Scn3a (right) with the standard 

deviation 𝜎 of the residuals of this plane. Bottom: Corresponding residuals of the plane per assigned tie 

point ordered roughly along the image sequence. 

they are not represented, but tie points on the prongs are assigned to the façade plane because of 

the distance threshold used in the assignment. 

The example of the generalisation of the zigzag elements is further analysed for the residuals 

of the fictitious observations of this façade plane. Figure 17 shows histograms of the residuals 

(top) and the residuals per assigned tie point along the image sequence for the scenario with the 

corrected generalised building model (left) and the original generalised building model (right). For 

the histograms, standard deviations σ of the residuals are listed. With 15 cm, σ is close to the a 

priori standard deviation for the fictitious observations of tie points to generalised model planes of 

𝜎𝑑𝑇𝑃
= 20 cm. The residuals are limited to the maximum distance threshold of the direct 

assignment method, which was set to 40 cm. The histograms show a small number of residuals 

slightly larger than 40 cm, which is due to the change in estimated tie point coordinates during 

adjustment. 

The image sequence was captured by flying sideways along the façade. Consequently, tie points 

at the main wall and at the prongs appear along the sequence (starting at tie point index 0) and lead 

to two groups of residuals around -0.1 and 0.1 m along the normal of the mean façade. The mean 

façade lies approximately at residual zero, which is depicted as a dashed black line in Figure 17. 

Scn2a Scn3a 
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In Scn2a, the tie points at the main wall and at the prongs lead to two peaks in the histogram. In 

Scn3a, the zigzag generalisation effects are mixed with a systematic effect (mainly a rotation) of 

the plane present in the original model. This systematic effect is corrected in Scn2a. 

Note that the detailed building model only covers a small area with a very limited number of 

different façade and roof types. To further investigate the loss of accuracy due to generalisation 

effects, more scenes covered by a detailed building model would be needed.  

Systematic effects 

To investigate the systematic effects of the whole image block, a Helmert transformation 

between the known coordinates of check points and their estimated coordinates for each scenario 

is calculated (section 5.1.3). Figure 18 shows the check point errors after the adjustment (left 

column) and the remaining errors after transforming the estimated check point coordinates with 

the Helmert transformation per scenario for the short sequence.  

Table 10 contains the corresponding transformation parameters per scenario and the RMS 

check point errors before and after transformation. For all four scenarios, an improvement in check 

point errors after the Helmert transformations is observed. For scenarios 2, 3 and 5, the RMS check 

point errors after the transformation are reduced to a comparable size of around 5-7 cm in X and 

Y and 1-2 cm in Z direction. The check point errors after transformation shown in Figure 18 show 

a similar distribution for these three scenarios.  

Only for Scn1 that uses the detailed building model, even smaller errors around 2 cm in all three 

coordinate directions remain. Also the transformation parameters are smallest for Scn1; the 

transformation mainly reduces the RMS Δ𝑍𝐶𝑃
 by an offset in Z-direction. For all scenarios, the 

scale 𝑠𝑡 is very close to 1. Check point errors after transformation are similar for scenarios 2, 3 and 

5. This similarity means that with respect to block deformations there is no difference between 

using a generalised building model (Scn2, Scn3) and only using GNSS observations for projection 

centre positions (Scn5). Block deformations potentially present in Scn5 are not notably corrected 

using a generalised building model in the short sequence. The largest transformation parameters 

for Scn5 show nevertheless that this scenario, as expected, performs worse with respect to the 

datum of the image block than the scenarios that include a building model as absolute information. 

Short 

Seq. 

𝑋𝑡 

[m] 

𝑌𝑡 

[m] 

𝑍𝑡 

[m] 

𝑒𝑋𝑡 

[°] 

𝑒𝑌𝑡 

[°] 

𝑒𝑍𝑡 

[°] 

𝑠𝑡  RMS 

Δ𝑋𝐶𝑃
 

[m] 

RMS 

Δ𝑌𝐶𝑃
 

[m] 

RMS 

Δ𝑍𝐶𝑃
 

[m] 

RMS 

Δ𝑋𝐶𝑃,𝑡
 

 [m] 

RMS 

Δ𝑌𝐶𝑃,𝑡
 

[m] 

RMS 

Δ𝑍𝐶𝑃,𝑡
 

[m] 

Scn1a -0.01 -0.01 0.09 -0.05 0.11 0.08 1.00 0.03 0.04 0.09 0.02 0.02 0.01 

Scn2a 0.03 -0.14 0.00 0.26 -0.19 0.03 1.00 0.08 0.16 0.04 0.06 0.07 0.02 

Scn3a -0.04 0.16 0.07 0.15 -0.04 -0.23 0.99 0.09 0.22 0.08 0.05 0.05 0.01 

Scn5 -0.15 0.06 0.49 -0.62 0.34 0.17 0.99 0.27 0.20 0.50 0.05 0.06 0.01 

Table 10: Parameters (𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡 , 𝑒𝑋𝑡 , 𝑒𝑌𝑡 , 𝑒𝑍𝑡 , 𝑠𝑡) of the Helmert transformations between known and 

estimated check point coordinates for some of the scenarios of the short sequence and RMS of coordinate 

differences of the known and the estimated check point coordinates (𝛥𝑋𝐶𝑃
, 𝛥𝑌𝐶𝑃

, 𝛥𝑍𝐶𝑃
) as well as of the 

known and the transformed estimated check point coordinates (𝛥𝑋𝐶𝑃,𝑡
, 𝛥𝑌𝐶𝑃,𝑡

, 𝛥𝑍𝐶𝑃,𝑡
). 
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Block deformations are so small in the short sequence that an improvement is observed only 

with a detailed building model (Scn1). The smaller remaining check point errors for Scn1 after 

transformation indicate corrections of block deformations which were not corrected in scenarios 

2, 3 and 5.  

  

  

  

  

Figure 18: Short sequence: Check point errors per check point in the order of their appearance in the 

sequence before (left) and after transformation (right). 
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The remaining errors after transformation Δ𝐶𝑃,𝑡 for Scn1 are in the range of errors to be expected 

for the photogrammetric block. This was verified by using all check points except one as ground 

control points in bundle adjustments without any building model or GNSS observations. The 

adjustment was repeated for every check point with all others as ground control points. The RMS 

check point error over the adjustments with < 3 cm reflects the accuracy of the transformed result 

Δ𝐶𝑃,𝑡 of Scn1. 

6.2 The Long Sequence: Generalisation & Systematic 
Effects, Block Deformations 

With 350 key frames the long sequence covers a higher variety of building parts and due to the 

longer trajectory allows for a more detailed analysis of generalisation and systematic effects. 

Another effect to be analysed with the long sequence are block deformations and drift effects along 

the image sequence that depend on the availability of GNSS measurements for projection centre 

positions and the usage of a building model. Block deformations and drift effects are assumed to 

be limited when integrating the generalised building model. Largest block deformations are 

expected if neither a model nor GNSS measurements are used to support the pose estimation. To 

investigate the influence of the GNSS measurements on drift effects and block deformations, Scn4 

and Scn6 are defined where only the GNSS measurements of the 50 first key frames are used to 

initialise the datum. These scenarios allow for the analysis of block deformations in image 

orientation with respect to the availability of a generalised building model (Scn3 & Scn4 versus 

Scn5 & Scn6) and GNSS measurements (Scn3 versus Scn4 and Scn5 versus Scn6).  

Scn3 and Scn4 lead to similar results: As soon as a building model is used in the investigated 

image sequence, GNSS measurements are not relevant anymore – they are nevertheless needed 

for the initialisation of the datum. Note that GNSS measurements of the image positions could 

become relevant in windows in which problems with the relation of tie points to model planes 

occur (e.g. unfavourable configuration of the planes or a low number of assigned planes). In such 

cases, GNSS measurements could contribute to bridge gaps in the sequence, where no relations to 

a building model were found. As the results of Scn3 and Scn4 are similar, only the results for Scn4 

are shown in the following. 

Figure 19 depicts the RMS check point errors after the global hybrid adjustment (step 7 of the 

workflow of the sliding window pose estimation in Table 5). Values of the horizontal axis at bars 

that exceed the figure are written at the end of the bars.  

While for the short sequence, the difference between using the corrected generalised building 

model (Scn2) and the original version (Scn4) was small (20 versus 25 cm), with the long sequence 

this changes: Including the corrected generalised building model (Scn2) leads to RMS check point 

errors of 12 cm after the global adjustment. With the original generalised building model (Scn4), 

RMS Δ𝑋𝑌𝑍𝐶𝑃
 of 31 cm result. Compared to the 25 cm achieved using the original generalised 
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building model in the short sequence, the 31 cm for the long sequence indicate slightly larger check 

point errors over all captured buildings than for the building captured in the short sequence. 

If no building model is used, check point errors are in the metre range (Scn5) and reach an RMS 

of almost 5 m if GNSS is used only at the beginning of the sequence (Scn6). 

Discussion 

The RMS check point error achieved using the corrected generalised building model (Scn2a) 

with the long sequence is smaller than the error for Scn2a in the short sequence. This indicates that 

after correcting for systematic model errors, smaller effects remain in the building model compared 

to the building part captured by the short sequence. At the building captured by the short sequence, 

stronger effects (e.g. at the prongs) due to generalisation of the building model occur than on most 

other buildings captured by the long sequence. 

As expected according to GNSS accuracy, the RMS check point errors of Scn5 and Scn6 are in 

the metre range and larger errors occur when only using GNSS at the beginning of the sequence. 

Compared to the short sequence, the error is larger for Scn5 in the long sequence. This shows that 

the quality of GNSS measurements regarding factors like signal reception, geometry and multi-

path effects is not as good along the long sequence as it is at the short sequence. The long sequence 

features higher buildings and lower flying heights than the part covered by the short sequence, 

were most images are captured flying at roof height. 

 Using the generalised building model leads to the same RMS Δ𝑋𝑌𝑍𝐶𝑃
 regardless if GNSS 

measurements of projection centre positions are used for all key frames or only at the beginning 

of the image sequence. In the scenarios 5 and 6 that do not use a building model, the difference 

with respect to these GNSS measurements is clearly visible. Therefore, it is concluded, that the 

hybrid bundle adjustment allows for the replacement of missing GNSS observations with the 

generalised building model. 

The estimated tie points for Scn4a are shown in Figure 20 coloured by the planes they are 

assigned to. Some large façade planes have many points assigned to them, but also roof planes 

covered by much fewer points are related to the tie point cloud.  

 

 
Figure 19: Long sequence: RMS check point errors of all check points for the global adjustment. 
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Figure 20: Generalised building model with tie points of Scn4a of the long sequence in top and side 

views. Tie points not assigned to a plane are shown in grey, colours indicate assignments to specific 

planes. 
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Systematic effects 

As described for the short sequence, pairs of known and estimated check point coordinates of 

the global adjustment of the long sequence are used to calculate parameters of Helmert 

transformations for each scenario. The check point errors before and after transformation are 

shown in Figure 21 for Scn2 and Scn4. Table 11 shows the transformation parameters and the 

RMS check point errors.  

Using the corrected generalised building model in Scn2, the check point errors and the 

transformation parameters are smaller than with the original generalised model in Scn4. The 

transformation parameters for Scn2 show a maximum of -3 cm for the Y-shift 𝑌𝑡 and 0.04° for the 

Y-rotation 𝑒𝑌𝑡. The largest transformation parameter for Scn4 is the shift of 16 cm in Y-direction.  

Relatively large errors are revealed for check point 6, which lies at the top left of the large 

façade captured in a loop (see Figure 12). Figure 22 shows the check point errors for Scn4a plotted 

as arrows in top view coloured according to the Z-error. Check point 6 is shifted along the model 

plane of the façade shown in Figure 20 with the assigned tie points in black. The direction of the  

 

 

 

 

Figure 21: Long sequence: Check point errors per check point in the order of their appearance in the 

sequence before and after transformation for Scn2a and Scn4a. 
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check point errors indicates that for the images captured by flying a loop along the façade mainly 

the façade plane contributed as absolute information along the plane’s normal direction. Tie points 

could move orthogonally to the normal within the plane as there are almost no planes that add 

absolute information in the directions along the plane. Only some images of the loop capture roof 

planes of the building adding some fictitious observations that contribute to the Z-direction. As 

the area around check point 6 is the longest part of the sequence going along just one façade, the 

large error at this check point indicates that block deformations are dispersed to this area. 

The check point errors before and after Helmert transformation are shown in Figure 23 for Scn5 

and Scn6 that do not integrate a building model and only use GNSS measurements of projection 

centre positions as absolute information. 

Long 

Seq. 

𝑋𝑡 

[m] 

𝑌𝑡 

[m] 

𝑍𝑡 

[m] 

𝑒𝑋𝑡 

[°] 

𝑒𝑌𝑡 

[°] 

𝑒𝑍𝑡 

[°] 

𝑠𝑡  RMS 

Δ𝑋𝐶𝑃
 

[m] 

RMS 

Δ𝑌𝐶𝑃
 

[m] 

RMS 

Δ𝑍𝐶𝑃
 

[m] 

RMS 

Δ𝑋𝐶𝑃,𝑡
 

 [m] 

RMS 

Δ𝑌𝐶𝑃,𝑡
 

[m] 

RMS 

Δ𝑍𝐶𝑃,𝑡
 

[m] 

Scn2a 0.01 -0.03 0.01 0.03 0.04 -0.01 1.00 0.08 0.07 0.06 0.06 0.06 0.06 

Scn4a -0.05 0.16 -0.04 0.05 -0.07 -0.02 1.00 0.15 0.24 0.11 0.13 0.19 0.08 

Scn5 0.24 -0.11 0.31 0.88 -0.13 0.53 1.00 0.50 0.44 0.67 0.27 0.34 0.13 

Scn6 0.44 0.25 2.96 4.34 -2.51 0.74 0.99 0.63 0.76 4.66 0.29 0.34 0.13 

Table 11: Parameters (𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡 , 𝑒𝑋𝑡 , 𝑒𝑌𝑡 , 𝑒𝑍𝑡 , 𝑠𝑡) of the Helmert transformations between known and 

estimated check point coordinates for some of the scenarios of the long sequence and RMS of coordinate 

differences of the known and the estimated check point coordinates (𝛥𝑋𝐶𝑃
, 𝛥𝑌𝐶𝑃

, 𝛥𝑍𝐶𝑃
) as well as of the 

known and the transformed estimated check point coordinates (𝛥𝑋𝐶𝑃,𝑡
, 𝛥𝑌𝐶𝑃,𝑡

, 𝛥𝑍𝐶𝑃,𝑡
). 

 
Figure 22: Check point errors and estimated image positions for Scn4a of the long sequence. 𝛥𝑋𝑌[𝑑𝑚] 
shown as arrows coloured by 𝛥𝑍[𝑑𝑚]. 

CP6 
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The check point errors after global adjustment are larger for Scn6 compared to Scn5. Scn6 only 

uses GNSS measurements at the beginning of the image sequence. The check point errors after 

transformation are distributed similarly for Scn5 and Scn6.  

After transformation, larger check point errors remain for Scn5 and Scn6 that do not integrate 

a building model compared to the errors of Scn2 and Scn4, which integrate the generalised building 

model (Figure 21). Such differences were not observed for the short sequence where scenarios 2, 

3 and 5 result in similar check point errors after transformation. 

Discussion 

Differences in check point errors between scenarios after transformation represent local block 

deformations. Check point errors are smallest in Scn2 with the corrected generalised building 

model. Without the correction of systematic effects of model planes in Scn4, they are larger by the 

amount of block deformations introduced by systematic effects. The fact that even larger errors 

remain without the usage of a building model (Scn5/Scn6) shows that block deformations are 

reduced by using a generalised building model for the long sequence. The correction of local block 

 

 

 

 

Figure 23: Long sequence without a building model: Check point errors per check point in the order of 

their appearance in the sequence before and after transformation for Scn5 and Scn6. 
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deformations in the scenarios that integrate a building model also shows that it is helpful to 

integrate the plane correspondences individually into the optimisation instead of using them just 

to estimate a datum transformation to correct an image block using a building model. ICP-based 

approaches that estimate a transformation for the whole image block would not have been able to 

correct the local block deformations.  

If GNSS measurements are used only at the beginning of the sequence (Scn6), the 

transformation parameters are larger, but the remaining errors are close to those of Scn5, in which 

GNSS measurements are used along the whole sequence. This shows that the block in these two 

scenarios is deformed equally but the datum is initialised worse by just using the first 50 GNSS 

observations. While the GNSS measurements help to improve the datum, they are not accurate 

enough to notably correct block deformations within the sequence.  

6.3 Check Point Errors versus Estimated Standard Deviations 

The RMS check point errors as external diagnostics are now compared to the RMS of the estimated 

standard deviations of the check points and to the check point errors after a Helmert 

transformation. For clarity, RMS check point errors are denoted as Δ𝐶𝑃 and Δ𝐶𝑃,𝑡 and the RMS of 

estimated standard deviations as 𝜎̂𝐶𝑃 in this section: All discussed numbers in this section are RMS 

values. The comparison is shown for the short sequence only, as the findings were found to be 

valid also for the long and the full sequences. The estimated variance factor 𝜎̂0 with all sequences 

for all scenarios is ~0.8. 

Figure 24 extends Figure 14 (page 65) by 𝜎̂𝑋𝑌𝑍𝐶𝑃
 and the Δ𝑋𝑌𝑍𝐶𝑃,𝑡

 for the short sequence. For 

Scn5, 𝜎̂𝑋𝑌𝑍𝐶𝑃
 is almost twice as large as Δ𝑋𝑌𝑍𝐶𝑃

. For the scenarios incorporating a building model, 

𝜎̂𝑋𝑌𝑍𝐶𝑃
 is considerably smaller than Δ𝑋𝑌𝑍𝐶𝑃

: The actual errors are significantly larger than the 

precision estimated by the adjustment. While Δ𝑋𝑌𝑍𝐶𝑃
 significantly decreases from Scn3 to Scn2 

and from Scn2 to Scn1, for these three scenarios 𝜎̂𝑋𝑌𝑍𝐶𝑃
 remains in the same range of 1 cm. The 

𝜎̂𝐶𝑃 values are in the range of a precision that can be expected for image observations of the 

captured image sequence with a mean GSD in the sub-cm-range.  

 
Figure 24: Short sequence: Comparison of the RMS check point errors before and after transformation 

and the RMS of the estimated standard deviations of all check points per scenario. 
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The Δ𝑋𝑌𝑍𝐶𝑃,𝑡
 in terms of magnitude between the original check point errors and the estimated 

standard deviations show that the Helmert transformation reduces the errors. But only in Scn1, 

Δ𝑋𝑌𝑍𝐶𝑃,𝑡
 and 𝜎̂𝑋𝑌𝑍𝐶𝑃

 are close to each other.  

Figure 25 shows 𝜎̂𝐶𝑃, ΔCP,t and ΔCP for all three coordinate axes. As mentioned before, check 

point errors after transformation are quite similar for all scenarios except Scn1.  

 lists the 𝜎̂𝐶𝑃  and Δ𝐶𝑃 values and in the right columns additionally shows the relations of 

ΔCP/𝜎̂𝐶𝑃. Scn1, as shown in section 6.1, has the largest check point errors in Z-direction. While 

the errors in X- and Y-direction are 3 and 4 times larger than 𝜎̂𝐶𝑃 , the difference is even larger for 

the Z-direction. In Scn3, ΔCP is 7 to 19 times larger than 𝜎̂𝐶𝑃 , while in Scn2 this ratio is between 

5 and 14.  

Short 

Seq. 

Δ𝑋𝐶𝑃
 

[m] 

Δ𝑌𝐶𝑃
 

[m] 

Δ𝑍𝐶𝑃
 

[m] 

σ̂𝑋𝐶𝑃
 

[m] 

σ̂𝑌𝐶𝑃
 

[m] 

σ̂𝑍𝐶𝑃
 

[m] 

Δ𝑋𝐶𝑃

𝜎̂𝑋𝐶𝑃

 
Δ𝑌𝐶𝑃

𝜎̂𝑌𝐶𝑃

 
Δ𝑍𝐶𝑃

𝜎̂𝑍𝐶𝑃

 

Scn1a 0.03 0.04 0.09 0.01 0.01 0.01 2.6 4.1 13.6 

Scn2a 0.08 0.16 0.04 0.01 0.01 0.01 6.3 14.1 4.9 

Scn3a 0.09 0.22 0.08 0.01 0.01 0.01 6.8 18.9 8.9 

Scn5 0.27 0.20 0.50 0.56 0.51 1.12 0.5 0.4 0.5 

Table 12: 𝜎̂𝐶𝑃 and 𝛥𝐶𝑃 and their ratio for the short sequence. 

Table 13 shows the decreased difference between the estimated standard deviations and the 

check point errors that remain after the Helmert transformation. The Z-shift of the Helmert 

transformation strongly reduces the ratio in Z-direction for Scn1. For Scn2 and Scn3, a relatively 

 
Figure 25: Short sequence: Comparison of the RMS check point errors before and after transformation 

and the RMS of the estimated standard deviations of all check points per coordinate axis per scenario. 
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large Δ𝑌𝐶𝑃
 is reduced by the transformation. An explanation for the large Δ𝑌𝐶𝑃

 is an unfavourable 

distribution of planes that support the block as absolute information in Y-direction. Low 

redundancy in such planes combined with systematic effects of the planes seems to lead to larger 

errors. 

Short 

Seq. 

Δ𝑋𝐶𝑃,𝑡
 

[m] 

Δ𝑌𝐶𝑃,𝑡 

[m] 

Δ𝑍𝐶𝑃,𝑡
 

[m] 

σ̂𝑋𝐶𝑃
 

[m] 

σ̂𝑌𝐶𝑃
 

[m] 

σ̂𝑍𝐶𝑃
 

[m] 

Δ𝑋𝐶𝑃,𝑡

𝜎̂𝑋𝐶𝑃

 
Δ𝑌𝐶𝑃,𝑡

𝜎̂𝑌𝐶𝑃

 
Δ𝑍𝐶𝑃,𝑡

𝜎̂𝑍𝐶𝑃

 

Scn1a 0.02 0.02 0.01 0.01 0.01 0.01 1.7 2.3 1.5 

Scn2a 0.06 0.07 0.02 0.01 0.01 0.01 4.5 6.2 2.3 

Scn3a 0.05 0.05 0.01 0.01 0.01 0.01 3.7 4.3 1.1 

Scn5 0.05 0.06 0.01 0.56 0.51 1.12 0.1 0.1 0.0 

Table 13: 𝜎̂𝐶𝑃 and 𝛥𝐶𝑃,𝑡 and their ratio for the short sequence. 

Discussion 

For all scenarios with a building model, the estimated 𝜎̂𝐶𝑃 values are significantly smaller than 

the ΔCP values. This discrepancy indicates remaining systematic effects.  

The reduced check point errors after the Helmert transformation suggest that large portions of 

the discrepancy can be related to the datum of the image block: The ΔCP,t values are closer to 𝜎̂𝐶𝑃 

than ΔCP. Given that the datum of the building models and the check points is the same, other 

systematic effects have to be analysed. As mentioned above for the large Δ𝑌𝐶𝑃
 values, a low 

redundancy of model planes combined with systematic errors of the model planes is a potential 

source of datum errors. 

As soon as a building model is used, the influence of the GNSS measurements on the datum of 

the image block is very small. Therefore, systematic errors of model planes as absolute information 

are considered by comparing Scn2 and Scn3: The similar 𝜎̂𝐶𝑃 values for Scn2 and Scn3 are the 

expected result, as systematic errors of the generalised building model do not influence 𝜎̂𝐶𝑃. The 

systematic errors of model planes that lead to larger ΔCP values with the original generalised model 

are not included in 𝜎̂𝐶𝑃, which consequently do not change. 

The remaining discrepancy between ΔCP  and 𝜎̂𝐶𝑃 after Scn2 shows that systematic errors still 

exist in the model after the correction and even after the Helmert transformation. The correction 

of the generalised building model only partly eliminates systematic errors of model planes. The 

generalisation effects themselves are partly systematic within the planes. As mentioned when 

setting up the stochastic model in section 3.2.3, Gaussian-distributed errors are assumed by setting 

an a priori standard deviation for the fictitious observations. This does not reflect the often 

systematic character of deviations due to generalisation.  

As shown in section 6.1, even for the short sequence, block deformations occur that are reduced 

using the detailed building model (Scn1, see Figure 18). Scn1 results in a further reduced 

discrepancy between estimated standard deviations and check point errors in X- and Y-direction. 

Note that while the detailed model is retrieved from the plans of the architect by correction of the 

individual planes with a reference point cloud, the topology is not changed – no details are added 
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and structure not present in the plans is still missing in the detailed model. This leads to remaining 

systematic effects causing the remaining discrepancy between ΔCP  and 𝜎̂𝐶𝑃 even for the detailed 

building model.  

As described, model planes that contribute to the Z-direction are neither covered by tie points 

sufficiently nor described by the model in the same detail and accuracy as the tie points. This 

explains the larger discrepancy in Z-direction with Scn1. With a ratio of 13.6, this discrepancy is 

even larger than with a generalised building model.  

Figure 25 shows that in the scenarios that use a generalised building model the check point 

errors in Z-direction are even smaller than those of Scn1. Whereas the detail and amount of 

generalisation effects at many roof planes are comparable for the detailed and the generalised 

model, the used parameters are not: Assignment thresholds and a priori standard deviations are 

smaller in Scn1 than in scenarios 2 and 3, which leads to fewer assignments at roof planes for 

Scn1. The quality of these assignments likely is overestimated by the 𝜎̂𝑍𝐶𝑃
 in Scn1, which in 

combination with systematic effects at the roof planes leads to the large ratio of Δ𝑍𝐶𝑃
/𝜎̂𝑍𝐶𝑃

. 

The a priori standard deviation of the GNSS measurements was set to several metres, which, in 

Scn5, turns out to be larger than the actual observed check point errors and the 𝜎̂𝐶𝑃. The larger 𝜎̂𝐶𝑃 

compared to the ΔCP  shows that the accuracy of the GNSS measurements is underestimated for 

the captured sequence.  

The results of this section show that as soon as a building model is used, even with a detailed 

building model, the estimated standard deviations are affected by remaining systematic effects. 

The more generalisation effects are present in the building model, the larger these effects are.  

6.4 Sliding Window versus Global Adjustment 

The previous sections analysed the results of the global adjustment. This section compares the 

results of the sliding window processing to the global adjustment concerning check point errors 

using the long sequence. The difference between sliding window and global processing has to be 

interpreted as the potential loss of accuracy that occurs due to only optimising incrementally, 

reusing some already adjusted images instead of processing all available data at once. Note that 

the global adjustment uses the estimation results of the windows as initial values and is not run 

independently on the whole image sequence at once. The reason for not directly running the global 

approach on the whole sequence is that block deformations along the full sequence prevent a 

successful assignment and let the global hybrid adjustment fail. The assignment with large block 

deformations and drift effects fails as the assumption of good initial values for tie point coordinates 

close to model planes becomes violated. Therefore, the sequential processing in windows of the 

hybrid adjustment is carried out first to be able to start the global hybrid adjustment from good 

initial values.  
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In Figure 26, the check point errors for the sliding window processing, i.e. RMS over all RMS 

check point errors of all windows, are presented along with the RMS check point errors of the 

global hybrid adjustment already shown in Figure 19. In all scenarios except Scn2a the sliding 

window approach shows higher errors compared to the global adjustment. Errors are 

approximately equal for Scn2a. The error over all windows after sliding window processing is 

larger by 5 cm in Scn4a and around half a meter in Scn5 and Scn6. 

The relatively small loss of accuracy caused by sliding window processing shows that the 

windows themselves result in check point errors relatively close to those of the global optimisation. 

This depends on the parameter settings, especially on the window size. Windows ideally should 

be large enough to cover the same length of trajectory and number of model planes that influence 

the results locally within the global adjustment. The better the building model stabilises the 

windows in themselves, the lower is the potential improvement of a global solution. 

For Scn2a and Scn4a, Figure 27 shows the RMS errors at check points per window (8 windows) 

and for the global adjustment (last bar in the figure). As already seen in the overall RMS errors, 

the RMS values Δ𝑋𝑌𝑍𝐶𝑃
 are considerably smaller in Scn2a than in Scn4a: They vary between 8 and 

22 cm in Scn2a and between 20 and 80 cm in Scn4a.  

  
Figure 26: Long sequence: Comparison of the RMS of the RMS check point errors of all windows (left) 

and for the global adjustment (right). 

  

Figure 27: Long sequence, Scenarios 2a (left) and 4a (right): RMS errors over all check points for each 

window and for the global adjustment. 
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Windows 3 and 4 show the largest check point errors in both scenarios that include the 

generalised building model. These windows include the façade of check points 6 and 12 captured 

in a loop along the façade plane. The large check point errors observed before at check point 6 

occur as well in the sliding window processing. 

In summary, the global adjustment leads to slightly improved check point errors compared to 

the sliding windows. The errors vary from window to window and are largest at windows with 

poor model information. Overall, the results show that window size and overlap are sufficient to 

cover most parts of the sequence in a way that locally relevant observations and unknowns take 

part in the local optimisations. 

6.5 Assignment Strategies 

This section compares the three assignment strategies introduced in chapter 4 to each other 

based on RMS check point errors. The comparison uses the long sequence. Results of the short 

sequence are summarised in the following.  

For the short sequence, the assignment strategies lead to similar results with the generalised 

building model. Assignment methods (a) and (c) perform similarly with the detailed building 

model (Scn1a and Scn1c) while method (b) fails to segment many small planes from the tie point 

cloud and results in false assignments. Due to the low number of assigned planes in total and a 

relatively high number of wrong assignments of model planes, the RMS Δ𝑋𝑌𝑍𝐶𝑃
 of Scn1b with the 

short sequence are even larger than those of Scn5 that does not integrate any building model. This 

leads to the conclusion that method (b) is not feasible for a detailed model with the given setup. 

For the long sequence, Figure 28 shows the RMS Δ𝐶𝑃 per axis for Scn2 and Scn4 after sliding 

window processing (left) and after the global adjustment (right). The check point errors for 

  
Figure 28: Long sequence: RMS errors of all check points for the windows (left) and the global 

adjustment (right). 
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methods (a) and (c) are close by each other with a tendency of lower errors with method (a). For 

the sliding window processing, assignment method (b) leads to the highest check point errors in 

Scn2 as well as in Scn4. 

As seen with assignment method (a) in the sections before, the global processing overall leads 

to smaller check point errors compared to the sliding windows. The improvement is largest with 

assignment method (b): With global adjustment, Scn4b results in errors closer to those of scenarios 

4a and 4c, and also the differences of Scn2b to scenarios 2a and 2c are smaller. 

To further analyse the differences of the methods, the total number of assigned tie points and 

the total number of model planes with assignments of tie points are compared. For Scn4, Table 14 

shows these statistics and the number of key frames, tie points and the number of observations 

eliminated by robust estimation.  

 Number of 

Key 

Frames 

Number of 

Tie Points 

Number of Image 

Observations 

Number of 

Planes with 

Assignments 

Number of 

Assignments, 

Fictitious Obs. 

Scn4a 346 117951 965412 (6454) 51 96548 (0) 

Scn4b 349 120173 980104 (10063) 15 60793 (3) 

Scn4c 332 112662 912528 (5739) 54 90504 (0) 

Table 14: Statistics for the global adjustment of the long sequence with Scn4. Number of 

observations eliminated by robust estimation are given in parentheses. 

 

As described before, RANSAC procedures are used in relative image orientation and in the 

elimination of erroneous image matches when generating initial values for the adjustment. The 

usage of RANSAC leads to varying numbers of key frames. Scn4c consists of fewer key frames 

than Scn4a and Scn4b, leading to lower numbers of tie points and assignments of tie points. 

However, for Scn4a and Scn4c, 80% of the tie points are assigned to model planes, while Scn4b 

results in significantly fewer planes with assignments and only 50% assigned tie points.  

Comparison at an example building 

Figure 29 shows the assignment results with the three assignment methods for the building 

denoted as c) in Figure 10, section 5.2.2. The assignments of methods (a) and (c) turn out to be 

nearly equal, whereas method (b) only assigned tie points to one façade plane in this area. Tie 

points at the garage gates are not assigned to the model planes by all three methods. Tie points of 

the balustrade of the balcony also are not assigned as the balustrade is not represented in the 

generalised model. The façade between balcony and building roof is an example of a plane where 

the model plane and the captured tie points deviate that much from each other that no assignment 

takes place. The good fit of the assigned tie point cloud to the other façades suggests that this 

unassigned façade is inaccurately modelled. In the first iterations of the hybrid bundle adjustment, 

this plane gets assignments. But with decreasing distance thresholds, these assignments are not 

found again. As the a priori standard deviation of the direct observations of vertex coordinates is 

set to 1 cm for the experiments, the plane does not change notably. The correction of model planes 

by the hybrid bundle adjustment is investigated in section 6.7.  
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Figure 29: Comparison of the assignments of Scn4a (top), Scn4b (middle) and Scn4c (bottom) at one 

façade in top and side views. 
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Comparison at one plane 

Figure 30 shows the results of the first five iterations of the global hybrid bundle adjustment 

for the vertical façade plane shown with yellow assigned tie points in Figure 29 bottom. As was 

shown in Figure 10, section 5.2.2, where this building is shown as example c), there is a garage 

door not represented by the generalised building model. With the large distance threshold of 2 m 

 

 

 
Figure 30: Results of the direct assignment (a) for the first five iterations of the hybrid adjustment for 

the left model plane with a garage door at building c) in Figure 10, section 5.2.2 and in Figure 29: 

Histogram of the fictitious distance observations of assigned tie points to the model planes (left), top 

(middle) and orthogonal view on the model plane (shown in grey) with only the assigned tie points in 

blue. 
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in the first iteration of the hybrid adjustment, all points in the surroundings of the façade are 

assigned to the model plane (Figure 30). The assignment includes points of the garage door which 

form a plane parallel to the model plane. After one iteration, these points are assigned again. They 

appear in the shown histogram at the 1 m residuals as the adjustment lead to a shift of the tie point 

cloud, bringing the points of the garage door closer to the model plane. Other planes of the image 

block prevent the adjustment to “pull” the points on the garage door even closer to the model plane. 

As the distance threshold is lowered in each iteration due to an overall better fit of tie points to 

model planes, this lower threshold leads to the assignment shown for iteration three: Only some 

closer points of the garage door are still assigned to the model plane. The majority exceeds the 

lowered threshold and is not assigned again. The adjustment consequently results in image poses 

shifting the tie points back, so that the façade points come closer to the model plane and the tie 

points of the garage gate move away from the model plane again. In combination with a further 

reduced distance threshold, the assignment in iteration 4 converges to only the points close to the 

façade and correctly uses them for the hybrid adjustment to relate the image block to the model 

façade in following iterations. Due to the lowered distance threshold, no tie points of the garage 

door are assigned to the model plane again. 

Figure 31 shows the results of the assignment with the indirect method (b) without using ROIs 

for the same model plane as in Figure 30. With method (b) the plane is only detected three times. 

After the three iterations, the distance of the COG of the extracted plane exceeds the lowered 

distance threshold and results in the situation seen in Figure 29: This plane has no accepted 

 

 
Figure 31: Assignment results for the indirect method (b). 
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assignments. The reason for this is that only the garage door is found as a plane by MSAC in the 

tie point cloud. 

The usage of an ROI to search for planes leads to the results shown in Figure 32 for assignment 

method (c). In the beginning, tie points of the gate form the plane with most inliers in the ROI 

around the model plane. With lowered ROI distance thresholds from iteration 4 on, the tie points 

at the gate fall outside the ROI. Therefore, the façade points are detected as the extracted plane 

close enough to the model plane leading to the correct adjustment of assigned façade points to the 

model plane rejecting assignments of points of the garage gate. 

 

 

 
Figure 32: Assignment results for the indirect method (c) with ROIs. 
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Overall comparison 

In general, assignment method (b) finds assignments to fewer planes than the other two methods. 

However, the planes found by method (b) typically are the dominating large planes. This finding 

also explains, why 70% fewer planes are found by method (b) compared to the other two methods, 

but the total number of point-plane assignments is lower by 30% only. Figure 33 shows the 

assignments of the methods (a) and (b) for the whole scene.  

 

 
Figure 33: Comparison of the assignments of Scn4a (top) and Scn4b (bottom). 
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Discussion 

Using method (b), the discrepancy between errors after sliding window and global optimisation 

is larger than with the other methods. This shows that a lower number of found planes degrades 

the orientation results of windows but has a smaller negative effect on the global adjustment. This 

finding suggests that method (b) might require a larger window size compared to methods (a) and 

(c). 

Method (b) performs worse than the other two methods, but at the same time is the only method 

that independently searches for planes in the tie point cloud. Method (b), therefore, shows the 

largest potential to be expanded for scenarios that violate the assumption of good initial poses. 

Such scenarios would require to match the whole set of extracted and model planes instead of only 

assigning neighbouring planes. 

Method (c) requires more processing steps than method (a) but does not outperform the simpler 

direct assignment in the experiments. Therefore, the results suggest to prefer method (a) over (c). 

Further investigations would be needed to analyse differences of those two methods in more detail.  

6.6 The Full Sequence 

The full sequence consists of the long sequence and additional images at the beginning and the 

end of the sequence. These images add more complex configurations that are investigated in the 

following. In the beginning, the flight starts between buildings with the worst GNSS reception and 

captures images along two vertical façade planes only. GNSS observations are off by almost 5 m 

for the first images. At the end of the sequence, images are recorded with small base lengths and 

large rotations in the yaw direction. Additionally, these images capture building parts with strongly 

varying distance from the sensor, leading to an unfavourable distribution of matched image 

features within images due to occlusions.  

Figure 34 depicts the trajectory reconstructed for the full sequence in Scn4a with the XY-check 

point errors as arrows coloured by the Z-error. The additional key frames in the beginning and at 

the end of the sequence at check points 15, 11, 19 and 25 show the largest deviations. Check points 

11 and 15 are clearly shifted along the façade plane. This shift is attributed to missing point-plane 

relations to other planes with different orientation as there is only this vertical façade plane at the 

beginning of the sequence. At check points 19 and 25, the errors are attributed to the unfavourable 

image capturing conditions: At check point 3, the copter rotated around the yaw axis while there 

was not much translational movement. This movement generates key frames with an insufficient 

base length that are not skipped because otherwise image overlap would decrease and no image 

matches would be found. 
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Figure 34: Check point errors and estimated image positions for Scn4a of the full sequence. 𝛥𝑋𝑌[𝑚] 
shown as arrows coloured by 𝛥𝑍[𝑚]. 

 
Figure 35: Check point errors and estimated image positions for Scn5 of the full sequence. 𝛥𝑋𝑌[𝑚] 
shown as arrows coloured by 𝛥𝑍[𝑚]. 
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In Scn5, without the building model, the largest check point errors result at the beginning and 

the end of the sequence (Figure 35). The check point errors at the end of the sequence at check 

points 19 and 25 are largely reduced after Scn4a, but the block deformations were not corrected 

completely by the integration of the generalised building model. 

Systematic effects (scenarios 2a and 4a) 

Figure 36 shows the check point errors for Scn2a and Scn4a before and after Helmert 

transformation. As already seen in the check point error plots, the largest errors occur at the 

beginning and the end of the full sequence, added in comparison to the long sequence. The block 

deformation around check points 12 and 6 already observed with the long sequence is also visible 

and is lower with the corrected generalised building model of Scn2a. The Helmert transformation 

does not lead to largely reduced check point errors. This shows that the errors are primarily due to 

local block deformations and not due to overall datum defects. The large errors at check points at 

the end of the sequence only affect the last window of sliding window processing, while they are 

potentially distributed to larger parts of the full sequence in the global adjustment.  

 

 

 

 

Figure 36: Full sequence: Check point errors per check point in the order of their appearance in the 

sequence before and after transformation for Scn4a and Scn2a. 
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Systematic effects without the integration of a building model (scenarios 5 and 6) 

Figure 37 shows the check point errors for Scn5 and Scn6. Note the scale factor 10 of the y-

axis to show the check point errors without transformation for Scn6. The errors at CP6 in Scn6 are 

relatively small because the size of the errors correlates with their distance from the start of the 

sequence where GNSS observations for the projection centre positions were used. The image block 

is relatively stable compared to the large errors that occur due to low GNSS accuracy. At CP6 the 

trajectory comes back closer to the first images.  

As was observed already with the long sequence, the errors after transformation for scenarios 

5 and 6 show larger remaining block deformations than the errors of Scn2 and Scn4 in Figure 36. 

This underlines the positive effect of integrating a generalised building model into the estimation 

of tie point coordinates and image poses.  

In addition, the remaining check point errors for Scn5 and Scn6 show large block deformations 

in the beginning and at the end of the image sequence, which means, that the block deformations 

 

 

 

 

Figure 37: Full sequence: Check point errors per check point in the order of their appearance in the 

sequence before and after transformation for Scn5 and Scn6. Note the different scaling of the Y-axis 

compared to Figure 36 and for Scn6 without the transformation. 
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observed in scenarios 2 and 4 at least partly are already present before integrating any building 

model into the adjustment.  

Table 15 lists the parameters of the Helmert transformation and the RMS check point errors per 

scenario. In Scn6, without any building model and with GNSS observations for the projection 

centre positions of only the first 50 images of the sequence, check point errors are largely reduced 

after a Helmert transformation. The scale parameter shows that the scale of this scenario is off by 

16%. The shift and rotation parameters also underline the low accuracy of the solution with Scn6. 

Similar check point errors for Scn5 and Scn6 after Helmert transformation show that the usage of 

inaccurate GNSS measurements for all projection centre positions of the sequence as absolute 

information improves the overall datum but does not correct block deformations. Like already 

observed with the long sequence, the block deformations are smaller than the GNSS accuracy and 

are only significantly reduced by the integration of the building model in Scn2 and Scn4. 

Conclusion 

The beginning of the full sequence is an example of insufficient ground control that shows how 

important the distribution of model planes over the captured scene is. The results of the full 

sequence show that the proposed method still improves image poses given larger GNSS 

observation errors, insufficient model plane configuration and unfavourable image capturing 

conditions. The results also point at factors limiting the method: If the plane configuration is 

insufficient, errors in relative image orientation can get dispersed to areas of the sequence not 

optimally covered by model information. 

6.7 Parameter Variation 

In the following, the most relevant parameters of the presented approach are investigated. For each 

parameter, the check point errors with the standard parameter setting (see section 5.3) are 

compared to smaller and/or larger settings and are discussed with respect to deviations from the 

expected outcome.  

The long sequence is used for all parameter variations to be able to compare the influence of 

the parameters on sliding window and global adjustment and to cover a variety of buildings. For 

Long 

Seq. 

𝑋𝑡 

[m] 

𝑌𝑡 

[m] 

𝑍𝑡 

[m] 

𝑒𝑋𝑡 

[°] 

𝑒𝑌𝑡 

[°] 

𝑒𝑍𝑡 

[°] 

𝑠𝑡  RMS 

Δ𝑋𝐶𝑃
 

[m] 

RMS 

Δ𝑌𝐶𝑃
 

[m] 

RMS 

Δ𝑍𝐶𝑃
 

[m] 

RMS 

Δ𝑋𝐶𝑃,𝑡
 

 [m] 

RMS 

Δ𝑌𝐶𝑃,𝑡
 

[m] 

RMS 

Δ𝑍𝐶𝑃,𝑡
 

[m] 

Scn2a -0.08 0.05 0.01 -0.01 -0.02 -0.01 1.00 0.20 0.22 0.13 0.18 0.21 0.13 

Scn4a -0.14 0.24 -0.07 -0.05 -0.24 0.00 1.00 0.30 0.37 0.22 0.26 0.27 0.18 

Scn5 0.26 0.32 0.12 0.13 -0.83 0.37 0.99 0.93 0.90 0.61 0.86 0.73 0.35 

Scn6 8.40 3.76 -3.54 -4.43 5.06 5.01 0.84 9.82 8.81 6.55 0.99 1.02 0.39 

Table 15: Parameters (𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡 , 𝑒𝑋𝑡 , 𝑒𝑌𝑡 , 𝑒𝑍𝑡 , 𝑠𝑡) of the Helmert transformations between known and 

estimated check point coordinates for some of the scenarios of the full sequence and RMS of coordinate 

differences of the known and the estimated check point coordinates (𝛥𝑋𝐶𝑃
, 𝛥𝑌𝐶𝑃

, 𝛥𝑍𝐶𝑃
) as well as of the 

known and the transformed estimated check point coordinates (𝛥𝑋𝐶𝑃,𝑡
, 𝛥𝑌𝐶𝑃,𝑡

, 𝛥𝑍𝐶𝑃,𝑡
). 
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every parameter, first, the assumptions on adjustment results with larger and smaller settings are 

described, second, the resulting check point errors are discussed and compared to those with the 

standard parameter setting. 

6.7.1 Fictitious Distance Observations of Tie Points 

Two important parameters are the a priori standard deviation of fictitious observations of tie points 

𝜎𝑑𝑇𝑃
and the distance threshold chosen as two times 𝜎𝑑𝑇𝑃

 (see next section 6.7.2) as they reflect the 

assumptions made on the size of the generalisation effects. To further analyse the influence of 

these parameters on the estimation concerning check point errors, smaller and larger settings are 

investigated. This way, the choice of the distance threshold as two times 𝜎𝑑𝑇𝑃
 is also analysed. 

Standard setting: 𝜎𝑑𝑇𝑃
 = 20 cm 

Larger: The less restrictive setting can result in less correction of local block deformations as the 

influence of the observations of fictitious distances of tie points is reduced. 

Smaller: The more restrictive setting might result in lower check point errors at planes with fewer 

generalisation effects (depending on systematic effects of the planes); possibly larger errors at 

planes with generalisation effects that exceed the selected value of 𝜎𝑑𝑇𝑃
 if these planes 

systematically “pull” tie points in a certain direction, e.g. zigzag façade where the zigzag is always 

in front of the façade plane. 

 

 

Figure 38: Variation of 𝜎𝑑𝑇𝑃
: RMS check point errors of the long sequence in sliding window (top) and 

global processing (bottom). 
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Figure 38 shows the original Scn4 RMS check point errors with those of Scn4 calculated with 

smaller and larger 𝜎𝑑𝑇𝑃
. As expected, smaller values of 𝜎𝑑𝑇𝑃

 increase check point errors. Larger 

values of 𝜎𝑑𝑇𝑃
 lead to similar results compared to the original 𝜎𝑑𝑇𝑃

 = 20 cm, not showing a notable 

influence of uncorrected local block deformations. Therefore, the setting of 𝜎𝑑𝑇𝑃
 is concluded to 

be less critical for larger values than to smaller ones.  

6.7.2 Maximum Distance of Tie Points to Model Planes 

Standard setting: 2 ⋅ 𝜎𝑑𝑇𝑃
 = 40 cm 

Larger: A larger maximum distance potentially leads to more assignments at the price of a higher 

probability of false assignments leading to increased check point errors. 

Smaller: A reduced maximum distance leads to fewer assignments and may result in larger check 

point errors as correct assignments are more likely to be missed. 

According to the results shown in Figure 39, the decreased maximum distance threshold of 

10 cm leads to larger check point errors in sliding window processing but does not affect the global 

adjustment notably. With a maximum distance of 60 cm, the check point errors are larger and even 

exceed 1 m. Not only is the garage door falsely assigned to the model plane, but also the 

neighbouring façade orthogonal to the garage gate is not related to any tie points as it is further 

away than the 60 cm. By chance, this changes with a maximum distance of 100 cm: Check point 

errors around 50 cm are the result because the garage door still is assigned falsely but the 

neighbouring plane is assigned correctly. The correct assignment of the neighbouring plane 

reduces the effect of the falsely assigned garage door. Both larger maximum distance settings 

compared to the standard 40 cm show that false assignments increase the overall RMS check point 

errors as expected.  

With a maximum distance of 100 cm, fictitious distances can exceed 3 ⋅ 𝜎𝑑𝑇𝑃
= 3 ⋅ 20 cm =

60 cm, which means that several fictitious observations with point-to-plane distances > 60 cm are 

identified as outliers in the adjustment and are consequently automatically excluded from the 

adjustment. Nevertheless the check point errors with 100 cm are smaller than when setting the 

maximum distance to 60 cm. This is due to the robust adjustment iterations including the 

 
Figure 39: Variation of the maximum distance for the assignment of tie points to model planes: RMS 

check point errors with the long sequence in sliding window (left) and global processing (right). 
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assignments with > 60 cm point-to-plane distance before they are removed. After removal of 

outliers, the assignments of tie points to model planes are kept fix for the adjustment with the 

original weights, which prevents the adjustment to converge to the same solution than with the 

setting of 60 cm for the maximum distance of tie points to model planes. 

The results show that check point errors are smaller if point-to-plane distances larger than  

2 ⋅ 𝜎𝑑𝑇𝑃
= 40 cm are rejected already before adjustment instead of introducing fictitious 

observations of such distances to the adjustment and let the robust adjustment reject fictitious 

observations with distances > 3 ⋅ 𝜎𝑑𝑇𝑃
 as outliers. 

6.7.3 Estimation of Vertex Coordinates 

Until here the a priori variance of direct observations of vertex coordinates 𝜎𝑉𝑇 was set to 1 cm, 

almost fixing the building model in order not to mix errors of the building model and deformations 

of the image block. The production of the used LOD2 building model involves measurements from 

cadastre and from aerial laser scanning as the data source, which means that errors of several 

decimetres are possible.  

𝜎𝑉𝑇 is increased to check its influence and, in addition, it is tested if the model should be fixed 

in the sliding window but can be refined in a global adjustment rather than already adjusting it 

during window-based processing. 

Standard setting: 𝜎𝑉𝑇 = 1 cm 

Larger: The model planes will be estimated as the vertices are allowed to move: instead of 

correcting drift and local block deformations, the model planes might be moved because model 

errors, drift effects and block deformations together influence the adjustment. If the redundancy 

in the number of model planes is low, larger check point errors are to be expected as model planes 

can be falsely moved instead of moving the image block.  

 
Figure 40: Estimation of the building model vertices by increasing their a priori standard deviation 𝜎𝑉𝑇: 

RMS check point errors of the long sequence after global processing. 
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On the other hand, the impact of erroneous model planes can be reduced if sufficient 

observations and enough redundancy are given. 

 Note that with the given sequence only one obviously erroneous plane at the façade above the 

garage door is covered. Assignments of tie points to this erroneous plane already are excluded in 

the assignment with standard parameters due to the distance threshold. Therefore, this plane does 

not degrade the results of the adjustment with standard parameters. 

Figure 40 shows, that RMS check point errors increase with increased 𝜎𝑉𝑇. Only the results 

with the global adjustment are shown, as the sliding window processing shows the same trend.  

If 𝜎𝑉𝑇 = 1 cm is used in the windows and 𝜎𝑉𝑇 is increased for the global adjustment only 

(“globalOnly”), RMS check point errors with the same setting for 𝜎𝑉𝑇 are slightly lower. With 

𝜎𝑉𝑇 > 30 cm, the sliding window adjustment fails, due to too large distortions of the model and 

the image block that lead to the exclusion of all observations for image pairs in a window of the 

robust sliding window adjustment. Larger settings for 𝜎𝑉𝑇 can be processed in the global 

adjustment and show a continuation of the trend with respect to RMS check point errors.  

6.7.4  Window Size Nws and Overlap Nnew 

The window size and overlap in the sliding window workflow are varied to analyse how small the 

incremental optimisation steps can be made and how often the adjustment has to be carried out 

during a flight.  

Standard setting: Nws = 100 key frames 

Larger: Larger windows are not tested, as the window size is already large enough to almost lead 

to the same results as the global adjustment. 

Smaller: A smaller window size could potentially increase check point errors if less point-to-plane 

correspondences were found per window and relevant planes were missing that would be needed 

to correct block deformations. The impact of a smaller window size on the resulting check point 

errors will be different depending on the number of observed objects per window. 

 

Standard setting: Nnew = 33 key frames 

Larger: A larger value of Nnew leads to a smaller window overlap, which results in a speed-up in 

processing time as the optimisation has to be carried out less frequently. However, the smaller the 

overlap is, the larger accumulated errors can become before the adjustment is carried out, risking 

convergence to a wrong solution due to erroneous point-to-plane assignments.  

Smaller: A larger window overlap as a consequence of a lower value for Nnew potentially reduces 

drift effects and block deformations of the incremental image orientation and decreases differences 

at key frames between windows. The pose parameters of the last images left out at the previous 

window are not optimised again while the following images are optimised in a next window.  
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Figure 41 shows the results with different settings of window size and overlap. No clear trend 

can be identified for the settings on the results. One reason for the mixed size of the check point 

errors in sliding window adjustment is that in some windows of the different configurations, the 

tie points at the garage door are falsely assigned to the model plane. The variation of RMS check 

point errors is lower for the results of the global adjustment but still does not show a clear 

dependence on the parameter settings.  

Processing with a window size smaller than 75 key frames sometimes did converge to a wrong 

solution in a window, which ends the processing because too many observations are detected as 

outliers. The processing was then restarted. For example, Nws = 30 / Nnew = 10 was successfully 

processed after a restart. The following combinations failed to be processed and therefore are not 

shown in Figure 41: Nws = 75 / Nnew = 70; Nws = 25 / Nnew = 15; Nws = 100 / Nnew = 66.  

Window sizes smaller than 50 key frames and the initiation of a window adjustment less 

frequently than every 50 key frames are concluded to be critical with the given image sequence. 

The results suggest that the needed window size and overlap depend on the captured objects and 

potentially could be varied in future work depending on parameters like the number of found point-

to-plane correspondences, number of planes, plane configuration, image overlap and quality of 

relative orientations, etc.  

 
Figure 41: Variation of window size and overlap: RMS check point errors with the long sequence in 

sliding window (left) and global processing (right). 
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7 Conclusion and Outlook 

The proposed approach for the integration of a generalised building model into 

photogrammetric pose estimation is shown to significantly improve UAV pose parameters even 

though the building model differs from the captured real scene due to generalisation effects. The 

two identified problems addressed by this thesis are the relation of photogrammetric measurements 

to a given building model and the usage of these relations for the optimisation of the UAVs pose 

parameters. 

The optimisation is realised by a hybrid bundle adjustment (chapter 3) that simultaneously uses 

image observations and object information in the form of a generalised building model to retrieve 

optimal image poses and a sparse tie point cloud. Relations of tie points to generalised model 

planes are formulated in object space using three assignment methods (chapter 4). All three 

methods lead to improved estimation results and therefore are concluded to integrate the 

generalised building model successfully. Coordinate differences at check points show that in 

comparison to a pose estimation without a building model, the hybrid adjustment improves check 

point errors from meter range to decimetre level. This improvement indicates that a generalised 

building model is a potential data source to use in UAV applications where other measurements 

like GNSS or GCPs are inaccurate or unavailable. 

Compared to a detailed building model with reduced generalisation effects, larger check point 

errors occur with the generalised building model. This loss of accuracy due to the usage of only a 

generalised building model is further analysed by correcting the generalised model for systematic 

effects in the model planes. The correction is done based on a reference point cloud using the 

hybrid bundle adjustment's ability to estimate model plane parameters while preserving the model 

topology. Check point errors improve with the resulting corrected generalised model instead of the 

original generalised building model. This improvement shows that systematic effects of the model 

planes as a second issue next to the generalisation partly cause differences in check point errors 

between the original generalised and the detailed building model. The remaining difference 

between the corrected generalised model and the detailed one represents the loss in accuracy due 

to generalisation effects. 

Based on pairs of known and estimated check point coordinates, the seven parameters of 

Helmert transformations were calculated for each scenario to analyse systematic effects that affect 

the datum of the whole image block. The transformations applied to estimated check point 

coordinates lead to check point errors that are reduced by overall datum effects. The check point 

errors after transformation for the short sequence are smallest with the detailed building model. 
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Larger check point errors after transformation with the generalised building model are a sign of 

remaining block deformations. These deformations are likely caused by systematic effects of 

model planes and insufficient control information due to the generalisation of the generalised 

building model compared to the detailed one. For the long sequence, remaining check point errors 

are smaller after transformation when using the generalised building model compared to not using 

any building model. This decrease in errors shows that block deformations that occur without any 

model are reduced by integrating the generalised building model. 

The flight along a large façade shows a situation where block deformations are dispersed along 

a façade plane, leading to relatively large remaining check point errors even after Helmert 

transformation. The façade plane as the only ground control in this area is insufficient to locally 

fix the block, allowing block deformations to be distributed along this plane. The effect is reduced 

if the corrected generalised building model is used, as deformations of the block are smaller with 

this model. The beginning of the full sequence is another example of insufficient ground control 

that shows how important the distribution of model planes over the captured scene is. The results 

of the full sequence show that the proposed method still improves image poses given larger GNSS 

observation errors, insufficient model plane coverage and unfavourable image capturing 

conditions. 

The comparison of the three assignment methods leads to the conclusion that the simple 

distance criterion leads to results comparable to those of the dedicated plane search in ROIs around 

model planes. In comparison to these two assignment methods (a) and (c), the model-independent 

detection of planes in the whole tie point cloud that are then matched with model planes (method 

(b)), leads to inferior results. Nevertheless, method (b) shows the best potential to be used in future 

work if the assumption of good initial values for tie point coordinates in the coordinate system of 

the building model is violated. The experiments show no indication to prefer the more complex 

method (c) to the most straightforward method (a). 

The results of the global adjustment are compared to those of the sliding window workflow. 

Using the standard parameters, the improvement of global optimisation over the sliding windows 

concerning check point errors is relatively small. Window size and overlap are sufficient to cover 

most parts of the sequence in a way that locally relevant observations and unknowns take part in 

the local optimisations. Long sequences can be processed in windows if the global solution would 

fail due to too large accumulating drift errors or unfeasible processing time. Furthermore, the 

windows potentially enable the application of the algorithm during data capture to incrementally 

retrieve corrected pose parameters and support or even replace loop-closure in SLAM. 

Related work in comparison to this thesis did not explicitly address the problem of using 

relatively highly detailed and accurate measurements with object knowledge of relatively low 

detail, low accuracy and essential generalisation effects. The developed method to relate such 

measurements to object information and integrate them into a common optimisation framework is 

shown to successfully address the two problems identified in the introduction. Although the 

generalised building model is less accurate and of lower detail, it is shown to be helpful to improve 

image orientation. 
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Several follow up questions remain for future work on this topic. The assignment of tie points 

to model planes potentially can be refined in several aspects. The mentioned combination of 

assignment methods can be taken further to consider other assignment methods from related work: 

For the initialisation and also for additional correspondences, other features and matching in image 

space or between image and object space should be considered. Hierarchical approaches could 

address the assignment problem, e.g., to first solve the problem in lower detail before the 

generalisation effects come into play at the full resolution. In the assignment, thresholds common 

to all assignments of tie points to planes are used.  

Thresholds, e.g. the distance threshold, could be set individually per plane based on individual 

statistics like histograms of distances per plane or the local point distribution. Planes with overall 

close by points could be assumed to have fewer generalisation effects. Consequently, a reduced 

distance threshold and an increased a priori accuracy of the fictitious observations that relate tie 

points to this plane could be set.  

Distance histograms could also be investigated to identify unreliable planes with ambiguous 

assignments. The example of a garage door shows that the plane correspondences could be 

eliminated if two peaks in the distance histogram are detected. The peaks are likely to represent 

two planar point clusters, making it ambiguous to assign one or the other to the model plane.  

Observing assignments over several iterations is another option: Points assigned continuously 

to a plane might be more reliable than those where the assignment switches between iterations. 

Another idea would be to vary assignment configurations and compare different assignment 

variants to pursue several solutions and identify the best one.  

The identified difference between tie point errors and estimated standard deviations due to 

systematic effects is another topic to address in future work: The assumed Gaussian distribution 

for the fictitious observations simplifies the real error distribution. The distance histograms per 

plane could be a hint to possible refinements, e.g. by using more individual or overlapping multiple 

error distributions. Estimated standard deviations that represent all occurring errors would allow 

for the refinement of the assignment strategies: The estimated standard deviation could be taken 

into account to refine thresholds in the assignment of tie points to model planes. 

The proposed method for the point-to-plane assignment does not use semantic information. A 

classification in image or object space could be used to eliminate false assignments. Points 

assigned to classes that are not represented in the building model, e.g. vegetation, street lights and 

signs, cars, windows, doors, etc., could be excluded from the assignment. 

To further investigate the influence of generalisation effects, a detailed model of more and 

different buildings, without generalisation and systematic effects is needed. Additionally, lower 

and higher levels of model generalisation should be tested to find out which amount of accuracy 

of estimated pose parameters is lost or gained depending on those levels. The difference between 

measurement resolution and model detail could also be varied by changing the distance of the 

camera to the captured buildings or by changing the image resolution. In the first case, more or 
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fewer model features would become visible; in the second case, the discrepancy between model 

details and measured details would be varied.  

The described sliding window workflow could be extended and further analysed in future work. 

Window size and overlap were constant in the experiments but could be set automatically 

depending on different criteria such as travelled distance, number of found point-to-plane 

assignments, plane configuration or a posteriori standard deviation, e.g., of estimated tie point 

coordinates or pose parameters. The transition between windows is another step that leaves room 

for optimisation. Sliding window processing and filtering approaches are covered in literature for 

various tasks in more detail. For this thesis, the focus was not on investigating real-time 

approaches. The set up sliding window processing shows that such approaches potentially can be 

applied to the hybrid adjustment of images and generalised object knowledge.  

Several aspects of the implemented workflow need to be addressed to reduce processing time 

and memory consumption to apply the method in real-time onboard of a UAV. The experiments 

show that without dense matching, sufficient correspondences between tie points and model 

information are found. However, the number of tie points still might be higher than needed for 

pose refinement and assignment of points to planes. Future work, therefore, could further reduce 

the number of points and planes handled, skip point-to-plane assignment in some iterations or even 

pursue image-only odometry and sliding windows until drifts become larger and only then 

integrate the building model for a window to reset drifts.  

Only one camera was used here. The combination of several cameras and the influence of 

parameters like the opening angle and viewing directions are to be tested. In addition, the 

assignment in object space could be used to relate points of any sensor that delivers object points 

to a building model leading to further experiments and development of the method. Simulations 

with a filtering approach using a laser scanner with the assignment method (a) applied to the laser 

scanning object points and a non-generalised building model already show promising results 

(Bureick et al., 2019). 

In summary, the two objectives of this thesis have been achieved. Relations of a 

photogrammetric block to a generalised building model, despite generalisation effects, were 

successfully formulated, and the experiments show an improvement of the pose estimation from 

metre range without using a building model to decimetre range with a generalised building model. 

The presented method is a promising addition or alternative to classical sensor orientation 

approaches to improve UAV pose estimation for various applications by using available object 

information in form of a generalised building model. 
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