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Abstract. We propose a novel framework to learn 3D point cloud se-
mantics from 2D multi-view image observations containing pose errors.
Normally, LiDAR point cloud and RGB images are captured in stan-
dard automated-driving datasets. This motivates us to conduct a “task
transfer” paradigm so that 3D semantic segmentation benefits from ag-
gregating 2D semantic cues. However, pose noises are contained in 2D
image observations and erroneous prediction from 2D semantic segmen-
tation renders the “task transfer” difficult. To consider those two fac-
tors, we perceive each 3D point using multi-view images and for every
single image, a patch observation is employed. Moreover, the semantic
labels of a block of neighboring 3D points are predicted simultaneously,
enabling us to exploit the point structure prior. A hierarchical full at-
tention network (HiFANet) is designed to sequentially aggregate patch,
bag-of-frames and inter-point semantic cues. The hierarchical attention
mechanism is tailored for different levels of semantic cues. Each preced-
ing attention block largely reduces the feature size before feeding to the
next attention block, making our framework slim. Experiment results
on Semantic-KITTI show that the proposed framework outperforms ex-
isting 3D point cloud based methods significantly, requiring less train-
ing data and exhibiting tolerance to pose noise. The code is available
at https://github.com/yuhanghe01/HiFANet.
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1 Introduction

Directly learning from 3D point cloud is difficult. Challenges derive from four
main aspects: First, 3D point cloud is massive and a typical Velodyne HDL-64E
scan leads to millions of points. Processing such large data is prohibitively ex-
pensive for many algorithms and computation sources. Second, 3D point cloud is
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unstructured and unordered as well. It records neither the physical 3D world tex-
ture nor object topology information, which have often been used as important
priors by image based environment perception methods [26, 33, 14]. Third, data
imbalance issue. Due to the 3D physical world layout that particular categories
conquer most of the space, captured 3D point cloud is often dominated by classes
such as road, building and sidewalk. Other categories (i.e. traffic sign, poles,
pedestrian) with minor point cloud presence but vital for self-driving driving
scenario understanding and high-quality map generation are often overwhelmed
by dominating classes. Lastly, capturing 3D point cloud is a dynamic process, re-
sulting in inconsistent and nonuniform data sampling. Distant objects are much
more sparsely sampled than close objects.

Most self-driving data collection platforms collect 3D point cloud and RGB
images simultaneously, with the LiDAR scanner and camera being pre-calibrated
and synchronized. This motivates us to transfer 3D point cloud segmentation to
its 2D image based counterpart (we call “task transfer”) so that the segmenta-
tion of point cloud can largely benefit from various matured 2D image semantic
segmentation networks. However, such seemly-fascinating “task transfer” comes
with a price: In real-scenario, LiDAR-Camera pose is often noisy so accurate
3D-2D correspondences are non-guaranteed. In addition, view-angle change eas-
ily results in distorted image observation. Moreover, 2D semantic segmentation
method may also give erroneous predictions, as 2D semantic segmentation net-
work is not designed or trained to be viewing direction invariant.

To tackle the aforementioned challenges, we first propose to perceive each 3D
point from multi-view images so that bag-of-frame observations for each single
3D point are obtained. Multi-view image observation reduces the impact of the
unfavoured viewing directions as it introduces extra semantic cues. Moreover,
instead of looking into single-pixel of an image, we focus on a small patch-area
around the pixel. The patch observation strategy mitigates 3D-2D correspon-
dence error led by pose noise and further enables neural network to learn pose
noise tolerant representation in a data-driven way. Moreover, we process a local
group of spatially or temporally close 3D points at the same time, so that we
can exploit 3D points structure prior (i.e. two points’ spatial location). Actually,
the local 3D point group and the corresponding 2D observation can be treated
as seq2seq learning problem [35], where one sequence is 2D image and the other
is 3D point cloud. To accommodate these different data representation proper-
ties, we propose a hierarchical fully attention network (HiFANet) to sequentially
and hierarchically aggregate the patch observation, bag-of-frame observation and
inter-point structural prior to infer the 3D semantics. Such hierarchical atten-
tion blocks design enables the neural network to learn to efficiently aggregate
semantics at different levels. Moreover, the preceding attention block naturally
reduces the feature representation size before feeding it to the next attention
block, so the whole framework is slim by design.

In sum, our contribution is three fold: first, we propose to transfer 3D point
semantic segmentation problem to its counterpart in 2D images. Second, to coun-
teract the pose noise impact, we propose to associate each single 3D point with
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multi-view patch observation so that the neural network can learn to tolerate
pose inaccuracy. Third, we formulate it as a seq2seq problem so that we can best
exploit the structural prior arising from both 3D point cloud and 2D images to
improve the performance.

2 Related Work

3D semantic segmentation can be divided into three main categories: point-
based, voxel-based and 2D projection based methods [15, 41].

Point based methods compute the features from points and can be categorized
into three sub-classes [15]: Multi Layer Perceptron (MLP), point convolution and
graph convolution based methods. MLP based method apply MLP directly on
points to learn features, such as PointNet [31], HRNN [43], PointNet++ [32],
PointWeb [46]. In comparison, point covolution based methods apply convolution
on individual point. Representative works in this group are PointwiseCNN [19],
PCNN [38], PointConv [40], RandLA-Net [17] and PolarNet [45]. In the third
class, the points are connected with graph structure, graph convolution is further
applied to capture more meaningful local information. Example works include
DeepGCNs [24], AGCN [42], HDGCN [25] and 3DContextNet [44].

In voxel based methods, voxels divide 3D space into volumetric grids, which
are used as input for 3D convolutional neural networks. The voxel used is either
uniform [20, 8, 28] or non-uniform [34, 12]. Methods in this group are restricted
by the fact that the computation burden grows fast with the scale of scene.
Consequently, the usage of those methods in large scale becomes impractical.

In projection based methods, point cloud is projected into synthetic but
multi-view image planes and then 2D CNNs are used by each view, finally se-
mantic results from mutliple views are aggregated [22, 13, 6, 16], However, this
idea is restricted by misinterpretation stem from sparse sampling of 3D points.
Our work shares the similar idea to convert 3D point cloud to 2D plane, but we
exploit 2D RGB images to assist 3D semantic segmentation and we rely on 2D
semantic segmentation to predict 3D semantics.

In 2D semantic segmentation, FCN [27] is one of the first works using deep
neural network for semantic segmentation by replacing the fully connected layer
with fully convolution layers. The following works, e.g., SegNet [1] and [30], use
more sophisticated way to encode the input image and decode the latent repre-
sentation so that images are better segmented. Obtaining features at multiple
scale is manipulated either at convolution kernel level or through pyramid struc-
ture. The former leads to the method of using dilated convolution and represen-
tative works are DeepLabV2 [3] and DeepLabV3[5]. The latter is implemented in
PSPN [47] and [11]. Also, attention mechanisms are used to weight features softy
for semantic segmentation task in [4]. In this paper, we make use of the network
proposed in [48] as our base feature extractor, since it uses synthetic predicting
to scale up training data and the trained label is also robust, benefiting from
the usage of the boundary relaxation strategy proposed in that paper.
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This paper utilizes features from multi-view patches sampled from camera
images, which are not accurately aligned with 3D point cloud, to benefit the
semantic segmentation of 3D point cloud. In this context, the central issue is
how to aggregate multi view image features in a sophisticated way so that 3D
points can be better separated in the feature space spanned by those aggregated
features.

3 Problem Formulation

We have a sequence of N 3D point cloud frames P = {P1, P2, · · · , PN}, and
framewise associated 3D point semantic label C and RGB image I. Such data is
collected by platform where LiDAR scanner and camera are carefully synchro-
nized and pre-calibrated with noisy pose information Po = [R|t] (rotation matrix
R and translation t). Moreover, the relative pose between any two neighboring
point cloud frames can be obtained via IMU system. With the noisy pose, we
can theoretically project any 3D point to any image plane. Off-the-shelf image
semantic segmentation method [48] is adopted to get semantic result S for each
image, each pixel of which consists of categorical semantic label and semantic-
aware representation r. Our goal is to train a model F parameterized by θ to
predict point cloud semantics from images C = F(I,S|Po, θ).

4 Hierarchical Full Attention Network

The fundamental idea of designing our framework is two-fold: “task transfer”
which learns 3D point cloud semantics from 2D images; further address accom-
panying challenges brought by the “task transfer” through a “learning” perspec-
tive by fully exploiting the potential of deep neural networks in a hierarchical
way. Specifically, given the pose information between any 3D point cloud frame
and any 2D image, we can obtain N patch observations {P1, · · · ,PN} for each
3D point by projecting it to its neighboring image frames (we call bag-of-frames),
where a patch observation Pi indicates a k × k squared patch centered at the
pixel [ux, uy] of the 3D point’s i-th observation image frame. [ux, uy] corresponds
to the 3D point projection location with noisy pose information. In the mean-
time, a pre-trained 2D image semantic segmentation model is available, so we
can get both the categorical semantic label sj and the semantic-guided feature
representation rj for the j-th pixel in the patch. The feature representation rj
can be easily obtained by taking the penultimate layer activation of the model
trained on 2D images. So the patch observation can be expressed as,

P = {(s1, r1)i, · · · , (sk2 , rk2)i}Ni=1 (1)

Introducing patch observation instead of single-pixel observation in 2D image
is to address pose noise challenge, which we will give detailed discussion in next
section. Instead of learning 3D semantic for each 3D point separately, we model
M neighboring 3D points simultaneously, which benefits us to use 3D points
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Fig. 1. HiFANet pipeline: Given the pose, we project M 3D points to their nearest top-
N RGB images to get k × k patch observations. Off-the-shelf 2D image segmentation
model is trained to get each patch’s semantic feature representation as well as categori-
cal semantic labels. HiFANet is a three-stage hierarchical fully attentive network. It first
learns to aggregate patch representation into an instance representation (left image),
then aggregates multiple image instances into one point-wise representation (middle
image), and finally an inter-point attention module to attend structural and feature
interaction among 3D points to output per-point elegant semantic feature representa-
tion, which is then used to predict the ultimate semantic label.

structure prior to escalate the performance. For example, an intuitive spatial
prior is that two spatially-close 3D points are much more likely to share the
same semantic label than those lie far apart. In sum, our model takes M 3D
points’ Cartesian coordinates as well as each 3D point’s N patch observations
as input and outputs each 3D point’s semantic label. It is worth noting that
M 3D points forms a point sequence and M × N image observation forms an-
other image sequence, the whole framework can be treated as a seq2seq task,
either spatially or temporally. The framework input simply consists of image-
learned semantic information (categorical label or feature presentation), no extra
constraint is involved and we do not directly process 3D point cloud.

With “task transfer”, the main task of our framework is to efficiently aggre-
gate semantic clues arising from bag of 2D image frames. To this end, we pro-
pose a hierarchical full attention three-stage aggregation mechanism, in which
we first learn to aggregate patch observation into an instance observation (i.e.,
single pixel observation in an image), and then learn to aggregate multiple in-
stances in the bag-of-frames for each 3D point into 3D point wise observation,
and finally attend all the structure prior and interaction between 3D points to
output the target semantic label for each single 3D point. Our framework is fully
attentive and invariant to images observation order permutation. The hierarchi-
cal attention mechanism design has two advantages: it first enables the neural
network to fully learn specified attention tailed for different semantic represen-
tation, second it aggressively reduces the feature size so that we keep the whole
framework slim.
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4.1 Patch Attention for Patch Aggregation

Patch attention tends to aggregate the patch observation into a single-pixel
observation. Within each k × k patch, we call the centered point the principle
point and the remaining points are neighboring points. The basic idea behind the
patch attention is to attend all points in the patch with a trainable weight before
weighted-adding them together to generate one feature. Since the principle point
records the most-confident 3D point semantic related feature representation, we
add a short-cut connection between the principle point feature and the attended
to feature representation. To minimize the computation cost, we adopt criss-
cross like attention module [21] to attend all neighboring points to the principle
point. Specifically, given the feature representation ri ∈ Rk×k×d, the principle
points lies in [k2 ,

k
2 ] and has feature representation fp of length d, the output

feature fpa after patch attention can be expressed as,

fpa =

k×k∑
j=1

wj · Vj + fp (2)

where wj is the learned weight for the j-th point in the patch. To learn the
attention weight w, we draw inspiration from self-attention module [37] to learn
a patch Key K = Rk×k×d1 and patch Query Q = Rk×k×d1 and a patch Value
V = Rk×k×d. The three parts can be efficiently learned via 1×1 2D convolution
on the patch observation. To reduce the computation cost (usually d1 ≪ d), we
set d1 = 64 and d = 256. With K and Q we can further compute the scaled
dot-product attention where the attended weight w can be obtained by,

w = softmax(
QpK√

d1
) (3)

Qp is the principle point query. With Eqn.(3), we can get the weight of each
point to the principle point. The patch attention is a self-attention module, it
requires no extra supervision and can efficiently attend the final single-pixel
observation in with paralleling computation.

4.2 Instance Attention for Image Aggregation

Instance attention module takes RM×N×d semantic feature as input, and aims to
aggregate bag-of-frames features to get 3D point wise feature. We call the afore-
mentioned patch-attention aggregated pixel-wise semantic representation in each
image frame as an instance, because it represents an independent observation
towards a 3D point. The multiple instances arising from bag-of-frames form an
Instance Set [39, 23], which means these instances are orderless, the final accu-
rate semantic label may derive from an individual instance or multiple instances
combination. To satisfy the instance set property, the instance attention mod-
ule has to be order-permutation invariant. Commonly seen set-operators include
max-pooling and average-pooling. In HiFANet, we first apply a self-attention
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layer like the patch attention block does to attend each instance by all the re-
maining instances. Finally, we apply average pooling to merge multiple instances
into one instance representation.

4.3 Inter-point Attention for 3D Points Aggregation

Inter-point attention take RM×d semantic feature learned by instance attention
module as input. Unlike the previous two attention modules that just focus on
per-point semantic feature learning, inter-point attention module fully considers
the interaction between 3D points, including the spatial structure interaction
and semantic feature interaction. We adopt a Transformer [37] multi-head self-
attention like network to construct the inter-point attention module. Specifically,
the input feature is fed to learn per-point Key K = RM×d2 and per-point Query
Q = RM×d2 as well as per-point Value V = RM×d. To involve structural prior,
we encode the relative Cartesian position difference between any two 3D points
pi − pj . The Cartesian position difference is further fed to two consecutive fully
connection layers to get the structural prior encoding Kpe, which is the same
size of K. The original Key K is then updated by adding Kpe,

K = K +Kpe (4)

The updated K in Eqn.(4) naturally contains the structural prior. With the
Q and updated K, we can compute the attention weight for each single 3D point
w.r.t the remaining 3D points, as is shown in Eqn. (3). The attention weight is
further applied to combine value V to get the final per-point semantic repre-
sentation, which is further concatenated with a classification layer for semantic
classification.

In sum, HiFANet sequentially and hierarchically aggregates patch semantics,
instance semantics and inter-point semantics to learn semantic representation
for each 3D point. It is fully attentive and learns compartmentalized and certain
attention blocks w.r.t. different aggregation granularity separately. The preced-
ing attention layer largely reduce the feature size before feeding it to the next
layer, so the whole neural network is slim. Detailed HiFANet pipeline is shown
in Fig. 1.

5 Discussion on HiFANet Design Motivation

The feasibility of such “task transfer” lies in the availability of the pose infor-
mation between LiDAR scanner and the camera, which enables us to project 3D
point cloud onto the image plane to get each 3D point’s correspondence in the
image plane. We hereafter call such correspondence as a 2D observation. The
“task transfer” poses three main challenges that may jeopardize the performance.

1. Pose noise. Sensor calibration often suffers from internal and external noise.
Noisy pose information leads to inaccurate 2D observations. This stays as
the most prominent challenge.
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2. View-angle. Projecting a cluster of point cloud belonging to a specific cate-
gory (i.e. car) to an image plane often leads to distorted 2D observation. In
severe cases, it leads to wrong observation due to the occlusion caused by
view-angle difference.

3. Void projection. While LiDAR scanner scans in 360◦, pinhole camera sim-
ply captures the forward-facing view. This mismatch of perception field in-
evitably leads to void projection in which point cloud cannot find observation
in any image.

Addressing the above three challenges leads to our proposed framework. To
mitigate the pose noise impact, we propose to use patch observation to replace
pixel observation. Pixel-wise observation is fragile and sensitive to pose noise, a
small change leads to totally different observation. Patch-wise, on the contrary,
becomes much more resilient to pose noise because it covers possible observa-
tions potentially led by noisy pose. Moreover, introducing patch-wise observation
avoids us directly optimizing [R|t] in an iterative way. To address the view-angle
and void projection issue, we propose to involve multiple observation arising
from different view-angles. With the multi-view observations, we naturally ob-
tain multiple clues for each 3D point.

5.1 Pose Noise and Patch Observation

The pose between LiDAR scanner coordinate system and camera coordinate
system can be formulated as a rotation matrix R and translation T . A 3D point
[x, y, z] projects onto an image plane, the corresponding observation location
[u, v] in the 2D image plane is computed by,

[u, v, 1] = K[R|T ] · [x, y, z, 1]T (5)

Please note that the projected pixel location is normalized by its 3rd dimen-
sion. The pose noise of sensor calibration (between laser scanner and camera)
renders the location of true projected point uncertain. However, in our approach,
a patch is extracted and then the attention is learned to focus on the pixel closest
to the true projected points.

In order to investigate the influence of the pose noise on the location of pro-
jected points, a toy simulation experiment is provided and illustrated in Fig. 2.
As can be observed in Fig. 2, given the translation noise for the calibration be-
tween the LiDAR scanner and camera as 10cm and the rotation angle noise as
1◦, the projection error on the image plane (1024 × 512 pixels) is around 40
pixels for near camera object points. Since the patch extracted on each camera
view is within a k × k patch in the downsized feature maps (normally at 1/16
or 1/32 resolution), the information encoded in the image is then well preserved
for the attention module to discover, although the pose noise exist.

5.2 View-angle and Void Projection

View-angle easily leads to titled, occluded and even erroneous observation. A
3D point that is observed in one viewpoint (an RGB image) can be obstructed
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Fig. 2. The influences of pose noise to the projected point coordinates on image plane
(in pixel) for 3D world points that are various distant from the camera plane (green:
5m; yellow: 10m; blue:20m). The simulated noises of rotation angles are 1◦ (for each
rotation angle) for both cases and the translation noise are 0.05m (left), 0.1m (right)
for each of the three axes in world coordinate system.

in another neighboring viewpoint. Traditional 3D reconstruction framework like
structure-from-motion (SfM [9]) suffer from the same dilemma. The void projec-
tion jeopardizes the “task transfer” proposal because it causes large number of
3D points being 2D image unobserved.

To mitigate the two challenges, we propose to observe a single 3D point
from multiple view-angles. On the one hand, it reduces the risk of one 3D point
being observed at an unfavored view angle. On the other hand, it maximally
ensures each 3D point cloud to be observed by at least one 2D image. Moreover,
this strategy brings us the advantage of aggregating semantic clues arising from
multiple images to better estimate semantics. Multiple view-angles observation
can be efficiently aggregated in parallel in HiFANet.

6 Experiments and Results

We conduct experiment on the Semantic-KITTI dataset [2]. Since we need the
inter-frame odometry information to project each 3D point to multiple RGB
frames but the official provided test dataset (sequence 11-20) does not pro-
vide such information, we do not follow the official split but instead create the
train/test/val split by ourselves and further train the methods involved in com-
parison with the split dataset from scratch. The same problem applies to other
relevant datasets such as Waymo and CityScapes [7], and we only run experiment
on Semantic-KITTI dataset in this paper.

Data Preparation We run experiment on sequence 00-10 because the inter-
frame odometry information is available for the 11 sequences, with which we can
register all point cloud frames from a sequence to a uniform 3D coordinate
so that each 3D point can be freely projected to any image plane. There are
13 semantic categories in total: road, side-walk, building, fence, pole, traffic sign,
vegetation, terrain, person, bicyclist, car, motorcycle and bicycle. Some categories
like road, building, vegetation and terrain dominate most of the points, whereas
the others’ portion is very small. An extra unlabelled background category is
added. Sequence 06 is selected as test set as it contains all semantic categories and
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Table 1. Quantitative Result on Semantic-KITTI[2] Dataset. B, K and M mean billion,
thousand and million, respectively. A.Acc: average Accuracy

Category Method Train Size Param Num mIoU (↑) A.Acc (↑)

Point based

PointNet [31] 2.8 B 3.53 M 0.036 0.105
PointNet++ [32] 2.8 B 0.97 M 0.055 0.156

RangeNet++(CRF) [29] 2.8 B 50.38 M 0.500 0.878
RangeNet++(KNN) [29] 2.8 B 50.38 M 0.512 0.899

KPConv[36] 2.8 B 18.34 M 0.466 0.868
RandLANet [18] 2.8 B 1.24 M 0.578 0.913

Aggregation

BoF Num = 1 23 K 137 M 0.422 0.845
BoF Num = 3 23 K 137 M 0.437 0.852
BoF Num = 5 23 K 137 M 0.436 0.852
Patch Size = 1 23 K 137 M 0.436 0.850
Patch Size = 3 23 K 137 M 0.436 0.851
Patch Size = 5 23 K 137 M 0.436 0.852

Multi-View

AvgPool FC 0.5 M 0.04 M 0.451 0.872
HiFANet noPA 0.5 M 2.5 M 0.537 0.891
HiFANet noSP 0.5 M 2.7 M 0.561 0.920

HiFANet 0.5 M 2.7 M 0.620 0.933

account for 20% data of the whole dataset. Sequence 08 is selected for validation
and the remaining 9 sequences serve as training set. To get each 3D point’s N
neighboring image observations, we project it to its closest N image planes. N is
set as 5 because it then covers 64% of the whole point cloud dataset with patch
size k = 5 and 3D points number size M = 10. Those 3D points that fail to
find N image observations are discarded during test but left for training point
cloud based models. The image based semantic representation and semantic label
are obtained from VideoProp [48] model pre-trained on KITTI dataset [10]. The
semantic representation is a 256-d feature. Therefore, the size of patch semantics
representation feeds to HiFANet is 5 × 5 × 256. For the evaluation metric, we
adopt the standard mIoU and average accuracy [2].

Methods to Compare The first method category we tend to compare
is pure 3D point cloud based semantic segmentation method. It helps us to
gain an understanding of how far our proposed “task transfer” strategy goes,
comparing with directly learning from 3D points. The second method category
we compare with is the semantic result giving by deterministically aggregating
the category semantic labels predicted by 2D image aggregation method, it gives
us an understanding of how good image based semantic prediction methods can
perform, by varying the observation number like image number and patch size.
The third category is multi-view learning method which means designing neural
network to learn from image semantic representations, as our proposed HiFANet
does.

Ablation Study we want to figure out the impact of the involvement of
patch feature representation, structural prior on the performance. We thus test
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Fig. 3. Close-up visualization of various methods on unlabelled tree stake. While point
based method erroneously classifies them as pole and image based method as terrain,
HiFANet accurately recognizes it by fully combing 2D image based semantics and 3D
structural priors.

two HiFANet variants: reduce the patch size to 1 so no patch attention mod-
ule is applied (HiFANet noPA), no structural prior involvement in inter-point
attention module (HiFANet noSP). Moreover, to test the effectiveness of our
proposed full attention network, we train another simple semantic aggregation
network, in which we simply average-pool all the input feature (patch and in-
stance feature) to get per-point feature, and further concatenate two full connec-
tion layer (of size 256, 128) to directly predict the semantic label (AvgPool FC).
Please note that AvgPool FC is a simple neural network and it is order-permutation
invariant.

Five recent 3D point cloud based methods: PointNet [31], PointNet++ [32],
RangeNet [29] (two variants, with KNN and CRF), KPConv [36] and Rand-
LANet [18] are selected for comparison study. For image aggregation methods,
we simply deterministically choose the semantic label with maximum occurrence
times. Within multi-view learning methods, all HiFANet variants are trained
with the same hyper-parameter setting as HiFANet.

Quantitative Result is shown in Table 1. We can observe that point cloud
based methods training requires much larger number of training dataset than
both image aggregation methods and our proposed multi-view learning methods.
This shows the advantage of learning semantics from 2D images. The compactly-
organized and topology-preserving RGB images enables neural network to learn
meaningful semantic representations with much fewer training samples. Within
image aggregation methods, involving extra bag-of-frame observations increases
the performance, but the performance gain is not prominent due to the view-
angle and occlusion challenges. Moreover, expanding the patch size also improves
the performance, which shows capability of introducing patch-wise observation in
mitigating the dilemma caused by observation uncertainty. In sum, aggregating
image-predicted semantics can achieve comparable performance than point based
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Fig. 4. Global visualization of various methods comparison. While point based method
fails to classify traffic sign and image based method generates spatially distributed
prediction, HiFANet successfully avoids these dilemmas and gives the right semantics.

methods. It further shows the potential of designing neural network to learn from
image learned semantic representations, instead of simply voting them.

Within multi-view learning methods, we can observe that all methods out-
perform image aggregation methods, showing the advantage of neural network
learning over deterministic semantic aggregation. Simply adding several fully
connection layers (AvgPool FC) generates inferior performance than the other
three HiFANet variants. This result shows that more advanced semantic aggre-
gation strategy is needed to better aggregate semantic cues arising from multiple
image observations. At the same time, either removing the patch attention mod-
ule or the structural prior module inevitably reduces the performance. Patch
observation introduces extra semantic cues in a pose noise sensitive way and
structural prior regularizes the whole network training. Finally, HiFANet gener-
ates the best performance over all methods, far outweighing other methods by
a large margin.

Qualitative Result is shown in Fig. 3 and Fig. 4. In the close-up compar-
ison of tree stakes in Fig. 3, as it is a category falls out of our consideration,
it should be regarded as unlabelled category. However, 3D point based method
RandLANet [18] (sub-figure B.) mixes it with pole due to their point cloud repre-
sentation similarity. Image aggregation method (sub-figure D.) directly predicts
it as terrain because of its color similarity and connection with the tree leaves.
HiFANet (sub-figure E.), however, fully exploits 3D point structural prior infor-
mation to predict the correct semantics. For example, the tilted angle of tree
stakes over the ground makes it unlikely to be a pole (which is usually vertical
to ground), nor terrain (no angle information).

The global comparison of various methods is shown in Fig. 4. We can observe
that point based method (C. RandLA-Net) failed to predict the large traffic
sign (red box in the RGB image) because such samples are rarely seen in training
dataset. At the same time, due to the pose noise, image based method distributes
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HiFANet

Fig. 5. Pose noise test: performance variation trend under various Gaussian pose noise
level.

car 3D points to large area (see the largely distributed red points in sub-figure
D., near the light blue). Our proposed HiFANet can maximally avoid these
dilemmas. It obtains semantic representation from RGB images, so it does not
require massive training dataset and large presence of all classes. The hierarchical
attention design and the involvement of 3D structural prior equip HiFANet with
capability to dynamically alleviate the erroneous prediction led by pose noise.
In sum, our proposed HiFANet achieves promising performance with relatively
small training dataset. It also exhibits pose noise tolerance capability, which is
a common challenge in real scenario.

6.1 More Experimental Result

We report the detailed mIoU and mAP score for each individual class in Table 2.
We can see from the table that our proposed HiFANet achieves the best perfor-
mance on most categories. Image based method (with BoF=5) obtains inferior
performance on some categories such as car, rider and traffic sign, due to the
pose noise. Our proposed HiFANet maximally resists the negative impact of pose
noise and thus is capable of obtaining promising performance.

6.2 Discussion on Pose Noise

We further want to test our proposed HiFANet performance under various pose
noise level. To this end, we add Gaussian pose noise to the point-to-image pro-
jection matrix in Eqn.5. The Gaussian noise level is controlled by the Gaussian
deviation σ (the mean value is set 0). We compare HiFANet with two image ag-
gregation variants: with patch size 1 and 5. Since the introduction of patch obser-
vation is to handle pose noise, it helps us to understand patch observation (patch
size = 5) resistance to pose noise against the original observation (patch size =
1), and against HiFANet.

The Gaussian pose noise σ is linearly spaced from 0 to 0.3. The result is
shown in Fig. 5, from which we can observe that adding more pose noise reduces
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Table 2. Detailed IoU score for each category on Semantic-KITTI[2] dataset

Method road sidewalk building fence pole traffic-
sign

veget-
ation

PointNet [31] 0.031 0.069 0.113 0.043 0.036 0.022 0.041
PointNet++[32] 0.066 0.023 0.079 0.042 0.112 0.014 0.036
RangeNet++(CRF)[29] 0.878 0.745 0.742 0.232 0.252 0.313 0.612
RangeNet++(KNN) [29] 0.895 0.769 0.819 0.258 0.333 0.291 0.648
KPConv [36] 0.738 0.574 0.653 0.244 0.469 0.400 0.533
RandLANet [18] 0.883 0.760 0.883 0.323 0.537 0.319 0.731

Image Based BoF=5 0.888 0.710 0.378 0.154 0.189 0.362 0.598

HiFANet 0.910 0.790 0.903 0.349 0.540 0.374 0.755

Method terrain person rider car motor-
cycle

bicycle

PointNet [31] 0.054 0.000 0.000 0.052 0.002 0.003
PointNet++[32] 0.183 0.000 0.002 0.133 0.010 0.000
RangeNet++(CRF)[29] 0.875 0.088 0.356 0.853 0.375 0.176
RangeNet++(KNN) [29] 0.896 0.114 0.414 0.856 0.178 0.183
KPConv [36] 0.767 0.249 0.696 0.739 0.360 0.000
RandLANet [18] 0.910 0.216 0.572 0.909 0.470 0.003

Image Based BoF=5 0.889 0.210 0.055 0.563 0.533 0.146

HiFANet 0.912 0.247 0.577 0.933 0.547 0.169

the performance of all methods. The variant with patch size 1 suffers most while
HiFANet maximally mitigates the pose noise impact. It thus shows the advantage
of involving patch observation in tackling pose noise and our carefully designed
HiFANet is capable of learning pose noise tolerant feature representation.

For more implementation details and the network architecture of our method,
please refer to the supplementary material.

7 Conclusion

We propose a three-stage hierarchical fully attentive network, HiFANet, to label
the point cloud semantically. The patch observation strategy and bag-of-frames
multi-view observation enable HiFANet to handle point-image projection pose
noise. Compared to point cloud based methods, HiFANet requires significantly
less amount of data and outperforms point based methods by a large margin.
The downside our method is that HiFANet’s good performance still depends rel-
atively on the LiDAR-camera pose accuracy. If the pose accuracy drops signifi-
cantly, HiFANet’s performance reduces accordingly. Designing more pose-noise
tolerant method thus forms a potential future research direction. Another point
is that HiFANet only builds on 2D image observations, a joint learning from
both the image and point cloud may further improve the performance.
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