
WISSENSCHAFTLICHE ARBEITEN DER FACHRICHTUNG  
GEODÄSIE UND GEOINFORMATIK DER LEIBNIZ UNIVERSITÄT HANNOVER 

ISSN 0174-1454 
 

 
 

 
 
 
 

Nr. 390 
 

 
 
 

 
 

Mareike Marianne Dorozynski 
 
 
 
 
 

Image Classification and Retrieval 
in the Context of Silk Heritage 

using Deep Learning 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

HANNOVER  2023 
 





 
WISSENSCHAFTLICHE ARBEITEN DER FACHRICHTUNG  

GEODÄSIE UND GEOINFORMATIK DER LEIBNIZ UNIVERSITÄT HANNOVER 

ISSN 0174-1454 

 

 
 

 
 
 
 
 

Nr. 390 
 

 
 
 

Image Classification and Retrieval 
in the Context of Silk Heritage 

using Deep Learning 
 

 
 

Von der Fakultät für Bauingenieurwesen und Geodäsie  
der Gottfried Wilhelm Leibniz Universität Hannover 

zur Erlangung des Grades 

 
 

DOKTOR-INGENIEUR (Dr.-Ing.) 
 
 

genehmigte Dissertation 

von 

 
 

Mareike Marianne Dorozynski, M. Sc. 
 

geboren am 21.04.1992 in Hamburg 
 
 
 
 
 
 
 
 

HANNOVER  2023 

 

 
Diese Arbeit ist gleichzeitig veröffentlicht in: 

Ausschuss Geodäsie der Bayerischen Akademie der Wissenschaften (DGK), 
Reihe C, Nr. 909, München 2023, ISBN 978‑3‑7696‑5321-2, ISSN 0065-5325, www.dgk.badw.de 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Prüfungskommission 

Vorsitzender:   Prof. Dr.-Ing. Steffen Schön 

Referent:    apl. Prof. Dr. techn. Franz Rottensteiner 

Korreferenten:   Prof. Dr.-Ing. habil. Monika Sester  

      Prof. Dr. Jan Wegner 

 
Tag der mündlichen Prüfung: 07.06.2023 



i

Abstract

Collecting knowledge about past centuries is a fundamental part of preserving cultural heritage.

In the process, knowledge must be stored in an easily accessible way, which makes it necessary to

standardise information about historical artifacts. Furthermore, with the growing number of digi-

tally available collections, the need for appropriate techniques for automated information retrieval

is becoming increasingly important. In this context, images with known information about the

depicted artifacts can serve as a source of information for automated methods. Collections can be

semantically enriched, on the one hand, by means of predictions of an image classifier trained on

such images. On the other hand, these images can be used to learn image descriptors which can

function as an index to databases of historical objects. In this context, it is a challenge to train such

methods given the nature of the existing data basis: The annotations are often unstandardised,

incomplete, and vary greatly in their frequency. A reference for learning image descriptors that

defines image pairs considered to be similar or dissimilar does not exist at all in online collections.

In this thesis, these challenges are addressed by training deep neural networks starting from

images with annotations for several semantic variables, such as object properties. The first neural

network is designed for classification. By using transfer learning methods, such a network can be

trained even on a dataset of a relatively small size. In addition, a multi-task learning approach

is developed that can deal with incomplete training examples. Thus, interdependencies between

the tasks to be learned can be implicitly taken into account, without having to reduce the training

dataset to examples for which all annotations are available. Extensions of the training approach

with a focus on hard examples during training as well as the use of an auxiliary feature clustering

is used to counteract problems with unbalanced class distributions. A neural network for learning

descriptors for an image-based search is also proposed, including a method for training. The

required training data can be automatically generated from the existing data using concepts of

similarity developed in this thesis, i.e. concepts for visual similarity and a concept for semantic

similarity. The latter one exploits existing annotations for images to determine different degrees

of similarity depending on the similarity of the annotations. An additional minimisation of a

classification loss during training is proposed with the aim to support learning of such a concept of

semantic similarity.

The evaluation of the developed methods is conducted based on a dataset consisting of images

of historical silk fabrics with annotations for up to five semantic variables, i.e. silk properties.

In the context of classification, the annotations of a variable are interpreted as class labels of a

classification task and in the context of image retrieval they are used to define semantic similarity

of silk fabrics. While for different variants of the developed classifier the predicted class labels are

compared with the reference labels, a k-nearest neighbour classification is performed based on the
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learned descriptors for image retrieval to enable evaluation without a manual reference defining

similar and dissimilar images. Accordingly, standard metrics for assessing the quality of a classifier

are used for evaluation for both types of methods. The classification results show that multi-task

learning, even based on incomplete examples, is to be preferred to independent training a network

for each of the classification task in terms of the overall accuracy (up to +13.6% larger). Moreover,

the learned multi-task classifier can be improved by means of the proposed extensions for training,

resulting in an average F1-score that is larger by up to +5.0%, where the largest improvements occur

with underrepresented classes of a task (up to +14.3%). Thus, average F1-scores of up to 33.6%

and overall accuracies of up to 66.2% are achieved. The results of the image retrieval show that in a

large part of the evaluated cases, the search results have predominantly similar semantic properties

as the respective query images. While the additional learning of visual similarity has no large effect

on the descriptors’ ability to reflect semantic similarity, the auxiliary classification loss can slightly

improve this ability. In general, average F1-scores of up to 30.0% and overall accuracies of up to

62.0% are achieved in the nearest neighbour classification, being in the same order of magnitude as

in the context of classification and, thus, demonstrating the successful learning of the descriptors

to reflect semantic similarity.

Keywords: Deep learning, multi-task learning, image classification, image retrieval, silk heritage
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Kurzfassung

Das Sammeln von Wissen über die vergangenen Jahrhunderte ist ein grundlegender Bestandteil

der Bewahrung des kulturellen Erbes. Dabei muss das Wissen leicht zugänglich gespeichert wer-

den, was eine Standardisierung der Informationen über historische Artefakte erforderlich macht.

Darüber hinaus wird mit der wachsenden Zahl digital verfügbarer Sammlungen der Bedarf an

geeigneten Techniken zur automatisierten Informationsbeschaffung immer wichtiger. In diesem

Zusammenhang können Bilder mit bekannten Informationen über die abgebildeten Artefakte als

Informationsquelle für automatisierte Methoden dienen. Sammlungen können zum einen mittels

Prädiktionen eines auf solchen Bildern trainierten Bildklassifikators semantisch angereichert wer-

den. Zum anderen können diese Bilder zum Lernen von Bilddeskriptoren dienen, welche als Index

für Datenbanken mit historischen Objekten fungieren können. Eine Herausforderung dabei besteht

im Training solcher Methoden unter Berücksichtigung der gegebenen Datengrundlage: Die Anno-

tationen sind oftmals unstandardisiert, unvollständig und variieren stark in Hinblick auf die Anzahl

von entsprechenden Beispielen. Eine Referenz zum Lernen von Bilddeskriptoren, welche ähnliche

und unähnliche Bildpaare definiert, existiert dabei in Onlinesammlungen nicht.

Im Rahmen dieser Dissertation wird diesen Herausforderungen begegnet, indem tiefe neuronale

Netze ausgehend von Bildern mit Annotationen für verschiedene semantische Variablen, wie z.

B. Objekteigenschaften, trainiert werden. Das erste neuronale Netz ist für die Klassifikation von

Bildern konzipiert. Durch das Nutzen von Methoden des Transferlernens kann solch ein Netz

auch auf einem Datensatz von verhältnismäßig geringer Größe trainiert werden. Zudem wird ein

Ansatz des Multitask-Lernens entwickelt, welcher mit unvollständigen Trainingsbeispielen umge-

hen kann. Somit können Zusammenhänge zwischen den zu lernenenden Eigenschaften implizit

berücksichtigt werden, ohne dass die Trainngsdaten auf Beispiele reduziert werden müssen, für

die alle Annotationen verfügbar sind. Erweiterungen des Trainingsansatzes mit einem Fokus auf

schweren Beispielen während des Trainings sowie dem Heranziehen eines zusätzlichen Clusterings

von Bildmerkmalen werden eingesetzt, um Problemen mit unausbalancierten Klassenverteilungen

entgegenzuwirken. Ein neuronales Netz zum Lernen von Deskriptoren für eine bildbasierte Suche

wird ebenfalls vorgeschlagen, einschließlich einer Methode zum Training. Die dafür notwendigen

Trainingsdaten können mittels in dieser Arbeit entwickelter Konzepte von Ähnlichkeit automatisch

aus den vorhandenen Daten generiert werden: Es werden Konzepte für visuelle Ähnlichkeit sowie

ein Konzept für semantische Ähnlichkeit entwickelt. Letzteres Konzept nutzt die für die Bilder

vorhandenen Annotationen, um unterschiedliche Grade von Ähnlichkeit in Abhängigkeit von der

Ähnlichkeit der Annotationen zu bestimmen. Das zusätzliche Minimieren eines Klassifikationslosses

im Training soll das Lernen von semantischer Ähnlichkeit unterstützen.
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Die Evaluation der entwickelten Methoden erfolgt auf Basis eines Datensatzes bestehend aus

Bildern von historischen Seidenstoffen mit Annotationen für bis zu fünf semantische Variablen

(Seideneigenschaften). Im Rahmen der Klassifikation werden die Annotationen einer Variablen

als Klassenlabels einer Klassifikationsaufgabe interpretiert, und im Rahmen der Bildsuche wer-

den sie genutzt, um semantische Ähnlichkeit von Seidenstoffen zu definieren. Während für unter-

schiedliche Varianten des entwickelten Klassifikators die prädizierten Klassenlabels mit den Referen-

zlabeln verglichen werden, wird im Rahmen der Bildsuche eine Klassifikation auf Grundlage der (k)

nächsten Nachbarn im Deskriptorraum durchgeführt, um eine Evaluation ohne eine manuelle Ref-

erenz, die ähnliche und unähnliche Bilder definiert, zu ermöglichen. Entsprechend werden für beide

Arten von Methoden Standardmetriken für die Klassifikationsgüte zur Evaluation herangezogen.

Die Klassifikationsergebnisse zeigen, dass Multitask-Lernen selbst auf Basis von unvollständigen

Beispielen dem unabhängigen Training eines Netzwerks für jede der Klassifikationsaufgaben in

Bezug auf die Gesamtgenauigkeit vorzuziehen ist (bis zu +13,6 % Verbesserung). Darüber hin-

aus kann der gelernte Multi-Task-Klassifikator durch die vorgeschlagenen Erweiterungen für das

Training verbessert werden, was zu einem bis zu +5,0 % höheren mittleren F1-score führt, wobei

die größten Verbesserungen bei unterrepräsentierten Klassen einer Aufgabe auftreten (bis zu +14,3

% Verbesserung). So werden mittlere F1-Scores von bis zu 33,6 % und Gesamtgenauigkeiten von

bis zu 66,2 % erreicht. Die Ergebnisse der Bildsuche zeigen, dass die Suchergebnisse in einem

Großteil der evaluierten Fälle überwiegend ähnliche semantische Eigenschaften wie die jeweiligen

Suchbilder aufweisen. Während das zusätzliche Lernen der visuellen Ähnlichkeit keinen großen

Einfluss auf die Fähigkeit der Deskriptoren hat, semantische Ähnlichkeit widerzuspiegeln, kann die

Berücksichtigung des zusätzlichen Klassifikationslosses diese Fähigkeit leicht verbessern. Im Allge-

meinen werden bei der Klassifikation auf Grundlage der nächsten Nachbarn mittlere F1-Scores von

bis zu 30,0 % und Gesamtgenauigkeiten von bis zu 62,0 % erzielt. Diese Genauigkeiten sind in der

gleichen Größenordnung wie jene der Klassifikation, was den Erfolg der Lernens der semantischer

Ähnlichkeit verdeutlicht.

Schlagworte: Deep learning, Multitask-Lernen, Bildklassifikation, Bildsuche, Seidenerbe
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Nomenclature

Abbreviations

CBIR Content-based image retrieval

CNN Convolutional Neural Network

kNN k Nearest Neighbour

MTL Multi-Task Learning

NN Nearest Neighbour

OA Overall Accuracy

ReLU Rectified Linear Unit

ResNet Residual Network

SGD Stochastic Gradient Descent

STL Single-Task Learning

Data specifications

BD Balance deviation; measure for class imbalance

IR Imbalance ratio; measure for class imbalance

Km Total number of classes of variable m; Km = K for M = 1

M Total number of semantic variables or classification tasks, respectively

NMB Number of images x in a mini-batch xMB

NMB
M Number of available annotations for all variables in a mini-batch

τm Distribution with K − |M| classes, i.e. {ζi = 0}|M|i=1 , {ζi > 0}Ki=|M|+1 and∑K
i=|M|+1 ζi = 1

ζm Empirical class distribution of variable m with relative class frequencies ζ

em Balanced class distribution with e := { 1
K , ...,

1
K }

xMB Mini-batch

Mm Aggregate of minority classes for variable m

Mav
i Aggregate of of tasks with a known label for an image xi

M Aggregate of all tasks 1, ...,M ; M := {1, ...,M}
ζk Relative class frequency

d∆(·) Total variation distance describing the similarity of two distributions

k Index of a certain class

m Index of a certain semantic variable

xi Image with index i
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Network Architecture

NLjfc Number of shared layers in the subnetwork joint fc

NLtfc Number of task-specific layers in a task-specific network branch

wRNfr
Network weights of a ResNet that are frozen

wRNft
Network weights of a ResNet that are fine-tuned

wRN Network weights of a ResNet

wclass All weights of the classification head

wdescr All weights needed to calculate the output descriptor f(x)

wjfc All weights of the joint fully connected layers

w All weights of a neural network

ρdrop Dropout rate

fRN (x) Feature vector of an image x resulting from a ResNet

fjfc(x) Feature vector of an image x resulting from the sub-network joint fc

Network Training

NBRN Number of residual blocks in a residual network

η Learning rate

λL2 Weight controlling the impact of Lwd on the total loss L
LC Loss function for classification

Lwd Loss function for weight decay

L Total loss function

Classification

amk(x) Unnormalized class score for class k of variable m

ymk(x) Normalized class score for class k of variable m

Retrieval

(xi, xo) Image pair consisting of xi, xo

∆n
i,o,w Euclidean distance of the descriptors f(xi), f(xo) of the nth image pair (xi, xo)

calculated with the weights w

f(x) Output descriptor of an image x to be used for image retrieval

Semantic Similarity

M(xnt
i , x

nt
p , x

nt
n ) Triplet margin of triplet tnt in a mini-batch
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NMB
t Number of triplets t in a mini-batch xMB

Ysem (xi, xo) Semantic similarity of the images xi, xo

αsem Weight controlling the impact of Lsem on the retrieval loss LR
δ(·) Kronecker delta function

lm(xq) 1-in-Km label vector for the mth variable

tMB Set of triplets t in a mini-batch xMB

Lsem Loss function considering semantic similarity of images

πqm Binary indicator variable indicating whether the qth image has a class label for the

mth variable (πqm = 1) or not (πqm = 0)

dm (xi, xo) Similarity function determining semantic similarity of xi, xo for the mth variable

lmk(xq) kth entry in lm(xq) indicating whether the kth class of the mth variable is assigned

to xq

nt Index variable for a triplet t in a mini-batch

tnt nt
th triplet in a mini-batch with tnt := (xnt

i , x
nt
p , x

nt
n )

u (xi, xo) Uncertainty about the semantic similarity of xi, xo

xnt
i Anchor sample of triplet tnt in a mini-batch

xnt
n Negative sample of triplet tnt in a mini-batch

xnt
p Positive sample of triplet tnt in a mini-batch

Colour Similarity

(ic, jc) Indices of a cell in the quadratic colour grid

(xc, yc) Colour polar coordinates

NMB
co Number of pairs pco in a mini-batch xMB

αco Weight controlling the impact of Lco on the retrieval loss LR
h̄(xq) Mean of all entries in the colour feature vector h(xq)

pMB
co Set of pairs pco in a mini-batch xMB

Lco Loss function considering colour similarity of images

ρ(xi, xo) Normalized colour correlation coefficient of the images xi, xo

h(xq) Colour feature vector of the image xq

hj(xq) jth entry in the colour feature vector h(xq) in the co-domain [0, r] with j = ic+r · jc

lh Length of the colour feature vector

nco Index variable for a pair pco in a mini-batch

pnco
co nco

th image pair in a mini-batch with pnco
co := (xnco

i , xnco
o )

r Number of cells of the quadratic colour grid

Self-Similarity

H Hue in HSV colour space

NMB
slf Number of pairs pslf in a mini-batch xMB

S Saturation in HSV colour space

∆H Hue offset
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αslf Weight controlling the impact of Lslf on the retrieval loss LR
δS Multiplicative saturation factor

pMB
slf Set of pairs pslf in a mini-batch xMB

Lslf Loss function considering self-similarity of images

ω Rotation angle

σG Standard deviation of a Gaussian

bcrop Cropping percentage

nslf Index variable for a pair pslf in a mini-batch

p
nslf

slf nslf
th image pair in a mini-batch with p

nslf

slf := (x
nslf

i , x′
nslf

i ); x
nslf

i , x′
nslf

i depict the

same object

Evaluation

Zm Confusion matrix

k Number of nearest neighbours in the nearest neighbour classification
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1 Introduction

1.1 Motivation

Preserving our cultural heritage for future generations and making it available to both historians

and a wider public are important tasks. In this context, a key strategy is the digitization of collec-

tions of historical objects in the form of searchable databases with standardized annotations and,

potentially, images, which is also a prerequisite for a fast and easy access to the related knowledge

by both, expert and non-expert users. The need for making cultural heritage collections accessible

by exploiting standardized and meaningful metadata derived on the basis of images is identified for

several digital museum collections, e.g. the Metropolitan Museum of Art’s collection (Villaespesa

and Crider, 2021), the Joconde collection (Bobasheva et al., 2022), food-related image data in

cultural heritage collections (Abgaz et al., 2021) and silk heritage related collections (Alba Pagán

et al., 2020). The latter ones were at the core of the EU H2020 project SILKNOW1 and provide

the use case for the methods developed in this thesis, although the developed techniques are also

applicable to other cultural heritage collections. It was the goal of SILKNOW to take one step into

the direction of searchable databases for the preservation and better understanding of European

cultural heritage related to silk. Silk has played an important role in many different areas for hun-

dreds of years and still does so in the present. For instance, it has triggered technical developments

such as the Jacquard loom, which introduced the concept of punched cards for storing information.

It has an economic impact through the textile and creative industries and a functional aspect as a

component of clothes and furniture, and it is also relevant from a cultural and symbolic perspective

through forming individuality and identity (Alba Pagán et al., 2020). To make silk-related knowl-

edge from the past accessible for future generations, a database related to silk fabrics was built

by harvesting existing online collections and converting the meta-information into a standardized

format for each silk artifact (Alba Pagán et al., 2020).

Many heritage related collections consisting of thousands of images depicting artifacts are avail-

able online, e.g. (IMATEX, 2018; MfAB, 2018). However, the information that is relevant for art

historians or other users is not always readily available in digital online collections. Different mu-

seums provide information about the depicted objects in different formats, in different languages

and consider different semantic aspects describing the objects to be relevant; in this context, it is

common to provide information in the form of short descriptive texts. Accordingly, the available

knowledge is often not available in a standardized format, making a metadata-driven search in

online collections insufficient. Given the fact that a digital collection may contain tens or even

hundreds of thousands of records representing artifacts, a manual input of this information, e.g.

1http://silknow.eu/, accessed on 01-06-2023
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by cultural historians reading the descriptive texts and extracting the relevant information for

standardization, is tedious, expensive and, consequently, often impossible. Thus, automated pro-

cedures have to be developed. Such methods can be based on automated processing of available

descriptive text. However, in many cases, certain pieces of information may not be contained in

the textual descriptions, either because they were unknown at the time of writing or because they

were considered negligible by the person formulating the text. Thus, besides standardization, a

further challenge is the completion of the data describing the characteristics of an artifact, which

is incomplete and very inhomogeneous in most existing digital collections. The only other source

of information that can be tapped to obtain the required information automatically are the digital

images. For artifacts, such as silk fabrics, for which one or several images are available, relevant

properties, such as the time or place of production, the material a fabrics is made of, or the tech-

nique that was used for its production, can be predicted automatically from images of the artifacts.

From a user’s perspective, the present work is motivated by two objectives:

1. The need for a database containing historically relevant objects with standardized metadata

that is as complete as possible (image classification).

2. The need to make the database easily accessible even for non-expert users (image retrieval).

These two objectives are discussed in the subsequent paragraphs.

Objective 1: Image classification: For the automatic derivation of complete and standardized

properties of artifacts, such as silk fabrics, images are exploited as an information source. This

is achieved by an image classification method that takes an image depicting an artifact as input

and predicts a class label for each variable (i.e. each property of the artifact) as an output, which

can be used to complete the database. Machine learning techniques allow to train such a classifier

using labelled training images, i.e. images for which the true labels are known in advance for

the relevant variables (properties). Thus, a representative dataset of images with annotations,

containing samples of all relevant values (labels) of the properties of interest (semantic variables),

is a mandatory prerequisite. After training, the classifier is able to predict missing class labels

of unseen samples, i.e. of images of artifacts with partly or completely unknown annotations

describing the properties of the depicted artifacts. For that purpose, classical machine learning

approaches rely on manually selected image features that are mapped to class scores, where the

class with the highest score is considered as predicted class. There are some early works dealing

with image classification in the context of cultural heritage that make use of this principle. For

instance, in (Blessing and Wen, 2010) a Support Vector Machine is trained to differentiate different

painters of artworks. Inspired by the huge successes of deep learning-based classification methods,

supervised learning based on deep Convolutional Neural Networks (CNNs) (Krizhevsky et al.,

2012) are used in more recent works aiming to learn historically relevant information from images

of artistic pictures, e.g. (Hentschel et al., 2016; Tan et al., 2016; Sur and Blaine, 2017). Whereas

there is an ongoing interest in learning classifiers for cultural heritage applications, no work could

be identified dealing with silk heritage. In the present work, the deep learning-based classification

of images depicting silk fabrics is investigated, aiming to predict abstract properties of such fabrics,
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namely the variables time of production, production place, material, production technique and the

depicted subject (depiction).

It is assumed that there are interdependencies between the properties of silk fabrics just men-

tioned, e.g. a certain production technique may only have been used in a certain period of time.

Instead of independently training one classifier for each variable in the context of Single-Task Learn-

ing (STL), interdependencies between the variables are exploited in Multi-Task Learning (MTL)

by combining several related (classification) tasks in the training procedure with the goal of an

improved generalisation (Caruana, 1993). This is why MTL was also investigated for image classi-

fication in general, e.g. (Misra et al., 2016), and in particular in the domain of image classification

with applications in cultural heritage preservation, e.g. (Strezoski and Worring, 2017; Garcia et al.,

2020; Yang et al., 2022), as well as in image-based fabric classification, e.g. (Meng et al., 2021).

Combining several tasks of the same type in MTL, e.g. several classification tasks, is generally de-

noted as homogeneous MTL (Zhang and Yang, 2021). However, standard multi-task classification

frameworks require one reference label for every task to be learned during training for every training

sample. The challenge that has to be faced in real world data, such as cultural heritage collections,

is that there may be many training samples for which annotations are unavailable for some of the

target variables to be predicted, i.e. there is often no knowledge about certain properties of the

depicted objects. Such samples are referred to as incomplete samples in this thesis. Excluding

incomplete samples from training can drastically reduce the dataset for training a MTL classifier.

Moreover, some classes might only be represented by incompletely labelled training samples, so

that focusing on images with a known class label for all of the tasks to be learned (complete sam-

ples) potentially leads to reduced class structures. Including all classes in training is also possible

in a STL scenario, but it is assumed that learning related tasks in a MTL scenario improves the

quality of the classifier due to interdependencies of the tasks to be learned. Accordingly, incomplete

training samples must be taken into account in the training of a multi-task classifier, which has not

been done so far.

Additionally, the distribution of the available class labels of a variable is often imbalanced for

real-world datasets, which constitutes a further challenge to supervised learning. It is a well-known

problem that training using data with imbalanced class distributions results in a classifier that tends

to predict classes that were represented in the training data rather well, whereas classes with only

few examples in the training data often cannot be distinguished from other classes (Krawczyk, 2016;

Johnson and Khoshgoftaar, 2019; Sridhar and Kalaivani, 2021). It is of special interest to apply

a classifier that is able to distinguish the classes of all silk properties well such that added value

is delivered for the user of a silk database thanks to the predictions. Early approaches addressing

class imbalance problems proposed to artificially balance the class distributions by oversampling

of classes with few examples, e.g. (Chawla et al., 2002), or by undersampling of classes with many

examples, e.g. (Mani and Zhang, 2003). Whereas sampling methods are also investigated for

learning classifiers based on CNNs, e.g. (Pouyanfar et al., 2018), learning image features by CNNs

opens up new possibilities for dealing with imbalanced training data. Using margin constraints

in the loss function concerning differences between the feature vectors to be learned, features of

examples belonging to the same class can be forced to be close together in feature space and features

related to different classes can be forced to be further away from each other, e.g. (Huang et al.,
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2016; Hameed et al., 2021b). Thus, the feature vectors are clustered such that each cluster in

feature space belongs to one class of the classification problem. Approaches combining different

types of tasks in training, such as learning appropriate features while simultaneously learning a

classifier, are denoted as heterogeneous MTL approaches (Zhang and Yang, 2021). Nevertheless,

these approaches come along with further training hyper-parameters, e.g. the distance margins

in (Huang et al., 2016) or the angular margins in (Hameed et al., 2021b). Additionally, the clustering

exclusively relies on semantic aspects, because the clustering criterion is exclusively based on the

class labels of the images that are represented by the features. Especially in the context of cultural

heritage collections containing images depicting artifacts, e.g. historic fabrics, it is assumed to

be reasonable to perform a clustering related to visual aspects, because certain colours may be

representative for certain time periods or certain places and thus, colour information can help to

distinguish (silk-related) properties. Nevertheless, there is not yet any work investigating such

a colour-related clustering. A further challenge that is addressed in the present work is dealing

with class imbalances in the context of MTL, in particular when dealing with incomplete training

samples. Whereas multiple binary classification tasks are addressed in (Wang et al., 2023), no work

could be identified that deals with multi-task multi-class image classification in this context. In

particular, no work could be identified dealing with class imbalance in a MTL scenario, in which

the data is only partly labelled, i.e. in which images come along without a reference label for at

least one of the tasks to be learned. In particular, there seems to be no work addressing class

imbalance in the context of cultural heritage applications, where the classes describe properties of

depicted artifacts.

In this thesis, image-based classification is investigated in order to allow for the completion of

metadata in digital collections related to cultural heritage. The developed CNN-based classifier

jointly learns to predict different variables, i.e. historically relevant properties of the depicted

artifacts, in the context of MTL and thus, exploits interdependencies between the tasks to be

learned. In order to allow for incomplete training samples in the training procedure such that

a larger set of training samples can be considered and such that all classes of all tasks can be

learned in the context of MTL, a new training strategy is developed. Additionally, to address the

problem of class imbalances for the tasks to be learned, the training strategy of the multi-task

classifier is further refined, such that samples assumed to belong to underrepresented classes have

a higher impact during training, while incompletely labelled training samples are still considered.

Furthermore, an auxiliary feature space clustering for training the classifier is proposed, leading to

a method for heterogeneous MTL without the need for additional training data. The clustering

considers semantical as well as visual aspects of image similarity, leading to the definition of new

concepts of similarity. Learning the developed concepts of similarity in the auxiliary clustering is

assumed to better separate the classes in feature space, such that the classifier is able to distinguish

different classes and in particular, underrepresented classes in a better way. In this context, the

main focus is on images depicting historic silk fabrics. Nevertheless, the methods are developed

in a general way and, thus, are applicable to any dataset consisting of images and assigned class

labels for one or several tasks. This will be demonstrated using a variant of the WikiArt dataset2.

2http://www.wikiart.org, accessed on 01-06-2023
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Objective 2: Image retrieval: Making the collected knowledge easily accessible requires a

suitable strategy for querying the database. One way to access this knowledge is to make metadata-

driven database queries exploiting existing descriptive texts, e.g. to get a list of records related to

artifacts produced in the 19th century. However, this requires the user to have a certain knowledge

about what he or she is looking for to formulate such a search request, and the search result will

exclusively contain records that are associated with the knowledge about the requested property; for

instance in the example for a metadata-driven search given above, records without any information

about the time of production cannot be contained in the search result. Thus, the alternative

investigated in this work is to query the records that are most similar to a given image, a procedure

known as image retrieval, e.g. (Zheng et al., 2017). For image retrieval, a feature vector (descriptor)

is pre-computed for every image available in the database. As soon as a user provides a query image,

a corresponding query descriptor is derived, which serves as an index to the database: the images

that are most similar to the query image are identified by finding the most similar descriptors of

database images, typically using the Euclidean distance as a similarity measure. To speed up the

search for nearest neighbours, the descriptors of the images from the database are stored in a spatial

index, typically a kd-tree (Bentley, 1975). Besides the fact that the user needs no knowledge about

the depicted artifact for searching for similar objects in the database, image retrieval would be a

way to learn something about the object depicted in the query image, because the search results

also give access to the properties of the most similar images stored in the database.

Several approaches for image retrieval focus on hand-crafted image descriptors, e.g. encoding

visual properties of images (Jain and Vailaya, 1996; Gudivada and Raghavan, 1995) or exploiting

text associated with images (Yang and Lee, 2008). More recent approaches utilize methods based on

CNNs to learn descriptors that reflect the similarity of image pairs. The training process of such a

CNN usually requires training samples consisting of pairs of images with a known similarity status,

i.e. it has to be known whether the two images of a training pair are similar or dissimilar (Hadsell et

al., 2006). In the training process, the network learns to generate descriptors having small Euclidean

distances for similar image pairs and descriptors having large Euclidean distances for dissimilar ones.

In this context, a major problem is the generation of training samples, because the information

about the similarity status of two images is not readily available in a database containing records

of fabrics. Often, training samples are generated by manual labelling (Hadsell et al., 2006; Wang

et al., 2014; Qi et al., 2016), but this is a tedious and time-consuming task; in the context of image

retrieval for searching in a database of works of art it also has the disadvantage that, in particular

if based on purely visual aspects, it is highly subjective. To solve this problem, it is desirable to

generate the training samples automatically by defining similarity based on additional information

that is assigned to images, e.g. class labels describing the type of the depicted object (Cao et

al., 2018; Zhao et al., 2015; Wu et al., 2017; Zhang et al., 2019b) or descriptive texts (Gordo and

Larlus, 2017; Kim et al., 2019). This strategy for generating training data was also applied for

image retrieval in the context of digital collections of works of art (Mao et al., 2017; Stefanini et al.,

2019; Garcia et al., 2020). It allows to generate samples consisting of pairs of images with known

similarity status from existing datasets containing images with annotations.

In most of the cited approaches, similarity of images is considered to be a binary concept: a pair

of images is either similar or not (Cao et al., 2018; Mao et al., 2017). In order to support descriptor
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learning by exploiting class labels of a single variable for defining similarity, auxiliary classification

losses have been considered in training, e.g. (Shen et al., 2017; Jun et al., 2019). However, in the

context of image retrieval in databases of works of art, a gradual concept of similarity (Wu et

al., 2017; Zhang et al., 2019b) might be more intuitive than a binary one. In order to adequately

compare depicted artifacts by means of semantic image similarity, multiple semantic properties

should be considered rather than a single aspect. One option to define such a non-binary concept

of similarity can be obtained by measuring the level of similarity of an image pair by the level

of agreement of the semantic annotations for multiple variables instead of for a single variable, a

concept that is introduced and referred to as semantic similarity in this thesis. In this context,

it is desirable to know the annotations for all considered variables for all of the images. This

would also allow for a standard multi-task classification loss as auxiliary loss just as for the single-

variable case mentioned above; interestingly, this has not yet been investigated. Nevertheless,

having a complete labelling is very uncommon in collections related to historical objects such as

in (Villaespesa and Crider, 2021) and in the SILKNOW project. Thus, considering more than one

variable for deriving the similarity status of two images comes at the cost of the problem of missing

information. Restricting the definition of semantic similarity to complete samples would drastically

reduce the set of training samples for learning semantic similarity and might also reduce the set of

variables considered to define semantic similarity, i.e. the more variables are considered the smaller

tends to be the set of complete samples. Consequently, the concept of semantic similarity as well as

the loss function considering that concept for learning meaningful image descriptors have to cope

with such incomplete samples. However, no work could be identified that learns real-valued image

descriptors to reflect a gradual concept of semantic similarity on the basis of multiple variables, and

in particular, there seems to be no work allowing for missing annotations. In addition to semantic

aspects of similarity, visual aspects of similarity of depicted artifacts are of interest for historians,

too, e.g. a similar appearance and a similar colour of the artifacts (Schleider et al., 2021). Even

though there are works considering visual aspects of images for retrieval in hand-crafted features,

e.g. (Jain and Vailaya, 1996; Gudivada and Raghavan, 1995), learning image representations to

reflect visual similarity is not yet investigated, which becomes particularly relevant for combining

concepts of semantic similarity and visual similarity in the context of descriptor learning.

In this thesis, descriptor learning is investigated with the goal of image retrieval in digital col-

lections of images depicting historically relevant artifacts. For that purpose, different fine-grained

concepts of image similarity exploiting available knowledge, i.e. available images with semantic

annotations in collections, are derived to automatically generate training data for descriptor learn-

ing. Thus, a manual determination of the similarity status of images can be circumvented. The

developed similarity concepts consider both, semantic aspects as well a visual aspects of the images,

where a weighting in the training strategy allows to focus on the concepts of similarity that are of

interest for a user. The semantic concept of similarity considers the annotations of multiple proper-

ties describing the depicted objects, while allowing for missing annotations. As the annotations can

be interpreted as class labels, an auxiliary multi-task classification loss allowing for incompletely

labelled training data is developed and integrated into descriptor learning in the context of hetero-

geneous MTL. Thus, especially the semantic aspect in descriptor learning is supported; descriptors

belonging to images with similar annotations are assumed to be closer in feature space, because
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this is what would also be preferred by the auxiliary classification loss. Again, the main application

investigated in this thesis is related to databases of historical silk fabrics, but all developed methods

can be applied to any dataset consisting of images with annotations for one or several semantic

variables, e.g. class labels for different tasks, which will be demonstrated in the experiments in an

exemplary way.

1.2 Main Contributions

The goal of the present work is to develop methods that allow to predict properties of works of art,

in particular silk fabrics, on the one hand, and on the other hand, to search for similar objects in

a database on the basis of images. In this context, the focus is on developing methods that can

cope with incomplete and imbalanced data in training, such as digital collections of artifacts. A

prerequisite for both of the developed methods is a database containing records belonging to distinct

objects, each being represented by one or several images depicting the respective object and coming

along with semantic information, describing the semantic properties of the depicted objects. The

different properties are considered as semantic variables as defined above. The different annotations

of one variable have to be in a standardized format and they have to be mutually exclusive, so that

they can be interpreted as class labels for a multi-class classification.

The scientific contributions of this work can be formulated as follows:

• Deep multi-task learning-based image classification allowing for incompletely la-

belled training data. The data for training the classifier are automatically derived from a

database containing images of artifacts and known properties of the depicted objects, where

the available knowledge is incomplete, i.e. the information for some variables is missing. The

different properties are considered in different classification tasks, interpreting the available

annotations as class labels. As the classification tasks are assumed to be related to each

other, a CNN-based multi-task classifier relying on a Residual Network (ResNet) (He et al.,

2016b) is proposed that is able to predict the labels of all tasks by means of a single CNN.

As the main application in this thesis is related to silk fabrics, the proposed CNN is denoted

as C-SilkNet. To the best of the knowledge of the author, this is the first work addressing the

prediction of historically relevant properties of ancient silk fabrics on the basis of images. In

contrast to existing works dealing with image classification, the following methodological

contributions are made:

– A supervised multi-task training strategy that allows to consider all images with a la-

bel for at least one of the tasks to be learned during training, i.e. both complete and

incomplete samples can be handled, is developed. This method is based on a multi-task

multi-class loss function. Thus, the set of training samples is enlarged and a larger

amount of classes can be considered, while exploiting interdependencies between the

tasks to be learned in the training procedure. In contrast, existing works require com-

pletely labelled training data for MTL, e.g. (Strezoski and Worring, 2017; Yang et al.,

2022), and, thus, operate with a reduced training set and/or a reduced set of classes.
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Alternatively, considering all images with a class label for a task and all classes per

task, existing works, e.g. (Tan et al., 2016; Sur and Blaine, 2017), train one classifier per

task in the context of STL and, thus, are not able to exploit interdependencies between

different classification tasks.

– Furthermore, a focal expansion of the multi-task loss, focusing on hard training examples

(i.e. samples with a low class score for the correct class), is proposed in the form of a

multi-task multi-class focal loss addressing imbalanced class distributions for potentially

all of the classification tasks. In contrast, existing works dealing with imbalanced data

focus on binary image classification problems, e.g. (Lin et al., 2017), or multi-class

image classification problems, e.g. (Liu et al., 2018b; Yang et al., 2019), or combine

multiple binary image classification problems in the frame of MTL, e.g. (Wang et al.,

2023). No work was identified dealing with multi-task multi-class image classification

with imbalanced class distributions for at least one of the tasks to be learned.

– Just as the baseline multi-task loss, the developed multi-task multi-class focal loss is

able to deal with incompletely labelled training data in addition to complete training

samples. To the best of the knowledge of the author, there is not yet any method

allowing for incompletely labelled training data in the context of multi-task multi-class

image classification.

In this context, the following research questions are formulated:

– Q.C 1: Is it possible to differentiate different classes for relevant semantic variables

describing historical artifacts by means of C-SilkNet?

– Q.C 2: How does the use of incomplete samples for training influence the classification

quality?

∗ Q.C 2a: Can multi-task training considering both completely labelled and incom-

pletely labelled samples improve the classification results compared to respective

single-task classifiers distinguishing the same sets of classes?

∗ Q.C 2b: Is it beneficial to consider incompletely labelled training samples in addition

to complete samples in multi-task learning, while considering the same sets of classes

for all tasks?

– Q.C 3: Does focusing on hard examples during multi-task training improve the classifier’s

ability to mitigate problems with class imbalance?

• Deep learning-based descriptor learning exploiting new concepts of similarity for

automatically generating training data. For digital collections of works of art, training

data for descriptor learning are usually not available, such as in the SILKNOW project.

With the goal to automatically generate such training data from available data, different

concepts of similarity are developed in this thesis. All concepts of similarity are integrated

into an image retrieval loss such that meaningful descriptors for image retrieval can be learned.
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The proposed loss is used to train a Siamese CNN (Bromley et al., 1993) based on a ResNet

backbone (He et al., 2016b). As the main application in this thesis is related to silk fabrics, the

proposed CNN is denoted as R-SilkNet. Nevertheless, any database containing images with

semantic annotations can be used to learn descriptors for image retrieval using the proposed

approach. In contrast to existing works dealing with image retrieval, the methodoligical

contributions are the following ones:

– A concept of semantic similarity is developed that exploits available annotations for

multiple properties of the depicted objects in order to automatically derive a gradual

(real-valued) similarity status for all image pairs in the dataset, which can be used to

define training data for descriptor learning. The proposed concept can deal with missing

information and particularly considers them in the form of an uncertainty measure for

the semantic similarity. In contrast, existing works require a manual labelling to obtain

training data, e.g. (Wang et al., 2014; Qi et al., 2016) or define similarity on the basis

of a single variable, leading to a binary concept of similarity, e.g. (Mao et al., 2017;

Stefanini et al., 2019). There are works defining a gradual concept of semantic similarity

exploiting multiple labels per image, e.g. (Zhao et al., 2015; Wu et al., 2017; Zhang et al.,

2019b), and Barz and Denzler (2019) exploits a single variable for a gradual concept,

but all of these works consider only a single semantic aspect instead of multiple semantic

properties, as it is done in this thesis. To the best knowledge of the author the concept of

semantic similarity proposed in this thesis is the only one considering multiple semantic

variables, allowing for missing labels and particularly, the only one explicitly considering

missing labels in the form of an uncertainty measure. This is important when dealing

with collections of works of art, because a restriction to complete samples reduces both,

the set of useful images and the number of annotations considered for defining similarity.

– Furthermore, two concepts of visual similarity, i.e. colour similarity and self-similarity,

are developed. These concepts exploit the images themselves as well as potentially

several images depicting the same object, if such knowledge is available, as information

source for automatically generating training data for descriptor learning. While self-

similarity aims at learning descriptors that are invariant to geometrical and radiometrical

variations of images depicting the same object, colour similarity relies on the correlation

of colour feature vectors that can directly be derived from the images themselves. In

contrast to existing works deriving colour feature vectors from images, e.g. (Jain and

Vailaya, 1996; Bani and Fekri-Ershad, 2019), the proposed colour feature vectors seem to

be the first ones considering co-occurrences of colour values of different colour channels

and are thus expected to better represent the colour distributions of images.

– In order to allow for learning descriptors that are both, visually and semantically mean-

ingful, all concepts are integrated into a new descriptor learning loss consisting of one

term per concept. Thus, no additional data is required for training except for images

with annotations for one or several semantic variables to define similarity as described

above. In contrast, existing works focus exclusively on learning a concept of semantic

similarity, e.g. (Zhao et al., 2015; Wu et al., 2017; Zhang et al., 2019b), or derive hand-
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crafted visually meaningful features from images for retrieval (Hameed et al., 2021a).

Accordingly, no work was identified that aims to combine visual and semantic aspects of

image similarity to learn descriptors to reflect both types of similarity simultaneously.

– Semantic similarity is integrated in a semantic similarity loss that is based on the triplet

loss (Schroff et al., 2015) without the need of carefully selecting a margin in the loss;

the margin is adapted to the degree of similarity and the uncertainty of the similarity

status. In contrast, other works adapting the triplet loss to learn a gradual concept of

semantic similarity, e.g. (Zhao et al., 2015; Wu et al., 2017), require to tune a margin

hyperparameter. Furthermore, to the author’s best knowledge, no existing work has

been identified that considers knowledge about missing semantic information for learning

semantic similarity.

In this context, the following research questions are formulated:

– Q.R 1: Is it possible to learn the proposed concept of semantic similarity of images with

R-SilkNet such that descriptors of images depicting historical artifacts with identical

semantic properties are close to each other in feature space?

– Q.R 2: Does the completeness of the available semantic annotations matter for learning

descriptors to reflect semantic similarity?

– Q.R 3: Does learning the concepts of visual similarity in addition to learning the concept

of semantic similarity lead to an improvement of the descriptors’ distances to reflect

semantic similarity?

• Exploiting synergies between learning an image classifier and descriptor learning

in the context of heterogeneous MTL. Both tasks, learning a CNN-based image classifier

as well as descriptor learning, benefit from clustered features such that features of similar

images are close in feature space and features of dissimilar images are further away from each

other. In the context of image classification, each cluster in feature space thus obtained would

belong to a distinct class or, in the context of MTL, to a distinct class combination, because

a CNN-based classifier aims to learn image representations such that classes are separated

in feature space. In the context of image retrieval, each cluster is expected to consist of

features belonging to images with similar semantic and visual properties, because by definition

learning the developed concept of semantic similarity forces representations of images with

similar semantics to be closer in feature space than representations of images with dissimilar

semantics. Moreover, it is assumed that depicted objects with similar semantics, i.e. class

labels, are visually similar to some respect, such that leaning visual concepts of similarity is

supposed to support the semantic clustering. Accordingly, assuming images of the same class

to have similar properties, combining classification and retrieval in one approach is supposed

to lead to a better feature clustering and thus, to an improvement of both tasks. For that

purpose, SilkNet, a CNN based on a ResNet (He et al., 2016b), is proposed, having both

classification heads for multi-task classification and a retrieval head, as well as shared layers
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for feature extraction. Depending on the main task to be solved, combined loss functions are

proposed:

– Classification loss with auxiliary clustering loss. The shared network weights for feature

extraction are dependent on the classification loss as well as on an auxiliary descriptor

learning loss, the latter one forcing the features’ distances to reflect semantic as well as

visual similarity of the corresponding images. Classification with SilkNet does not need

any additional input data for training compared to classification with C-SilkNet, while

it is still able to deal with incompletely labelled semantic annotations. In contrast to ex-

isting works training image classifiers with auxiliary losses, the following methodological

contributions are made:

∗ The proposed auxiliary clustering loss contains a loss term for learning descriptors to

reflect semantic similarity of the class labels of all classification tasks. Thus, in the

context of multi-task classification, the features are expected to be clustered with

respect to the classes of all tasks. In contrast, existing works exploiting an auxiliary

clustering during training to support classification focus on the classification of a

single task, e.g. (Qi and Su, 2017; Choi et al., 2020; Hameed et al., 2021b). However,

the classification tasks to be learned in the context of predicting historically relevant

properties of depicted artifacts are assumed to be related, such that learning a multi-

task classifier is assumed to lead to superior results. Accordingly, semantic clustering

strategies considering the classes of all tasks are required to support classification.

∗ The features are not only clustered with respect to semantic properties of the images

but also with respect to visual properties, because depicted objects belonging to the

same class are assumed to be visually similar. In contrast, existing works exclusively

focus on a semantic clustering.

∗ Assuming images belonging to the same class to be similar, the clustering loss is sup-

posed to support both inter-class separability and intra-class connectivity without

the need for additional input data. As the classes are assumed to be better dis-

tinguishable due to the clustering, adding the proposed clustering loss is especially

supposed to improve the network’s ability to correctly predict underrepresented

classes. Thus, the auxiliary clustering loss is a second proposed strategy to address

class imbalance in the context of multi-task classification, potentially to be combined

with the focal multi-task classification loss. As already mentioned above, the author

could not identify any work dealing with multi-task multi-class image classification

with imbalanced class distributions.

In this context, the following research questions are formulated:

∗ Q.FC 1: Does an auxiliary feature space clustering with respect to visual and se-

mantic properties of the depicted objects improve the performance of the image

classifier? If so, which concepts of similarity are particularly important to be con-

sidered in this context?
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∗ Q.FC 2: Does an auxiliary feature space clustering especially improve the classifier’s

ability to correctly predict semantic information for images belonging to underrep-

resented classes?

– Descriptor learning loss with auxiliary classification loss. There, the training loss con-

sists of a descriptor learning loss considering semantic and visual image similarity and

an additional auxiliary classification loss for every training sample; the mathematical

formulation of the loss is identical to the loss for classification with an auxiliary feature

space clustering. Just as R-SilkNet, descriptor learning with SilkNet relies on training

data that can automatically be generated from a database; training of SilkNet does

not need any additional data for the auxiliary classification loss. In contrast to exist-

ing works dealing with image retrieval exploiting auxiliary losses, the methodological

contributions are as follows:

∗ The descriptor learning loss and the multi-task classification loss consider multiple

semantic variables for defining similarity for image retrieval and for defining the clas-

sifications tasks, respectively. The classification loss is expected to support learning

semantic similarity, i.e. to better cluster the image representations in feature space

with respect to the related semantic properties. To the best of the knowledge of the

author, there is no work that considers several semantic variables for both tasks, i.e.

for learning descriptors as well as for an auxiliary classification, such that classifi-

cation can support descriptor learning. A single semantic variable is considered for

both tasks in (Shen et al., 2017; Barz and Denzler, 2019; Jun et al., 2019; Li et al.,

2020), leading to a simple concept of semantic similarity reflected by the descrip-

tors, which is not sufficient for image retrieval in cultural heritage related collections.

Huang et al. (2015) exploit several semantic variables to learn descriptors by means

of multi-task learning and combine that loss with a triplet loss considering similarity,

but only a single semantic aspect is considered in the triplet loss, i.e. a multi-label

semantic variable encoding whether a certain object is contained in the depicted

scene. Moreover, this semantic aspect is not taken into account in the classification

loss.

∗ A variant of the auxiliary classification loss based on the focal loss (Lin et al.,

2017) is combined with the descriptor learning loss to force the descriptors to reflect

semantic similarity of properties that are rarely represented in a training dataset

in a better way. This is of special interest for descriptor learning in the context

of image retrieval in cultural heritage related collections, because there are often

fewer artifacts from earlier centuries and the characteristics associated with them

are therefore poorly represented in digital collections. No work could be identified

that aims at learning descriptors to reflect semantic similarity with a special focus on

underrepresented classes. A softmax-based auxiliary classification loss considering

all semantic properties with an equal weight is used in (Shen et al., 2017; Barz and

Denzler, 2019; Jun et al., 2019; Li et al., 2020).
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In this context, the following research questions are formulated:

∗ Q.FR 1: Does adding an auxiliary multi-task classification loss improve descriptor

learning such that the ability of the descriptors to reflect semantic similarity is

improved?

∗ Q.FR 2: Does adding a focal variant of the multi-task classification loss to descriptor

learning help to improve the ability of the descriptors to reflect semantic properties

that are rarely represented in the training dataset?

In addition to an extensive set of experiments based on a dataset of silk fabrics generated in the

context of the project SILKNOW (SILKNOW Knowledge Graph, 2021), the transferability of the

proposed approaches is demonstrated by showing experiments on another dataset, i.e. a variant of

the WikiArt dataset. In this way, the proposed methods can also be placed into a larger scientific

context, because other approaches have been evaluated on the selected dataset, too.

1.3 Thesis Outline

The remainder of this work starts with a brief overview of the basic principles of deep learning

and in particular of CNN in chapter 2, including relevant existing standard network architectures

and loss functions in the context of image classification and image retrieval. Afterwards, chapter

3 discusses existing research addressing image classification and image retrieval in general as well

as in the context of cultural heritage, and identifies research gaps to be investigated in this thesis.

The proposed image classification approach, the proposed descriptor-learning strategy as well as

the method combining all aspects for training are introduced in chapter 4. A detailed description of

the experimental setup, including the used data and the setup of the experiments aiming to answer

the research questions formulated above, is given in chapter 5. The results of all experiments are

presented and discussed in chapter 6. Finally, chapter 7 points out the main findings of this thesis

and makes suggestions for future work.
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2 Fundamentals

This chapter gives an overview of the basic principles of CNNs. First of all, the most common

components of a CNN architecture as well as details about specific CNN architectures for both

image classification and for image retrieval are described in section 2.1. Afterwards, an introduction

to training strategies is provided in section 2.2, where particularly training objectives to be used

for learning a CNN-based image classifier as well as specific loss functions for descriptor learning

are discussed.

2.1 Convolutional neural networks (CNNs)

In order to learn relations between input data x with implicit knowledge, e.g. a set of N images

{x1, ..., xN}, and output data y providing explicit knowledge, e.g. class scores yk(xi), xi ∈ x

for K classes that describe the image content, machine learning techniques are used. To do so,

representative features f(xi), xi ∈ x are extracted from the input data in a pre-processing step

and presented to the selected machine learning algorithm together with the desired output for

training, e.g. reference class labels tik indicating whether the ith image belongs to the kth class

(tik = 1) or not (tik = 0). A special case of machine learning is deep learning. In contrast to

classical machine learning approaches, deep learning techniques allow to learn a mapping directly

from the input data x to the output quantities y. In case the input data are images and the output

consists of class labels from a set of K classes to be distinguished, CNNs allow to extract high-

level image features f(xi), i = 1, ..., N by means of a series of convolutional layers in combination

with pooling layers, nonlinearities and potentially batch normalization. Convolutional layers are

at the core of CNNs, because the performed operation can be interpreted as a convolution of the

grid-structured input, i.e. of the input image or an intermediate feature map, and thus considers

the topology of the respective input. Afterwards, the image features f(xi) are mapped to class

scores yk(xi), i = 1, ..., N, k = 1, ...,K by one or several fully connected layers, where the last layer

consists of K nodes. By selecting the class with the highest class score as prediction of the network,

a trained CNN can derive one class label C(xi) per image xi directly from the input data (LeCun

et al., 1989; Krizhevsky et al., 2012), where the class score yk(xi) can be interpreted as posterior

probability P (Ck|xi) that the ith image belongs to the kth class. Details about the most common

principles in a CNN are presented in section 2.1.1. Afterwards, selected CNN architectures that

are relevant in the context of this thesis are introduced.
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2.1.1 Components of a convolutional neural network

The multi-layer perceptron is the basis for modern neural networks, and it is also used in CNN-

based image classification networks. A CNN-based classifier consists of a series of blocks of layers

for feature extraction, each consisting of convolutional layers followed by nonlinearities, pooling

layers (Goodfellow et al., 2016, pp.335-336) and potentially a normalization. In order to map

the resulting high-level features to class scores, one or several fully connected layers, potentially

with dropout (Srivastava et al., 2014), are added. The last layer of a classification network is a

classification layer that provides one class score for each class to be distinguished. All network

components just mentioned are described in detail in sections 2.1.1.1-2.1.1.6.

2.1.1.1 Multi-layer perceptron

A neural network consists of nodes arranged in different layers, where each layer receives a set

of input values, performs pre-defined mathematical operations on the input and provides a set of

output values (Bishop, 2006, pp. 226-227). The most simple type of a network is the multi-layer

perceptron consisting of J layers of the same type, so called fully connected layers shown in Figure

2.1 (a). In case of the first layer, the input is the D0-dimensional input vector ~x = [x(1), ..., x(D0)]T

that is presented to the network; in case of the (j+1)th layer, the input consists of a Dj-dimensional

intermediate representation f j(~x) = [f j1 (~x), ..., f j
Dj (~x)]T resulting from the jth layer. Each of the J

layers consists of a set of nodes ~nj = [nj1, ..., n
j
Dj ], where each node nj

dj
, dj = 1, ..., Dj is assumed

to be connected to all of the Dj−1 nodes of the preceding (j − 1)th layer. These connections are

associated with Dj−1 weights wj
djdj−1 , d

j−1 = 1, ..., Dj−1, and a bias wjj0. The weight vector of

nj
dj

is defined as ~wj
dj

:= [wj
dj0
, wj

dj1
, ..., wj

djDj−1 ]T , where all weights of the jth layer are wj :=

{~wj1, ..., ~w
j
dj
, ..., ~wj

Dj}.

The output f j(~x) of each layer is calculated by computing linear combinations of the layer’s

inputs considering the layer’s weights and presenting them to an activation function. In case of the

first layer, i.e. j = 1, a linear combination of the input ~x and the weights wj is calculated per node

nj
dj

using

aj
dj

(
~x, ~wj

dj

)
=

Dj−1∑
dj−1=1

wj
djdj−1x

(dj−1) + wj
dj0

(2.1)

resulting in the vector ~aj(~x) := ~aj(~x,wj) = [aj1(~x, ~wj1), ..., aj
dj

(~x, ~wj
dj

), ..., aj
Dj (~x, ~w

j
Dj )]

T . Afterwards,

~aj(~x) is presented to an activation function h(·) leading to the jth layer’s output

f j(~x) = [f j1 (~x), ..., f j
Dj (~x)]T = [h(aj1(~x, ~wj1)), ..., h(aj

Dj (~x, ~w
j
Dj ))]

T . (2.2)

Similar to presenting the network’s input ~x to the first layer, the output f j(~x) of the jth layer

serves as an input to the (j + 1)th layer and is treated analogously to equations 2.1 and 2.2. In

case the jth layer is an intermediate layer, a so called hidden layer, the activation function h(·) is a

nonlinearity as described in section 2.1.1.4 and in case of the last layer, i.e. the output layer, h(·)
is a normalization of ~aJ(~x) to class scores as described in section 2.1.1.6.
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Figure 2.1: Basic structure of fully connected layers (a) and convolutional layers (b). Each figure shows two

subsequent layers, i.e. the (j − 1)th layer and the jth layer, the nodes constituting the layers,

i.e. nj−1
dj−1 , n

j−1

dj−1
1 dj−1

2

and njdj , n
j

dj
1d

j
2

, respectively, as well as (in red colour) the weights required to

calculate the output of a single node in the jth layer. The grey lines in figure (a) indicate that

each node of the jth layer is connected to each node in the preceding layer, where each node njdj

comes along with a bias wj
dj0 and as many weights wj

djdj−1 as there are nodes in the preceding

layer (indicated in red colour for one node njdj ). The red arrows in figure (b) indicate that all

nodes of the jth layer share the weights constituting the filter kernel W ; the output of a node

nj
dj
1d

j
2

is dependent on the outputs of the node nj−1

dj−1
1 dj−1

2

as well as its neighbouring nodes; the

size of the neighbourhood is defined by the size of W (here: 3 x 3).

2.1.1.2 Convolutional layer

In the case of a CNN, the inputs to layers realizing feature extraction are not one-dimensional

vectors as in section 2.1.1.1, but multi-dimensional arrays, e.g. two-dimensional images. The

values of the inputs are assumed to be locally dependent, i.e. neighbouring pixels of an image

are assumed to be correlated. This property of the inputs is considered in convolutional layers

(shown in Figure 2.1 (b)) being eponymous for CNNs. The weights of convolutional layers can

be interpreted as the weights of a filter kernel (LeCun and Bengio, 1998), such that neighbouring

nodes have shared network weights: Assuming the input x to the first network layer, i.e. j = 1, to

be a two-dimensional image with values x(d1, d2) at position (d1, d2) in the image array and Wg to

be a two-dimensional filter-kernel with weights Wg(m,n) at position (m,n) in the filter array, the

formula for a convolution is (Goodfellow et al., 2016, p.323):

a(x)(d1, d2) = (Wg ∗ x)(d1, d2) =
∑
m

∑
n

x(d1 −m, d2 − n)Wg(m,n) =: aj
dj1d

j
2

(x,wj
g). (2.3)

An entire feature map a(x) results from a calculation of a(x)(d1, d2) for each position (d1, d2), where

the summation over m and n assumes (m,n) to be the center of the filter array Wg. A value in

the feature map a(x)(d1, d2) at position (d1, d2) results from a convolution of the input image x
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at position (d1, d2) as well as the weights wj
g constituting the filter kernel Wg. Potentially, a bias

is added to a convolution, being an additional parameter in the set of weights wj
g. Assuming a

multi-dimensional input aj in the jth layer consisting of βj input channels, a filter kernel in the jth

layer has the dimension m x n x βj and a convolution becomes

aj+1(d1, d2) = (W j
g ∗ aj)(d1, d2, dβj ) =

∑
m

∑
n

∑
βj

aj(d1 −m, d2 − n, djβ − β
j)W j

g (m,n, βj) (2.4)

for position (d1, d2) and input feature map dβj . Commonly, several convolutional kernels are applied

in the jth convolutional layer such that there are G different filters W j
1 , ...,W

j
g , ...,W

j
G to be learned,

each with an own set of weights wj
1, ...,w

j
g, ...,w

j
G. All weights of the jth convolutional layer are

denoted as wj := {wj
1, ...,w

j
g, ...,w

j
G}.

2.1.1.3 Batch normalization

During training, the weights wj , j = 1, ..., J of all J layers, either being convolutional layers (section

2.1.1.2) or fully connected layers (section 2.1.1.1), are adapted on the basis of a set of NMB inputs

xi, denoted as mini-batch xMB := {x1, ..., xi, ..., xNMB}, presented to the network. Varying the

mini-batches xMB during training results in a variation of the distributions of the inputs presented

to each layer j, a phenomenon denoted as internal covariate shift (Ioffe and Szegedy, 2015). As a

consequence, the layer’s weights wj have to adapt to the new distributions in each training step,

which has a negative effect on the convergence behaviour. Batch normalization is aimed to address

this problem by normalizing each layer’s inputs to have zero means and unit variances, such that

the distributions are more stable during the entire training procedure (Ioffe and Szegedy, 2015).

The normalization is conducted per activation aj
dj

:= aj
dj

(~x, ~wj
dj

) (eq. 2.1) per layer j on the basis

of a mini-batch, i.e. NMB different activations a
j(1)

dj
, ..., a

j(i)

dj
, ..., a

j(NMB)

dj
=: a(1), ..., a(i), ..., a(NMB)

contribute to the calculation of the mean µMB and the variance σ2
MB of a node’s activations:

µMB =
1

NMB

NMB∑
i=1

a(i),

σ2
MB =

1

NMB

NMB∑
i=1

(a(i) − µMB)2.

(2.5)

The actual normalization of an activation a(i) is conducted via

a
(i)
BN = γ(i) · â(i) + β(i) = γ(i) · a

(i) − µMB√
σ2
MB + ε

+ β(i), (2.6)

where â(i) is the normalized activation that is scaled and shifted by the parameters γ(i) and β(i),

respectively, in order to get the output of the batch normalization a
(i)
BN . The parameters γ(i) and

β(i) have to be learned individually for each node during training in addition to the weights w.

Ioffe and Szegedy (2015) introduced γ(i) and β(i) to allow for identity mappings in the network,

which should avoid restrictions with respect to the representational power of a weight layer. In case

the activations to be normalized belong to a convolutional layer, i.e. aj
dj1d

j
2

(x,wj
g) in equation 2.3,

batch normalization is conducted per feature map instead of per node due to the weight sharing
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principle in convolutional layers. That is, the means and variances in equation 2.5 are determined

per feature map, resulting in G such parameters for the jth layer given that G different filter kernels

are learned in that layer. Furthermore, the parameters γ(i) and β(i) in equation 2.6 are applied to

all activations of a feature map, leading to G such parameter pairs per layer. For inference, running

averages of the means and variances in equation 2.5 resulting from the entire training procedure

are used to calculate the normalized activations in equation 2.6. It has been shown that training of

a neural network with batch normalization indeed converges faster compared to a training without

batch normalization.

2.1.1.4 Nonlinearities

A network performing exclusively linear operations such as the ones described in equations 2.1 and

2.3 produces a linear combination of the input data. In order to allow for a nonlinear transformation

of the inputs and particularly a nonlinear separation of the classes in feature space, non-linear

activation functions h(·) are applied to each neuron’s output according to equation 2.2. It is

desirable to have a nonlinear activation function that allows for an easy optimization during training

the network; the more complex the function the more expensive is the calculation of its derivatives,

which becomes relevant during network training (see section 2.2). Furthermore, it is of interest that

the gradients of the function are not zero or not even close to zero ideally for the whole domain

of the function, i.e. for any value of the function argument aj
dj
, dj = 1, ..., Dj , j = 1, ..., J , which

would make parameter optimization close to impossible, caused by the vanishing gradient problem.

A common activation function for intermediate layers that mostly, i.e. for the positive domain,

fulfills these requirements is the Rectified Linear Unit (ReLU) activation function (Nair and Hinton,

2010):

hReLU (~aj(~x)) = [hReLU (aj1), ..., hReLU (aj
dj

), ..., hReLU (aj
Dj )]

T

hReLU (aj
dj

) = max(0, aj
dj

).
(2.7)

The ReLU activation of an input feature vector ~aj(~x) is conducted element-wise for each com-

ponent aj
dj

of the vector, potentially containing normalized activations according to equation 2.6.

Calculating the ReLU activations for a feature map is conducted analogously, i.e. the function

hReLU (·) is applied to each element aj
dj1d

j
2

(x,wj
g) of a feature map. In equation 2.7, all values of

aj
dj

that are smaller than zero are mapped to zero and all positive values of aj
dj

remain unchanged

so that hReLU (·) is a linear function for aj
dj
> 0. Thus, its gradients are large and consistent for

positive input values, i.e. the gradient is constantly equal to 1, and the gradients can easily be

computed. To address the zero gradients for negative inputs, there are variants of the ReLU that

slightly modify the co-domain of the negative part of the function’s domain (Goodfellow et al.,

2016, pp.187-188). For instance, the leaky ReLU (Maas et al., 2013) is defined to map the negative

domain to a straight line having a small slope of 0.01. The generalization of the leaky ReLU is the

parametric ReLU (He et al., 2015), having a small slope of ε in the co-domain so that the activation

function becomes:

hparametricReLU (aj
dj

) = max(ε · aj
dj
, aj
dj

). (2.8)
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2.1.1.5 Pooling layers

The activations of a certain convolutional layer (section 2.1.1.2) j are potentially normalized using

batch normalization according to section 2.1.1.3 and processed by a nonlinear activation function

according to section 2.1.1.4. Nevertheless, a large number of outputs of the jth layer causes a large

number of inputs to be processed by the (j + 1)th layer and, particularly, in case the (j + 1)th

layer is a fully connected layer, the number of weights to be learned depends on the number of

outputs of the jth layer. Thus, pooling layers are typically inserted at the end of a convolutional

block performing a subsampling of the jth layer’s outputs in order to reduce the inputs for the

subsequent layer, which increases the computational efficiency of a neural network as well as the

network’s robustness against small variations in the input (Goodfellow et al., 2016, pp.336-339).

Pooling layers commonly perform a pooling function on rectangular neighbourhoods in each of

the G feature maps resulting from the jth layer, i.e. pooling is conducted in a spatial dimension.

Instead of shifting the mask defining the input values for the pooling function by one pixel until

all possible positions on the input feature map are visited, the mask can be shifted by a larger

number s of pixels, denoted as stride. For each input region a single output value is calculated,

e.g. by determining the maximum value or the average value among the input values, denoted as

max pooling and average pooling, respectively. Thus, the number of values to be presented to the

(j + 1)th layer is roughly reduced by a factor of s.

2.1.1.6 Classification layer

In case of a classification network, the final layer J should deliver class scores, which is realized by

a fully connected layer with as many nodes as there are classes to be distinguished, i.e. DJ = K

according to the notation introduced in section 2.1.1.1. In order to map the activations aJ
dJ
, dJ =

1, ..., DJ (eq. 2.1) of that layer, i.e. the unnormalized class scores ak := aJ
dJ

, to normalized class

scores yk, k = 1, ...,K, the softmax activation function (Bishop, 2006, p. 236)

yk (x,w) =
exp (ak (x,w))∑K
j=1 exp (aj (x,w))

. (2.9)

is applied. The normalized class score yk can be interpreted as the posterior class probability that

the input image x belongs to the kth class Ck given all weights of the network w := w1, ...,wj , ...,wJ .

Using the softmax activation in equation 2.9 is the standard choice for multi-class classifiers with

K > 2 classes. In case of a binary classification, i.e. if K = 2 classes are to be distinguished, a single

node aJ1 is sufficient to model the classification layer, where the logistic sigmoid function (Bishop,

2006, p. 234)

y(aJ1 (x,w)) =
1

1 + exp(−aJ1 )
(2.10)

serves as activation function. The two posterior class probabilities for the two classes to be distin-

guished are defined as y(aJ1 (x,w)) and 1− y(aJ1 (x,w)), respectively.

2.1.2 Selected CNN architectures

After having clarified the basic principles of CNN architectures in section 2.1, this section will

introduce specific network architectures that are relevant in the context of this thesis. First of
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all, ResNets (He et al., 2016a,b) will be introduced in subsection 2.1.2.1. Afterwards, the basic

principles of network architectures used for descriptor learning are presented in subsection 2.1.2.2.

2.1.2.1 Residual networks for image classification

Deeper neural networks, i.e. networks consisting of a larger number of layers, are assumed to

perform better than more shallow networks, e.g. in correctly classifying images, because adding

layers allows to learn more complex features. Nevertheless, increasing the depth of networks con-

sisting of the components described in section 2.1.1 may lead to a decrease of training accuracy,

a phenomenon denoted as degradation problem (He et al., 2016a). Following the assumption that

such a problem might caused by the inability of (deeper) networks to learn an identity mapping,

(He et al., 2016a) proposed residual networks considering identity mappings in so-called residual

blocks. Such residual blocks, being parameterized with the weights wr, aim to learn a mapping

H(ar−1,wr) from the inputs ar−1 presented to the rth block to outputs ar as presented in Figure

2.2. In conventional CNNs, H(ar−1,wr) is modelled by a sequence of convolutional layers (section

2.1.1.2). In contrast, identity mappings are explicitly modelled in residual blocks in the form of so

called shortcut connections, so that H(ar−1,wr) becomes (He et al., 2016a):

H(ar−1,wr) = F (ar−1,wr) + ar−1. (2.11)

The shortcut connection of the rth block takes the input ar−1 and skips all weight layers in the block

realizing the mapping F (ar−1,wr). Thus, the residual function F (ar−1,wr) = H(ar−1,wr)− ar−1

has to be learned during training, consisting of two or three convolutional layers followed by batch

normalization (section 2.1.1.3) and a ReLU nonlinearity (He et al., 2016a). Setting all weights

wr ∈ wr to zero would result in

ar = F (ar−1,wr) + ar−1 ∧ wr = 0∀wr ∈ wr ⇒ ar = 0 + ar−1 = ar−1, (2.12)

i.e. the function F (ar−1,wr) would map all input values at ∈ ar−1 to zero, indicated by 0, such

that H(ar−1,wr) would become an identity mapping (ar = ar−1). He et al. (2016b) analysed

different variants for modelling the residual function F (ar−1,wr) and proposed to perform full

pre-activation for all convolutional layers in a residual block, i.e. normalizing ar−1 using batch

normalization (section 2.6) and processing it by a ReLU before presenting it to a convolutional

layer.

2.1.2.2 Main structures of image retrieval networks

CNNs are not only able to model a mapping from input images x to a set of class scores

{yk(x,w)}Kk=1, but also to model a mapping to an image representation f(x,w). Deriving fea-

tures f(x,w) from images so that their distances reflect the similarity of certain image contents is

meaningful for several applications, one of them being image retrieval. Collections of images can

be searched on the basis of such features, where the images in the collections which correspond to

feature vectors that are closest to a query feature vector constitute the result of a search. In order

to learn a mapping from images x := {x1, ..., xN} to features {f(x1,w), ..., f(xN ,w)} by means of a

CNN parameterized with weights w, two kinds of architectures are commonly used during training.
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Figure 2.2: Principle of a residual block. The input ar−1 to the residual block is presented to weight layers

and to a shortcut connection. The weight layers consist here of to convolutional layers (conv.)

and a ReLU activation, constituting the residual mapping function F . The shortcut connection

realises an identity mapping of ar−1. Afterwards, F (ar−1) and ar−1 are summed up, being the

output of the residual block, denoted as H(ar−1).

A Siamese CNN architecture (Bromley et al., 1993) consists of two branches performing an iden-

tical set of operations on a pair of input images (xi, xj) to obtain feature vectors f(xi,w), f(xj ,w)

as shown in Figure 2.3 (a). At test time, only one such branch is required for the feature calcula-

tion. As the goal of training is to determine values for the weights w such that feature distances

∆i,j,w reflect image similarities, two branches are used during training. Each branch processes an

individual image xi ∈ x and xj ∈ x, respectively, with i 6= j, while all weights w are shared be-

tween the branches. The resulting features f(xi,w), f(xj ,w) are presented to the distance function

∆i,j,w, which should reflect the known similarity status of the image pair (xi, xj), and w is adapted

accordingly in training.

Instead of processing pairs of images, triplet CNN architectures (Schroff et al., 2015) allow to

process a triplet of images (xi, xj , xk) as shown in Figure 2.3 (b). Just as in Siamese networks,

identical CNNs process individual images xi, xj , xk, while sharing all network weights w. The

outputs are again feature vectors that are presented to a distance function. In contrast to Siamese

CNNs, the distance function is applied twice, i.e. once to the feature pair (f(xi,w), f(xj ,w)) and

once to the pair (f(xj ,w), f(xk,w)). Thus, instead of learning ∆i,j,w to reflect the image similarity,

a ranking of similarity can be exploited during triplet-based training; the distance of f(xj ,w) is

determined both to f(xi,w) and f(xk,w), such that the difference in distance can be forced to

reflect the distance in image similarity by adapting w accordingly. In section 2.2.2.2, a selection of

losses for training image retrieval networks is presented.

2.2 Training of neural networks

Training of CNNs has the goal to determine optimal values for all weights and biases w in the

network such that the input images x are mapped to the output quantities y as well as possible.

For that purpose, a loss function L(w,x,y) is used to describe the relationship between the inputs

x and outputs y depending on the network weights w such that the loss value is an indicator for the
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Figure 2.3: Basic structure a Siamese network (a) and a triplet CNN (b). During training, the input im-

ages xi, xj or xi, xj , xk, respectively, are presented to two or three network branches, respec-

tively. All branches of a network are identical and share all their weights w. The outputs are

features f(xi,w), f(xj ,w) and f(xi,w), f(xj ,w), f(xk,w), respectively, that are presented to

a distance function ∆. In Siamese training, a distance ∆i,j,w is determined for the features

f(xi,w), f(xj ,w), whereas the two distances ∆i,j,w,∆j,k,w are calculated for the feature pairs

(f(xi,w), f(xj ,w)), (f(xj ,w), f(xk,w)) in triplet training.

error of the network in correctly producing the respective output given a certain input. The lower

the loss, the lower the network’s error is assumed to be in solving the task to be learned (Bishop,

2006, pp. 232-237). During training, the network parameters are updated such that the training

loss becomes smaller. In a first step, initial values w(0) have to be provided for all w, where possible

strategies to do so are described in section 2.2.1. Furthermore, a loss function L(w,x,y) has to be

defined assessing the suitability of a certain parametrization of w; section 2.2.2 presents common

loss functions for training a CNN-based classifier and for descriptor learning, respectively. Based

on initial values w(0) and a loss L(w,x,y), the actual optimization can be conducted using one of

the strategies described in section 2.2.4.

2.2.1 Initialization of the network weights

The main goal of initializing the weights w is finding values w(0) that are beneficial for both, opti-

mization as well as generalization of a CNN. In this context, it is important to have different values

for {wj(0)
m0 , w

j(0)
m1 , ..., w

j(0)

mDj−1} ⊂ w(0) and {wj(0)
n0 , w

j(0)
n1 , ..., w

j(0)

nDj−1} ⊂ w(0) with m,n = 1, ..., Dj

and m 6= n for all nodes njm, n
j
m in the jth layer, being connected to the nodes ndj−1 with

dj−1 = 1, ..., Dj−1 in the (j − 1)th layer, to avoid that two nodes in the jth layer learn an identical

mapping. For that purpose, initial values for the weights are drawn randomly, typically from a

zero-mean Gaussian distribution N or a uniform distribution U (Goodfellow et al., 2016, pp.297-

299). However, determining a suitable scale for the distribution is not straight forward. A possible

solution is to normalize the distribution for drawing the weights wj(0) of the jth layer under con-

sideration of the number Dj−1 of nodes in the preceding layer and the number Dj of nodes in the
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current layer (Glorot and Bengio, 2010):

w
j(0)

djdj−1 ∼ U

(
−

√
6√

Dj−1 +Dj
,+

√
6√

Dj−1 +Dj

)
∀wj(0)

djdj−1 ∈ wj(0). (2.13)

The initialization strategy in equation 2.13 is denoted as Xavier initialization. Such an initialization

is based on the assumption of linear activations, and a similar way of scaling for a zero-mean

Gaussian assuming activations processed by a ReLU activation function is proposed in (He et al.,

2015):

w
j(0)

djdj−1 ∼ N

(
0,

√
2

Dj

)
∀wj(0)

djdj−1 ∈ wj(0). (2.14)

The initialization strategy in equation 2.14 is denoted as variance scaling.

2.2.2 Selected training objectives

The network architectures presented in section 2.1.2 can be trained using one of the optimization

strategies presented in section 2.2.4. For that purpose, a loss function L(w,x,y) has to be defined.

Common classification losses used to train CNNs such as the one in subsection 2.2.2.1 are presented

in subsection 2.2.2.1. Networks for descriptor learning such as the ones presented in subsection

2.1.2.2 can be trained based on the losses introduced in subsection 2.2.2.2.

2.2.2.1 Image classification losses

During training of a CNN-based classifier, a sufficient number of representative training samples,

consisting of images x with known class labels, have to be given in order determine optimal values

for the network weights w. Assuming that N training samples are provided in a training dataset

and the classifier’s task is to predict whether an image belongs to a class C or not, a common

loss function measuring the network’s error of such a binary classification problem is the binary

cross-entropy loss (Bishop, 2006, p. 235):

L (x,w) = −
N∑
n=1

{tn · ln (y(xn,w)) + (1− tn) · ln (1− y(xn,w))}. (2.15)

In equation 2.15, the term y(xn,w) denotes the sigmoid activation (eq. 2.10) of the network’s output

node. The variable tn is a binary indicator variable, where tn = 1 for all images xn belonging to

the class of interest C and tn = 0 for all other images belonging to a background class.

Whereas the binary cross-entropy loss in equation 2.15 takes all training examples into account

for determining the network’s classification error in the same way, Lin et al. (2017) expanded the

cross-entropy loss to focus on hard training examples, i.e. examples with a low score for the correct

class, in order to mitigate problems with class imbalance. For that purpose, hard training examples

obtain a higher weight in the calculation of the loss, assuming that hard examples belong to the

underrepresented class, leading to the following loss function:

L (x,w) = −
N∑
n=1

{(1−y(xn,w))γ ·tn ·ln (y(xn,w))+(y(xn,w))γ ·(1− tn)·ln (1− y(xn,w))}. (2.16)



2.2 Training of neural networks 25

Thus, hard training examples are defined to be those with a low sigmoid activation y(xn,w) for the

correct class according to the reference labels encoded in the variables tn. In case image xn belongs

to the class C of interest, i.e. tn = 1, and the sigmoid activation y(xn,w) is low for that image, the

introduced focal weight (1− y(xn,w))γ is large such that the loss of xn has a higher impact on the

total loss compared to other examples belonging to C having a high sigmoid activation and thus, a

low focal weight. In equation 2.16, the parameter γ ≥ 0 is the focusing weight, a hyperparameter

to be selected to control the impact of hard examples on the total loss.

The losses in equations 2.15 and 2.16 allow to train a CNN-based binary classifier distinguishing

a foreground class and a background class, i.e. K = 2 classes. For many applications it is of

interest to distinguish more than two classes. This is, K different classes can be predicted in a

multi-class classification problem. In order to train a CNN-based multi class classifier, the softmax

cross entropy (Bishop, 2006, p.235) can be applied, being

L (x,w) = −
N∑
n=1

K∑
k=1

tnk · ln (yk (xn,w)) . (2.17)

In equation 2.17, the cross-entropy is calculated for all K classes for all N considered training

examples, where yk (xn,w) denotes the softmax activation (equation 2.9) of the kth class of the

nth image xn given the current network weights w. The training labels are encoded by the binary

indicator variables tnk, being equal to 1 in case xn belongs to the kth class and being 0 in all other

cases. In particular, the sum over all K classes
∑

k tnk has to be 1 for each image xn, indicating

that each image is assigned to exactly one of the K classes.

Similar to the binary focal loss (equation 2.16), there exists a focal loss variant for multi-class

classification problems. In (Liu et al., 2018b; Yang et al., 2019), the multi-class focal loss

L (x,w) = −
N∑
n=1

K∑
k=1

(1− yk (xn,w))γ · tnk · ln (yk (xn,w)) (2.18)

is introduced, where the magnitude of the focal weight (1−yk (xn,w))γ is dependent on the softmax

activation yk (xn,w). Analogous to the sigmoid-based variant of the focal weight in equation 2.16,

the focal weight in equation 2.18 is large in case of a small softmax activation for the correct class

Ck of xn, indicated by tnk = 1. The parameter γ ≥ 0 is again the focusing parameter, where larger

values for γ lead to smaller focal loss for all yk ∈]0, 1], while the relative impact of hard training

examples (small yk for the correct class) on the total loss becomes larger for larger γ compared to

the relative impact of examples with a large yk for the correct class.

2.2.2.2 Image retrieval losses

Meaningful image descriptors are often designed such that similar images have similar descriptors.

Thus, a prerequisite for descriptor learning is a representative set of training samples, consisting

of pairs of images p with known similarity status; the images (xi, xo) of an image pair p ∈ p are

either similar or not. During training of a CNN that shall deliver descriptors, a loss function is

minimised that considers both the similarity status of the image pairs as well as the corresponding

descriptor similarity. A common measure for the similarity of descriptors is the Euclidean distance,
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where descriptors with a small distance are considered to be similar and descriptors being distant

from each other are considered to be dissimilar. The goal of training is to find network weights w

such that descriptors of similar images have a small Euclidean distance, whereas the distances of

descriptors of dissimilar images are large.

One possibility to formulate this goal in a loss function is the contrastive loss (Hadsell et al.,

2006). Assuming that Y is a binary indicator variable being equal to 1 in case (xi, xo) are similar

and Y = 0 for dissimilar (xi, xo), the contrastive loss is

L (p,w) =
N∑
n=1

Y ·∆n
i,o,w + (1− Y ) ·max(0,M −∆n

i,o,w). (2.19)

The term ∆n
i,o,w in equation 2.19 denotes the Euclidean distance of the feature vectors of the images

(xi, xo) of the nth image pair obtained using the network parameters w. Minimizing the loss has

the effect that the descriptor distance ∆n
i,o,w is forced to be zero in case of similar images (xi, xo);

for dissimilar images the distance between the descriptors of xi and xo is forced to be at least as

large as a pre-defined margin M .

Instead of focusing on pairs of images with known similarity status in the loss function, the

triplet loss (Wang et al., 2014; Schroff et al., 2015) relies on triplets t. A triplet t := {xi, xq, xn} ∈ t

consists of an anchor sample xi, a positive sample xp that is considered to be similar to xi and a

negative sample xn that is considered to be dissimilar to xi. The triplet loss

L (t,w) =

N∑
n=1

max(0,∆n
i,p,w −∆n

i,n,w +M) (2.20)

forces the network to produce descriptors such that the distance ∆n
i,p,w between the anchor sample

and the positive sample is smaller than the distance ∆n
i,n,w between the anchor sample and the

negative sample by at least a pre-defined margin M . Thus, descriptors of similar images are closer

to each other in feature space than descriptors of dissimilar images for the loss to become small,

such that the descriptor distance becomes a measure for the similarity of the corresponding images.

2.2.3 Regularization

The weights of a CNN-based classifier are typically determined on a training set by iteratively

minimizing a loss function (see section 2.2 for details); the performance of a trained classifier is

usually evaluated on an independent test set. In case the network capacity, i.e. the network’s ability

to learn complex dependencies of the desired outputs on the inputs, is high enough the classifier’s

weights might be perfectly adapted to make correct predictions for the images in the training

dataset. It is likely to obtain high quality measures on the training set, while obtaining rather low

quality measures on the test set in such a case, because the learned mapping from the inputs to the

outputs is not general enough to cover all characteristics of the classes to be distinguished. This

phenomenon is denoted as overfitting (Goodfellow et al., 2016, pp.109-110). To avoid overfitting,

different regularization techniques can be applied, such as dropout and weight decay, both of them

being defined below.
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2.2.3.1 Dropout

Dropout aims to reduce overfitting by randomly dropping nodes in a neural network at training

time such that the weights do not co-adapt too much to the training data (Srivastava et al., 2014).

For that purpose, a node nj
dj

in a layer j with dropout is dropped with a probability ρ during

a single forward pass, i.e. the iterative calculation of the network output given a network input

using the current parametrization of the network weights, during training. Accordingly, all weights

wj+1
1dj

, ..., wj+1
dj+1dj

, ..., wj+1
Dj+1dj

belonging to the connections from a dropped node nj
dj

to all nodes of

the subsequent layer j+1 are ignored during training, realized by setting the respective activations

in the (j + 1)th layer to zero. In this way, applying dropout to D nodes results in training of 2D

different sub-networks. At test time, all nodes of a layer with dropout are present. Therefore, all

weights from such a layer to a subsequent layer are multiplied by ρ. Thus, the predictions of a

CNN-based classifier trained with dropout can be seen as a kind of ensemble of all predictions of

different networks realized during training. Dropout has been shown to improve the ability of a

network to learn a more general mapping from the inputs to the outputs, such that the difference

between training and test accuracies is reduced.

2.2.3.2 Weight decay

Another possibility of introducing regularization into training is adding an additional term to the

loss function to be minimized. One way to do so is adding a weight decay term that is defined

as (Goodfellow et al., 2016, p.117):

Lwd (w) =
λL2

2
· ‖w‖2 =

λL2

2
·
(
wT ·w

)
. (2.21)

The parameter λL2, being a hyperparameter to be tuned, controls the influence of the regularization

term 1/2‖w‖2 on the total loss to be minimized. In order to minimize the total loss in training,

it is required to force the weights w to take values such that the L2-norm ‖ · ‖2 becomes small

for the weights. Thus, adding a L2-regularization of the parameters to a loss function aims to

avoid overfitting by penalizing large values of w. Specifically, the weights that are more relevant

in terms of parameterizing a mapping from the network inputs to the outputs such that the loss

becomes minimal are less penalized compared to weights that hardly contribute to a minimized

loss (Goodfellow et al., 2016, pp. 227-230). Thus, the network is forced to learn a parametrization

of the mapping that focuses on relevant inputs and intermediate representations instead of fitting

the model to consider all inputs and representations such that the loss becomes minimal on the

training dataset, i.e. adding weight decay during training forces the network to achieve a better

generalization.

2.2.4 Parameter optimization

2.2.4.1 Stochastic gradient descent

A common technique to do parameter optimization is the Stochastic Gradient Descent (SGD)

optimization technique based on mini-batches that exploits gradient information ∇L(w,x,y) of

the loss function L(w,x,y) to iteratively minimize the network’s loss (Bishop, 2006, pp. 240-241).
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This is realized by moving step-wise into the direction of −∇L(w,x,y) in weight space in an

iterative way. For that purpose, initial values w(0) are chosen for the network parameters in a

first step. Afterwards, a mini-batch of images xMB ⊂ x with corresponding outputs yMB ⊂ y is

selected in each training iteration τ and passed through the network to obtain the according loss

L(w(τ),xMB,yMB) =: L(w(τ)) based on the current network parametrization w(τ). The weight

update is carried out in each training iteration by means of

w(τ+1) = w(τ) − η∇L(w(τ)), (2.22)

where η is the learning rate that defines the size of the step to be taken in the direction of the

negative gradient. By means of error backpropagation (Bishop, 2006, pp. 241-245) the individual

weights in the network are determined in each iteration, where the error is iteratively propagated

layer by layer from the output units to the respective preceding hidden units.

2.2.4.2 Adam optimizer

A variant of the SGD optimization algorithm is Adam (Kingma and Ba, 2015), i.e. SGD with adap-

tive moments. The idea of Adam is to adapt the residues of the network weights, i.e. η∇L(w(τ)) in

equation 2.22, in each iteration, where an individual residuum per network weight is determined.

For that purpose, the first moments m(τ+1) and the second moments v(τ+1) are calculated as

moving averages based on the gradients ∇L(w(τ)) via

m(τ+1) = β1 ·m(τ) + (1− β1) · ∇L(w(τ)),

v(τ+1) = β2 · v(τ) + (1− β2) · ∇L(w(τ))2,
(2.23)

where for τ = 0 the vectors of the first and second moments are initialized by m[0] = ~0 and

v[0] = ~0. The impact of the first and second moments on the parameter update are controlled by

hyperparameters β1 and β2, respectively. There the actual update rule is

w(τ+1) = w(τ) − η(τ+1) · m(τ+1)√
v(τ+1) + ε̂

(2.24)

with

η(τ+1) = η ·

√
1− βτ+1

2

1− βτ+1
1

. (2.25)

The parameter ε̂ is a small constant introduced for numerical stabilization and
√

v(τ+1) denotes the

element-wise calculation of the square root for all elements constituting the vector v(τ+1). Using

the Adam optimization algorithm reduces problems with noisy gradients during training, whereas

standard SGD might be stuck in local minima or might become slow during training.
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3 Related Work

This chapter gives an overview of existing work relevant in the context of this thesis. First of

all, literature addressing image classification in general and in the context of cultural heritage

applications in particular is reviewed in section 3.1. The focus is on MTL as well as on learning

a classifier with auxiliary losses in order to address class imbalances. Afterwards, section 3.2

provides details about the state of the art in the context of image retrieval. Due to the trend

to use learned descriptors for retrieval, the focus is on different strategies for descriptor learning,

particularly under consideration of auxiliary losses, and its application in the domain of cultural

heritage preservation. Finally, section 3.3 summarizes the identified research gaps in the field of

multi-task image classification, descriptor learning for image retrieval as well as exploiting auxiliary

losses for both of the tasks, and discusses the resulting strategies investigated in this thesis.

3.1 Image classification

In general, classification aims to assign a class label to an input quantity (Bishop, 2006). In case

of image classification, either the image itself or features derived from the image are presented to

a classifier, and the predicted class label describes the image content on a semantic level. Thus,

knowledge that is implicitly contained in an image is made explicit by means of a classifier.

3.1.1 Deep learning-based image classification

Using neural networks for the classification of images, i.e. for predicting one class label for each

image, has been the objective of much research since the first CNN for classifying images (LeCun

et al., 1989) was revived in (Krizhevsky et al., 2012). In contrast to classical machine learning

techniques for image classification, such as support vector machines (Hearst et al., 1998) exploiting

manually designed image features for classification, CNNs directly take an image as input and

enable a mapping to class scores by incorporating feature learning. Even though it is advantageous

to overcome a careful design of image features by means of CNNs, this comes at the cost of a highly

increased number of parameters; deep learning-based classifiers usually have tens to hundreds

of millions of free parameters to be determined during training on the basis of labelled training

examples. In case of a sufficiently large dataset providing representative examples for all classes

to be learned, such as the ImageNet dataset (Russakovsky et al., 2015) with about 1.2 million

training images, deep learning-based classifiers outperform classical machine learning techniques.

For instance, AlexNet (Krizhevsky et al., 2012), having about 60 million parameters, could achieve

an improvement of about 8% compared to a classification using Fisher Vectors on the basis of SIFT

image features. Whereas a classification using AlexNet achieved an overall accuracy of 62.5%,
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deeper neural networks allowing for learning more complex image representations, i.g. ResNets,

achieve 78.3% (He et al., 2016a) and 79.9% (He et al., 2016b), respectively.

However, in case the task to be learned is represented by a rather small dataset consisting of

some ten thousands of images, determining all weights of a CNN by means of training on such

a dataset might be challenging. In such cases, pre-trained networks trained on a larger dataset

such as ImageNet can serve as generic feature extractors delivering highly discriminative features

for several vision tasks, such as image classification (Donahue et al., 2014; Sharif Razavian et al.,

2014; Penatti et al., 2015). Instead of fully adopting pre-trained networks in the context of a new

task, the principle of fine-tuning adopts only a subset of the pre-trained weights, while adapting

the remaining set of weights to the new task. Adopting the weights of the first layers and training

of the randomly initialized weights of the last layers is realized in (Yosinski et al., 2014), aiming

to learn high-level features that are characteristic for the new task. Similarly, Tajbakhsh et al.

(2016) adopt weights pre-trained on another task than the target task, but in contrast to Yosinski

et al. (2014), the weights of the last layers are also adopted as initialization for fine-tuning. It has

been shown that exploiting pre-trained weights can improve the network’s performance in correctly

classifying images, even though the classification task to be solved is represented by a rather limited

number of training examples (Sharif Razavian et al., 2014; Yosinski et al., 2014; Tajbakhsh et al.,

2016). This is also relevant in the context of predicting properties of objects depicted in images from

cultural heritage-related collections, to be interpreted as different classification tasks. Frequently,

labels related to different properties (semantic variables) have to be predicted per image in such

applications in order to adequately describe the depicted objects. In contrast, all works cited so

far addressed classification of a single variable, i.e. perform STL.

3.1.2 Multi-task image classification

Instead of training individual classifiers for a set of classifications tasks to be solved, i.e. one classifier

per task, a single multi-task network can be trained to simultaneously learn all of the tasks. The fact

that the joint training of related tasks can be beneficial in comparison to a separate training of the

individual tasks was already stated in (Caruana, 1993), who introduced MTL for artificial neural

networks and decision trees. The idea behind MTL is to take advantage of dependencies between

the tasks to be learned with the goal of an improved generalisation. Against this background the

joint training of classifiers for different tasks is addressed in different contexts, e.g. remote sensing,

(Leiva-Murillo et al., 2013), human pose estimation, e.g. (Li et al., 2014), as well as depth estimation

and semantic segmentation, e.g. (Zhang et al., 2019a). In order to realize MTL for CNNs, different

CNN architectures considering multiple tasks were developed as well as a large variety of training

strategies, both aiming to share related knowledge of the tasks to be learned.

From the point of view of the network architecture, one can differentiate methods with respect to

the realized weight sharing paradigm as well as with respect to the network part of which weights

are shared (Vandenhende et al., 2021). The shared weights can either be fully shared between the

tasks to be learned, a strategy denoted as hard parameter sharing, e.g. (Li et al., 2014; Chen et

al., 2018), or they can be partially shared, which is denoted as soft parameter sharing, e.g. (Misra

et al., 2016; Long et al., 2017). Moreover, the weights can either exclusively be shared in the
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feature extraction part of a network (encoder-focused model), e.g. (Li et al., 2014; Misra et al.,

2016; Chen et al., 2018), or the weights are (exclusively) shared in the last part of the network,

which is denoted as decoder-focused model, e.g. (Long et al., 2017). For instance, CNNs consisting

of a shared feature extraction network with hard parameter sharing followed by independent task-

specific network branches are proposed in (Li et al., 2014; Chen et al., 2018; Yang et al., 2022). A

similar architecture is proposed in (Long et al., 2017), where all convolutional layers as well as the

first fully connected layer are shared for all tasks. In contrast to (Li et al., 2014; Chen et al., 2018),

in (Long et al., 2017), the subsequent task-specific layers can interact via tensor normal priors. A

further option to share information between the tasks is given by cross-stitching units learning

a linear combination of the activation maps introduced at different stages between task-specific

CNNs (Misra et al., 2016). Nevertheless, CNN explicitly modelling relationships between tasks by

means of soft parameter sharing strategies do not allow to transfer a network pre-trained on one

dataset to another dataset representing another task, because the number of tasks may vary, on

the one hand, and on the other hand, the learned parameters describing the relatedness of tasks are

in all probability no longer valid. Allowing for transfer learning, however, is of great importance

in the context of relatively small datasets, which frequently applies in cultural heritage-related

applications. Nevertheless, training data derived from historical collections may not only be scarce,

but also incomplete in terms of the available labels. No technique for soft parameter sharing could

be identified allowing to deal with such incompletely labelled training data.

Thus, focusing on CNNs realizing hard parameter sharing leads to an architecture with a fully

shared feature extractor followed by task-specific network branches without any parameter sharing.

The gradients ∇Lm(wsh) of all m = 1, ...,M task-specific branches of the task-specific losses Lm
contribute to the update of the weights wsh of the shared feature extractor during training (Van-

denhende et al., 2021):

w
(τ+1)
sh = w

(τ)
sh − η ·

M∑
m=1

βm∇Lm(w
(τ)
sh ) (3.1)

There are different training strategies aiming to identify an optimal weighting βm,m = 1, ...,M of

the individual tasks in order to learn a multi-task network with a good overall performance (Van-

denhende et al., 2021). For that purpose, the weights βm are either directly applied during the

update step, e.g. (Chen et al., 2018), or they are indirectly applied to the update by introduc-

ing them in the multi-task loss constituted by Lm,m = 1, ...,M , e.g. (Kendall et al., 2018; Liu

et al., 2019). For instance, Chen et al. (2018) propose a weighting such that the magnitudes of

the weighted task-specific gradients are of equal size for all tasks and thus, the shared network

weights are equally influenced by all tasks. In contrast, the impact of the task-specific gradients

on the shared weights is controlled by means of weighted task-specific loss terms in (Kendall et

al., 2018; Liu et al., 2019). Kendall et al. (2018) weight the task-specific losses such that tasks

with higher data-inherent uncertainty have a lower impact on the shared weights than tasks with

a lower uncertainty. The weighting in (Liu et al., 2019) tries to force all task-specific losses to

decrease equally fast during training. However, no work could be identified that allows for missing

information in the training strategy, which is a requirement for MTL in the context of cultural

heritage preservation, such as training a multi-task classifier predicting relevant information on the

basis of images. Moreover, even though different tasks are considered with a different weight, no
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class imbalance is addressed in the classification losses in (Kendall et al., 2018; Chen et al., 2018;

Liu et al., 2019). Nevertheless, class imbalance occurs in almost all heritage-related classification

tasks. It is of a special interest to predict all classes equally well in such a context, because under-

represented classes might belong to more ancient properties, which would be ignored in the context

of classification-based completion of digital collections in case of a classifier that is not able to learn

to distinguish such a class from the others.

3.1.3 Classification techniques addressing class imbalance

Learning from imbalanced training data is a well known problem in the fields of Photogrammetry

and Computer Vision (Johnson and Khoshgoftaar, 2019; Sridhar and Kalaivani, 2021). In the

context of learning using data with imbalanced class distributions, the resulting classifiers tend to

show a weak performance in correctly predicting examples from classes with few training samples,

which is a challenge both in binary and multi-class classification (Krawczyk, 2016) as well as in the

context of multi-task classification, e.g. (Wang et al., 2023).

Different strategies have been applied to deal with this problem. The corresponding methods

can be categorized as data-level methods, algorithmic-level methods and hybrid methods (Krawczyk,

2016; Johnson and Khoshgoftaar, 2019). Data-level methods aim to compensate imbalances in

the training data by oversampling of classes with few examples, e.g. (Chawla et al., 2002; Ando

and Huang, 2017), by undersampling classes with many examples, e.g. (Mani and Zhang, 2003),

or by performance-driven dynamic sampling in each training step, e.g. (Pouyanfar et al., 2018).

Algorithmic-level methods such as (Lin et al., 2017; Khan et al., 2017; Liu et al., 2018b; Yang et

al., 2019) adapt the training objectives such that classes with few training examples have a higher

impact on the classifier’s parameters, and hybrid methods, e.g. (Dong et al., 2018), combine aspects

of both data-level methods and algorithmic-level methods. While the loss of each training example

is individually weighted on the basis of the network’s belief for the correct class in the context of a

binary classification in (Lin et al., 2017) and a multi-class classification in (Liu et al., 2018b; Yang

et al., 2019), respectively, Khan et al. (2017) learn class-dependent weights, being both applicable

to binary and multi-class classification problems, respectively. Dong et al. (2018) expands the

classification loss by a term that explicitly forces samples of minority classes to have higher class

scores and combines the proposed loss with a sampling of hard training examples, i.e. samples

with a high class score for an incorrect class. Nevertheless, even though the approaches reviewed

so far address imbalance problems in the context of image classification, none of them allows for

multi-task classification.

There is nearly no research addressing imbalances of classes in the context of multi-task image

classification. The only work that could be identified is the one of Wang et al. (2023), who propose

a multi-task Support Vector Machine that forces the samples of each binary classification task to be

separated in feature space by maximizing a margin between a hyper-sphere for the features of the

dominant class and a hyper-sphere for those of the underrepresented class. The approach proposed

in (Wang et al., 2023) is applied in the context of image classification by interpreting a subset

of a multi-label classification problem1 as multiple binary classification problems in the context of

1https://data.caltech.edu/records/nyy15-4j048, accessed on 01-06-2023
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multi-task classification and training the proposed classifier for SIFT-based image features. To the

best of the knowledge of the author, there is no work addressing class imbalances in the context

of multi-task multi-class image classification. Specifically, there is no work learning a CNN-based

classifier in this context, and there is no work addressing an incompletely labelled dataset in order

to train such a multi-task classifier. Nevertheless, a method that can cope with imbalanced training

data and allows for jointly learning several related multi-class classification tasks, e.g. in the context

of cultural heritage preservation, is assumed to be important to provide a classifier that can be

applied to complex data and generalizes well at the same time.

3.1.4 Learning a classifier with auxiliary clustering

In contrast to approaches aiming to increase the impact of examples belonging to underrepresented

classes on determining the classifier’s parameters during training or to carefully select representa-

tive training examples, focusing on an adequate separation of the classes in feature space might

also be helpful for distinguishing all classes. According to (Krawczyk, 2016), class imbalance may

be irrelevant if there are sufficiently good representations for both, frequent as well as less frequent

classes. Using CNNs (LeCun et al., 1989; Krizhevsky et al., 2012), representations of images to

be used for classification can be learned effectively. Thus, one way of achieving such a sufficient

representation is to guide the CNN to learn that the feature vectors belonging to the same class

should form a distinct cluster in feature space and that clusters corresponding to different classes

should be different from each other, e.g. (Huang et al., 2016; Cao et al., 2019). Thus, combin-

ing classification and clustering in training could help to mitigate the problems related to class

imbalance of the training data.

Existing work that combines image classification and clustering in feature space exploits k-means

clustering to obtain pseudo-labels for learning a classifier, e.g. (Caron et al., 2018; Yang et al., 2021;

Ma et al., 2021). There is further work that exploits clustering as auxiliary training constraint for

learning a classifier. The basic principle is to combine a classification loss with an auxiliary metric

learning loss. Wen et al. (2016) aim to support intra-class connectivity by forcing all feature vectors

related to one class to be close to the corresponding center of the feature vectors using an auxiliary

center loss. Qi and Su (2017) expand the center loss by an additional term such that it also requires

inter-class separability. Instead of forcing the distances in feature space to be small for features

belonging to the same class and large for features belonging to different classes, respectively (Wen

et al., 2016; Qi and Su, 2017), there are also margin-based loss variants that introduce within-class

and between-class margins to explicitly force the produced clusters to reflect inter-class separability

and intra-class connectivity. Whereas distance-based margin constraints are proposed in (Huang

et al., 2016; Liu et al., 2017; Cao et al., 2019; Yang et al., 2020), the approaches in (Choi et al.,

2020; Hameed et al., 2021b) rely on angular margins. However, margin-based losses require at least

one further hyper-parameter defining the appropriate cluster size; it would be desirable not having

to tune such a parameter. Even though all works mentioned so far address learning a classifier

while exploiting an auxiliary feature clustering, none of them focuses on handling clustering in the

context of multi-task classification. Again, as there are multiple relevant properties to be predicted
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in the form of class labels for images in cultural heritage digital collections, which can be regarded

as related to each other, such a method in the context of MTL is required.

3.1.5 Image classification in the context of cultural heritage applications

Up to know, literature has been reviewed from a methodological point of view. Nevertheless,

applying and adapting machine learning techniques in order to support solving tasks in the context

of preserving the cultural heritage has been a growing field of research for some time. Many

works address image-based classification of works of art by training an image classifier on the

basis of images with known class labels in order to make predictions for images with unknown

properties (Fiorucci et al., 2020; Castellano and Vessio, 2021a). First works compare different

hand-crafted features for predicting the artistic style of a depicted painting (Arora and Elgammal,

2012). In (Blessing and Wen, 2010), one-versus-all Support Vector Machines are trained based

on HOG features (histograms of oriented gradients, (Dalal and Triggs, 2005)) of images showing

paintings with the goal to predict the artist of the painting; using images from seven different

painters, an overall accuracy of 85.1% was achieved. The performance of different methods of

feature extraction and metric learning were compared in (Saleh and Elgammal, 2016), aiming to

produce optimal feature vectors for the classification of style, genre and artist of a depicted painting

by means of a Support Vector Machine. The individual tasks, i.e. the prediction of style, genre and

artist, respectively, were dealt with independently from each other and using different subsets of

training images. The reported quality indices are somewhat lower than those of Blessing and Wen

(2010), but Saleh and Elgammal (2016) differentiated more classes for each of the three variables.

The best results (overall accuracy of 65.4%) were achieved when using Classeme features (Torresani

et al., 2010) in combination with a Support Vector Machine when differentiating between seven

classes.

Instead of learning a classifier taking handcrafted image features, CNNs allow for simultaneously

learning features from given input images as well as learning a mapping of these features to class

scores in case of labeled training images (LeCun et al., 1989; Krizhevsky et al., 2012). Donahue

et al. (2014) and Sharif Razavian et al. (2014) demonstrated that features from a pre-trained

CNN enable a sufficient representation of images for new recognition tasks, especially in the case

of limited training data, which is relevant in the context of cultural heritage collections. Thus, a

trained CNN can be used to predict a class label for an object with unknown properties by means

of an image depicting that object. This approach was also applied to the classification of depicted

objects, being relevant in a historical context.

3.1.5.1 Single-task deep learning approaches for cultural heritage applications

Training a CNN-based image classifier to predict semantic information of historically relevant arti-

facts on the basis of images is a growing field of research (Castellano and Vessio, 2021a; Santos et

al., 2021). According to (Donahue et al., 2014; Sharif Razavian et al., 2014), a first work exploiting

features from a pre-trained CNN is (Bar et al., 2014). The authors exploit DeCAF features (Don-

ahue et al., 2014), i.e. features provided by an AlexNet pre-trained on ImageNet, to train multiple
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one-versus-all Support Vector Machines in order to differentiate 27 different artistic styles in the

WikiArt dataset, obtaining overall accuracies of up to 43% with F1-scores of up to 40%. Instead

of reusing features of pre-trained CNNs without any further training, fine-tuning of the last few

layers of a pre-trained CNN in order to adapt it to a new classification task tends to improve the

classifier’s performance (Yosinski et al., 2014).

Consequently, fine-tuning of CNNs is a widely used strategy in the context of cultural heritage

related classification. In this context, the focus is mostly on predicting painting properties such

as the artist, the genre or the style, e.g. (Hentschel et al., 2016; Tan et al., 2016; Sur and Blaine,

2017). Based on the features of a pre-trained AlexNet, a new classification layer was trained to

distinguish 22 art epochs of the WikiArt dataset2, achieving an accuracy of 55.9 % in (Hentschel

et al., 2016). In (Tan et al., 2016; Cetinic et al., 2018), the artist, the genre as well as the style of a

painting are learned by means of variants of AlexNet (Krizhevsky et al., 2012), achieving 68.3% and

72.0% correctly classified images for the three variables using the WikiArt dataset, respectively.

Investigating the prediction of a painting’s artist, Sur and Blaine (2017) obtain 82.5% overall

accuracy on the Rijksmuseum dataset (Mensink and Van Gemert, 2014) utilizing a ResNet18 (He et

al., 2016a). Similarly, in (Dobbs et al., 2022), a ResNet101 is trained to predict the artist of paintings

in the WikiArt dataset, resulting in an overall accuracy of 87.3% while distinguishing 90 different

artists. All of the works in (Hentschel et al., 2016; Tan et al., 2016; Sur and Blaine, 2017; Cetinic

et al., 2018) learn one CNN per classification task and use pre-trained network weights resulting

from a training on a variant of the ImageNet dataset (Russakovsky et al., 2015) to improve the

classification performance. In this context, a comparison of CNN-based art classifiers trained using

randomly initialized weights and classifiers trained on the basis of weights pre-trained on a variant of

the ImageNet dataset showed superior performance for the latter weight initialization (Cetinic et al.,

2018; Gonthier et al., 2021; Sabatelli et al., 2018; Zhao et al., 2021). Moreover, a comparison of four

different types of network architectures as feature extraction backbones for an art classifier on the

Rijksmuseum dataset indicates that a ResNet-based (He et al., 2016a) feature extractor performs

best in the context of art classification (Sabatelli et al., 2018). Sandoval et al. (2019) conduct an

even more comprehensive analysis by comparing 6 different architectures as feature extractors for

their classification method on three datasets for artist classification; ResNet50 performs best on one

of the datasets while obtaining an accuracy, that is 0.7% and 1.4% lower, respectively, than the best

performing feature extractor, i.e. Inception-v3 (Szegedy et al., 2016), on the other two datasets.

In general, ResNet-based feature extraction backbones are utilized in many works addressing the

classification of works of art, e.g. (Bianco et al., 2017; Sur and Blaine, 2017; Sabatelli et al., 2018;

Milani and Fraternali, 2021; Zhao et al., 2021; Dobbs et al., 2022; Zhao et al., 2022). All papers

cited so far deal with the prediction of variables of works of art, but all contributions investigate the

prediction of several variables independently from each other in the context of STL. Even though

several predictions are potentially made per image, this is realized by independent classifiers, the

weights of which are obtained in individual training procedures. Thus, no interdependencies of the

tasks can be exploited, which is the goal of MTL approaches.

2http://www.wikiart.org, accessed on 01-06-2023
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Belhi et al. (2018) proposes a multi-task classification framework in the context of classifying

artifacts. Images of cultural assets are classified hierarchically by cascaded CNNs; the first CNN

predicts the type of the asset, e.g. a painting, and the second stage consists of as many CNNs as

there are types of assets differentiated in the first CNN; a CNN at the second level, being selected

depending on the prediction of the first CNN, derives semantic information about the depicted

asset, e.g. the artist. Even though the approach in (Belhi et al., 2018) is referred to as multi-task

approach, all classifiers were trained individually and only by connecting and combining several

classifiers it is possible to solve multiple tasks. In contrast, MTL in the sense of (Caruana, 1993)

(section 3.1.2) aims to learn all tasks jointly in order to exploit interdependencies of the tasks

during training.

3.1.5.2 Multi-task deep learning approaches for cultural heritage applications

Instead of training a separate CNNs per task to be learned, the concept of MTL aims to exploit

interdependencies between related tasks by jointly learning them in one network and thus, to

improve the networks performance in solving the individual tasks (Caruana, 1993). In the domain

of cultural heritage the strategy most frequently used to apply jointly learning multiple tasks in

one CNN is a feature extraction network producing a high-level image representation that is shared

among all tasks, which is followed by some independent task-specific layers, e.g. (Strezoski and

Worring, 2017; Bianco et al., 2019; Garcia et al., 2020). For instance, Strezoski and Worring

(2017) and Garcia et al. (2020) propose a multi-task classifier consisting of a ResNet50 pre-trained

on the ImageNet dataset as a feature extractor, followed by a shared layer and task specific layers

that are fully trained on an artistic dataset. Whereas exclusively images with related class labels for

all tasks are used for training in (Strezoski and Worring, 2017), Garcia et al. (2020) additionally

exploit relations between the labels in the form of a representation derived from a knowledge

graph. Both works demonstrate that the multi-task methods outperform single-task classifiers. In

addition to the improvement in accuracy obtained by combining the tasks during training, the

knowledge graph based information further improved the results for some of the tasks (Garcia et

al., 2020). Similarly, a ResNet-based feature extractor with task-specific classification branches is

proposed in (Bianco et al., 2019). In contrast to the networks in (Strezoski and Worring, 2017;

Garcia et al., 2020), the network in (Bianco et al., 2019) takes three inputs, i.e. the original image

as well as two regions of interest extracted from the original image. Even though all of these

works investigate multi-task classification in the context of heritage-related applications, none of

the proposed techniques allow for incomplete training labels. Furthermore, an imbalance of class

distributions was not addressed in these methods, and neither were strategies for task balancing,

the latter one being a common strategy in MTL (section 3.1.2).

In order to address task balancing in the context of multi-task artifact classification, Yang et

al. (2022) applied gradient normalization (Chen et al., 2018) and uncertainty weighting (Kendall

et al., 2018). Furthermore, a new approach for task balancing, relying on learned weights for

weighting the task-specific loss terms, is proposed in (Yang et al., 2022). The new approach results

in superior performance for all investigated tasks compared to MTL without task balancing as

well as compared to the other investigated task balancing strategies of (Chen et al., 2018; Kendall
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et al., 2018). Nevertheless, training requires completely labelled training data and the approach

in (Yang et al., 2022) does also not investigate class imbalance. Both characteristics occur in many

collections in the context of cultural heritage and should thus be investigated.

3.2 Image retrieval

In general, information retrieval aims to provide useful information to a user (Singhal et al., 2001).

The particular case of image retrieval focuses on searching a database on the basis of images,

referred to as query images, provided by a user, e.g. (Jain and Vailaya, 1996; Yang and Lee, 2008).

In this context, an abstract representation is calculated for all images in a database as well as for

the query image, and the images in the database having the representations that are most similar

to the representation of the query image with respect to a similarity measure are provided to the

user.

3.2.1 Learning descriptors on the basis of images

Early work on image retrieval relied on hand-crafted features. In content-based image retrieval

(CBIR) (Hameed et al., 2021a), the descriptors exclusively reflect the visual content of an image

in the form of colour histogram features, shape features and texture features (Jain and Vailaya,

1996; Gudivada and Raghavan, 1995; Bani and Fekri-Ershad, 2019; Hameed et al., 2021a). In this

context, the derived colour feature vectors consider independent colour histograms, being related to

a colour channel of an image, e.g. (Jain and Vailaya, 1996; Bani and Fekri-Ershad, 2019), which is a

common strategy to design such features (Hameed et al., 2021a); co-occurrences of values of different

channels are not considered. Moreover, as the features used for CBIR focus on the visual appearance

of images, the retrieval results are often not representative on a conceptual level, a problem that is

referred to as semantic gap (Zhou and Huang, 2003). In order to provide semantically meaningful

retrieval results and, thus, to overcome this semantic gap, additional semantic features derived

from textual annotations of images have been investigated in the context of semantic-based image

retrieval. For instance, Chen et al. (2001) include text features derived from image captions

in image retrieval (Yang and Lee, 2008). However, in none of these early works the descriptors

are learned from training data, which is considered to be the strength of methods based on deep

learning.

It was already shown in (Sharif Razavian et al., 2014) that representations derived by a CNN pre-

trained for a completely different task, e.g. classification, can be used to achieve more meaningful

image retrieval results than classical methods specifically designed for image retrieval. Many deep

learning approaches designed for image retrieval apply Siamese CNNs consisting of two branches

with shared weights (Bromley et al., 1993). For training a Siamese network, the contrastive

loss (Hadsell et al., 2006) taking pairs of images with known similarity status as an input is of-

ten applied. It forces the network to produce similar descriptors for image pairs considered to be

similar and to produce dissimilar descriptors for image pairs considered to be dissimilar. As the

Euclidean distance is used to measure the similarity of descriptors in this loss, it can also be used

for image retrieval, e.g. (Qi et al., 2016). Whereas training with a constrastive loss requires pairs of
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images that are either similar or dissimilar, the triplet loss (Wang et al., 2014; Schroff et al., 2015)

requires image triplets, consisting of a similar image pair and a dissimilar image pair. One image

(anchor sample) is part of both pairs, a second image (positive sample) contributes to the similar

pair and a third image (negative sample) to the dissimilar pair, respectively. The triplet loss forces

the descriptor of the positive sample to be more similar to the descriptor of the anchor in terms of

the Euclidean distance than the descriptor of the negative sample by at least a predefined margin,

being a hyperparameter in training. All of these training procedures require training samples with

known binary similarity status, which are often generated by manual labelling, e.g. (Hadsell et al.,

2006; Wang et al., 2014; Qi et al., 2016).

3.2.2 Exploiting semantic information for descriptor learning

An alternative to manual labelling is to exploit semantic annotations assigned to the images to

define similarity. A straight-forward way to do this while maintaining a binary similarity concept

is to consider class labels of one semantic variable only: if two images have the same class label,

they are considered to be similar, otherwise they are dissimilar. An example for such an approach

is (Cao et al., 2018), where the resultant pairs with known binary similarity status are used in a

training procedure involving the triplet loss. Although this strategy solves the problem of manual

labelling if a database with annotated images is available, the similarity status of an image pair is

still defined in a binary way. Accordingly, it is not taken into account that some images may be

considered more similar to each other than others in terms of a fine-grained ranking, even though

this is of interest in the context of image retrieval. Furthermore, such a similarity concept does not

allow for training a method to retrieve images that are similar to the query image with respect to

multiple semantic variables.

If multiple annotations per image are considered, different degrees of similarity of two images can

be defined (Zhao et al., 2015; Wu et al., 2017; Zhang et al., 2019b). In (Zhao et al., 2015), different

levels of semantic similarity are defined on the basis of the number of identical labels assigned to

two images. Training is based on a triplet loss, using the different degrees of similarity to weight

the importance of a triplet in training while maintaining a constant margin hyperparameter. Thus,

the minimal distance that is enforced between the distances of the descriptors of the positive and

the negative samples from the anchor descriptor is identical for all triplets, independently of their

degree of similarity. In (Wu et al., 2017), training requires the descriptor distances to reflect

different degrees of similarity. Using the contrastive loss, descriptors of images whose annotations

agree completely are forced to have a distance shorter than a pre-defined positive margin, whereas

the margin defining the minimal descriptor distance between images with partly or completely

different annotations is weighted by the degree of similarity; the margin is a hyperparameter to

be chosen. Tuning of a margin parameter as required for the approaches in (Zhao et al., 2015;

Wu et al., 2017) implies that the loss has to be adapted to a certain dataset, whereas a more

general loss formulation is preferred in general. A gradual definition of semantic similarity based

on the cosine distance between two label vectors is proposed in (Zhang et al., 2019b). The authors

formulate a loss based on pairs of images that forces the image descriptor similarity to match the

gradual semantic similarity during training without the need of tuning a margin hyperparameter.
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Nevertheless, even though semantic similarity is defined in a real-valued way in (Zhang et al.,

2019b) as well as in (Zhao et al., 2015; Wu et al., 2017), only a single semantic aspect is considered

in these works, i.e. a binary vector per image indicating whether an objects of certain types are

depicted in the image or not.

All of the cited papers using multiple annotations (Zhao et al., 2015; Wu et al., 2017; Zhang et al.,

2019b) aim to learn binary hash codes as image descriptors instead of real-valued feature vectors.

The labels used in these papers describe a single aspect of the depicted scene, i.e. the set of object

types depicted in an image. In contrast, several different semantic properties are of interest in order

to adequately describe an objects depicted in digital heritage collections, e.g. the place and time of

origin of the depicted object. None of the works cited so far allows to consider more than one such

semantic property. Furthermore, even though allowing for a different number of labels assigned to

an image, the cited papers do not consider missing annotations in their definitions of similarity.

This thesis explicitly deals with missing annotations in triplet-based learning, using them to define

a degree of uncertainty of the similarity status that has an impact on the margin of the triplet loss.

3.2.3 Descriptor learning with auxiliary losses

The usability of feature vectors learned in the context of image classification to serve as descriptors

for image retrieval has already been investigated (Babenko et al., 2014; Sharif Razavian et al., 2014;

Dutta and Akata, 2019; Deng et al., 2020; Efthymiou et al., 2021). Even leveraging the softmax

layer activations for image retrieval seems to be possible (Hamreras et al., 2020). In (Liu et al.,

2018a), classification is used to restrict the search space for image retrieval to the images belonging

to the same category as the search image. These works are already an indication that the features

learned in the context of classification are also relevant in the context of image retrieval. Thus, it

can be assumed that a similar clustering of image representations in feature space is beneficial for

both, image classification as well as image retrieval. To further improve the clustering of image

descriptors with respect to the similarity of the represented images, descriptor learning can be

realized by combining the pairwise or triplet losses with an additional auxiliary classification loss.

In (Li et al., 2020), descriptor learning based on the contrastive loss is combined with a clas-

sification loss. A single variable only is considered both for defining the similarity of images in

a binary way and for classification. Similar approaches relying on a single variable are (Shen et

al., 2017; Jun et al., 2019), but in these papers, the triplet loss is used in combination with a

classification loss. This is also the case in (Lin et al., 2019), where two additional auxiliary loss

functions are proposed: a spherical loss coming along with an angular margin designed to support

the learning of inter-class separability, and a hyperparameter-free center loss expected to support

the intra-class connectivity. All of these works exploit the class labels of one variable only to define

similarity, which leads to a binary similarity status of image pairs and, thus, does not allow to

learn different degrees of similarity. Furthermore, a margin has to be tuned in (Lin et al., 2019).

In (Huang et al., 2015), descriptor learning is also combined with a classification loss. Several se-

mantic variables are used to perform MTL. The goal of descriptor learning is to force the high-level

image descriptors that are produced by the last layer of the feature extractor of the classification

network to be invariant to the characteristics of the dataset an image belongs to; in (Huang et
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al., 2015), two different datasets are considered. For that purpose, the descriptors produced by

two multi-task network architectures, one per dataset, are presented to a triplet loss forcing the

descriptors belonging to different datasets to be more similar than a descriptor pair belonging to

images from the same dataset. Although (Huang et al., 2015) exploits the class labels of several

variables to learn descriptors by means of MTL, the concept of similarity is still defined in a binary

way, indicating whether two images originate from the same dataset or not. As already discussed

above, considering multiple semantic variables in the context of a real-valued concept of semantic

similarity is desirable for image retrieval in digital heritage collections.

Exactly one work could be identified that allows for a fine-grained definition of similarity and

additionally utilizes a classification loss to support descriptor learning. In (Barz and Denzler, 2019),

a fine-grained definition of similarity by exploiting the semantic relatedness of class labels according

to their relative distance in a WordNet ontology (Fellbaum, 2010) is proposed. Thus, a single class

label per image describing the depicted object type can be exploited to define a fine-grained concept

of similarity. In (Barz and Denzler, 2019), descriptor training can optionally be combined with the

training of a classifier. This is realized by learning a mapping from images to embeddings that are

enforced to match pre-calculated class embeddings; the class embeddings can iteratively be derived

from a similarity measure for images considering semantic aspects. Even though a fine-grained

concept of semantic similarity in proposed in (Barz and Denzler, 2019) in contrast to the binary

concepts in (Li et al., 2020; Shen et al., 2017; Jun et al., 2019; Huang et al., 2015), all of these

works consider a single semantic aspect of the image for defining similarity. To the best of the

knowledge of the author, there is no work that proposes to learn different degrees of descriptor

similarity in combination with a classification loss in an end-to-end manner, while exploiting the

labels of multiple semantic variables for both of the tasks. Accordingly, no work could be identified

that allows for missing class labels for a subset of the semantic variables in this context.

3.2.4 Image retrieval in the context of cultural heritage applications

All works cited so far addresses descriptor learning for image retrieval, but in the context of ap-

plications that do not involve the preservation of cultural heritage. Many works investigating

machine learning methods in the field of heritage preservation focus on the image-based classifica-

tion of depicted artworks with respect to one variable (Tan et al., 2016; Sur and Blaine, 2017) or

multiple ones (Belhi et al., 2018; Strezoski and Worring, 2017; Bianco et al., 2019). Nevertheless,

image retrieval is becoming an increasingly important task in that field, too (Castellano and Vessio,

2021b).

First approaches exploit graph-based representations of images in order to search for similar

objects in a database (Stalmann et al., 2012). More recent approaches for image retrieval in the

context of cultural heritage rely on high-level image features learned by a CNN, e.g. (Castellano

et al., 2021; Mao et al., 2017). In (Castellano et al., 2021), an unsupervised approach for image

retrieval based on extracting image features with a pre-trained CNN is proposed. After transforming

these features to more compact descriptors by means of a principal component analysis, image

retrieval is performed by searching the nearest neighbours in descriptor space based on Euclidean

distances. Nevertheless, the CNN was not trained to generate descriptors to be used for image
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retrieval, and in particular, it is unclear how the feature distances are to be interpreted, because

they were not forces to reflect a certain concept of image similarity. In contrast, the authors of (Mao

et al., 2017) propose to train a CNN to generate image features suitable for retrieval by minimizing

a triplet loss. For that purpose, they generate training data exploiting the class labels of four

semantic variables to define the similarity of images in a binary way; two images are assumed to

be similar in case of more than two identical class labels. Even though it is desirable to exploit

several semantic variables for defining semantic similarity, the proposed binary concept does not

allow for a ranking of images with respect to their similarity status. For learning descriptors the

distances of which are meaningful in the context of (cultural heritage-related) image retrieval, a

gradual concept of similarity is required.

Instead of aiming to retrieve the images that are most similar to a query image, cross-modal

retrieval aims at finding the images most closely related to a provided query text, or at finding the

best descriptive texts for a query image. Cross-modal image retrieval plays an important role in

the context of querying art collections, e.g. (Stefanini et al., 2019; Garcia et al., 2020). It is a chal-

lenging task to match images and texts in cultural heritage related collections (Jain et al., 2021).

In (Stefanini et al., 2019), descriptors are learned by minimizing a variant of the triplet loss, where

image descriptors and text descriptors are forced to be similar with respect to their dot product.

The approach in (Garcia et al., 2020) also addresses cross-modal retrieval using strategies that are

similar to the ones used in this thesis. The authors obtain image descriptors for retrieval on the

basis of a CNN (ContextNet) pre-trained for multi-task classification of four semantic variables.

In order to learn semantically meaningful image representations, the training of ContextNet com-

bines classification with the mapping of image descriptors to node2vec representations (Grover and

Leskovec, 2016) that describe the context of the depicted object with respect to a knowledge graph

containing works of art. Nevertheless, the authors do not investigate image-to-image retrieval, but

evaluate both, the multi-task classifier’s ability to correctly predict class labels for an image as

well as the potential of the image descriptors learned using their method for cross-modal image

retrieval.

Although there are works addressing image retrieval in the context of cultural heritage applica-

tions, none of them exploits multiple semantic variables to define different degrees of similarity for

training. Furthermore, no work could be found that combines descriptor learning with an auxiliary

classification loss to support the clustering in feature space. From a methodological point of view,

the approach in (Garcia et al., 2020) combines descriptor learning and learning a classifier, but the

main purpose of the approach is not image-to-image retrieval; this approach addresses cross-modal

retrieval instead. Furthermore, no concept of semantic similarity is proposed in (Garcia et al.,

2020). To the best of the knowledge of the author, image retrieval techniques with a special focus

on learning rarely represented semantic properties to be reflected by descriptor distances has not

been investigated yet. In the context of cultural heritage applications, such an investigation would

aim to learn descriptors that also allow for searching for rare artifacts in a collection, e.g. images

of very ancient objects. Moreover, in addition to semantic aspects of similarity, visual aspects of

similarity are of interest for art historians (Schleider et al., 2021). Nevertheless, combining both

concepts of similarity in the context of descriptor learning has not been investigated yet. Finally, no

work could be identified that allows for descriptor learning on the basis of an incompletely labelled



42 3 Related Work

training dataset, even though it is very likely that information may be missing in existing digital

heritage collections.

3.3 Discussion

In this section, the research gaps identified in the context of image classification (section 3.1) as well

as in the context of image retrieval (section 3.2) are summarized. Section 3.3.1 presents a summary

of the research gap identified in the context of image classification as well as an discussion with

regard to the requirements for classifiers in the context of cultural heritage applications. Afterwards,

section 3.3.2 contains a similar discussion, but focusing on requirements for searching in collections

containing images of historically relevant objects. The respective strategies developed in this thesis

are outlined for both types of approaches.

3.3.1 Image classification

State-of-the-art image classification techniques rely on CNNs (LeCun et al., 1989; Krizhevsky et

al., 2012) that are potentially pre-trained on a large dataset, such as ImageNet (Russakovsky et al.,

2015), before the weights are adapted for the actual classification task to be solved, e.g. (Tajbakhsh

et al., 2016). In case several classification tasks are to be learned for the same set of images,

MTL (Caruana, 1993) aims to jointly learn the tasks and thus exploit interdependencies between

them in order to improve the performance of all individual tasks. For that purpose, approaches

to share weights in a CNN, e.g. (Misra et al., 2016), and to balance the tasks during training,

e.g. (Chen et al., 2018; Kendall et al., 2018; Zhang et al., 2019a) were developed. Nevertheless,

the target tasks to be learned, e.g. learning to predict different historically relevant properties

of depicted artifacts, might be represented by a comparatively small dataset with an incomplete

labelling. Even though transfer learning (Yosinski et al., 2014) allows to tackle the problem of

training on smaller datasets, no supervised multi-task classification approach could be identified

allowing for missing class labels for a subset of the tasks for be learned; existing supervised training

strategies for MTL require reference labels for all tasks during training (Vandenhende et al., 2021).

As a consequence, training on incompletely labelled datasets would either require to train one

classifier per task based on samples with an available label for that task or require to reduce the

dataset to completely labelled training examples in case of a multi-task classifier. Taking the

example of learning to predict multiple semantic properties of depicted artifacts, it can be assumed

that there exist interdependencies between the different properties, such that a multi-task-classifier

is to be preferred. Furthermore, there are fewer CNN parameters to be determined during training

a MTL architecture due to parameter sharing compared to determining the parameters of several

STL architectures. Accordingly, standard training strategies require to restrict the dataset to

completely labelled training samples, but this comes at the cost of drastically reducing the number

of training examples, on the one hand. On the other hand, there might be classes that are exclusively

represented by incomplete samples. Thus, training strategies allowing for incomplete training data

are required.
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Furthermore, the class distributions in cultural heritage-related collections are imbalanced. It

has been shown that training on imbalanced data typically results in a poor classification per-

formance for underrepresented classes (Krawczyk, 2016; Johnson and Khoshgoftaar, 2019; Sridhar

and Kalaivani, 2021). Different strategies addressing this problem rely on a manipulation of the

distribution of the training data, e.g. (Mani and Zhang, 2003; Pouyanfar et al., 2018), or on adapt-

ing the loss function, e.g. (Lin et al., 2017; Khan et al., 2014), but all of these works focus on

STL. Further works exploit an auxiliary clustering in feature space to mitigate problems with un-

derrepresented classes, e.g. (Huang et al., 2016; Cao et al., 2019). Even though there are further

approaches combining classification and clustering without explicitly aiming to thus tackle prob-

lems caused by imbalanced label distributions, e.g. (Liu et al., 2017; Hameed et al., 2021b), all

approaches combining classification and feature space clustering were developed for STL. Only one

approach could be identified that investigates class imbalance in the context of MTL. Wang et al.

(2023) propose a multi-task Support Vector Machine for tackling imbalance problems in multiple

binary classification problems. To the best of the knowledge of the author, class imbalances for

multi-task multi-class classification problems have not been investigated yet, in particular, no deep

learning-based approach. Furthermore, there is not yet any approach allowing for incompletely

labelled training data in this context, even though such an approach can be assumed to be the best

choice for cultural heritage-related classification.

Existing approaches dealing with the classification in the context of cultural heritage applications

mostly rely on STL, e.g. (Tan et al., 2016; Cetinic et al., 2018; Bianco et al., 2017; Zhao et al.,

2022). As described above, the number of available training data in such a context is often limited,

requiring for fine-tuning (Yosinski et al., 2014; Tajbakhsh et al., 2016) of CNN-based classifiers,

which is indeed the standard procedure to be preferred over training from scratch, e.g. (Cetinic

et al., 2018; Gonthier et al., 2021; Sabatelli et al., 2018; Zhao et al., 2021). Much less work has

investigated MTL to simultaneously predict several semantic properties for an input image by means

of a single classifier, e.g. (Strezoski and Worring, 2017; Bianco et al., 2019; Garcia et al., 2020; Yang

et al., 2022). Even though task balancing has already been investigated in the context of cultural

heritage-related classification in (Yang et al., 2022), no work could be found that investigates class

imbalances in this context. Furthermore, none of the multi-task approaches developed for the

prediction of properties of artifacts allows for incompletely labelled training samples.

In this thesis, a multi-task training strategy allowing for both completely as well as incompletely

labelled training samples is proposed. Thus, a larger amount of images in a dataset can potentially

be considered during training of a MTL classifier and a larger amount of classes can be differentiated

by such a MTL classifier, which might not be possible by relying exclusively on completely labelled

training images. Furthermore, two expansions of that strategy are proposed in order to address

class imbalance for the tasks to be learned. The first strategy is based on the focal loss (Lin et

al., 2017) and is the first one allowing to apply it in the context of MTL, specifically considering

incompletely labelled training samples. The second strategy exploits an auxiliary feature space

clustering with respect to semantic and potentially visual image similarity, this being the first

auxiliary clustering strategy in the context of MTL. Optionally, both strategies can be combined

during training. Finally, even though the strategies are developed to allow for incompletely labelled
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datasets, they are formulated in a general way so that they can be applied to any dataset consisting

of images with labels for one or more tasks.

3.3.2 Image retrieval

There are many works investigating image retrieval, but they either do not consider semantic

similarity at all, e.g. (Bani and Fekri-Ershad, 2019; Hameed et al., 2021a), or require a training

dataset consisting of pairs of images with known similarity status, e.g. (Hadsell et al., 2006; Qi

et al., 2016). In order to allow for an automatic generation of training data, class labels of one

semantic variable, e.g. (Huang et al., 2015; Cao et al., 2018; Barz and Denzler, 2019), a multi-label

representation of a single semantic aspect, e.g. (Zhao et al., 2015; Wu et al., 2017), or the class labels

of multiple semantic variables, e.g. (Mao et al., 2017), are exploited to define semantic similarity

and, thus, similar and dissimilar image pairs. Nevertheless, many of the proposed concepts of

similarity are formulated in a binary way, e.g. (Huang et al., 2015; Mao et al., 2017; Cao et al.,

2018), whereas a fine-grained concept of similarity is required to be reflected by the descriptors

in the context of image retrieval, allowing for a ranking at training time. A gradual concept of

similarity is proposed in (Zhao et al., 2015; Wu et al., 2017; Barz and Denzler, 2019), but all these

works consider exclusively a single semantic aspect of an image, i.e. object types contained in

a depicted scenery. In order to adequately describe the semantic similarity of artifacts depicted

in images in digital cultural heritage-related collections, several semantic properties need to be

considered for descriptor learning. Utilizing a single property is not enough to do so, because

several properties are required to adequately describe the characteristics of historical objects and,

thus, to describe the similarity of such objects on a semantic level.

Whereas there are existing methods focusing on image retrieval in the context of cultural her-

itage (Mao et al., 2017; Garcia et al., 2020), there does not seem to be any work investigating a

fine-grained similarity concept on the basis of multiple variables. Furthermore, to the best of the

knowledge of the author there is no work that combines such a similarity concept with an auxil-

iary classification loss for predicting the variables used to define similarity aiming to improve the

clustering of the descriptors in feature space. In (Shen et al., 2017; Jun et al., 2019; Li et al., 2020;

Huang et al., 2015), descriptor learning is combined with an auxiliary loss, but these approaches

are all based on a single variable either for the auxiliary classification or for the similarity concept,

or for both. The most similar work to the one presented in this thesis is (Garcia et al., 2020).

Even though (Garcia et al., 2020) learns to predict multiple variables describing the properties of

cultural heritage, training the classifier can be seen as a preprocessing step from the perspective

of the subsequently trained descriptors for cross-modal retrieval. Furthermore, the training ap-

proaches of Garcia et al. (2020) require completely labelled training data, even though missing

annotations are typical in image collections depicting historically relevant artifacts. In general,

there does not seem to be any work explicitly dealing with missing annotations for one or several

semantic variables. Furthermore, forcing descriptor distances to reflect both semantic as well as

visual image similarity has not been investigated yet. Nevertheless, art historians are interested in

retrieving images of objects that are both semantically as well as visually meaningful with respect

to the properties of the depicted query object.
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In this thesis, a concept of semantic similarity as well as concepts of visual similarity are de-

veloped that allow for an automatic generation of training data for descriptor learning, so that

image retrieval in databases can be performed on the basis of the learned descriptors. The con-

cept of semantic similarity exploits available annotations describing multiple properties of depicted

artifacts to determine different degrees of similarity, while explicitly considering missing semantic

annotations. All concepts of similarity are used to define specific loss terms that are integrated to

constitute a loss for CNN-based descriptor learning that requires exclusively images with annota-

tions for one or several semantic variables as an input for training. Weights in the loss allow to

focus on the set of concepts of similarity that are of major interest for image retrieval in the context

of a certain application. Besides the weights controlling the relative impact of the loss terms, no

hyperparameters controlling the distances of descriptors in feature space need to be tuned; the

required distances in feature space are derived from the available data, while explicitly considering

missing annotations. In addition, descriptor learning is supported by an auxiliary classification

loss in order to improve the clustering behaviour in descriptor space with respect to the semantic

properties of the objects depicted in the related images. Just as the descriptor learning loss, the

auxiliary classification loss can deal with incompletely labelled training samples and in particular,

requires no further data for training. Finally, a focal variant of the auxiliary classification loss is

combined with the descriptor learning loss, aiming to force the descriptors to better reflect semantic

similarity of properties that are rarely represented in a training dataset.
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4 Methodology

This chapter describes the methodology developed in the course of this thesis addressing different

kinds of MTL while taking incompletely labelled and fully labelled training data into account. Two

different principles of MTL are dealt with (Zhang and Yang, 2021): Homogeneous MTL, dealing

with similar types of tasks to be combined during training, and heterogeneous MTL, combining

different types of tasks. First of all, a deep learning-based image classification technique allowing

for homogeneous MTL is presented in section 4.1, combining different classification tasks. The

focus is on training with incomplete training samples, i.e. using images that only have a class label

for a subset of the tasks to be learned. In addition, a strategy for training based on data with

imbalanced class distributions is proposed for MTL. Afterwards, an approach for deep descriptor

learning that can be applied to image retrieval tasks is described in section 4.2. This approach

enables the training of descriptors without any reference defining similar and dissimilar image

pairs. By exploiting visual information contained in the images as well as semantic annotations

assigned to the images, e.g. class labels describing properties of the depicted objects, different

concepts of similarity are defined that enable an automatic generation of training data for descriptor

learning. The proposed similarity concept related to the semantic annotations can cope with missing

annotations. In section 4.3, the classification technique and the descriptor learning approach are

combined in the context of heterogeneous MTL. The approach requires as an input images with

semantic annotations for classification as well as for the similarity concepts for descriptor learning.

Like the individual methods before, the combined method can deal with completely labelled images

as well as with incompletely labelled images, i.e. with only partly known annotations, as well

as with imbalanced class distributions. The only requirements for all of the three approaches,

i.e. classification, descriptor learning and the combined approach, respectively, are RGB images

with related (textual) information, e.g. class labels, for one or several semantic variables; in the

latter case the information may be incomplete. In case the knowledge about images in a database

depicting the same object is available, it may be considered in the context of descriptor learning,

but this information is no requirement to apply the developed approaches. Thus, the method can

be applied to any dataset consisting of images with semantic annotations for one or several semantic

variables, such as class labels for a set of classification tasks, where each image only has to come

along with an annotation for at least one of the variables. Finally, section 4.4 provides detailed

information about the handling of the data in order to use them for training.

4.1 Image classification

The goal of the proposed MTL classification method is to automatically predict a class label per

classification task on the basis of images by means of a single classifier. For that purpose, a CNN
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architecture based on a ResNet (He et al., 2016b) (section 2.1.2.1) is proposed in section 4.1.1. In

this work, ResNet-152 serves as a generic feature extractor. It is selected because residual networks

are in general widely used in the field of cultural heritage-related image classification, e.g. (Garcia

et al., 2020). Particularly, they tend to outperform other types of CNN architectures as feature

extractors, e.g. (Sabatelli et al., 2018). The proposed CNN takes an RGB image of the size 224 x

224 pixels as an input, potentially being scaled to that size, and provides normalized class scores

for each task. In the context of this work, a classification task is related to a property of an object

depicted in the image, e.g. the production time, the production technique, the material, the place

of origin and the subject depicted type, denoted as depiction, of a silk fabric, but it could also be

another property of another object type, such as the artist of a depicted ancient painting as in

the WikiArt dataset. In section 4.1.2, different training strategies are proposed for determining

optimal values for the parameters of the MTL CNN architecture presented in section 4.1.1. In this

context, optimal values are determined by minimizing the proposed loss function. The required

inputs for the loss function are the normalized class scores and all known class labels for the tasks

to be learned, referred to as reference labels; the labels may be incomplete. One prediction for a

class per task to be learned are provided by the CNN based on training images and the current

values of the CNN parameters. To allow for an analysis of the impact of MTL compared to STL,

a STL framework will also be presented in section 4.1.3.

4.1.1 Network architecture (C-SilkNet)

In this work, a CNN architecture for predicting the class labels of M classification tasks simultane-

ously is proposed, referred to as C-SilkNet. The proposed CNN-based classifier takes an RGB image

x as an input and delivers normalized class scores ymk(x) for all Km classes Cmk, k = 1, ..,Km to

be distinguished in the mth classification task as depicted in Figure 4.1. First of all, the image x is

mapped to a 2048-dimensional feature vector fRN (x) by means of a ResNet-152 backbone (He et

al., 2016b) with parameters wRN , followed by a ReLU activation (Nair and Hinton, 2010) (section

2.1.1.4, eq. 2.7) and a dropout layer (Srivastava et al., 2014) (section 2.1.1.4) with a dropout rate

of ρdrop. Dropout is introduced to enable the network to learn a more general application-specific

representation based on the features fRN (x) provided by the potentially fully pre-trained ResNet.

Afterwards, fRN (x) is presented to a sub-network joint fc consisting of NLjfc fully connected

layers with [NN1
jfc, ..., NN

NLjfc

jfc ] nodes, respectively, resulting in a feature vector fjfc(x). This

feature vector fjfc(x) is the joint representation shared by all tasks. The sub-network joint fc

is parameterized by the weight vector wjfc. Both sets of parameters, wRN as well as wjfc, are

shared among all of the M tasks to be learned. The feature vector fjfc(x) is processed by a ReLU

activation function hReLU (·) (eq. 2.7) and afterwards, hReLU (fjfc(x)) is presented to the head

of the network. The head of the network, denoted as classification head, consists of M separate

branches, each corresponding to one of the M classification tasks to be learned. Each branch is

connected to the sub-network joint fc via hReLU (fjfc(x)) and consists of NLtfc task-specific fully

connected layers of [NN1
tfc, ..., NN

NLtfc

tfc ] nodes, respectively; each layer is followed by a ReLU

activation. This network part is denoted by fc-tm. The task-specific branches all have the same

number of layers (NLtfc) and the same number of nodes per layer ([NN1
tfc, ..., NN

NLtfc

tfc ]). Finally,

each branch has a classification layer fc-cm with Km nodes, where Km is the number of classes to
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Figure 4.1: CNN architecture of C-SilkNet. An input image x of a size of 224 by 224 pixels is presented to

a ResNet-152 (He et al., 2016b), resulting in a feature vector fRN (x). After being processed by

a ReLu activation and the application of a dropout layer, fRN (x) is mapped to an application-

specific representation fjfc(x) by a sub-network joint fc that is shared between all tasks to be

learned. The sub-network consists of NLjfc fully connected layers with [NN1
jfc, ..., NN

NLjfc

jfc ]

nodes, respectively. The resulting vector fjfc(x) is processed by a ReLU activation and afterwards

presented to a classification head consisting of M branches, each corresponding to one of the M

classification tasks to be learned. All branches consist ofNLtfc task-specific fully connected layers

fc-tm with [NN1
tfc, ..., NN

NLtfc

tfc ] nodes, respectively, each with a ReLU activation. Finally, each

branch has a layer fc-cm with as many nodes as there are classes for the mth task, e.g. classes

for the place of origin, delivering normalized class scores ymk(x) for every class k = 1, ...,Km

using a softmax layer.

be distinguished for the mth task, delivering unnormalized class scores amk(x). The weight vector

wclass := [wT
fc−tm ,w

T
fc−cm ]T denotes all weights in the classification head, where wfc−tm denotes

the weights in the layers fc-tm, while wfc−cm are the weights of the layers fc-cm. All M classi-

fication layers have a softmax activation (section 2.1.1.6, eq. 2.9) delivering the normalized class

scores ymk(x)

ymk (x,w) =
exp (amk (x,w))∑Km
j=1 exp (amj (x,w))

, (4.1)

which can be interpreted as posterior probabilities P (Cmk|x,w) given the network parameters

w := [wT
RN ,w

T
jfc,w

T
class]

T ; i.e., it is the network’s belief that the input image x belongs to the kth

class Cmk of the mth variable. Due to the flexibility of both, the sub-network joint fc as well as the

M task-specific classification branches, C-SilkNet can be adapted to different datasets depending

on the required network capacity for the respective classification tasks to be learned.

The following hyperparameters have to be selected for C-SilkNet :

• dropout rate ρdrop of the dropout layer in the feature extraction part (Figure 4.1),

• number of shared layers NLjfc and numbers of nodes [NN1
jfc, ..., NN

NLjfc

jfc ] of these layers,

• number of task-specific layers NLtfc and numbers of nodes [NN1
tfc, ..., NN

NLtfc

tfc ] of these

layers,

• number of classes Km for each of the m variables, which depends on the dataset,

• number of variables M .
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4.1.2 Training

The CNN C-SilkNet depicted in Figure 4.1 is trained by minimizing a loss function L (x,w) based

on a set of training samples x. The proposed CNN has two sets of parameters from the perspective

of training: the weights wRN of the ResNet-152 and the remaining weights whead := [wT
jfc,w

T
class]

T

of the additional layers. The weights wRN are initialized by pre-trained weights obtained on the

ILSVRC-2012-CLS dataset (Russakovsky et al., 2015) (ImageNet), whereas the weights whead of

the additional layers of the CNN are initialized randomly using variance scaling (He et al., 2015)

(section 2.2.1, eq. 2.14). As it is expected that silk fabrics or other objects in the context of cultural

heritage belong to another domain than objects depicted in the ImageNet dataset, the last NBRN

residual blocks are potentially fine-tuned (Yosinski et al., 2014). Denoting the parameters of the

frozen ResNet layers by wRNfr
and those of the fine-tuned ResNet layers by wRNft

, the parameters

to be determined in training are wtr = [wT
RNft

,wT
head]

T . Note that the entire parameter vector w

can thus also be represented by w = [wT
RNfr

,wT
tr]
T = [wT

RNfr
,wT

RNft
,wT

jfc,w
T
class]

T .

Training is based on a set of training samples x that consist of images with semantic annotations

for at least one of the M variables. During training, the respective loss function is minimized using

mini-batch stochastic gradient descent (Bishop, 2006) with adaptive moments, i.e. Adam (Kingma

and Ba, 2015) (section 2.2.4.2). In each training iteration, only a mini-batch xMB ⊂ x consisting

of NMB training samples is considered, and only the loss LC
(
xMB,w

)
achieved for the current

mini-batch is used to update the parameters wtr. Training is conducted using early stopping, i.e.

the training procedure is terminated when the validation loss, denoting the loss produced on an

independent validation set using the current network parametrization, is saturated.

Depending on the number of tasks M , training C-SilkNet involves MTL, (i.e. for M > 1) but

is considered to perform STL for M = 1. In the following subsections, loss functions for both

scenarios will be presented; subsection 4.1.2.1 addresses MTL training objectives and subsection

4.1.3 focuses on the scenario of STL, being a special case of MTL from a mathematical point of

view.

4.1.2.1 Multi-task learning with completely and incompletely labelled training data

In order to train C-SilkNet, a loss function has to be defined describing the dependency of the

normalized class scores ymk(x) (eq. 4.1) on the network parameters w as well as the input data

such that the loss function becomes minimal if the score ymk(x) for the correct class Cmk becomes

as large as possible (section 2.2). The input data consists of NMB images xi ∈ xMB, i.e. all images

in a mini-batch, and known class labels represented by the indicator variables timk with timk = 1

in case the kth class of the mth task refers to the ith image xi and timk = 0 in all other cases. In

a first step, the images are assumed to be completely labelled, i.e. each image xi is assumed to

be assigned to exactly one of the Km classes of the mth variable. Thus, focusing on multi-class

classification, the constraint

Km∑
k=1

timk = 1∀ (i,m), i = 1, ..., NMB, m = 1, ...,M (4.2)
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holds for completely labelled images. In this variant, assuming completely labelled samples, the

softmax cross-entropy (eq. 2.17) for MTL can be formulated as

Lmtl,c
(
xMB,w

)
= − 1

M ·NMB

NMB∑
i=1

M∑
m=1

Km∑
k=1

timk · ln (ymk (xi,w)) , (4.3)

leading to the following classification loss under consideration of weight decay

Lmtl,c,r
(
xMB,w

)
= − 1

M ·NMB

NMB∑
i=1

M∑
m=1

Km∑
k=1

timk · ln (ymk (xi,w)) + Lwd (wtr) . (4.4)

In contrast to the softmax-cross entropy in equation 2.17, in equations 4.3 and 4.4, the loss terms

are summed over all M tasks to be learned in addition to summing over all NMB samples in a

mini-batch and all Km classes of a task. The loss in equation 4.4 is normalized by the number

of cross-entropy terms contributing to the parameter update, i.e. by the number of terms with

timk 6= 0 (M ·NMB). Lwd (wtr) denotes a weight decay term as introduced in equation 2.21, where

the parameter λL2 contained in Lwd (wtr) is a hyperparameter to be tuned. Applying the loss

function in equation 4.4, all images in a training dataset have to come along with a class label for

all M tasks. In this scenario, it is common to sum up all M task-specific losses to obtain a multi-

task loss, e.g. (Strezoski and Worring, 2017; Vandenhende et al., 2021; Zhang and Yang, 2021; Yang

et al., 2022). However, in real-world datasets, class labels for some of the tasks may be missing.

Thus, strategies for training with incompletely labelled training samples must be developed. The

strategies proposed in this thesis are described in the subsequent sections.

4.1.2.1.1 Multi-task learning with missing class labels: Allowing for incompletely labelled

training samples in the training procedure, the loss function in equation 4.4 has to be adapted. A

possible solution is an extension of the softmax-cross entropy for multi-task learning with missing

annotations for M variables as proposed in (Dorozynski et al., 2019a). Defining M to be the set

of all considered tasks, i.e. M:= {1, ...,m, ...,M}, the set of tasks with a known class label for

an image xi can be defined as Mav
i ⊆M. Thus, the loss function in equation 4.3 formulated for

incompletely labelled training examples becomes

Lmtl,i(xMB,w) = − 1

NMB
M

NMB∑
i=1

∑
m∈Mav

i

Km∑
k=1

timk · ln (ymk (xi,w)) , (4.5)

leading to the following classification loss under consideration of an L2-regularization term

Lwd (wtr) (see equtaion 2.21):

Lmtl,i,r(xMB,w) = − 1

NMB
M

NMB∑
i=1

∑
m∈Mav

i

Km∑
k=1

timk · ln (ymk (xi,w)) + Lwd (wtr) . (4.6)

In equations 4.5 and 4.6, the second sum is only taken over variables m ∈ Mav
i so that the loss is

exclusively calculated for tasks m ∈ Mav
i that come along with a known class label for an image

xi. This is equivalent to setting the loss to zero for all tasks m ∈M\Mav
i that do not come along

with a reference for xi, being a consequence of timk = 0∀ k for a certain i ∈ {1, ..., NMB} with

m ∈ M \Mav
i . This implies that the constraint formulated in equation 4.2 does no longer hold
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and becomes
∑Km

k=1 timk ≤ 1 ∀ (i,m), because the sum is zero for all tasks with a missing label for

the ith sample, i.e.
∑Km

k=1 timk = 0 ∀(i,m) with m ∈ M \Mav
i , and the sum is only one for tasks

with a known label for the ith sample, i.e.
∑Km

k=1 timk = 1∀(i,m) with m ∈Mav
i . Thus, the weights

wclass of a task m are exclusively updated based on the losses produced by images xi ∈ xMB

with a known label for that task, while the weights wtr \wclass are influenced by all losses of all

respective tasks Mav
i produced by images xi ∈ xMB. Furthermore, the losses in equations 4.5

and 4.6 are normalized by the number of non-zero cross-entropy terms, as in equation 4.4. Note

that the loss in equation 4.4 is a special case of the loss in equation 4.6; the losses are identical for

Mav
i =M∀ i. NMB

M is the total number of available annotations for all M variables in a mini-batch

xMB, i.e. NMB
M :=

∑NMB

i=1

∑
m∈Mav

i

∑Km
k=1 timk ≤M ·NMB. Thus, compared to equation 4.4, there

is potentially a lower number of than M ·NMB non-zero terms in the sum in equations 4.5 and 4.6.

In this way, MTL is enabled on an incompletely labelled dataset using the loss in equation 4.6

for training C-SilkNet (Figure 4.1) in contrast to existing MTL approaches requiring completely

labelled data, e.g. (Strezoski and Worring, 2017; Vandenhende et al., 2021; Zhang and Yang, 2021;

Yang et al., 2022). As the weights wtr \wclass are exclusively updated by the task-specific losses of

the tasksMav
i given an image xi, the final values of those weights might be biased by tasks m ∈M

that occur very frequently in the set of available tasksMav
i , i.e. tasks for which many annotations

are available for training. Accordingly, the joint representation fjfc(x) (Figure 4.1) might be less

representative for tasks with a lower number of known training labels. At test time, this could

potentially lead to a superior performance of the classifier in correctly predicting the classes of

tasks with many known training labels, while the classifier might performs poorly on the other

tasks. An alternative is STL, i.e. learning M independent classifiers with a single task-specific

branch as a classification head, where wtr \wclass is influenced by the losses belonging to a single

task and thus, by definition cannot be biased by any task except for the task of interest that is

learned. Nevertheless, training M independent classifiers comes at the cost of having more weights

to be determined during training in total, i.e. instead of having one set of the weights wtr \wclass

as in a MTL classification network, there are M such sets. Moreover, interdependencies between

the tasks to be learned cannot be exploited in STL, which is especially of interest in case of limited

training data, because implicitly learning interdependencies adds implicit constraints to training

using MTL (Caruana, 1993). In general, MTL requires one label per task to be learned for training.

A drawback of MTL using limited training data with missing labels could be that interdependencies

between the M tasks to be learned might not be fully exploited. This could either be caused by

the set of images in the dataset, because the set of depicted objects might not be representative,

which would also be problematic for MTL with completely labelled training data. It could also be

caused by missing information about the labels, avoiding that co-occurrences of classes of two or

more tasks are represented by the data. In the latter case, focusing on completely labelled training

samples could be an option, but this is likely to come at the cost of having to exclude classes,

because some classes might only be represented by incomplete samples. The presented training

approach based on the loss in equation 4.6 aims to exploit data inherent knowledge as much as

possible utilizing MTL, while considering class structures as fine-grained as possible by allowing

for incomplete training samples.
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In equation 4.6, all loss terms corresponding to known classes k ∈ {1, ...,Km} of a task m

have the same impact on the total classification loss Lmtl,i. In case of class imbalance in the

training data, it has been shown that the resulting classifiers tend to show a weak performance in

correctly predicting the labels of examples from classes with a lower number of training samples,

e.g. (Krawczyk, 2016; Johnson and Khoshgoftaar, 2019; Sridhar and Kalaivani, 2021). This could

also be observed in preliminary work dealing with the classification of images of artifacts such as silk

fabrics (Dorozynski et al., 2019a; Dorozysnki et al., 2021; Dorozynski and Rottensteiner, 2022a).

Accordingly, a training strategy aiming to handle class-imbalanced data with incomplete labels is

proposed in the subsequent section.

4.1.2.1.2 Focal multi-task learning with missing class labels: In order to mitigate prob-

lems with underrepresented classes, the loss in equation 4.6 can be expanded by a variant of the

focal loss (Lin et al., 2017) (section 2.2.2.1, eq. 2.16). An alternative to adapting the training strat-

egy to address class imbalance, as proposed in this thesis, would be to artificially adapt the training

class distribution in order to focus on underrepresented classes during training, e.g. (Chawla et al.,

2002; Pouyanfar et al., 2018) dealing with STL. However, such approaches could not be transferred

to MTL in a perfect way, because modifying the class distribution of one task automatically affects

the distributions of all other tasks. Thus, it was decided to modify the training objective, such

that underrepresented classes have a higher impact on the weight update in training. Whereas the

variant of the focal loss presented in (Liu et al., 2018b; Yang et al., 2019) (section 2.2.2.1, eq. 2.18)

focuses on training examples with a low probability for the correct class in multi-class classification

problems of a single task, a combination of the multi-class focal loss in (Liu et al., 2018b; Yang

et al., 2019) and the multi-task loss in equation 4.6 leads to a multi-task multi-class focal loss

for incompletely labelled training samples (Dorozysnki et al., 2021; Dorozynski and Rottensteiner,

2022a)

Lfocalmtl,i (x
MB,w) = − 1

NMB
M

NMB
M∑
i=1

∑
m∈Mav

i

Km∑
k=1

(1− ymk (xi,w))γ · timk · ln (ymk (xi,w)) , (4.7)

leading to the following focal classification loss under consideration of an L2-regularization term

Lwd (wtr) according to equation 2.21:

Lfocalmtl,i,r(x
MB,w) = − 1

NMB
M

NMB
M∑
i=1

∑
m∈Mav

i

Km∑
k=1

(1− ymk (xi,w))γ · timk · ln (ymk (xi,w)) + Lwd (wtr) .

(4.8)

In equations 4.7 and 4.8, the focusing parameter γ controls the influence of the focal weight (1 −
ymk (xi,w)) ∈ [0, 1] on the loss Lfocalmtl,i (x

MB,w). As the focal weight becomes 1 for ymk (xi,w)→ 0

and the focal weight becomes 0 for ymk (xi,w)→ 1, the loss Lfocalmtl,i (x
MB,w) depends more strongly

on xi ∈ xMB with smaller softmax scores ymk (xi,w) for the correct class. Thus, the network

weights wtr are influenced more strongly by ”hard” training examples, indicated by smaller values

of ymk (xi,w) for the correct class (tnmk = 1) when minimizing Lfocalmtl,i (x
MB,w).

Assuming class imbalance for the class distribution of at least one of the M variables, the focal

loss Lfocalmtl,i (x
MB,w) in equation 4.8 is supposed to improve the classification performance for under-
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represented classes, because the class scores of such classes are generally low. In case of reference

labels without any errors, it is likely that samples belonging to underrepresented classes indeed

obtain low values for the class scores ymk (xi,w) for the correct class, while well represented classes

are likely to have high values for the scores after some training epochs, i.e. after the whole training

set was presented to the network a few times and the weights were updated accordingly. Low

scores for the correct class for samples belonging to minority classes are caused by a low impact

of such samples’ losses on the total loss, on the one hand, because most of the loss terms refer

to samples belonging to dominant classes. This is the scenario in which utilizing Lfocalmtl,i (x
MB,w)

for training should mitigate problems with underrepresented classes. On the other hand, if only a

low number of examples represents a class, it is likely that not all characteristics of such a class

are represented by the data, which would also lead to lower class scores for the correct class. In

this scenario, Lfocalmtl,i (x
MB,w) might still partly improve the classification performance, but in gen-

eral, a more representative dataset would be required for any kind of training strategy in order

to train a powerful classifier. As the loss in equation 4.8 focuses on all samples obtaining a low

softmax activation ymk (xi,w) for the correct class during training, errors in the labelling would

lead to a focus on samples with a wrong class label in addition to a focus on samples belonging

to underrepresented classes. Assuming that there are none or only a low number of samples with

wrong class labels and, in particular, a representative set of training samples for all of the classes,

the multi-task focal loss for incompletely labelled training data in equation 4.8 should improve the

classifier’s performance for underrepresented classes. Finally, in contrast to techniques adapting

the training class distribution, an advantage of the proposed MTL loss is that focusing on a specific

class of one task does not automatically affect the focus in another task due to the task-specific

loss terms, i.e. due to using one term per task m ∈Mav
i .

4.1.3 Single-task learning

As already stated in the introduction of section 4.1, learning one classifier per classification task

(STL) also allows to deal with incompletely labelled datasets, while considering all existing classes.

As only one task is considered during training such a task-specific CNN-based classifier, missing

class labels for other tasks are irrelevant. In general, STL can be regarded as a special case of MTL.

Thus, to be consistent with the notations introduced in section 4.1.2.1.1, the set of classes with a

known class label Mav
i is equal to the set of considered tasks M for all training samples xi in a

training batch xMB, because by definition xMB consists only of images with a known class label

for the task to be learned in the frame of STL. In particular, one has |M| = 1 in a STL scenario.

The network architecture of a CNN for predicting the classes of a single task is equal to the

architecture of the MTL CNN presented in Figure 4.1 in section 4.1.1, where STL is the special

case of MTL with M = 1 task. Accordingly, the representation fjfc(x) of an input image x is

presented to exactly one subsequent classification branch fc-t1. Consequently, the output of such a

STL CNN are the softmax scores {y1k(x)}Kk=1, which can be simplified to {y1k(x)}Kk=1 = {yk(x)}Kk=1

without loss of generality, i.e. the task index (m = 1) is omitted.

Just as the network architecture for the STL CNN is considered to be a special case of the MTL

CNN architecture, the loss functions for STL are also special cases of the MTL losses introduced in
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section 4.1.2.1. The loss based on the multi-task softmax cross-entropy (eq. 4.5) in equation 4.6,

i.e. the generalized training loss with equally weighted training samples and an L2-regularization,

becomes

Lstl(xMB,w) = − 1

NMB
M

NMB
M∑
i=1

∑
m∈Mav

i

Km∑
k=1

timk · ln (ymk (xi,w)) + Lwd (wtr)

Mav
i =M
= − 1

M ·NMB

NMB∑
i=1

∑
m∈M

Km∑
k=1

timk · ln (ymk (xi,w)) + Lwd (wtr)

|M|=1
= − 1

1 ·NMB

NMB∑
i=1

K1∑
k=1

ti1k · ln (y1k (xi,w)) + Lwd (wtr)

y1k=yk,ti1k=tik= − 1

NMB

NMB∑
i=1

K∑
k=1

tik · ln (yk (xi,w)) + Lwd (wtr) .

(4.9)

Analogously to setting {y1k(x)}Kk=1 = {yk(x)}Kk=1, ti1k can be simplified to tik for M = 1 task.

Note that the STL loss term corresponding to the softmax cross-entropy loss in equation 4.9 is

equivalent to the standard softmax cross-entropy in equation 2.17 introduced in section 2.2.2.1.

Similarly, the MTL focal loss (eq. 4.7) for incompletely labelled training samples (equation

4.8) is also valid for STL, which is again the special case with M = 1 task. Analogously to the

reformulation of the MTL loss for STL in equation 4.9, the loss in equation 4.8 becomes

Lfocalstl (xMB,w) = − 1

NMB

NMB∑
i=1

K∑
k=1

(1− yk (xi,w))γ · tik · ln (yk (xi,w)) + Lwd (wtr) . (4.10)

The loss in equation 4.10 is equivalent to the standard multi-class focal loss in equation 2.18

introduced in section 2.2.2.1 with an additional regularization term Lwd (wtr).

4.2 Image retrieval

The goal of the method proposed in this section is allowing for image retrieval based on descriptors

that can serve as an index to a database. The result of retrieval consists of the set of k images in

a database having the most similar descriptors to the descriptor of a query image. The approach

for learning descriptors presented in this work requires a set of images with known annotations for

an arbitrary set of semantic variables. These annotations may be incomplete, i.e. annotations for

some variables may be missing for some samples. The method is based on a CNN that takes an

RGB image as an input and generates the required descriptor. In the training process, it learns

to generate descriptors the pairwise Euclidean distances of which implicitly provide information

about the degree of similarity of input image pairs, where the Euclidean distance is used to measure

similarity in feature space. In this context, the focus is on combining different concepts of similarity,

i.e. visually motivated concepts of similarity as well as a concept of semantic similarity. As shown in

(Schleider et al., 2021; Dorozynski and Rottensteiner, 2022b), visual similarity aspects can improve

learning semantic similarity considering object properties (semantic variables) with imbalanced

class distributions, so a combination of semantic and visual concepts of similarity is also considered
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here, but in a slightly modified form compared to (Schleider et al., 2021). A huge advantage of

the proposed method is that it does not require manually labelled training samples in the form of

pairs of images with assigned similarity status. Commonly, descriptor learning methods require a

binary reference label per image pair, indicating whether two images are considered to be similar

or not, e.g. (Hadsell et al., 2006; Wang et al., 2014; Qi et al., 2016). In this thesis, a gradual

concept of semantic similarity is developed that allows for deriving the similarity status of images

from available data in a database, e.g. class labels describing properties of a depicted object.

Furthermore, two concepts of visual similarity are developed: one requires exclusively the images

themselves to derive a fine-grained similarity status; the other one also operates on the basis of

image data and potentially considers the knowledge whether two images depict the same object, if

this information is available. Thus, training data can be derived automatically from a database of

annotated images.

The remainder of this section starts with a detailed description of the proposed CNN architecture

in section 4.2.1. In section 4.2.2, the training procedure as well as the loss function proposed to

train the CNN are introduced. Furthermore, section 4.2.2 contains the similarity concepts for the

automatic generation of training data as well as a detailed description of the integration of these

similarity concepts into the image retrieval training loss.

4.2.1 Network architecture (R-SilkNet)

The main objective of the proposed CNN is to map an input image x to an image descriptor f(x)

to be used for image retrieval. For that purpose, the network architecture presented in Figure 4.2

is proposed, referred to as R-SilkNet. It consists of a feature extraction part delivering features

fjfc(x) and an image retrieval head delivering the actual descriptor f(x), where the term retrieval

head is introduced for clarity in subsequent sections.

Similarly to the classification network C-SilkNet (Figure 4.1), first of all x is presented to a

generic feature extractor in the form of a ResNet-152 (He et al., 2016b) (section 2.1.2.1) backbone

without the classification layer. It takes an RGB image x of a size of 224 by 224 pixels and cal-

culates a 2048-dimensional feature vector fRN (x,wRN ), where wRN denotes a vector containing

all weights and biases of the ResNet-152. Just as in the context of heritage-related image clas-

sification, heritage-related image retrieval networks also frequently rely on residual networks for

feature extraction, e.g. (Stefanini et al., 2019; Garcia et al., 2020). The ResNet output fRN (x) is

the argument of a ReLU nonlinearity (Nair and Hinton, 2010)) (section 2.1.1.4, eq. 2.7) and after-

wards, dropout (Srivastava et al., 2014) (section 2.1.1.4) with a probability ρdrop is applied to allow

for learning a more general representation from the features fRN (x) provided by the potentially

fully pre-trained ResNet. This is followed by NLjfc fully connected layers (joint fc in Figure 4.2),

consisting of [NN1
jfc, ..., NN

NLjfc

jfc ] nodes, respectively, where the number of layers and nodes can

be selected depending on the requirements of the dataset to which R-SilkNet is applied. Thus, the

generic features fRN (x) are mapped to an application-specific representation fjfc(x,wRN ,wjfc).

All weights and biases of that sub-network are contained in a weight vector wjfc. The image

retrieval head consists of a simple normalization of the feature vector fjfc(x,wRN ,wjfc) to unit

length and does not require any further network weights. In the remainder of this thesis, the
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Figure 4.2: CNN architecture of R-SilkNet. An input image x of a size of 224 by 224 pixels is presented

to a ResNet-152 (He et al., 2016b), resulting in a feature vector fRN (x). After being processed

by a ReLu activation, fRN (x) is mapped to an application-specific representation fjfc(x) by a

sub-network joint fc, applying dropout in its first layer. The sub-network consists of NLjfc fully

connected layers with [NN1
jfc, ..., NN

NLjfc

jfc ] nodes, respectively. The resulting vector fjfc(x) is

presented to a normalization layer that normalizes fjfc(x) to unit length, resulting in a feature

vector f(x) with ‖f(x)‖ = 1.

shorthand wdescr := [wT
RN ,w

T
jfc]

T is used to denote all the weights that have an influence on the

descriptor. The result of normalization is the image descriptor f(x,wdescr) =: f(x) to be used for

image retrieval. Due to normalization, the Euclidean distances between feature vectors f(x) are in

the range of [0, 2], which will become relevant in the formulation of the loss for descriptor learning.

The following hyperparameters have to be selected for R-SilkNet :

• dropout rate ρdrop of the dropout layer in the feature extraction part (Figure 4.2),

• number of shared layers NLjfc and the corresponding numbers of nodes [NN1
jfc, ..., NN

NLjfc

jfc ]

of these layers.

4.2.2 Training

Training of the CNN R-SilkNet depicted in Figure 4.2 is achieved by minimizing a loss function

L (x,w) based on a set of training samples x. The proposed CNN has two sets of parameters from

the perspective of training: the weights wRN of the ResNet-152 and the remaining weights wjfc

of the additional layers. The weights wRN are initialized by pre-trained weights obtained on the

ILSVRC-2012-CLS dataset (Russakovsky et al., 2015) (ImageNet), whereas the weights wjfc of

the additional layers of the CNN are initialized randomly using variance scaling (He et al., 2015)

(section 2.2.1, eq. 2.14). As it is expected that silk fabrics or other objects in the context of cultural

heritage belong to another domain than objects depicted in the ImageNet dataset, the last NBRN

residual blocks can be fine-tuned (Yosinski et al., 2014). The number NBRN of residual blocks

to be fine-tuned depends on the training dataset; on the one hand, the more dissimilar a dataset

is from the ImageNet dataset from a semantic point of view, the more residual blocks need to be

adapted. On the other hand, the smaller a dataset the more weights might be frozen to reduce

the number of weights to be determined during training. Denoting the parameters of the frozen

ResNet layers by wRNfr
and those of the fine-tuned ResNet layers by wRNft

, the parameters to be

determined in training are wtr = [wT
RNft

,wT
jfc]

T . Note that the entire parameter vector can thus

also be represented by w = [wT
RNfr

,wT
tr]
T = [wT

RNfr
,wT

RNft
,wT

jfc]
T .
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As for training of C-SilkNet, training is based on a set of training samples x that consist of

images with semantic annotations for at least one of a set of M semantic variables, grouped into

image triplets (see section 4.2.2.1 for details) and image pairs (see sections 4.2.2.2 and 4.2.2.3 for

details). In contrast to the training of C-SilkNet, semantic annotations are not directly inserted

into the training procedure of R-SilkNet as reference labels, but they are required for the generation

of matching and non-matching image pairs. In addition, the information that two or more images

show the same object can optionally be considered in training if multiple images of the same

object are available; for instance, the images can be exported from a database containing records

about objects that are associated with multiple images (Schleider et al., 2021; Dorozynski and

Rottensteiner, 2022b). Training is based on stochastic mini-batch gradient descent with adaptive

moments, i.e. Adam (Kingma and Ba, 2015) (section 2.2.4.2). In each training iteration, only a

mini-batch xMB ⊂ x consisting ofNMB training samples is considered and only the loss L
(
xMB,w

)
achieved for the current mini-batch is used to update the parameters wtr. Training is conducted

using early stopping, i.e. the training procedure is terminated when the validation loss is saturated.

The goal of training R-SilkNet by minimizing the image retrieval loss is adapting the learnable

parameters wtr to produce descriptors such that for any pair of images xi, xo, the Euclidean distance

∆n
i,o,w of the corresponding descriptors f(xi,w) and f(xo,w) reflects the degree of similarity of the

two images, where

∆n
i,o,w = ||f(xi,w)− f(xo,w)||2. (4.11)

In equation 4.11, n is an index of a pair xi, xo that will be defined differently for different similarity

loss functions. The proposed image retrieval loss function consisting of three similarity loss terms

Lsem
(
tMB,w

)
,Lco

(
pMB
co ,w

)
,Lslf

(
pMB
slf ,w

)
is

LR
(
xMB,w

)
= αsem · Lsem

(
tMB,w

)
+ αco · Lco

(
pMB
co ,w

)
+ αslf · Lslf

(
pMB
slf ,w

)
, (4.12)

where the actual retrieval loss additionally considers an L2-regularization term Lwd (wtr) containing

the weight λL2 (eq. 2.21):

LR,r
(
xMB,w

)
= αsem · Lsem

(
tMB,w

)
+ αco · Lco

(
pMB
co ,w

)
+ αslf · Lslf

(
pMB
slf ,w

)
+ Lwd (wtr) .

(4.13)

Each of the three similarity terms in equation 4.13 corresponds to a specific concept of similarity

and requires a specific type of training samples generated from the images of the mini-batch xMB.

The loss term Lsem
(
tMB,w

)
, requiring a set tMB of NMB

t triplets of training images from xMB,

integrates semantic similarity into network training. The second term, Lco
(
pMB
co ,w

)
, considers

colour similarity. It requires a set pMB
co of NMB

co pairs of training images from xMB. Finally,

Lslf
(
pMB
slf ,w

)
realises learning self-similarity and requires a set pMB

slf of NMB
slf pairs consisting of

different images of the same object extracted from xMB. The impact of the individual similarity

loss terms on LR
(
xMB,w

)
is controlled by the weights αsem, αco, and αslf , whereas the impact of

the L2-regularization term is controlled via λL2 (see equation 2.21). Due to differentiating between

three different concepts of similarity, i.e. one semantic concept and two visually motivated concepts,

different variants of image similarity can be learned for image retrieval: In case of αsem = 1 and

αco = αslf = 0, respectively, the descriptors are forced to represent semantic similarity only, whereas

αsem = 0 and αco = αslf = 1, respectively, is expected to result in descriptors the distances of
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which represent visual similarity. Depending on the requirements of the image retrieval application,

it can also be of interest to equally consider all concepts of similarity for descriptor learning, i.e.

αsem = αco = αslf > 0. This is especially meaningful under the assumption that learning of visual

similarity supports learning of semantic similarity, which might be the case for a visually similar

manifestation of the considered semantic properties of the depicted objects.

Subsections 4.2.2.1-4.2.2.3 contain detailed descriptions of all three similarity concepts as well as

their integration into losses, in the order in which they occur in equation 4.13.

4.2.2.1 Semantic similarity loss

The goal of the semantic similarity loss is to learn the CNN parameters such that the resulting

descriptors reflect the semantic similarity of the respective images. For that purpose, a concept of

semantic similarity exploiting the class labels of M semantic variables is required. The degree of

equivalence of the class labels of M variables assigned to an image pair (xi, xo) can be measured

by means of the semantic similarity Ysem (xi, xo) (Clermont et al., 2020; Schleider et al., 2021;

Dorozynski and Rottensteiner, 2022b):

Ysem (xi, xo) =
1

M
·
M∑
m=1

dm (xi, xo) · πim · πom. (4.14)

In equation 4.14, πqm with q ∈ {i, o} denotes whether the class label of the mth variable is known

for the image with index q (πqm = 1) or not (πqm = 0). The actual comparison of the Km class

labels of the mth variable is realized by the function

dm (xi, xo) =

Km∑
k=1

δ(lmk(xi) = lmk(xo) = 1), (4.15)

where lm(xq) := [lm1(xq), ..., lmk(xq), ..., lmKm(xq)]
T is a vector indicating the class label for the

mth variable that is assigned to xq, with q ∈ {i, o}. If the kth class of the mth variable is assigned to

the image xq, the the kth entry lmk(xq) of the indicator vector lm(xq) is 1, otherwise lmk(xq) = 0.

The Kronecker delta function δ(·) returns 1 in case the kth class label is assigned to both xi and

xo and it returns 0 in all other cases. Thus, dm (xi, xo) counts the number of equivalent known

class labels for the mth variable assigned to the two images xi, xo, where dm (xi, xo) ∈ {0, 1} in a

multi-class classification problem. The formalization of dm (xi, xo) implies that the label for the

mth variable may be unknown either for xi or for xo or for both of them, i.e. lmk(xq) = 0∀ k for

q = i, q = o or q ∈ {i, o}, respectively, resulting in dm (xi, xo) = 0.

Thus, if annotations for all variables are known, all values of πqm (eq. 4.14) will be 1, and

consequently, Ysem (xi, xo) will correspond to the percentage of identical annotations for the two

images: Ysem (xi, xo) ∈ [0, 1] with Ysem (xi, xo) = 0 for no agreement in the annotations, i.e.

dm (xi, xo) = 0∀m, and Ysem (xi, xo) = 1 for 100% of identical annotations, i.e. dm (xi, xo) = 1 ∀m.

If annotations are unknown for at least one of the images xi, xo of at least one of the M variables,

Ysem (xi, xo) < 1 even in case all known labels of the two images are equivalent. Consequently, an
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uncertainty u (xi, xo) about the equivalence of the class labels of the M variables depending on the

percentage of variables for which either xi or xo has no annotation is introduced:

u (xi, xo) = 1− 1

M
·
M∑
m=1

πim · πom. (4.16)

The uncertainty u (xi, xo) ∈ {0, 1} is zero if all annotations are available for the two images xi, xo,

and u (xi, xo) = 0 in case no annotation for any of the M tasks can be compared, i.e. πqm = 0∀m
for q = i, q = o or q ∈ {i, o}, respectively, resulting in πim · πom = 0∀m.

The goal of the semantic similarity loss is to learn the CNN parameters w such that the semantic

similarity Ysem(xi, xo) of the image pair (xi, xo) defined in equation 4.14 is reflected by the descriptor

similarity ∆i,o,w in equation 4.11. For that purpose, the triplet loss (Schroff et al., 2015) (eq. 2.20)

considering a binary similarity status of exactly one variable has to be adapted, such that the

gradual similarity status relying on multiple semantic variables Ysem(xi, xo) is considered. This

results in the proposed semantic similarity loss (Schleider et al., 2021; Dorozynski and Rottensteiner,

2022b):

Lsem(tMB,w) =
1

NMB
t

·
NMB

t∑
nt=1

max
(
M(xnt

i , x
nt
p , x

nt
n ) + ∆nt

i,p,w −∆nt
i,n,w, 0

)
. (4.17)

The loss function in equation 4.17 requires triplets tnt := (xnt
i , x

nt
p , x

nt
n ) with tnt ∈ tMB, where nt

is an index for the ntht triplet tnt in a mini-batch of triplets tMB. Each triplet tnt consists of an

anchor sample xnt
i ∈ xMB, a positive sample xnt

p ∈ xMB and a negative sample xnt
n ∈ xMB, where

xnt
p is defined to be a sample that is more semantically similar to the anchor sample than xnt

n in

terms of the margin constraint described below. In contrast, a binary similarity concept of a single

property is considered in (Schroff et al., 2015) for defining a triplet. The loss in equation 4.17 forces

f(xnt
p ) to have a Euclidean distance from f(xnt

i ) that is smaller than the distance of f(xnt
n ) from

f(xnt
i ) by at least a margin M(xnt

i , x
nt
p , x

nt
n ):

M
(
xnt
i , x

nt
p , x

nt
n

)
= Ysem(xnt

i , x
nt
p )− (Ysem(xnt

i , x
nt
n ) + u(xnt

i , x
nt
n ))

!
> 0. (4.18)

In equation 4.18, u(xnt
i , x

nt
n ) represents the uncertainty of the similarity status of the pair (xnt

i , x
nt
n )

according to equation 4.16. Thus, the term Ysem(xnt
i , x

nt
n ) + u(xnt

i , x
nt
n ) can be interpreted as the

maximum possible positive semantic similarity of xi, xn (i.e., assuming all missing annotations

were identical), and the margin becomes the difference between the similarity Ysem(xnt
i , x

nt
p ) of

the anchor and the positive sample and the maximum possible positive similarity of the anchor

and the negative sample. Accordingly, M
(
xnt
i , x

nt
p , x

nt
n

)
can be interpreted as the guaranteed

difference in semantic similarity between the image pairs (xti, x
t
p) and (xti, x

t
n). The constraint

M
(
xnt
i , x

nt
p , x

nt
n

) !
> 0 expressed in equation 4.18 is considered in the definition of the set of triplets

considered in this loss: only triplets of images fulfilling that constraint are eligible for contributing

to this loss (cf. section 4.4).

In contrast to Schroff et al. (2015) (2015), utilizing a tuned margin that is fixed during the

whole training procedure, the margin M
(
xnt
i , x

nt
p , x

nt
n

)
is data-dependent, i.e. it depends on the

annotations of the current triplet tnt = (xnt
i , x

nt
p , x

nt
n ), and needs not to be tuned. Furthermore,

the margin allows for fine-grained differences in Euclidean distances ∆nt
i,p,w − ∆nt

i,n,w according to
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the gradual concept of semantic similarity defined above; the concept of similarity in (Schroff et

al., 2015) is defined in a binary way. In (Zhao et al., 2015; Wu et al., 2017), gradual concepts of

similarity are proposed, but similarity either does not affect the margin at all (Zhao et al., 2015)

or it is used to scale the margin so that the need for tuning a margin hyperparameter remains.

In (Zhang et al., 2019b) a gradual concept of similarity is used to force descriptor distances to be

proportional to the degree of similarity without the need to tune a margin. However, Zhao et al.

(2015), Wu et al. (2017) and Zhang et al. (2019b) aim to learn binary hash-codes, whereas real-

values descriptors are learned in this thesis. Furthermore, the three works exploit a single semantic

aspect for defining similarity, i.e. they deal with multi-label annotations describing whether an

object is contained in a depicted scene or not, whereas M different semantic aspects are considered

in the semantic similarity in equation 4.14. Note that the proposed concept of semantic similarity

can easily be expanded to consider M multi-label annotations by normalizing the function in

equation 4.15 by the number of labels per image, such that dm(xi, xo) is in the range of [0, 1]

instead of dm(xi, xo) ∈ {0, 1}. Finally, the concept of semantic similarity developed in this thesis is

the only one allowing for an incomplete labelling, which is a huge advantage for dealing with real-

world datasets, such as many digital cultural heritage related collections. To sum up, the proposed

semantic similarity loss considers a gradual concept of similarity allowing for missing annotations

to learn fine-grained image representations, the Euclidean distances of which are forced to reflect

similarity, without having to tune a margin parameter.

4.2.2.2 Colour similarity loss

The goal of the colour similarity loss is to learn the CNN parameters such that the resulting

descriptors are similar for images with a similar colour distribution and dissimilar for images with

a different colour distribution. The agreement between the colour distributions of two images xi

and xo, denoted as colour similarity, can be calculated by means of the normalized cross correlation

coefficient ρ(xi, xo) of colour feature vectors h(xi) and h(xo) (Schleider et al., 2021; Dorozynski and

Rottensteiner, 2022b):

ρ(xi, xo) =

∑lh
j=1(hj(xi)− h̄(xi))(hj(xo)− h̄(xo))√∑lh

j=1(hj(xi)− h̄(xi))2 ·
∑lh

j=1(hj(xo)− h̄(xo))2
, (4.19)

where hj(xq) is the jth element of h(xq) with q ∈ {i, o}, lh is the number of elements of a feature

vector, and h̄(xq) is the mean over all hj(xq). The colour feature vector h(xq) of an image xq

describes the colour distribution of that image in the HSV (H : hue, S : saturation, V : value) colour

space; the colour space transformation is conducted to avoid dependencies on the intensity, which

might occur due to illumination changes or differences in exposure time. Accordingly, the V value

is discarded. In HSV colour space, H is usually interpreted as an angle and S as the distance from

a cylinder axis. Due to the periodic nature of angles, hue values that correspond to very similar

colours may have a large numerical difference. Thus, to derive the feature vector h(xq), the hue H

and saturation S values of every pixel of the image xq resized to 224 x 224 pixels are considered to

be polar coordinates. They can be converted to Cartesian coordinates

[xc(H,S), yc(H,S)]T =
[r

2
,
r

2

]T
+
r

2
· S · [cos (2π ·H), sin (2π ·H)]T , (4.20)
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so that all values of xc and yc are in the range [0, r]. A discrete grid consisting of r × r raster

cells (r = 5 is used in this work) is defined in the (xc, yc) space and the number of points in each

raster cell (ic, jc) is counted, i.e. the number of pixels with a corresponding colour polar coordinate

(eq. 4.20). Finally, the rows of the grid are concatenated to form the vector h(xq). Thus, hj(xq)

corresponds to the number of points in the raster cell (ic, jc), where j = ic + r · jc; this implies

lh = r2.

The correlation coefficient ρ (xi, xo) ∈ [−1; 1] expresses the linear dependency between the two

colour feature vectors h(xi) and h(xo). In case of identical colour distributions of xi, xo in HSV

colour space, the colour descriptors h(xi), h(xo) are identical and thus, ρ (xi, xo) becomes 1, indicat-

ing 100% colour similarity. The lower the correlation coefficient, the lower the degree of similarity

is supposed to be.

The colour similarity loss aims to learn descriptors f(xi), f(xo) whose Euclidean distance re-

flects the colour similarity ρ(xi, xo) of the image pair (xi, xo) defined in equation 4.19, but in an

inverse way. This can be achieved by minimizing the following loss function (Schleider et al., 2021;

Dorozynski and Rottensteiner, 2022b)

Lco(pMB
co ,w) =

1

NMB
co

·
NMB

co∑
nco=1

max
(

0, |∆nco
i,o,w − (1− ρ(xnco

i , xnco
o )) |

)
. (4.21)

This loss function requires pairs pnco
co := (xnco

i , xnco
o ) of images from the mini-batch, with pnco

co ∈ pMB
co ;

NMB
co is the number of pairs of images from xMB and nco is the index of an image pair pnco

co . The

term (1− ρ(xnco
i , xnco

o )) in equation 4.21 can be interpreted as colour margin. Essentially, it forces

the descriptor distance ∆nco
i,o,w to be small for pairs of images having a large colour similarity and to

be large for image pairs of low similarity. If ρ(xnco
i , xnco

o ) = 1, indicating 100% colour similarity of

xnco
i and xnco

o , the descriptor distance is forced to be zero; in the other extreme case of maximum

dissimilarity, i.e. ρ(xnco
i , xnco

o ) = −1, it should be ∆nco
i,o,w = 2, i.e. the maximum possible descriptor

distance given the fact that the descriptors are normalized to unit length (cf. section 4.2.1).

To the best of the knowledge of the author, this is the first work allowing to learn colour similarity.

Preceding works, e.g. (Jain and Vailaya, 1996; Bani and Fekri-Ershad, 2019), extract hand-crafted

colour features from the images and directly use them for image retrieval. This is also possible by

directly exploiting the developed colour feature vectors h(x), which would result in retrieved images

being exclusively similar to a query image with respect to colour. In this context, an advantage

of h(x) over other colour features is that h(x) simultaneously considers H and S and thus, co-

occurrences of the respective values; in (Jain and Vailaya, 1996; Bani and Fekri-Ershad, 2019),

independent colour channel related histograms in RGB colour space are considered to design colour

feature vectors, which is a common strategy in Content-based image retrieval (CBIR) to consider

the colour distribution of an image (Hameed et al., 2021a). However, the focus in this thesis is

on learning colour similarity. An advantage of considering colour similarity during training by

means of the loss in equation 4.21 is that learning colour similarity can be combined with learning

other concepts of similarity. Thus, instead of performing image retrieval based on h(x), learned

descriptors f(xq) (Figure 4.2) can be used for retrieval that are additionally forced to consider

other concepts of similarity according to equation 4.13.
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4.2.2.3 Self-similarity loss

The goal of the self-similarity loss is to learn that the descriptors of images showing the same object

should be similar and thus, to learn descriptors that are invariant to geometrical and radiometrical

transformations to some degree. Self-similarity means that an image xi is defined to be similar to

an image x′i that depicts the same object. This is the only similarity concept in our method that

is not gradual. The corresponding loss requires the descriptor distances of all pairs (xi, x
′
i) to be

zero (Schleider et al., 2021; Dorozynski and Rottensteiner, 2022b):

Lslf (pMB
slf ,w) =

1

NMB
slf

·
NMB

slf∑
nslf=1

∆
nslf

i,i′,w, (4.22)

This loss function requires pairs p
nslf

slf := (x
nslf

i , x′
nslf

i ) of images, where x
nslf

i is an image of the

mini-batch, with p
nslf

slf ∈ pMB
slf and nslf being the index of an image pair p

nslf

slf . There will be one

such pair for every image x
nslf

i ∈ xMB. Accordingly, one has NMB
slf = NMB. There are two options

for the origin of x′
nslf

i given an image x
nslf

i ∈ xMB.

• Option 1 : If the dataset contains images showing the same object, x′
nslf

i can be selected to

be another image of the same object. This is would help to learn descriptors that are more

robust with respect to variations in the appearance of objects depicted in multiple images.

• Option 2 : If the dataset contains no such images or if it is not known whether it contains

such images, the image x′
nslf

i can be generated synthetically from x
nslf

i and in this case the

loss in equation 4.22 could be seen as a variant of data augmentation. This option could also

be used, if it is decided not to exploit the knowledge about images showing the same object,

which might be reasonable in case of very different appearances of the same object in different

images.

Compared to (Schleider et al., 2021), the set of transformations potentially applied to x
nslf

i in the

second case has been expanded. It includes the following geometrical transformations: a rotation of

90◦; horizontal and vertical flips; cropping to a central image section, the size of which is defined by

a random percentage bcrop ∈ [0.7; 1.0] in relation to the original image size; small random rotations

ω ∈ [−5◦; +5◦]. The set of potential radiometrical transformations consists of a change of the hue

H ∈ [0; 1] by adding a random value delta ∆H ∈ [−0.05; +0.05] and an adaptation of the saturation

S by multiplying it by a random factor δS ∈ [0.9; 1.0]. Finally, a random zero mean Gaussian noise

with a standard deviation σG = 0.1 can be added to generate the image x′
nslf

i .

4.3 Heterogeneous multi-task learning: combining classification

and image retrieval

In this section, a combined method of image classification and image retrieval fused in a single

CNN model is presented. It is realized by combining the image classification technique presented

in section 4.1 and the descriptor learning technique presented in section 4.2 in the context of het-

erogeneous MTL, the tasks of which are defined to be (MTL) classification and descriptor learning.
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The key idea of such a combined model is the assumption that learning a joint representation being

influenced by both tasks during training leads to a better generalization of the learned features,

being beneficial for both of the individual tasks.

From the perspective of the image retrieval technique, adding an auxiliary classification loss to

descriptor learning is assumed to lead to descriptors whose Euclidean distances reflect the degree

of semantic similarity of the corresponding image pairs in a better way. It is expected to obtain

better clusters corresponding to images having similar semantic properties, because this will be

favoured by both types of tasks in training. Consequently, it is also assumed to lead to a better

representation of underrepresented classes, because the CNN learns that certain patterns are related

to such a class. Combining descriptor learning with an auxiliary classification loss has already been

investigated, e.g. (Shen et al., 2017; Jun et al., 2019; Lin et al., 2019; Li et al., 2020). However,

these works deal only with a single semantic variable for defining similarity in a binary way and

in the auxiliary single-task classification loss. In contrast, a gradual concept of similarity is forced

to be reflected by the descriptors in this thesis, where descriptor learning does not only benefit

from a single auxiliary classification loss but from as many as there are semantic variables used

to define semantic similarity (eq. 4.14). Accordingly, the problem of incomplete training samples

in the training procedure, which affects both, defining semantic similarity as well as the auxiliary

multi-task classification loss, is addressed in this thesis for the first time.

From the perspective of the classification technique, the descriptor learning loss can be inter-

preted as auxiliary clustering loss for feature space clustering. During training, the classification

loss is jointly minimized with the auxiliary clustering loss. The goal of the clustering loss is to

support classification by producing appropriate image representations with improved intra-class

compactness as well as inter-class separability, which is predominantly expected due to the seman-

tic similarity loss (section 4.2.2.1). It is assumed that feature vectors that form clusters in feature

space so that each cluster belongs to a different class (STL) or class combination (MTL) will help

a classifier to distinguish the classes to be learned and, thus, also to correctly predict the labels

of samples belonging to underrepresented classes. There are already methods that require feature

distances to reflect intra-class connectivity, e.g. (Wen et al., 2016; Qi and Su, 2017) and inter-

class separability, e.g. (Qi and Su, 2017), respectively. Furthermore, within-class and between-class

margins are exploited in auxiliary clustering losses aiming to support classification, e.g. (Liu et

al., 2017; Choi et al., 2020; Hameed et al., 2021b). However, all of these works aim to learn a

single-task classifier under consideration of an auxiliary clustering, whereas an approach to do so

for a multi-task classifier is developed in this thesis, this being the first such method to the best

of the knowledge of the author. Accordingly, the problem of incomplete training samples in the

training procedure of a multi-task classifier with auxiliary clustering loss is addressed in this thesis

for the first time. Just as the works exploiting margin-based approaches for clustering, margin

constraints (eqs. 4.18, 4.21) are exploited in clustering in this work, too. In contrast to preceding

works introducing the margin as a hyperparameter, the margins in this work are data-dependent

and, thus, flexible during training without the need for tuning. Finally, in this work clustering does

not only consider semantic properties, such as class labels, but also visual similarity, assuming that

depicted objects belonging to the same class have a similar appearance.
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Even though the classification method and the image retrieval method are combined, no addi-

tional input data is needed compared to the original methods. The proposed training strategies

require both a set of images x with assigned class labels in the form of timk ∈ {0, 1} (eq. 4.6) for

the M classification tasks to be learned and in the form of lmk(xi) ∈ {0, 1} (eq. 4.15) for deter-

mining the degree of semantic similarity Ysem (xi, xo) (eq. 4.14), respectively. Both, timk ∈ {0, 1}
and lmk(xi) ∈ {0, 1}, can directly be derived from known class labels for a variable m = 1, ...,M .

Section 4.3.1 will contain a description of the proposed network architecture and section 4.3.2 gives

details about the joint training strategy.

4.3.1 Network architecture (SilkNet)

The main objective of the CNN referred to as SilkNet is to allow for a joint training of descriptors

f(x) to be used for image retrieval as well as learning a classifier providing normalized class scores

ymk(x) for the M classification tasks. For that purpose, the network architecture shown in Figure

4.3 is proposed. At training time, it consists of three main parts: a feature extraction part delivering

features fjfc(x), an image retrieval head delivering the actual descriptor f(x), and a classification

head consisting of M classification branches delivering normalized class scores ymk(x) that can be

interpreted as posterior probabilities P (Cmk|x) for the kth class of the mth semantic variable Cmk.

Thus, the two tasks of learning a multi-task classifier and descriptor learning, respectively, can be

combined in the context of heterogeneous MTL. Depending on the main task for which SilkNet is

trained, the network head being active at test time varies; the classification head is active for image

classification and the retrieval head is active for image retrieval. The respective inactive network

head is exclusively required during training in order to learn the respective auxiliary task, i.e. all

heads are needed at trainng time.

The feature extraction part is similar to the ones of C-SilkNet (Figure 4.1) and R-SilkNet (Figure

4.2), respectively; an input image x is mapped to a joint representation fjfc(x) by means of a

ResNet-152 (He et al., 2016b) and fully connected layers joint fc, being parameterized with the

weights [wT
RN ,w

T
jfc]

T , respectively. The layers joint fc are at the core of the combined heterogeneous

MTL method, because the resulting feature vectors fjfc(x,wRN ,wjfc) are the input to both the

retrieval and classification heads. Thus, the weights wjfc of the joint fc layers are both influenced by

the multi-task classification loss as well as by the losses used for descriptor learning. Accordingly,

it is assumed that the learned image representation fjfc(x,wRN ,wjfc) is more meaningful with

regard to the semantic annotations of the input image, being reflected by both, image predictions

as well as semantic similarity.

As described in section 4.2.1, the retrieval head consists of a simple normalization of the feature

vector fjfc(x,wRN ,wjfc) to unit length, leading to the descriptor f(x,wRN ,wjfc) = f(x,wdescr).

The descriptor f(x,wdescr) will either be used for image retrieval at test time, i.e. in case

the main task is descriptor learning, or exclusively during training in the auxiliary clustering

loss in case the main task is image classification. As described in section 4.1.1, the classifi-

cation head consists of M separate branches, each corresponding to one classification task to

be learned. It is parameterized by the weights wclass and delivers the normalized class scores

ymk (x,wRN ,wjfc,wclass) = ymk (x,wdescr,wclass).
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Figure 4.3: CNN architecture of SilkNet. An input image x of a size of 224 by 224 pixels is presented to

a ResNet-152 (He et al., 2016b), resulting in a feature vector fRN (x). After a ReLU activation

and a dropout layer, the feature vector is presented to NLjfc fully connected layers joint fc

consisting of [NN1
jfc, ..., NN

NLjfc

jfc ] nodes, respectively, and delivering a feature vector fjfc(x).

The head of the network consists of two branches: a classification head and a retrieval head. The

retrieval head (connected with a green broken line) normalizes the vectors fjfc(x) to unit length,

leading to the descriptors f(x) for image retrieval. The classification head (connected with an

orange broken line) consists of NLtfc further fully connected layers fc-tm with ReLU, consisting

of [NN1
tfc, ..., NN

NLtfc

tfc ] nodes, respectively. They map the joint representation fjfc(x) to task-

specific representations, which are presented to the M classification layers fc-cm for multi-class

classification with as many nodes as there are classes Km for the mth variable. The softmax

activations ymk can be interpreted as posterior probabilities P (Cmk|x) for the kth class of the

mth variable Cmk. During training, both network heads are active. The fact that the lines are

broken indicates that only one of the heads is active at test time, depending on the main task

for which SilkNet is to be used; the classification head is active for image classification and the

retrieval head is active for image retrieval, respectively.

The following hyperparameters have to be selected for SilkNet :

• dropout rate ρdrop of the dropout layer in the feature extraction part (Figure 4.3),

• number of shared layers NLjfc and numbers of nodes [NN1
jfc, ..., NN

NLjfc

jfc ] of these layers,

• number of task-specific layers NLtfc and numbers of nodes [NN1
tfc, ..., NN

NLtfc

tfc ] of these

layers,

• number of classes Km for each of the m variables, which depends on the dataset,

• number of variables M .

4.3.2 Training

Training of SilkNet is realized by iteratively updating the weights w := [wT
RN ,w

T
jfc,w

T
class]

T such

that a joint loss function L(xMB,w) is minimized based on a set of images xMB with at least partly

known annotations for M semantic variables. For that purpose, the weights wRN are initialized by
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pre-trained weights obtained on the ILSVRC-2012-CLS dataset (Russakovsky et al., 2015) as for

the individual methods in sections 4.1.2 and 4.2.2, whereas the remaining weights [wT
jfc,w

T
class]

T

are initialized randomly using variance scaling (He et al., 2015) (section 2.2.1). As for C-SilkNet

and R-SilkNet, the last NBRN residual blocks, having the weights wRNft
are potentially fine-

tuned, while all other weights wRNfr
of the ResNet are frozen. Thus, only the weights wtr :=

[wT
RNft

,wT
jfc,w

T
class]

T are updated on the basis of the joint loss function L(xMB,w). In general,

the joint loss for training the combined classification and retrieval model can be formulated as

L
(
xMB,w

)
= λmain · Lmain

(
xMB,w

)
+ λaux · Laux

(
xMB,w

)
+ Lwd (wtr) , (4.23)

where Lwd (wtr) is an L2-regularization term (eq. 2.21). Depending on the main task to be

learned, the main loss function Lmain
(
xMB,w

)
weighted by λmain ∈ [0, 1] and the auxiliary loss

Laux
(
xMB,w

)
weighted by λaux ∈ [0, 1] are selected. In case of learning a classifier with auxiliary

clustering loss, Lmain
(
xMB,w

)
would be a classification loss and Laux

(
xMB,w

)
would be an

image retrieval loss. In case descriptors should be learned for image retrieval with an auxiliary

classification loss, the definition of the two loss terms would be the other way round. The subsequent

sections provide details about these two cases.

4.3.2.1 Learning a classifier with auxiliary similarity losses

For learning a classifier with an auxiliary clustering loss, the CNN in Figure 4.3 is trained by

minimizing the loss function (Dorozynski and Rottensteiner, 2022a)

L
(
xMB,w

)
= λmain · LC

(
xMB,w

)
+ λaux · LR

(
xMB,wRN ,wjfc

)
+ Lwd (wtr) (4.24)

for an image set x, where a mini-batch of images xMB ⊂ x is considered in each training iteration.

The loss function defined in equation 4.24 consists of a classification loss LC
(
xMB,w

)
as main loss

and a retrieval loss LR
(
xMB,wRN ,wjfc

)
as auxiliary loss. LC

(
xMB,w

)
is the multi-task softmax

cross-entropy for completely labelled training samples Lmtl,c(xMB,w) (eq. 4.3), in case training

is applied using a dataset without any missing labels. In case of a dataset with at least partly

unknown labels for some of the classification tasks to be learned, LC
(
xMB,w

)
is either the multi-

task softmax cross-entropy for incompletely labelled training samples Lmtl,i(xMB,w) (eq. 4.5) or

the focal expansion of that loss Lfocalmtl,i (x
MB,w) (eq. 4.7). The latter one is selected in case the class

distribution of at least one of the tasks to be learned is imbalanced. The auxiliary image retrieval

loss LR
(
xMB,wRN ,wjfc

)
is the loss for descriptor learning introduced in equation 4.12, where the

notation of the weights in equation 4.24 clarifies that LR
(
xMB,wRN ,wjfc

)
is not dependent on

the weights wclass. In contrast, both of the losses LC
(
xMB,w

)
and LR (x,wRN ,wjfc) contribute

to the update of the weights [wT
RNft

,wT
jfc]

T , influencing the joint feature vector fjfc(x,wRN ,wjfc).

The weights λmain ∈ [0, 1] and λaux ∈ [0, 1] in equation 4.24 control the impact of the losses on the

total loss and thus, their impact on the update of the shared weights.

The auxiliary descriptor learning loss LR
(
xMB,wRN ,wjfc

)
is supposed to adapt the network

weights [wT
RN ,w

T
jfc]

T such that the feature vectors of images belonging to the same class are forced

to be close together in feature space, leading to intra-class connectivity, whereas feature vectors of

images belonging to different classes are forced to be far away in feature space, leading to inter-

class separability. By definition of the concept of semantic similarity, images belonging to the



68 4 Methodology

same class are semantically similar, whereas images belonging to different classes are dissimilar

with respect to their semantic properties. Furthermore, it is assumed that this also holds for

visual similarity in some respect, relying on the assumption that depicted objects belonging to

the same class have similar visual characteristics, whereas objects of different classes may vary

with respect to their appearance. Thus, integrating the self-similarity loss, the colour similarity

loss as well as the semantic similarity loss constituting LR (x,wRN ,wjfc) (eq. 4.12) into network

training is supposed to lead to feature clusters that reflect intra-class connectivity and inter-class

separability. Semantic clustering is realized by the term Lsem
(
tMB,wRN ,wjfc

)
(eq. 4.17) in the

retrieval loss, because the descriptor distances of semantically similar images are reduced, while

the descriptor distances of dissimilar images are increased. In this context, the set of M tasks to

be learned by the classifier is identical to the set of tasks used to define semantic similarity in the

term Lsem
(
tMB,wRN ,wjfc

)
. Clustering with respect to visual properties is realized by the terms

Lco
(
pMB
co ,wRN ,wjfc

)
(eq. 4.21) and Lslf

(
pMB
slf ,wRN ,wjfc

)
(eq. 4.22) in the auxiliary retrieval

loss, where the colour similarity loss forces the descriptor distances to match the degree of colour

similarity, whereas the self-similarity loss supports similar images of the same object to have the

closest possible distance in feature space. Thus, determining the network weights such that the

Euclidean distance of feature vectors reflects the degree of similarity of the respective images is

supposed to deliver the desired clustering. Depending on the classification task, different values of

the hyperparameters λC , λR as well as αsem, αco, and αslf controlling the impact of the individual

loss terms might be reasonable. The way in which the set tMB of triplets and the sets pMB
co and

pMB
slf of image pairs are determined given a mini-batch xMB is described in detail in section 4.4.

4.3.2.2 Learning image descriptors with an auxiliary classification loss

Supporting descriptor learning by simultaneously learning an auxiliary classifier is realized by train-

ing the CNN in Figure 4.3 with the loss function (Dorozynski and Rottensteiner, 2022b)

L
(
xMB,w

)
= λmain · LR

(
xMB,wRN ,wjfc

)
+ λaux · LC

(
xMB,w

)
+ Lwd (wtr) . (4.25)

The loss function in equation 4.25 is the special case of the general combined loss in equation

4.23 with the image retrieval loss LR
(
xMB,wRN ,wjfc

)
(equation 4.12) as main loss and an image

classification loss LC
(
xMB,w

)
as auxiliary loss. LC

(
xMB,w

)
is the multi-task softmax cross-

entropy for completely labelled training samples Lmtl,c(xMB,w) (eq. 4.3), in case training is

applied using a dataset without any missing labels. In case of a dataset with at least partly

unknown labels for some of the classification tasks to be learned, LC
(
xMB,w

)
is either the multi-

task softmax cross-entropy for incompletely labelled training samples Lmtl,i(xMB,w) (eq. 4.5) or

the focal expansion of that loss Lfocalmtl,i (x
MB,w) (eq. 4.7). The latter one is selected in case the

class distribution of at least one of the tasks to be learned is imbalanced. As indicated by the

notation of the weights in equation 4.25, the weights [wT
RN ,w

T
jfc]

T required to determine both,

the feature vector fjfc(x,wRN ,wjfc) as well as the actual descriptor f(x,wRN ,wjfc), are not only

influenced by the descriptor learning loss LR (x,wRN ,wjfc), but also by the auxiliary classification

loss LC
(
xMB,w

)
. The weights λmain ∈ [0, 1] and λaux ∈ [0, 1] in equation 4.25 control the impact

of the image retrieval and classification losses, respectively, on the total loss and thus, on the

descriptor f(x,wRN ,wjfc) used for image retrieval.
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An auxiliary multi-task classification loss LC
(
xMB,w

)
is supposed to support descriptor learn-

ing to generate clusters of image descriptors that correspond to images of objects having similar

semantic properties in a better way. The image classification loss LC
(
xMB,w

)
realises a mathe-

matical dependency of the weights w on the network’s ability to predict the correct class labels for

all images xi ∈ xMB. In this context, the set of M tasks to be learned by the classifier is identical

to the set of tasks used to define semantic similarity in the term Lsem
(
tMB,wRN ,wjfc

)
(eq. 4.17).

Thus, the classification loss can be seen as an auxiliary loss term for descriptor learning that helps

to cluster the descriptors with respect to the semantic properties of the depicted objects. As this

loss affects the weights [wT
RN ,w

T
jfc]

T of the shared layers, it is expected to support the CNN in

generating descriptors f(x,wRN ,wjfc) that represent class-specific characteristics in the images

xi ∈ xMB in a better way. Furthermore, in case the variant of the focal loss in equation 4.7 is

applied, is is assumed that the CNN is particularly supported in producing semantically mean-

ingful descriptors for semantic properties that occur relatively rarely in the training data. This is

expected because the focal loss is assumed to improve the classification performance of underrepre-

sented classes, which is equivalent to supporting the CNN in better distinguishing underrepresented

classes from other ones. Accordingly, the feature vectors of images belonging to underrepresented

classes are expected to form better clusters in feature space, which is also desirable for identifying

semantically similar images for a query image belonging to an underrepresented class.

4.4 Batch processing depending on the loss requirements

This section gives an overview of how a mini-batch of images xMB ⊂ x from a training set x is

processed in order to generate the datasets required by the individual losses presented in sections

4.1.2, 4.2.2 and 4.3.2. A prerequisite for all training strategies is a set x of images with related class

labels for M semantic variables. Additionally, potential information indicating images that depict

the same object can be exploited by the losses presented in sections 4.2.2 and 4.3.2, even though

the availability of this information is not a prerequisite for applying these losses. In general, the

classification losses (equations 4.6 and 4.8) require a set of independent images xMB, whereas the

loss terms in the image retrieval loss (equation 4.13) need sets of pairs pMB
co and pMB

slf , respectively,

or triplets tMB of images in order to learn similarity, i.e. to produce descriptors whose pairwise

Euclidean distances reflect similarity. These sets are generated as follows, where the requirements

for all training approaches are provided for each of these sets:

• The variants of the classification loss LC
(
xMB,w

)
, i.e. Lmtl,c(xMB,w) (eq. 4.4),

Lmtl,i(xMB,w) (eq. 4.6) and Lfocalmtl,i (x
MB,w) (eq. 4.8), require a set of independent im-

ages xi ∈ xMB with known class labels for at least one of the M variables in order to learn

w such that the predictions ymk(xi) become maximal for the correct class of xi for the mth

classification task. Accordingly, all NMB images in the mini-batch can be presented to the

classification loss. As class labels are potentially not available for all M variables, there are

potentially fewer than NMB ·M cross-entropy terms constituting the classification loss in case

of mutually exclusive class labels per variable. Thus, the loss is normalized by the number of

known class labels NMB
M for the M variables, i.e. the number of terms constituting the loss.

The set xMB is required for
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– training a C-SilkNet classifier (cf. section 4.1.2),

– training a SilkNet classifier (cf. section 4.3.2.1),

– descriptor learning with SilkNet (cf. section 4.3.2.2).

• The semantic similarity loss Lsem(tMB,w) in equation 4.17 requires triplets t = (xi, xp, xn) ∈
tMB. In a first step, all possible triplets with xi 6= xp 6= xn are generated for every image

xi ∈ xMB, using that image as the anchor. As for a triplet to be valid the positive sample xp

has to be more similar to xi than the negative sample xn, only those NMB
t triplets fulfilling the

constraint related to the margin formulated in equation 4.18 are presented to the network.

As the number of NMB
t is dependent on the margin M

(
xnt
i , x

nt
p , x

nt
n

)
calculated from the

available class labels in a mini-batch (eq. 4.18), the loss (eq. 4.17) is normalized by the

number of triplets. The set tMB is required for

– descriptor learning with R-SilkNet (cf. section 4.2.2),

– training a SilkNet classifier (cf. section 4.3.2.1),

– descriptor learning with SilkNet (cf. section 4.3.2.2).

• The colour similarity loss Lco
(
pMB
co ,w

)
in equation 4.21 requires pairs of images pco =

(xi, xj) ∈ pMB
co . For that purpose, all possible pairs pco in the mini-batch xMB are gen-

erated, excluding all pairs pco = (xi, xj) with i = j. Thus, the colour similarity loss is

calculated for NMB
co = NMB!/ (2! · (NMB − 2)!) pairs of training samples, where ! denotes the

factorial of a number. The set pMB
co is required for

– descriptor learning with R-SilkNet (cf. section 4.2.2),

– training a SilkNet classifier (cf. section 4.3.2.1),

– descriptor learning with SilkNet (cf. section 4.3.2.2).

• The self similarity loss Lslf (pMB
slf ,w) in equation 4.22 requires pairs of images pslf = (xi, x

′
i) ∈

pMB
slf . Thus, for each image xi ∈ xMB an image x′i showing the same object as xi has to be

provided for both options defining self-similarity (cf. section 4.2.2.3). If the dataset x contains

several images x′i ⊂ x showing the same object as xi ∈ xMB as well as any kind of indicator

representing the knowledge about such images, e.g. an object identifier that is part of the

names of all images depicting a certain object, one of these images x′i is randomly chosen to

serve as the partner x′i (option 1 ). Otherwise, x′i is generated synthetically using a randomly

drawn transformation as defined in section 4.2.2.3 (option 2 ). The latter strategy is applicable

to any kind of dataset, such that x′i is synthetically generated for all xi ∈ xMB. This results

in NMB
slf = NMB pairs of images pslf . The set pMB

slf is required for

– descriptor learning with R-SilkNet (cf. section 4.2.2),

– training a SilkNet classifier (cf. section 4.3.2.1),
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– descriptor learning with SilkNet (cf. section 4.3.2.2).

Due the normalization of all loss terms by the number of terms of the sum in the individual loss

functions, the total loss is not biased towards loss terms with a larger number of summands.





73

5 Experimental Setup

This chapter gives an overview of the data used for the experiments, the strategy used to evaluate

the results of the experiments as well as the setup of the experiments aiming to investigate the

strengths and weaknesses of the methodology presented in chapter 4. The datasets used for the

experiments are presented in section 5.1. Afterwards, an overview over the quality metrics used to

evaluate the experimental results is provided in section 5.2. Finally, the objectives of the experi-

ments are defined and the structures of the test series conducted to address these objectives are

described in section 5.3.

5.1 Datasets

In this section, the datasets utilized for evaluation in this thesis are described. All datasets consist

of images of different types of artifacts that are relevant in a certain cultural heritage related

application, where all images are scaled to a size of 224 x 224 pixels in a pre-processing step.

Furthermore, semantic annotations are assigned to the individual images that provide information

about the depicted objects’ properties. These properties, e.g. the place of production or the

production time, will be denoted as semantic variables in the remainder of this work and the

corresponding semantic annotations, e.g. Spain or damask, will be interpreted as class labels. The

first dataset, denoted as SILKNOW dataset, consists of images of historical silk fabrics and serves as

the main dataset for evaluation in this thesis. In contrast, the other dataset is used for the purpose

of comparison in order to get an idea about the overall performance of the developed methodology

compared to methods of other authors as well as to demonstrate the generality of the developed

methods. The second dataset is a variant of the WikiArt dataset and consists of images of paintings

from the preceding centuries. In this dataset, the labels available for the images are incomplete,

too.

For both of the datasets, a description of the available information will be given, including

the class structures and class distributions of the respective semantic variables, but also some

samples will be shown. In addition to the class distributions, statistics describing the characteristics

of the distributions will be provided. Assuming that there are M different semantic variables

in a dataset, where each variable m ∈ {1, ...,M} comes along with Km classes, the empirical

class distribution ζm of each variable is defined as ζm := {ζ1, ..., ζk, ..., ζKm}. The relative class

frequency ζk, k ∈ {1, ...,Km} describes the percentage of examples in a dataset belonging to class

k∈ {1, ...,Km} for a task m ∈ {1, ...,M}, implying
∑Km

k=1 ζk = 1, ∀m. In order to have all classes

equally well represented in a dataset, it is desirable for ζm to be close to a uniform distribution

em:= {1/Km, ...., 1/Km}. Nevertheless, this is often not the case and the class imbalance, i.e.
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the deviation from a balanced distribution, can be described by the imbalance ratio (IR) and the

imbalance degree (Ortigosa-Hernández et al., 2017). The imbalance-ratio

IR(ζm) =
maxiζi
minjζj

(5.1)

describes the ratio of the relative frequency ζi of examples in the dataset of the most frequent

class i and the relative frequency ζj of examples of the most underrepresented class j. Whereas

the imbalance ratio is a suitable measure for describing the imbalance of class distributions for

binary classification problems, it does not reflect all characteristics of class distributions for multi-

class classification problems, because it considers only the frequencies of exactly two classes, i.e.

the most frequent class and the least frequent class. Nevertheless, it can be also used to get an

impression of the largest difference in class frequency in multi-class classification problems. In

contrast, the imbalance degree also considers the frequencies of other classes in the distribution.

The balance deviation (BD), introduced in (Dorozynski and Rottensteiner, 2022a), relies on the

imbalance degree proposed in (Ortigosa-Hernández et al., 2017), where

BD(ζm) =
d∆(ζm, em)

d∆(ζm, τm)
. (5.2)

In equation 5.2, d∆(·) is a distance function describing the similarity of two class distributions. In

this thesis, the total variation distance (Gibbs and Su, 2002) is used as a similarity function as

recommended in (Ortigosa-Hernández et al., 2017). The total variation distance is half of the sum

of absolute differences |·| of the relative frequencies ζk ∈ ζm, ek ∈ em of the two distributions ζm, em

and ζk ∈ ζm, τk ∈ τm of the two distributions ζm, τm, respectively. Exemplary, for the distributions

ζm and em, d∆(·) is equal to

d∆(ζm, em) =
1

2

Km∑
k=1

|ζk − ek|, ζk ∈ ζm, ek ∈ em. (5.3)

The numerator in equation 5.2 measures the similarity of the empirical class distribution ζm of

a given dataset and the corresponding balanced class distribution em with Km classes. The de-

nominator in equation 5.2 serves as normalization and expresses the similarity of ζm and a distri-

bution τm that is obtained by eliminating the set of minority classes Mm, the latter defined to

be the classes c ∈ Mm with ζc < 1/Km. Thus, τm only has Km − |Mm| classes with τk > 0 for

k ∈ {|Mm|+ 1, ...,Km} and
∑Km

k=1 τk =
∑Km

k=|Mm|+1 τk = 1; for the minority classes the frequency

is set to zero in τm, i.e. τc = 0 for c ∈ {1, ..., |Mm|}. Thus, BD is a value in the range of [0, 1]

expressing the deviation of ζm from a balanced class distribution.

5.1.1 SILKNOW dataset

The SILKNOW dataset is based on the SILKNOW knowledge graph1 (Alba Pagán et al., 2020;

Schleider et al., 2021) that was generated in the context of the EU-H2020 project SILKNOW2 with

the goal to build and provide a platform3 containing information about the European silk heritage.

1https://doi.org/10.5281/zenodo.5743090, accessed on 01-06-2023
2https://silknow.eu/, accessed on 01-06-2023
3https://ada.silknow.org/, accessed on 01-06-2023
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In the context of the project, variants of the methods presented in this thesis are aimed to complete

the knowledge graph and to search for objects, being similar to a provided query image. There are

in total 38,873 records available in the knowledge graph, coming along with in total 74,527 unique

images depicting silk fabrics produced between the 15th and the 19th centuries. Each record in

the graph is related to a unique silk object that is represented by one or several images as well as

to annotations for at least some semantic variables, namely the production time, the production

technique, the material, the place of origin and the subject depicted type, denoted as depiction.

These semantic variables were selected because it is assumed that differences in the annotations of

these variables result in visually different fabrics, which is a prerequisite for learning a classifier or

semantic similarity, respectively. The graph contains records of plain fabrics as well as processed

textiles, e.g. different types of clothes, accessories and furniture, harvested from online collections

of 18 museums, e.g. the Museu Tèxtil de Terrassa (IMATEX collection) (IMATEX, 2018) or the

Museum of Fine Arts Boston (MfAB, 2018); a full list of museums can be found in the SILKNOW

crawler4. Each of the museums has its own standards of representing the data such as the variety

of metadata describing the artifacts, the formulation of the annotations as well as the language in

which the information is available. Thus, the semantic information harvested from the websites

was mapped to a standardized format by a converter5 in the context of the SILKNOW project on

the basis of a Thesaurus6, which is another outcome of the project. This includes a mapping of the

available information to a simplified class structure for the variables time, technique, material, place

and depiction that forms the basis for the SILKNOW dataset. All information in the SILKNOW

knowledge graph can be accessed via SPARQL queries using the SILKNOW SPARQL Editor7.

An export from the graph that contains a list of all records, a list of image URLs per record as

well as the respective annotations for the five semantic variables mentioned above per record is

obtained via a suitable SPARQL query8 and forms the basis for the SILKNOW dataset used in

this thesis. Some examples of images and related semantic annotations are presented in Figure 5.1.

It is noteworthy that a manual inspection of the correctness of the semantic annotations assigned

to a depicted silk object has not been conducted.

In the experiments presented in chapter 6, three different variants of the SILKNOW dataset are

used, all of them being derived from the export by means of demanding different requirements

for the records and thus, for the images. All variants rely exclusively on records related to plain

fabrics, on which the SILKNOW project focused, to avoid the need for a representative number

of examples per class for each object type. By restricting the data to images depicting plain

fabrics and additionally demanding the availability of a known class label for at least one of the

M = 5 variables defined earlier, the number of images is reduced to 49,015, i.e. 65.8% of the

total number of images in the knowledge graph. A statistical overview over the three different

datasets, denoted as SILKNOW-a-i, SILKNOW-s-i and SILKNOW-s-c, can be found in Table 5.1.

For each dataset, the total number of image examples is given, where SILKNOW-a-i has the largest

4https://github.com/silknow/crawler, accessed on 01-06-2023
5https://github.com/silknow/converter/, accessed on 01-06-2023
6https://skosmos.silknow.org/thesaurus/en/, accessed on 01-06-2023
7https://data.silknow.org/sparql, accessed on 01-06-2023
8https://github.com/silknow/converter/blob/master/jointtextimagemodule/total.sparql, accessed on 01-

06-2023
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material: metal thread animal fibre vegetal fibre animal fibre vegetal fibre

place: IR unknown unknown FR unknown

technique: unknown damask unknown unknown embroidery

time: unknown 18th c. unknown 19th c. unknown

depiction: stripe flower unknown unknown geom. shape

Figure 5.1: Examples for images with annotations in the SILKNOW dataset from the IMATEX collection.

Images: © Museu Tèxtil de Terrassa/Quico Ortega (IMATEX, 2018).

number of examples, followed by SILKNOW-s-i ⊂ SILKNOW-a-i; SILKNOW-s-c ⊂ SILKNOW-s-i

has the lowest number of examples. The criteria to be fulfilled by each of the dataset variants are

as follows (details about the generation of the dataset from the knowledge graph export leading to

the statistics in Table 5.1 can be found in sections 5.1.1.1-5.1.1.3):

• SILKNOW-a-i (all classes and variables, incomplete setting): This dataset variant is closest

to the real world application of the SILKNOW knowledge graph and thus, will serve as the

main dataset in this thesis. It contains the largest number of classes to be differentiated

per variable, all five semantic variables are considered, and most of the museum collections

contribute to the dataset. Particularly, images with partly missing labels (incomplete samples)

are considered. Details about the dataset are presented in section 5.1.1.1.

• SILKNOW-s-c (selected classes and variables, complete setting): This dataset variant allows

to fully exploit interdependencies between the semantic variables during training. Accord-

ingly, exclusively images with a known class label for all of the considered variables (complete

samples) constitute the dataset. This comes at the cost of excluding one of the five semantic

variables, which was decided to be depiction, having the smallest number of samples with

known class labels, because otherwise only 74 complete samples could have been found. Fur-

thermore, the number of classes constituting the class structures had to be reduced, because

some classes are not represented by images for which the class labels of all other variables are

known. Details about the dataset are presented in section 5.1.1.2.

• SILKNOW-s-i (selected classes and variables, incomplete setting): This dataset variant al-

lows an analysis of the impact of the completeness of the samples’ labels on the respective

training procedure. Both, the selected set of semantic variables as well as the respective

class structures, are identical to the ones of SILKNOW-s-c. In contrast to SILKNOW-s-c, all

incomplete samples that fit to the class structures defined for SILKNOW-s-c contribute to

the dataset SILKNOW-s-i. Details about the dataset are presented in section 5.1.1.3.
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Table 5.1: Statistics of the three variants of the SILKNOW dataset. Total : total number of samples, i.e.

images with annotations, in the dataset; Missing : number of samples with an unknown class label

(or belonging to the background class in case of SILKNOW-a-i) for exactly s of the semantic

variables; “–” means there is by definition no sample that could have such a number of missing

labels.

Dataset Total Missing

s 0 1 2 3 4

SILKNOW-a-i 48,912 74 6,764 15,016 19,330 7,728

SILKNOW-s-c 5,814 5,814 0 0 0 –

SILKNOW-s-i 47,396 5,814 12,501 18,152 10,929 –

Table 5.1 contains also statistics about the degree of completeness of the labels of the samples

constituting the three dataset variants: Whereas by definition SILKNOW-s-c has 100% complete

samples (s = 0, Table 5.1), SILKNOW-a-i consists of 0.2% of complete samples and, accordingly,

99.8% of the samples are incomplete; SILKNOW-s-i comes along with 12.3% of complete samples.

Each of the datasets is split into subsets of 60% of the samples to be used for training, 20% for

validation and 20% for testing, where all images belonging to a single record, i.e. an identical silk

object, are part of the same subset. Figure 5.2 provides some examples for multiple images in the

knowledge graph representing the same object. In the largest SILKNOW dataset, i.e. SILKNOW-

a-i, 64.8% of the records are represented by exactly one image, 34.2% come along with two to ten

images, and 1.0% of the images are represented by eleven to 50 images.

5.1.1.1 SILKNOW-a-i – all classes and variables; incomplete setting

The dataset SILKNOW-a-i is the one that is closest to the real world application represented by the

SILKNOW knowledge graph, because as many different semantic annotations assigned to images

as possible are considered in the dataset. In this context, the annotations of the five variables

time, technique, material, place and depiction are considered. Thus, the dataset forms the best

possible basis for training an image based classifier in order to complete missing information in the

knowledge graph, on the one hand, and, on the other hand, to learn meaningful descriptors for an

image based search in the graph. The dataset was generated as follows: First of all, from the total

of 74,527 images contained in the knowledge graph, images depicting plain fabrics are selected,

resulting in 50,774 images, i.e. images showing processed fabrics are excluded. In a next step,

the set of images is further reduced by images that do not come along with a semantic annotation

for any of the variables, resulting in 49,015 images. As described above, the dataset is split into

three subsets for training, validation and testing, respectively. A requirement on the subsets is

that each subset contains at least one example for each class of each variable. Some classes are

represented by too few examples to fulfill this requirement, i.e. they are represented by one or two

examples only. Furthermore, the class labels of the five variables are (at least) partly dependent on

each other (correlations between 23.9% and 44.1% can be observed between the variables’ labels)

so that it is not possible to split the data such that the requirement on the subsets is fulfilled for

all variables simultaneously. Thus, further images that come along with a class label exclusively
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Figure 5.2: Examples for objects from the IMATEX collection represented by several images in the SIL-

KNOW dataset. Each row refers to one silk object. The columns show different images assigned

to the same object. Images © Museu Tèxtil de Terrassa/Quico Ortega (IMATEX, 2018).

for classes that, thus, have to be excluded are omitted, leading to a total of 48,912 images. In

case an image among these 48,912 images belongs to one of the excluded classes, its label is set

to background for that specific variable in order to differentiate between unknown, i.e. there is no

information available, and a label that is different from the labels of interest even though it cannot

be considered. The 48,912 images constituting the dataset originate from 12 museum collections

out of the total of 18 collections integrated in the SILKNOW knowledge graph; six collections

could not be considered, because the samples of these collections do not fulfill at least one of the

requirements just mentioned.

The class structures and class distributions of the five semantic variables as well as the number

of samples labelled as background per variable are presented in Table 5.2. It can be seen that the

number of available class labels for the foreground classes, i.e. the classes of interest, varies strongly

between the individual variables; Place has the largest amount of known class labels with 73.1% of

available semantic annotations, followed by material with 72.3%, time with 58.0% and technique

with 32.7% of available class labels. Depiction has the lowest number of known labels of interest,

with only 7.0% of the 48,912 images in the dataset coming along with a class label. Furthermore, it

can be concluded from Table 5.1 that nearly all of the images (99.8%) have an unknown class label

for at least one of the five variables, exemplifying the need for methods dealing with incomplete

training samples.

In addition to the differences of the amount of labelled data available per variable, the class

distributions of the individual variables in Table 5.2 have different characteristics. Table 5.3 contains

the quantities describing class imbalance introduced in the introduction of section 5.1 for classes of

interest for the dataset variant SILKNOW-a-i. The class distributions of the variables vary strongly

with respect to their IR (eq. 5.1) values; the variable material has the lowest IR of 7.0, indicating

that the most dominant class has seven times as many examples as the class with the lowest number

of examples, while the variable time has the highest IR (232.0). Furthermore, the total number of

classes Km varies between 3 (material) and 29 (place), where the amount of minority classes |Mm|
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Table 5.2: Statistics of the distribution of samples for the dataset SILKNOW-a-i. Variable: name of the

variable considered; Class name: classes differentiated for each variable, where the country codes

of the international organization for standardization are used for the variable place; # samples:

number of image examples for a class.

Variable Class name # samples Class name # samples

place GB 7,998 RU 228

FR 7,379 JM 191

ES 4,708 CH 146

IT 4,700 EG 117

IN 2,353 AZ 115

CN 1,399 MO 84

IR 1,294 AT 81

JP 1,097 PT 73

BE 648 MA 63

TR 593 BD 60

DE 592 CA 52

GR 479 AU 46

NL 455 MM 46

US 357 UZ 42

PK 352 background place 604

material animal fibre 27,252 vegetal fibre 3,891

metal thread 4,208 background material 0

time 19th century 9,975 16th century 1,829

18th century 8,423 15th century 685

20th century 4,012 13th century 43

17th century 3,378 background time 104

technique embroidery 6,861 tabby 185

velvet 3,051 printed fabric 99

damask 2,768 twill 67

other technique 2,526 cannele 65

resist dyeing 355 background technique 44

depiction flower 2352 text 129

plant 336 animal 116

geometrical shape 202 fruit 95

stripe 138 object 73

background depiction 56

varies between 55.6% for technique and 87.5% for depiction. Even though the variable technique

has the lowest percentage of minority classes, it has the most imbalanced class distribution in terms
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Table 5.3: Statistics of the characteristics of the class distributions of the classes of interest for the dataset

SILKNOW-a-i. Km denotes the total number of classes, whereas |Mm| and |Mm|/Km denote

the absolute number of minority classesMm and the relative frequency of the same, respectively.

variable place time technique material depiction

IR (eq.5.1) 190.4 232.0 105.6 7.0 32.2

Km 29 7 9 3 8

|Mm| 22 5 5 2 7

|Mm|/Km [%] 75.9 71.4 55.6 66.7 87.5

BD (eq. 5.2) [%] 78.2 50.9 91.3 65.6 63.8

of BD (eq. 5.2), caused by the relatively low number of examples for all of the minority classes.

In contrast, the variable time has the most balanced class distribution in terms of BD.

5.1.1.2 SILKNOW-s-c – selected classes and variables; complete setting

The dataset SILKNOW-s-c is designed to allow a full exploitation of the interdependencies between

the considered variables during training. Thus, the dataset consists of completely labelled samples

only, i.e. of images that come along with a known class label for all of the variables. As most

of the samples in the dataset SILKNOW-a-i are incomplete (99.8%), i.e. only 74 samples come

along with an annotation for all of the five semantic variables (Table 5.1), one of the semantic

variables has to be neglected in SILKNOW-s-c to obtain a reasonable number of samples in the

dataset. As the variable depiction has by far the lowest amount of known class labels (about 7.0%),

it was decided to neglect this variable. This results in a dataset of 5,814 complete samples, which

is indeed much larger than the amount of 3,441 samples with a label for depiction. Due to the

restriction to complete samples, the number of museum collections contributing to the dataset is

reduced to 6. For the resulting dataset, the class structures and the class distributions of the four

remaining semantic variables are presented in Table 5.4. It can be seen that the number of classes

per variable is reduced with the exception of material. Classes are neglected either because of the

absence of a class label for all other variables for all examples of a certain variable’s class, or they

are neglected because of the reduced number of examples for a certain class and the dependencies

on other variables’ class labels, such that a split into a training, validation and test set with at

least one example per class for all of the variables is no longer possible. Furthermore, the number

of examples for all classes of all variables is at least halved compared to dataset SILKNOW-a-i.

This makes the need for methods dealing with incompletely labelled training samples even clearer,

because a reduced number of examples per class narrows the representation of the class by the data

especially in smaller datasets, such that some characteristics of a class might not be considered.

Methods allowing for incompletely labelled data allow for a larger number of samples per class in

addition to a more comprehensive class structure.

The characteristics of the class distributions of the four semantic variables in the dataset

SILKNOW-s-c are presented in Table 5.5. Due to the reduced number of both, the number of

classes in the class structures as well as the number of image examples per remaining class, the IR
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Table 5.4: Statistics of the distribution of samples for the dataset SILKNOW-s-c. Variable: name of the

variable considered; Class name: classes differentiated for each variable, where the country codes

of the international organization for standardization are used for the variable place; # samples:

number of image examples for a class.

Variable Class name # samples Class name # samples

place GB 1,499 IN 162

FR 1,118 TR 76

ES 2,115 DE 162

IT 579 NL 103

material animal fibre 4,154 vegetal fibre 1,054

metal thread 606

time 19th century 1,139 17th century 1,143

18th century 1,111 16th century 367

20th century 1,825 15th century 229

technique embroidery 3,002 other technique 775

velvet 593 resist dyeing 241

damask 1,203

(eq. 5.1) is reduced by one order of magnitude for all variables except for material compared to the

dataset SILKNOW-a-i. As for the incompletely labelled dataset SILKNOW-a-i, material has the

lowest IR (6.9), followed by technique (12.5), whereas the variable place has the highest IR (27.8)

in the dataset SILKNOW-s-c, which is 6.8 times lower than the IR of the variable in the dataset

SILKNOW-a-i. Furthermore, the total number of classes Km for the variable place is reduced by

a factor of 3 in the dataset SILKNOW-s-c, while it still has the largest number of classes. The

variable material has the lowest number of classes (3) and is the only variable the class structure of

which is maintained regardless of the restriction to completely labelled samples. The percentage of

minority classes |Mm|/Km varies between 33.3% (time) and 66.7% (material), where the amount

of underrepresented classes per variable in the dataset SILKNOW-s-c is comparable to the one in

SILKNOW-a-i except for the variable time; its percentage of minority classes is more than halved.

The BD (eq. 5.2) of the variables in the dataset SILKNOW-s-c varies between 53.9% (technique)

and 70.2% (place). The BDs of the variables place and material are reduced by about 8% compared

to the dataset SILKNOW-a-i, whereas time has a BD increased by roughly 18%; for technique,

the BD is reduced by about 37%. To sum up, the completely labelled dataset SILKNOW-s-c is

much more balanced in terms of IR and mostly in terms of BD compared to the incompletely

labelled dataset SILKNOW-a-i, while it considers only four of five variables, each with a reduced

class structure (except for material) and a lower number of examples representing the considered

classes.
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Table 5.5: Statistics of the characteristics of the class distributions for the dataset SILKNOW-s-c. Km

denotes the total number of classes, whereas |Mm| and |Mm|/Km denote the absolute number

of minority classes Mm and the relative frequency of the same, respectively.

variable place time technique material

IR (eq. 5.1) 27.8 8.0 12.5 6.9

Km 8 6 5 3

|M| 5 2 3 2

|M|/Km [%] 62.5 33.3 60.0 66.7

BD (eq. 5.2) [%] 70.2 69.2 53.9 57.2

5.1.1.3 SILKNOW-s-i – selected classes and variables; incomplete setting

The dataset SILKNOW-s-i allows to analyse the impact of the completeness of the labels on

the classification performance and image retrieval performance, respectively. As for the dataset

SILKNOW-a-i, all images depicting plain fabrics and coming along with an annotation for at least

one of the semantic variables are considered in the first place. In order to allow for a comparison of

results produced on the fully labelled dataset SILKNOW-s-c ⊂ SILKNOW-a-i to results produced

on an incompletely labelled dataset, the incompletely labelled dataset has to have the same set of

semantic variables as well as the same class structure for each of the variables in the set. Thus, the

labelled fabric images are reduced to those coming along with a class label for at least one of the

classes in Table 5.4, i.e. one of the classes belonging to the class structures of the variables place,

material, time or technique of the dataset SILKNOW-s-c. This leads to a dataset consisting of

47,396 images, denoted as SILKNOW-s-i. Astonishingly, the dataset SILKNOW-s-i consists only

of 1,516 images less compared to the dataset SILKNOW-a-i according to Table 5.1, even though

the variable depiction and many classes of the remaining four variables, particularly of the variable

place, are not considered. Accordingly, 1,516 images in the dataset SILKNOW-a-i came along ex-

clusively with a class label describing depiction or with a label for one of the classes of the other

variables that were excluded in SILKNOW-s-c. All other images come along with at least one class

label that is contained in the class structures of the dataset SILKNOW-s-c. This leads to the fol-

lowing availability of class labels, where the class structures and class distributions are presented in

Table 5.6: The largest number of labels is known for material (74.6%), followed by place and time

with 60.7% of known class labels and 59.7%, respectively; the lowest number of labels is available

for technique (32.8%). By definition, the total number of images with a known class label for all

of the variables is identical to the total number of images in the dataset SILKNOW-s-c, i.e. there

are 5,814 complete samples in the dataset SILKNOW-s-i.

The characteristics of the class distributions of the dataset SILKNOW-s-i are presented in Table

5.7. The IR values are in the same order of magnitude as for the completely labelled version

of the dataset; they vary between 7 for material and 19.3 for technique. By definition, the total

number of classes Km is identical for the two datasets SILKNOW-s-c and SILKNOW-s-i, whereas

the amount of underrepresented classes, indicated by |M| as well as |M|/Km, deviates for the

dataset SILKNOW-s-i due to the additional incomplete samples. The variable place has the lowest
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Table 5.6: Statistics of the distribution of samples for the dataset SILKNOW-s-i. Variable: name of the

variable considered; Class name: classes differentiated for each variable, where the country codes

of the international organization for standardization are used for the variable place; # samples:

number of image examples for a class.

Variable Class name # samples Class name # samples

place GB 7,998 IN 2,353

FR 7,379 TR 593

ES 4,708 DE 592

IT 4,700 NL 455

material animal fibre 27,252 vegetal fibre 3,891

metal thread 4,208

time 19th century 9,975 17th century 3,378

18th century 8,423 16th century 1,829

20th century 4,012 15th century 685

technique embroidery 6,861 other technique 2,526

velvet 3,051 resist dyeing 355

damask 2,768

Table 5.7: Statistics of the characteristics of the class distributions for the dataset SILKNOW-s-i. Km

denotes the total number of classes, whereas |Mm| and |Mm|/Km denote the absolute number

of minority classes Mm and the relative frequency of the same, respectively.

place time technique material

IR (eq. 5.1) 17.6 14.6 19.3 7.0

Km 8 6 5 3

|M| 4 4 4 2

|M|/Km [%] 50.0 66.7 80.0 66.7

BD (eq. 5.2) [%] 72.2 47.5 30.1 65.6

number of minority classesM (50.0%) and the variable technique has the highest number (80.0%).

Nevertheless, technique has the most balanced class distribution in terms of BD (30.1%) and the

class distribution of the variable place deviates the most, with a BD of 72.2%, caused by a relatively

low number of examples for nearly all of the minority classes.

5.1.2 WikiArt dataset

In recent years, many works investigated image classification of cultural heritage collections, most

of them dealing with the classification of images of paintings. One example for a dataset used

in this context is the WikiArt dataset. It consists of images as well as annotations for several

semantic variables. Thus, it is not only suitable for evaluating classification tasks, but also fulfills

the requirements of the image retrieval method presented in this thesis. Consequently, the WikiArt
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dataset is chosen for demonstrating the transferability of both, the image classification approach as

well as the image retrieval approach, to other digital collections in the context of cultural heritage

than the one they were originally designed for. The WikiArt dataset is continuously growing over

time, so that one has to decide which version is utilized. In this thesis, the version of WikiArt9

provided by the authors of (Tan et al., 2016) is used, which was also consulted in other works,

e.g. in (Tan et al., 2016; Cetinic et al., 2018; Dorozynski and Rottensteiner, 2022a; Zhao et al.,

2022). Tan et al. (2016) did not only publish the image data (81,444 images in total) and related

class labels for the three variables genre, style and artist, but also their data split for training and

validation per variable. In this thesis, the same split is used whereas network training as well as

hyperparameter tuning is performed on their training set, their validation set is used exclusively

for testing the trained and tuned model.

In contrast to the single-task learning experiments in (Tan et al., 2016), all semantic variables

are considered simultaneously in this work in the context of multi-task classification, on the one

hand, and for defining semantic similarity in the context of image retrieval, on the other hand.

Consequently, the provided data splits are refined by eliminating images that occur both in the

training and in the validation sets for any variable. Thus, a dataset of 80,880 images having up to

three class labels per image (one per variable) with disjoint training and validation sets is obtained.

Furthermore, the training set is split into two disjoint subsets; one for network training and one for

hyperparameter tuning and early stopping. In the remainder of this thesis, the subset for network

training will be denoted as training set and the subset for hyperparameter tuning as validation set,

which together make up the training set provided by Tan et al. (2016). The set referred to as

validation set in (Tan et al., 2016) will be called test set.

The resulting class structures as well as the class distributions of the three semantic variables

genre, artist and style in the multi-task WikiArt dataset used in this thesis can be found in Figure

5.3. For the variable genre, 10 classes are differentiated, with the number of samples per class

varying between 1,879 for the class illustration and 14,010 for the class portrait. For the variable

artist, there are 23 classes, with a minimum and a maximum number of samples of 461 (Salvador

Dali) and 1,864 (Vincent van Gogh), respectively. Finally, there are 27 different style classes, with

a minimum of 106 (Analytical Cubism) and a maximum of 12,941 images per class (Impressionism).

It is worth mentioning that a class label for the variable artist is available for 23.2% of the 80,880

images in the multi-task dataset, the information about the genre of the depicted painting is

available for 79.7% of the samples and only the style information is known for all of the images.

Examples for images in the WikiArt dataset are shown in Figure 5.4.

5.2 Evaluation strategy

The evaluation strategy for the image classification approach described in sections 4.1 and 4.3 is

presented in section 5.2.1. In section 5.2.2, the evaluation strategy for the image retrieval approach

introduced in sections 4.2 and 4.3 is presented.

9https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset, accessed on 01-06-2023
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(a)

(b)

(c)

Figure 5.3: Class structures and class distributions of the WikiArt dataset for the three variables genre (a),

artist (b) and style (c). The blue bars indicate the number of images in the training set, the red

bars correspond to the validation set, and the green bars correspond to the test set.

5.2.1 Evaluation of image classification approaches

An empirical evaluation a classifier requires an independent set of reference samples with known

class labels. These reference samples should not have contributed to the training process at all,

i.e. neither for parameter updates nor for validation. Accordingly, all quality metrics are derived
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Figure 5.4: Examples for images in the WikiArt dataset. The five images have the following class labels

(from left to right): artist : Rembrandt, Vincent van Gogh, Pierre Auguste Renoir, Pablo Picasso,

Salvador Daĺı; genre: portrait, genre painting, landscape, still life, illustration; style: Baroque,

Realism, Impressionism, Cubism, Abstract Expressionism.

on samples in the test sets, introduced in section 5.1. These samples are classified by the classifier

to be evaluated, and the results are compared to the known reference values. In this context,

incomplete samples can be used, too; they contribute only to the evaluation for variables for which

they do provide a reference class. The evaluation is carried out independently for each variable m

to be predicted. In a first step, a confusion matrix is determined, i.e. a matrix Zm of size Km

x Km. An element zmij of Zm contains the number of reference samples belonging to class i in

the reference which are assigned to class j by the classifier. Km is the number of labels for the

corresponding variable m. From this matrix, a series of quality indices can be obtained. Firstly,

the Overall Accuracy (OA) OAm can be computed per variable m, i.e. the percentage of correctly

classified samples among all samples having a reference label for variable m:

OAm =

∑Km
i=1 z

m
ii∑Km

i=1

∑Km
j=1 z

m
ij

. (5.4)

Furthermore, for each class i, three class-specific quality measures can be determined: the recall

recallmi =
zmii∑Km
k=1 z

m
ik

(5.5)

defined as the percentage of the samples per class according to the reference which is also assigned

to that class by the classifier; the precision

precisionmi =
zii∑Km
k=1 z

m
ki

(5.6)

defined as the percentage of predictions of a class that actually belong to that class, and the

F1-score

F1mi = 2 · precision
m
i · recallmi

precisionmi + recallmi
(5.7)

of class i of a variable m, being the harmonic mean of precision and recall of that class.

As another overall quality metric for a variable m, besides the OAm, the mean F1-score F1m,

defined as the arithmetic mean of all class-specific scores F1mi of a variable m, can be determined:

F1m =
1

Km

Km∑
i=1

F1mi . (5.8)
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While the OAm is an important measure for assessing how often the correct class is predicted for

variable m, it may also be biased by classes having many instances in case of a highly unbalanced

class distribution. The mean F1 score F1m is affected by all classes of variable m in the same way,

independently of the number of samples per class, and, thus, is more susceptible to misclassifications

of classes having a small number of samples than the OAm. Finally, to compare different variants

of a multi-task classifier, it may also be useful to compute a mean OA and a mean F1 by averaging

the variable-specific measures over all M variables:

F1 =
1

M

M∑
m=1

F1m, (5.9)

OA =
1

M

M∑
m=1

OAm. (5.10)

Thus, F1 and OA give an impression of the average ability of a classifier to correctly predict the

classes across all tasks. In order to get an impression of the impact of the random components

during training of a specific multi-task classifier on the quality metrics, training and the respective

evaluation will be conducted several times, i.e. Nrun times as specified below. Thus, variable-

specific accuracies per experiment OAm =: OAmn (eq. 5.4), variable-specific mean F1-scores per

experiment F1m =: F1mn (eq. 5.7) as well as average F1-scores over all variables per experiment

F1 =: F1n (eq. 5.9) and average accuracies over all variables per experiment OA =: OAn (eq.

5.10) can be calculated for a type of classifier. This is achieved by averaging the respective quality

metric obtained in the nth run over all Nrun conducted runs of the same experiment. This leads to

the average quality metrics µOAm , µF1m , µF1 and µOA, respectively:

µF1m =
1

Nrun
·
Nrun∑
n=1

F1mn , µF1 =
1

Nrun
·
Nrun∑
n=1

F1n, (5.11)

µOAm =
1

Nrun
·
Nrun∑
n=1

OAmn , µOA =
1

Nrun
·
Nrun∑
n=1

OAn. (5.12)

Additionally, the respective standard deviations can be calculated for the average quality metrics:

σF1m

0 =

√√√√ 1

Nrun − 1
·
Nrun∑
n=1

(F1mn − µF1m)2, σF1
0 =

√√√√ 1

Nrun − 1
·
Nrun∑
n=1

(F1n − µF1)2, (5.13)

σOA
m

0 =

√√√√ 1

Nrun − 1
·
Nrun∑
n=1

(OAmn − µOAm)2, σOA0 =

√√√√ 1

Nrun − 1
·
Nrun∑
n=1

(OAn − µOA)2. (5.14)

All of the quality metrics described in this section are calculated under consideration of all classes

of a semantic variable m, including the respective background class, unless otherwise stated in the

evaluation.

5.2.2 Evaluation of image retrieval approaches

An empirical evaluation of image retrieval is generally conducted using reference information defin-

ing per test query image a set of images in the dataset that are considered to be similar to the
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respective test image. However, such a reference is not available for datasets coming along only

with the data required to learn descriptors using the methods described in sections 4.2 and 4.3.2.2.

Thus, in this thesis, an empirical evaluation of the image retrieval method is carried on the basis

of the result of a k Nearest Neighbour (kNN) classification, where the class labels for an image are

derived on the basis of the known class labels of the k Nearest Neighbours (NNs) in feature space.

As the network learns to produce feature vectors that are close together for images having similar

annotations, the nearest neighbours of the descriptor of a query image in feature space are expected

to belong to images that have the same labels for the semantic variables. Accordingly, the query

image’s class labels are derived on the basis of images with a known class label whose descriptors

are the ones that are closest to the query image’s descriptor in feature space. As common in the

context of evaluating a classifier, this requires an independent set of reference samples with known

class labels, referred to as test set, that contains the query images to be classified. These reference

samples must not have contributed to the training process at all, i.e. neither for parameter updates

nor for validation. In this thesis, the images the descriptors of which contribute to the k nearest

neighbours of the query descriptor are the images in the training set, i.e. the training images are

decided to constitute the database for image retrieval.

First of all, the image descriptors for all samples in the training set as well as all samples in the

test set are calculated by the trained CNN. In a next step, the training descriptors are used to

built a kd-tree (Bentley, 1975) to allow for an efficient search for the nearest neighbours of the test

descriptors. Afterwards, class labels are derived for all test images by the kNN-classification with

k = 10 as in (Schleider et al., 2021; Dorozynski and Rottensteiner, 2022b). For that purpose, the

NNs in the training set are determined for all image descriptors belonging to images in the test set,

referred to as query descriptors, and the predicted class for a test sample is defined to be the most

frequent class label assigned to images belonging to the 10 NNs per task m ∈ {1, ...,M}. In case

two labels occur equally often among the NNs, the predicted class is defined to be the one belonging

to the descriptors with a smaller sum of Euclidean distances to the query descriptor. Afterwards,

the predictions are compared to the known reference values. Again, incomplete reference samples

can be used; they will only contribute to the evaluation for variables for which they do provide a

reference class. Having a reference class label as well as a predicted class label for all images in

the test set, the evaluation is carried out analogously to the evaluation of the image classification

approach described in section 5.2.1; in a first step, the confusion matrices Zm are determined for all

M variables and afterwards, the quality metrics and their standard deviations in equations 5.4–5.14

can be calculated as well as average metrics and their standard deviations in case of several runs

of the experiment. Thus, a numerical evaluation of image retrieval becomes possible, in which, for

lack of possible alternatives, the semantic aspect of similarity can be considered only.

5.3 Objectives and structures of the experiments

In this section, the conducted series of experiments aiming to answer the research questions for-

mulated in section 1.2 are described. First of all, the general training setup as well as the line

of action for identifying optimal settings for the hyperparameters of the methods introduced in

chapter 4 are described in section 5.3.1. The resulting hyperparameter settings will remain un-
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changed for the subsequent test series. Afterwards, for each approach introduced in chapter 4, i.e.

image classification, image retrieval and combined classification and image retrieval, the respective

research questions are shortly reviewed and the related test series are described in detail in sections

5.3.2-5.3.4.

5.3.1 General training setup and hyperparameter analysis

The goal of training is to determine the weights w of one of the three networks C-SilkNet (Figure

4.1), R-SilkNet (Figure 4.2) and SilkNet (Figure 4.3), respectively, such that the selected loss

function becomes minimal. In general, training is conducted on one of the datasets presented in

section 5.1, where all of the images are resized to the input size of the network, i.e. RGB images with

224 x 224 pixels. Resizing is conducted by first blurring the original image with a Gaussian filter in

case the image is larger than 224 x 224 pixels and afterwards, resizing the image to the desired size

applying bi-linear interpolation. The network parameters are updated on the basis of mini-batches

(section 4.4) drawn from the training set until the loss calculated on the independent validation set

is saturated or even starts to grow again. This strategy is referred to as early stopping (Bishop,

2006, pp. 259-261) and aims to avoid overfitting (section 2.2.3). Furthermore, quality metrics on the

validation set are used to select reasonable hyperparameters. The test set is exclusively used for an

independent evaluation of the networks’ quality, indicated by the quality metrics described in section

5.2. Each experiment is conducted five times (Nrun = 5), in order to allow for a better interpretation

of the differences in performance given the random components of the training procedure, i.e. mini-

batch generation, initialization of wjfc and potentially wclass, as well as potentially generating

synthetic images x′
nslf

i for self-similarity (section 4.2.2.3). Accordingly, average evaluation metrics

and a corresponding standard deviation are provided.

Hyperparameter tuning was performed in preliminary experiments, the results of which are pre-

sented in this section. For the purpose of tuning, the dataset SILKNOW-a-i presented in section

5.1.1.1 was used, because it is the one closest to the real world application represented by the

SILKNOW knowledge graph, on the one hand, and, on the other hand, it also covers the two other

variants of the SILKNOW dataset, being subsets of SILKNOW-a-i. Parameter tuning will was

conducted independently for the networks C-SilkNet and R-SilkNet as a preliminary step for the

actual investigations of the respective approaches, where the classification loss in equation 4.6 was

applied for training C-SilkNet and the retrieval loss in equation 4.13 for training R-SilkNet. A list

of hyperparameters as well as the default settings of those parameters for the two networks, having

been selected on the basis of preliminary experiments, are presented in Table 5.8. As the focus of

this thesis is not on determining the best possible setting of all hyperparameters and in particular

not on figuring out the best possible combination of hyperparameter values, the impact of the pa-

rameters considered to be the most important ones was analyzed instead of performing e.g. random

parameter search (Bergstra and Bengio, 2012), which is beyond the scope of this work given the

large number of hyperparameters. The focus of hyperparameter tuning is on the group Training

and Regularization according to Table 5.8. Experiments with the parameters in the group Data

were not performed, because the impact of the batch size NMB is closely related to the selected

learning rate, which was investigated, and the number of tasks M is specified by the choice of the
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Table 5.8: Hyperparameter overview for C-SilkNet (Figure 4.1) and R-SilkNet (Figure 4.2). Group: denotes

the group that is defined to structure the list of parameters on a context-level, where ”Reg.”

denotes ”Regularization”; Name: name or short description of the parameter, where “#” denotes

“number of”; Symbol : the symbol of the parameter; Details: the section containing the definition

of the parameter, where the first section applies to C-SilkNet and the second one to R-SilklNet,

respectively, in case two sections are mentioned; Default : the default setting of a parameter.

Group Name Symbol Details Default Default

C-SilkNet R-SilkNet

Data mini-batch size NMB 4.1.2, 4.2.2 300 300

number of tasks M 4.1.2, 4.2.2.1 5 5

Model # joint layers NLjfc 4.1.1, 4.2.1 1 1

# nodes joint layers [NN1
jfc, ..., NN

NLjfc

jfc ] 4.1.1, 4.2.1 [1024] [256]

# task layers NLtfc 4.1.1, – 1 –

# nodes task layers [NN1
tfc, ..., NN

NLtfc

tfc ] 4.1.1, – [128] –

Training learning rate η 2.2.4.2 1 · 10−3 1 · 10−3

1st moment weight β1 2.2.4.2 0.9 0.9

2nd moment weight β2 2.2.4.2 0.999 0.999

auxiliary constant ε̂ 2.2.4.2 1 · 10−8 1 · 10−8

# residual blocks NBRN 4.1.2, 4.2.2 3 3

loss weight of Lsem αsem –, 4.2.2 – 1.0

loss weight of Lco αco –, 4.2.2 – 0.0

loss weight of Lslf αslf –, 4.2.2 – 0.0

Reg. dropout rate ρdrop 4.1.2, 4.2.2 30% 30%

L2 regularization λL2 4.1.2, 4.2.2 1 · 10−3 1 · 10−3

dataset, assuming that all properties are considered to be relevant. Furthermore, the parameters

in the group Model were identified on a sample basis varying both, the order of magnitude of nodes

per layer ([NN1
jfc, ..., NN

NLjfc

jfc ] and [NN1
tfc, ..., NN

NLtfc

tfc ], respectively) as well as the number of

layers (NLjfc and NLtfc, respectively), in series of preliminary experiments. This results in a C-

SilkNet architecture with similar parameters as the CNN in (Dorozynski et al., 2019a; Dorozysnki

et al., 2021) and R-SilkNet ’s parameters are equal to the ones in (Dorozynski et al., 2019b). A

detailed search for an optimal network architecture would be beyond the scope of this thesis, this

being its own field of research, e.g. (Elsken et al., 2019; Ren et al., 2021).

The parameters of the remaining two groups, i.e. Training and Regularization, as well as the

investigated ranges for the individual hyperparameters are listed in Table 5.9. In this context,

the parameters of the Adam optimizer β1, β2 and ε̂ (section 2.2) were set to the standard pa-

rameters and remained unchanged, because varying their values generally has no huge impact on

training (Goodfellow et al., 2016), while different values of the learning rate η were investigated.

Furthermore, the loss weights αsem, αco, and αslf defining the impact of the different similarity loss

terms on the total image retrieval loss were not investigated during hyperparameter tuning; their
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Table 5.9: Investigated hyperparameter values for training C-SilkNet (Figure 4.1) and R-SilkNet (Figure

4.2). Group: denotes the group a parameter belongs to; Symbol : the symbol of the parameter as

introduced in chapter 4; Values: investigated values of a parameter, where the identified optimal

value is highlighted in bold font.

Network Group Name Symbol Values

C-SilkNet Training learning rate η 10−5,10−4, 10−3, 10−2

# residual blocks NBRN 0, 3, 6, 12

Regularization dropout rate [%] ρdrop 0, 10, 20, 30, 50

L2 regularization λL2 0, 10−5, 10−4, 10−3, 10−2

R-SilkNet Training learning rate η 10−5,10−4, 10−3, 10−2

# residual blocks NBRN 0, 3, 6, 12

Regularization dropout rate [%] ρdrop 0, 10, 20, 30, 50, 60

L2 regularization λL2 0, 10−4,10−3, 10−2

impact on image retrieval will be analyzed in the context of an ablation study described below

(sections 5.3.3 and 5.3.4, respectively). It was decided to learn exclusively the concept of semantic

similarity during hyperparameter tuning, i.e. to use αsem = 1 and αco = αslf = 0, because by

definition the evaluation strategy for image retrieval (section 5.2.2) focuses on semantic similarity

for lack of possible alternatives. The actual parameter tuning was conducted such that for one pa-

rameter value listed in Table 5.9, the remaining parameters were set to the default values according

to Table 5.8. The hyperparameters were selected based on the average F1 scores per experiment

(equation 5.9) obtained on the validation set in the context of image classification (C-SilkNet) and

kNN classification (R-SilkNet), respectively; they are shown in bold font in Table 5.9. The F1

score was selected because the datasets used are imbalanced with respect to their class distribu-

tions. For SilkNet, the parameters listed in Table 5.8 will be inherited from the tuning for C-SilkNet

and R-SilkNet, depending on the context in which SilkNet is applied; for image classification, the

parameters of C-SilkNet are adopted, for retrieval, the parameters of R-SilkNet will be used.

The subsequent sections contain detailed descriptions of the experiments conducted using the

CNNs networks C-SilkNet, R-SilkNet, and SilkNet and the single-task version of C-SilkNet (section

4.1.3), utilizing the identified optimal values for the hyperparameters according to Table 5.9 and

aiming to answer the research questions formulated in section 1.2. In section 5.3.2, the setup of all

experiments in the contexts of image classification based on C-SilkNet is described and explained.

The setup of experiments investigating different strategies for training R-SilkNet, the trained de-

scriptors of which are used for image retrieval, is described in section 5.3.3 along with the relevance

of these experiments in the context of the research questions. Afterwards, a description of the

experimental setup for evaluating the approach combining classification and descriptor learning is

provided in section 5.3.4. The latter section describes two series of experiments, one focusing on

classification as the main task to be learned, inheriting the configuration and hyperparameters of

C-SilkNet for SilkNet, and the other one focusing on descriptor learning, inheriting the configura-

tion and hyperparameters of R-SilkNet for SilkNet, respectively. Finally, section 5.3.5 contains a
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description of the setup of the experiments conducted to put the developed methods into a broader

scientific context. This is the only set of experiments for which the WikiArt dataset (section 5.1.2)

is used; all the others are conducted using a variant of the SILKNOW dataset (section 5.1.1). The

results of all experiments described below will be presented and discussed in chapter 6.

5.3.2 Test series for evaluating image classification using C-SilkNet

The experiments described in this section aim to answer the research questions Q.C 1-3 formulated

in chapter 1.2 in the context of classifying images depicting historical artifacts using C-SilkNet. For

this purpose, the use case of a dataset of ancient silk fabrics in the form of the SILKNOW dataset

presented in section 5.1.1 is selected. All experiments conducted in this context are listed in Table

5.10, providing the names of the experiments as well as details about the loss functions used during

training, the selected training and test datasets, and the research question that is addressed by a

specific experiment. For all of the experiments, the network configuration according to Table 5.8

of C-SilkNet is utilized unless otherwise stated and training is conducted using the values for the

hyperparameters according to Table 5.9; hyperparameters not listed in Table 5.9 are set to the

values provided in Table 5.8 unless otherwise stated. The results of all experiments described in

this section are presented in section 6.1.

The first experiment MTLa−i aims to answer the first research question:

Q.C 1: Is it possible to differentiate different classes for relevant semantic

variables describing historical artifacts by means of C-SilkNet?

In this experiment, all five semantic silk properties in the dataset SILKNOW-a-i (section 5.1.1.1)

are interpreted as classification tasks. These properties are assumed to be related to different

visual characteristics of silk fabrics and thus, a classifier is assumed to be able to predict them

on the basis of images, each depicting a single silk textile. Answering Q.C1 aims to validate this

assumption. Accordingly, the multi-task C-SilkNet is trained by minimizing the multi-task softmax

cross-entropy loss allowing for incompletely labelled training examples (eq. 4.6). As potentially

low values for the metrics could also be caused by the incomplete and imbalanced nature of the

training data, other experiments are conducted to further analyze these aspects.

Another series of experiments is conducted to analyse the impact of the used incomplete samples

on the classifier’s ability to correctly predict the silk properties, formulated in the superordinate

research question

Q.C 2: How does the use of incomplete samples for training

influence the classification quality?

The first aspect in the context of Q.C 2 is made specific in the research question:

Q.C 2a: Can multi-task training considering both completely labelled and incompletely labelled

samples improve the classification results compared to respective single-task

classifiers distinguishing the same sets of classes?
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Assuming the classification tasks to be related, learning a multi-task classifier can be assumed

to result in a superior performance for the individual tasks according to (Caruana, 1993). As

existing multi-task techniques rely on training data with a label for all of the tasks for all of the

samples, it has to be investigated whether the proposed C-SilkNet multi-task classifier, trained

considering incomplete training samples, still is able to exploit interdependencies between the tasks

to be learned. Thus, the experiment STLa−i aims to allow for such a comparison by training

one single-task C-SilkNet classifier per task on the dataset SILKNOW-a-i, the results of which

can be compared to those of the experiment MTLa−i. Values for the quality metrics of MTLa−i

that might be lower than those obtained for the single-task classifiers in the experiment STLa−i

would not necessarily be caused by training with incomplete samples, but could also be caused by a

wrong assumption about the relatedness of the tasks. Thus, the results of another set of single-task

experiments STLs−i are compared with the results of the experiments MTLs−c and MTLs−i. All

of these experiments consider the same set of classes and all trained classifiers are evaluated on

the same test set. Even though it would be desirable to conduct such experiments using the same

class structures for the five tasks considered in MTLa−i and STLa−i, these experiments have to be

conducted considering the reduced class structures for the four tasks in the datasets SILKNOW-s-i

and SILKNOW-s-c due to the nature of the available data. The research question

Q.C 2b: Is it beneficial to consider incompletely labelled training samples

in addition to complete samples in multi-task learning, while

considering the same sets of classes for all tasks?

aims to address whether it is useful to use incompletely labelled training samples during training at

all. A comparison of the two experiments MTLs−c and MTLs−i allows to answer this question. It is

assumed that the classifier trained inMTLs−i outperforms the one in MTLs−c, because the training

dataset of SILKNOW-s-i does not only contain the complete training samples of SILKNOW-s-c,

but also a large number of additional incomplete samples, which is assumed to introduce additional

knowledge into training. The proposed training strategy allowing for incomplete training examples

allows for training on SILKNOW-s-i, being roughly eight times as large as SILKNOW-s-c, while

the multi-task classifier learns to distinguish the identical set of classes.

Finally, the last research question in the context of classification with C-SilkNet is

Q.C 3: Does focusing on hard examples during multi-task training improve

the classifier’s ability to mitigate problems with class imbalance?

To answer this question, the proposed focal expansion of the multi-task multi-class loss (eq. 4.8)

is used to train the multi-task C-SilkNet in the experiment MTLfoa−i, the results of which are

compared with those obtained in the experiment MTLa−i. In this context, the analysis focuses on

the comparison of the F1-scores (eq. 5.7) for the minority classes Mm of all tasks m (section 5.1).

5.3.3 Test series for evaluating descriptor learning using R-SilkNet

The experiments in this section aim to answer the research questions Q.R 1-3 formulated in chapter

1.2 in the context of image retrieval on the basis of descriptors learned using R-SilkNet. The
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Table 5.10: Experiments for evaluating image classification. Name: the name of the experiment; Loss func-

tion: equation of the classification loss in section 4.1 used to train C-SilkNet (Fig. 4.1); Dataset

(train): the dataset of which the training set and the validation set are used for training; Dataset

(test): the dataset of which the test set is used for evaluation; Purpose: identifier of the research

question (section 1.2) that is to be answered by the corresponding experiment.

Name Loss function Dataset (train) Dataset (test) Purpose

MTLa−i eq. 4.6 SILKNOW-a-i SILKNOW-a-i Q.C 1

STLa−i eq. 4.9 SILKNOW-a-i SILKNOW-a-i Q.C 2

STLs−i eq. 4.9 SILKNOW-s-i SILKNOW-s-c Q.C 2

MTLs−i eq. 4.6 SILKNOW-s-i SILKNOW-s-c Q.C 2

MTLs−c eq. 4.4 SILKNOW-s-c SILKNOW-s-c Q.C 2

MTLfoa−i eq. 4.8 SILKNOW-a-i SILKNOW-a-i Q.C 3

questions will be answered in the context of the use case of image retrieval in silk collections. To

do so, the configuration of R-SilkNet according to Table 5.8 is trained on the SILKNOW dataset

(section 5.1.1) using the hyperparameter values listed in Tables 5.8 and 5.9; in case of contradicting

information in these tables, the value in Table 5.9 is utilized. All experiments conducted in this

context are listed in Table 5.11, providing the names of the experiments, the respective variants

of the SILKNOW dataset and the research question that is addressed with a certain experiment.

Furthermore, the utilized impact of the individual concepts of similarity (sections 4.2.2.1-4.2.2.3)

in the form of the weights for the respective loss terms in the descriptor learning loss (eq. 4.13) is

provided in Table 5.11 for all experiments. The results of all experiments described in this section

are presented in section 6.2.

As this is the first work aiming at image retrieval in the context of ancient silk fabrics, the first

research question to be answered concerns the general feasibility of of the developed approach to

retrieve meaningful images, i.e.:

Q.R 1: Is it possible to learn the proposed concept of semantic similarity

of images with R-SilkNet such that descriptors of images depicting

historical artifacts with identical semantic properties

are close to each other in feature space?

Learning the concept of semantic similarity is based on the assumption that images depicting ob-

jects with similar semantic properties can be visually distinguished from images depicting objects

with dissimilar semantic properties. Answering the first research question refers to the analysis

of the correctness of this assumption: In case that there exists a dependency of an object’s ap-

pearance on its semantic properties, such dependencies are likely to be learned by a CNN such as

R-SilkNet encoding similarity of semantic annotations in the form of descriptor similarity. Accord-

ingly, R-SilkNet is trained on the dataset SILKNOW-a-i in the experiment Rsem by minimizing the

descriptor learning loss (eq. 4.13) focusing exclusively on semantic similarity, i.e. using αsem = 1,

αco = αslf = 0. In addition to the general applicability of the developed image retrieval method,



5.3 Objectives and structures of the experiments 95

Table 5.11: Experiments for evaluating image retrieval based on R-SilkNet (Fig. 4.2). Name: the name of the

experiment, where slf∗ denotes that exclusively synthetic images are used to define self-similarity

(section 4.2.2.3); Dataset (train): the dataset of which the training set and the validation set are

used for training; Dataset (test): the dataset of which the test set is used for evaluation; Similarity

setting : values for weighting the impact of a certain concept of similarity in the retrieval loss

(eq. 4.13); Purpose: identifier of the research question (section 1.2) that is to be answered by

the corresponding experiment.

Name Dataset Similarity setting Purpose

train test αsem αco αslf

Rsem SILKNOW-a-i SILKNOW-a-i 1.0 0.0 0.0 Q.R 1

Rsems−i SILKNOW-s-i SILKNOW-s-c 1.0 0.0 0.0 Q.R 2

Rsems−c SILKNOW-s-c SILKNOW-s-c 1.0 0.0 0.0 Q.R 2

Rsem+co SILKNOW-a-i SILKNOW-a-i 0.5 0.5 0.0 Q.R 3

Rsem+slf SILKNOW-a-i SILKNOW-a-i 0.5 0.0 0.5 Q.R 3

Rsem+slf∗ SILKNOW-a-i SILKNOW-a-i 0.5 0.0 0.5 Q.R 3

Rsem+slf+co SILKNOW-a-i SILKNOW-a-i 0.5 0.5 0.5 Q.R 3

it is of interest to identify its strengths and weaknesses. Thus, further experiments have to be

conducted.

As images in digital heritage collections typically do not come along with an annotation for all

semantic properties of interest, learning semantic similarity allows for incomplete samples during

training. In this context, it is of interest whether the completeness of the available annotations

affect the network’s ability to produce semantically meaningful descriptors. The second research

question

Q.R 2: Does the completeness of the available semantic annotations matter

for learning descriptors to reflect semantic similarity?

is to be answered by the results of the two experiments Rsems−i and Rsems−c . R-SilkNet is trained

both on the training sets of the dataset SILKNOW-s-i and the dataset SILKNOW-s-c, respectively,

representing the identical set of classes for four silk properties, where the dataset SILKNOW-s-i

contains additional incomplete samples compared to the dataset SILKNOW-s-c. It is assumed

that the consideration of incomplete training samples in addition to complete samples improves

R-SilkNet ’s ability to learn semantically meaningful images, because incomplete samples introduce

additional knowledge. Accordingly, the quality metrics obtained in the frame of Rsems−i are assumed

to be higher than those obtained in the experiment Rsems−c , where all quality metrics are calculated

on the retrieval results for the test set of the dataset SILKNOW-s-c; query images are part of the

test set of dataset SILKNOW-s-c and gallery images, i.e. the set of images in which the most

similar images to a query image are determined, of the training set, respectively.

In addition to retrieving semantically meaningful image retrieval results, retrieved images that

are visually similar to a query image are important in historic contexts. Besides the interest of
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historians in visually meaningful retrieval results, it is assumed that learning visual concepts of

similarity supports learning semantic similarity, leading to the next research question, i.e.:

Q.R 3: Does learning the concepts of visual similarity in addition to

learning the concept of semantic similarity lead to

an improvement of the descriptors’ distances

to reflect semantic similarity?

Aiming to answer this question, the experiments Rsem+co, Rsem+slf and Rsem+slf+co are conducted.

Training R-SilkNet to produce semantically meaningful descriptors is combined with learning vi-

sually meaningful descriptors. Thus, the effect of learning different concepts of visual similarity on

learning semantic similarity can be analysed. Under the assumption that visual similarity is related

to semantic similarity, it is assumed that simultaneously learning different concepts of similarity

leads to higher quality metrics, assessing the descriptors’ ability to reflect semantic similarity.

Furthermore, the effect of the two variants of defining self-similarity, i.e. exploiting additional

independent images of the same object (Rsem+slf∗) or additional synthetically generated images

(Rsem+slf ), is analysed. Assuming that several images depicting the same object indeed result

in a similar appearance of the object in the images, exploiting additional independent images is

assumed to be superior, because additional knowledge is introduced into training.

5.3.4 Test series for evaluating the combined approach using SilkNet

The series of experiments described in this section address the analysis of the combined approach

for learning a classifier and descriptor learning using SilkNet (section 4.3.1). All experiments

are conducted using the SILKNOW dataset (section 5.1.1) and the values for the hyperparameters

provided in Tables 5.8 and 5.9; in case of contradicting information in these tables, the value in Table

5.9 is utilized. The first series of experiments (Table 5.12) investigates classification with SilkNet

exploiting an auxiliary feature clustering during training (section 4.3.2.1) and aims to answer the

research questions Q.FC 1 -Q.FC 2. The training configuration of C-SilkNet is adopted according

to the Tables 5.8 and 5.9. Image retrieval based on descriptors delivered by SilkNet trained with

an auxiliary classification loss (section 4.3.2.2) is subject of the second series of experiments (Table

5.13), where the research questions Q.FR 1 -Q.FR 2 are to be answered. The training configuration

of R-SilkNet is adopted according to the Tables 5.8 and 5.9. The results of all experiments described

in this section are presented in section 6.3.

5.3.4.1 Learning a classifier with auxiliary clustering losses

First of all, it is of interest to analyse the effect of an auxiliary feature space clustering during

training a classifier on the performance of the resulting classifier, specifically:

Q.FC 1: Does an auxiliary feature space clustering with respect to visual

and semantic properties of the depicted objects improve

the performance of the image classifier?
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Table 5.12: Experiments for evaluating classification exploiting an auxiliary feature clustering based on

SilkNet (Fig. 4.3). For the definition of the columns see Table 5.11.

Name Dataset Similarity setting Purpose

train test αsem αco αslf

MTL+Rsem SILKNOW-a-i SILKNOW-a-i 1.0 0.0 0.0 Q.FC 1

MTL+Rco+slf SILKNOW-a-i SILKNOW-a-i 0.0 0.5 0.5 Q.FC 1

MTL+Rsem+slf+co SILKNOW-a-i SILKNOW-a-i 0.5 0.5 0.5 Q.FC 1

MTLfo +Rsem SILKNOW-a-i SILKNOW-a-i 1.0 0.0 0.0 Q.FC 2

MTLfo +Rco+slf SILKNOW-a-i SILKNOW-a-i 0.0 0.5 0.5 Q.FC 2

MTLfo +Rsem+slf+co SILKNOW-a-i SILKNOW-a-i 0.5 0.5 0.5 Q.FC 2

To answer this question, the experiments MTL+Rsem, MTL+Rco+slf and MTL+Rsem+slf+co

(Table 5.12), combining classification and descriptor learning, are conducted and compared to the

baseline classification experiment MTLa−i (Table 5.10). While a comparison of the experiments

MTL+Rsem+slf+co and MTLa−i allows to analyse the impact of a clustering both with respect to

semantic and visual properties, the clustering in MTL+Rsem relies exclusively on semantic prop-

erties (section 4.2.2.1) and the clustering in MTL+Rco+slf relies exclusively on visual properties

(sections 4.2.2.2, 4.2.2.3). It is assumed that predominantly the semantic clustering supports the

classifier in distinguishing classes, because both tasks (classification and descriptor learning) are

expected to benefit from features that are close in features space in case of corresponding images

belonging to the same class and features that are further away in all other cases. Moreover, de-

picted objects belonging to the same class are assumed to have a similar visual appearance, which

is why a clustering with respect to visual properties is also assumed to improve the classification

performance.

Finally, the auxiliary feature space clustering is not only assumed to generally better separate

classes in feature space, but particularly to better cluster features belonging to samples of under-

represented classes. This assumption leads to the following research question:

Q.FC 2: Does an auxiliary feature space clustering especially improve

the classifier’s ability to correctly predict semantic information

for images belonging to underrepresented classes?

An analysis of the classification results belonging to underrepresented classes obtained in the ex-

periments MTL + Rsem, MTL + Rsem+slf+co and the baseline classification experiment MTLa−i

(Table 5.10) allows to answer this question for the dataset SILKNOW-a-i. It is assumed that

the quality measures for underrepresented classes are superior in the experiments MTL + Rsem,

MTL + Rsem+slf+co, where an auxiliary clustering is learned during training with respect to

semantic properties (MTL + Rsem) and with respect to both semantic and visual properties

(MTL + Rsem+slf+co), respectively. Moreover, the focal multi-task classification loss, aiming

to mitigate problems with class imbalances, is combined with auxiliary similarity losses, also

aiming to mitigate such problems, in the experiments MTLfo + Rsem, MTLfo + Rco+slf and
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MTLfo +Rsem+slf+co. By thus combining the approaches developed for training with imbalanced

training distributions, the highest quality metrics are for the minority classes (section 5.1) of all

classification tasks expected.

5.3.4.2 Learning image descriptors with an auxiliary classification loss

Just as in the context of image classification, the combination of descriptor learning and learning

a classifier is assumed to positively affect descriptor learning for image retrieval, too. To verify the

correctness of this assumption, the following research question needs to be answered:

Q.FR 1: Does adding an auxiliary multi-task classification loss improve

descriptor learning such that the ability of the descriptors

to reflect semantic similarity is improved?

For that purpose, the image retrieval results of the experiments Rsem +MTLfo and Rsem+slf+co +

MTLfo (Table 5.13) with an auxiliary classification are compared to the retrieval results obtained

with descriptors that are learned without an auxiliary classification loss, i.e. those obtained in

Rsem and Rsem+slf+co (Table 5.11). Both of the experiments considering an auxiliary classification

loss for descriptor learning are conducted using the focal variant of the multi-task classification loss

(eq. 4.8), because, as will be presented in section 6.1, this loss leads to the best quality metrics for

classification. Accordingly, it is assumed to best separate classes in feature space, being required for

learning descriptors to reflect semantic similarity. As particularly the ability of the descriptors to

reflect semantic similarity is assumed to be supported by the auxiliary classification, the difference

in the quality metrics is assumed to be larger between the experiments Rsem and Rsem +MTLfo

compared to the difference between Rsem+slf+co and Rsem+slf+co +MTLfo.

The available knowledge about semantic properties of objects is often imbalanced with respect to

the frequency of certain semantic annotations in digital cultural heritage-related collections. Thus,

it is of interest to analyse whether semantically meaningful results can be retrieved for all query

images regardless of the frequency of the corresponding annotations of the query image. As the

performance is typically worse for underrepresented classes, it is assumed to be reasonable to focus

on respective samples during descriptor learning. This is realized by the auxiliary focal multi-task

classification loss in the experiments Rsem +MTLfo and Rsem+slf+co +MTLfo (Table 5.12). The

research question

Q.FR 2: Does adding a focal variant of the multi-task classification loss

to descriptor learning help to improve the ability of the descriptors

to reflect semantic properties that are rarely represented

in the training dataset?

can be answered by comparing the retrieval results of Rsem + MTLfo and Rsem+slf+co + MTLfo

(Table 5.12) with those obtained in the experiments Rsem and Rsem+slf+co (Table 5.11) focusing

on quality measures obtained for underrepresented annotations describing object properties.
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Table 5.13: Experiments for evaluating descriptor learning exploiting an auxiliary classification based on

SilkNet (Fig. 4.3). For the definition of the columns see Table 5.11.

Name Dataset Similarity setting Purpose

train test αsem αco αslf

Rsem +MTLfo SILKNOW-a-i SILKNOW-a-i 1.0 0.0 0.0 Q.FR 1, 2

Rsem+slf+co +MTLfo SILKNOW-a-i SILKNOW-a-i 0.5 0.5 0.5 Q.FR 1, 2

5.3.5 Comparison to other works and evaluation on WikiArt

All approaches presented in this work, i.e. image classification with SilkNet as well as image

retrieval with SilkNet, were developed in the context of cultural heritage related applications, such

as silk heritage. Nevertheless, the approaches are formulated in a general way such that they

can be applied to any dataset coming along with images and assigned semantic annotations. A

unique characteristic of the developed methods is that they can deal with incompletely labelled

training examples both, in the context of multi-task classification as well as for defining semantic

similarity in the context of image retrieval, respectively. In particular, the developed image retrieval

method does not need a pairwise reference defining the similarity status of images as it is common

for learning image descriptors, e.g. (Hadsell et al., 2006; Wang et al., 2014; Qi et al., 2016). In

contrast, methods of other authors are less generally formulated, e.g. the multi-task classification

methods in (Strezoski and Worring, 2017; Vandenhende et al., 2021; Zhang and Yang, 2021; Yang

et al., 2022). Accordingly, a comparison approaches of other authors on the dataset SILKNOW-a-i,

being mainly used in this thesis, is not possible. Thus, the only possibility for putting the methods,

developed in this thesis, in a broader scientific context is an evaluation on suitable datasets to

which both, the presented approaches such as approaches of other authors, can be applied.

In the context of image classification, the variant of the WikiArt dataset presented in section

5.1.2 is used to compare the classification approaches of this work to classification approaches of

other authors. As the images in the WikiArt dataset do not come along with a class label for

all of the variables, the baseline methods had to be restricted to STL classification techniques,

different CNN-based single-task classifiers proposed in (Tan et al., 2016; Zhao et al., 2021, 2022).

Nevertheless, applying the presented methods based on variants of SilkNet to the WikiArt dataset

emphasizes the generality of the presented methods. Even though there could not be identified

any multi-task learning approach that is applied to the WikiArt dataset, the comparison to single-

task learning approaches provides a first impression of the general quality of the SilkNet-based

approaches developed in this thesis. Moreover, the fact that no multi-task approach could be

identified in this context makes the contribution in this work to allow for incomplete training data

all the more clear.

In the context of image retrieval, a benchmark dataset providing a reference both for the simi-

larity status of images pairs (needed for standard retrieval methods) as well as for several semantic

variables (needed for the proposed approach) is required for a comparison of the developed image

retrieval technique and standard retrieval methods. However, such a dataset does not seem to exist.

As a consequence, the presented image retrieval approach is evaluated on the basis of a kNN classifi-
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cation, just as it is realized in the context of this work apart from that, allowing for a comparison to

classification methods of other authors. Thus, the quality metrics derived from the kNN classifica-

tion can be compared to metrics derived for baseline classifiers. Accordingly, the methods to which

the SilkNet-based descriptor learning approach are compared to are identical to those mentioned

above in the context of classification utilizing again the WikiArt dataset. It is noteworthy that a

comparison of the developed image retrieval technique on the basis of classification error metrics

obtained from a kNN classification to methods originally developed for classification might not be

fair. This is especially true because high classification accuracies in a kNN classification can only

be obtained in case that the relative majority of the retrieved descriptors for a query descriptor

belong to semantically meaningful images, i.e. to images with similar semantic annotations for the

silk properties. In contrast, retrieval techniques are usually evaluated on the basis of top-k-scores

(denoted as retrieval accuracy in (Liu et al., 2016)), indicating the percentage of evaluated queries

in which at least one meaningful result is found among k retrieved images.

For all comparative experiments, the best network variant determined in the test series described

in sections 5.3.2-5.3.4 will be trained with identical settings as in used for the experiments in these

sections on the WikiArt dataset. This is, one SilKNet variant will be determined in the context of

image classification and one variant in the context of image retrieval, respectively.
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6 Results and Discussion

In this chapter, the results of the experiments described in chapter 5 are presented and discussed.

First of all, the results of the experiments dealing with multi-task image classification using C-

SilkNet (section 4.1) described in section 5.3.2 are presented in section 6.1. Afterwards, section 6.2

contains the results of the descriptor learning approach using R-SilkNet (section 4.2) in the con-

text of the image retrieval experiments described in section 5.3.3. The results of the experiments

described in section 5.3.4, addressing the combined image classification and descriptor learning

approach using SilkNet (section 4.3), are presented in section 6.3. Finally, all of the developed ap-

proaches are compared to those of other authors as described in section 5.3.5, leading to the results

in section 6.4. Each of the sections 6.1-6.4 contains detailed descriptions of the respective results

as well as an interpretation. The main findings of the experimental evaluation are summarized and

discussed in section 6.5.

6.1 Image classification using C-SilkNet

All experimental results dealing with image classification using C-SilkNet (section 4.1) obtained

in the experiments described in section 5.3.2 are presented and interpreted in this section. The

average quality metrics of all results are presented in Table 6.1; detailed variable-specific measures

are presented in the respective subsequent sections. The results provided in Table 6.1 show the

performance per experiment, i.e. the average performance over all classification tasks, as well as the

standard deviation obtained for Nrun = 5 independent runs of the same experiment, indicating the

impact of the random components in training on the quality measures. In this context, the average

F1-scores are the more important quality indices because of the imbalanced class distributions in

the different variants of the SILKNOW dataset. Accordingly, hyperparameter tuning was realized

based on the average F1-score (see section 5.3.1).

In general, the classification performances measured by the average F1-scores and average OAs

presented in Table 6.1 are moderate: While the OAs are in the range of 52.6% to 65.9% for the silk

classification experiments on the dataset SILKNOW-a-i, accuracies of 69.0% to 74.1% are obtained

on the dataset SILKNOW-s-c. The average F1-scores vary between 28.6% and 33.8% on the

dataset SILKNOW-a-i and between 50.7% and 53.8% on the dataset SILKNOW-s-c, respectively.

It can be observed that the quality measures obtained on SILKNOW-s-c are higher than those

obtained on SILKNOW-a-i, both in terms of average F1-scores as well as average OAs. This is

the case, even though potential interdependencies between five classification tasks (M = 5) can be

exploited in MTL in SILKNOW-a-i compared to four variables (M = 4) in the training sets of the

datasets SILKNOW-s-c and SILKNOW-s-i. Furthermore, the average OAs are about twice as high
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Table 6.1: Average F1-scores µF1 [%] (eq. 5.11) and overall accuracies µOA [%] (eq. 5.12) of the image

classification experiments. Furthermore, the respective standard deviations σF1
0 [%] (eq. 5.13)

and σOA
0 [%] (eq. 5.14), respectively, are provided.

Experiment µF1 ± σF1
0 [%] µOA ± σOA0 [%]

MTLa−i 28.6 ± 0.46 63.9 ± 0.21

STLa−i 33.8 ± 0.53 52.6 ± 0.21

STLs−i 51.3 ± 0.20 69.0 ± 0.13

MTLs−i 53.8 ± 0.72 74.1 ± 0.38

MTLs−c 50.7 ± 3.57 74.0 ± 1.07

MTLfoa−i 32.6 ± 1.11 65.9 ± 0.66

as the average F1-scores on the dataset SILKNOW-a-i, which could be expected given the high

degree of class imbalance (see Table 5.3). The difference between the average OAs and average

F1-scores on the dataset SILKNOW-s-c are in the order of 20%, whereas the relative difference of

these two measures is much smaller on the dataset SILKNOW-s-c compared to SILKNOW-a-i. A

possible reason for the higher quality measures and specifically for the higher F1-scores obtained

on SILKNOW-s-c might be the reduced class structures leading to a smaller number of classes to

be differentiated by the classifiers as well as more balanced class distributions in the training sets

of SILKNOW-s-c and -s-i, respectively. Thus, the individual classification problems represented by

the datasets SILKNOW-s-c and -s-i, respectively, that are to be solved C-SilkNet are assumed to

be less complex compared to those problems represented by the dataset SILKNOW-a-i. Moreover,

a multi-task classifier either trained on the dataset SILKNOW-s-c or SILKNOW-s-i is assumed to

perform better than a multi-task classifier trained on the dataset SILKNOW-a-i, because a higher

percentage of completely labelled training samples is available to exploit interdependencies between

the individual tasks.

In the subsequent sections the quality measures obtained for the individual tasks are analysed

in more detail. In section 6.1.1, the results of the baseline MTL experiment MTLa−i considering

incompletely labelled training samples will be presented. Section 6.1.2 contains an analysis of the

strengths and weaknesses of the MTL approach focusing on the questions: Is it beneficial to perform

MTL on incompletely labelled training data at all? Can the consideration of incomplete training

samples improve MTL compared to training using exclusively complete samples? Finally, section

6.1.3 provides an analysis of focal MTL as an approach to mitigate problems with class imbalance

as well as a comparison to focal single task learning.

6.1.1 Baseline multi-task image classification using C-SilkNet

The variable-specific results of the baseline experiment MTLa−i are presented in Table 6.2, whereas

the average performance of the entire experiment is provided in Table 6.1. Just as the average F1-

score and OA obtained in the experiment MTLa−i (Table 6.1), the variable-specific measures are

moderate: The lowest F1-score is obtained for place, i.e. the variable with the largest number
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Table 6.2: Average variable-specific F1-scores µF1m [%] (eq. 5.11) and average variable-specific overall accu-

racies µOAm [%] (eq. 5.12) of the baseline image classification experiment MTLa−i. Furthermore,

the respective standard deviations σF1m

0 [%] (eq. 5.13) and σOAm

0 [%] (eq. 5.14), respectively, are

provided. Km: number of classes that are differentiated for the mth variable (see Table 5.3).

Variable m µF1m ± σF1m
0 [%] µOAm ± σOAm

0 [%] Km

depiction 27.2 ± 1.14 71.2 ± 0.32 8

place 15.4 ± 0.33 47.2 ± 0.41 29

material 38.0 ± 1.73 75.6 ± 0.35 3

time 31.6 ± 0.44 55.6 ± 0.36 7

technique 30.6 ± 0.46 69.8 ± 0.44 9

of classes Km to be differentiated (see Table 6.2), amounting to 15.4%, and the highest score,

achieved for material, i.e. the variable with the lowest number of classes Km to be differentiated

(see Table 6.2), amounts to 38.0%. The overall accuracies vary between 47.2% (place) and 75.6%

(material) and, thus, are all higher than they would have been in case of guessing the correct

class, i.e. in case of randomly drawing a class label based on a uniform distribution. Furthermore,

all classification tasks except for material obtain OAs that are higher than they would have been

in case of predicting exclusively the most dominant class; the OA of material amounts to 75.6%,

whereas an OA of 77.1% could be achieved in case C-SilkNet exclusively predicts the most dominant

class. A more detailed analysis of the predictions for material shows that the recall for material

for the most dominant class is 96.3%, whereas the recall for the other classes are 13.4% (metal

thread) and 4.3% (vegetal fibre), which indicates that the classifier indeed tends to mostly predict

the dominant class animal fibre.

Except for the variable time, the OAs of all variables are at least twice as large as the F1-scores,

indicating problems with class imbalance. An analysis of the quality measures with respect to

the characteristics of the class distributions of the individual tasks (Table 5.3) show the following

trends: Lower overall accuracies are achieved in case of a more imbalanced class distribution in

terms of the imbalance ratio IR (eq. 5.1). In this context, a significant negative correlation of 89%

(p-value: 0.04; the correlation can not be considered to be significant with a smaller significance

level than the p-value) can be determined between µOAm (Table 6.2) and IR, whereas interestingly,

the negative correlation between µF1m and IR is much lower (48%). Furthermore, lower average

F1-scores and lower average OAs, respectively, can be observed for variables with a larger number

of classes Km to be differentiated for a variable m. While the negative correlation between µOAm

(Table 6.2) and the number of classes Km (Table 5.3) amounts to 81%, the negative correlation

between µF1m and Km amounts to 95%, only the latter correlation being significant.

Regardless of the quality metrics being moderate in general, the results obtained in this ex-

periment are promising: The obtained quality metrics demonstrate that it is indeed possible to

differentiate different classes for all semantic variables except for material by means of C-SilkNet ;

for material, the most dominant class (constituting 77.1% of the labels available for material) is
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mostly predicted. Accordingly, the research question Q.C 1 1 is answered positively for the other

four semantic variables and partly for material. In this context, problems with challenging class

distributions are observed: Variables with both, an imbalanced class distribution (high IR) as well

as presenting a complex classification problem (high number of classes Km) obtain low quality

metrics, e.g. place, whereas the opposite case applies, e.g. to material. The relatively moderate

quality of the results, particularly the F1-scores, obtained for all tasks is assumed to be caused by

the complexity of the data, i.e. a low number of complete training samples is available and the class

distributions of the data are highly imbalanced. Section 6.1.2 has a closer look at the strengths

and weaknesses of the MTL approach. Class imbalances are tackled by means of focal (multi-task)

training, the results of which are presented and discussed in section 6.1.3.

6.1.2 Strengths and weaknesses of multi-task learning using incomplete

training samples

The novelty of the multi-task classification approach using C-SilkNet developed in this thesis is to

allow for both completely as well as incompletely labelled training data in the context of MTL.

Generally speaking, jointly learning multiple related tasks is expected to lead to a superior per-

formance compared to learning the tasks individually. As existing multi-task approaches require

complete training samples, the effect of MTL on the performance of the individual tasks has to be

investigated for training with incomplete samples. This is realized based on a comparison of the

results of the baseline experiment MTLa−i to those of the respective five single task classifiers in

the series STLa−i as well as a comparison of the results of the experiments STLs−i and MTLs−i,

MTLs−c in section 6.1.2.1. Moreover, the difference in performance of the developed MTL ap-

proach allowing for incomplete data, too, compared to conventional MTL strategies is investigated

in section 6.1.2.2 by comparing the results of the experiments MTLs−i and MTLs−c, respectively.

The variable-specific F1-scores of all experiments just mentioned are listed in Table 6.3 and the

variable-specific overall accuracies in Table 6.4, respectively; the average quality measures for the

experiments are these shown in Table 6.1.

6.1.2.1 Comparison of single-task learning and multi-task learning

The assumption to be verified by the experimental results in this section is that MTL considering

incomplete training samples leads to an improved ability to correctly predict the classes for all

classification tasks. First of all, the results of the experiments MTLa−i and STLa−i are compared,

all of them obtained on the dataset SILKNOW-a-i. As the dataset contains hardly any complete

samples (0.2%) and learning interdependencies between related tasks is assumed to require a suffi-

cient amount of complete samples, the results of the experiments STLs−i and MTLs−i, MTLs−c

obtained on the test of the dataset SILKNOW-s-c are compared, too.

The average F1-scores and OAs in Table 6.1 of the experiments MTLa−i and STLa−i indicate

that single-task C-SilkNet classifiers are better in distinguishing individual classes of semantic

1Q.C 1 (cf. section 1.2): Is it possible to differentiate different classes for relevant semantic variables describing

historical artifacts by means of C-SilkNet?
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Table 6.3: Average variable-specific F1-scores µF1m ± σF1m

0 [%] (eqs. 5.11 and 5.13) of the experiments

addressing the effect of multi-task learning with incomplete samples. The results are obtained

on the test set of the dataset SILKNOW-a-i (MTLa−i, STLa−i) and the test set of the dataset

SILKNOW-s-c (STLs−i, MTLs−i, MTLs−c), respectively.

Experiment Variable m

depiction place material time technique

MTLa−i 27.2 ± 1.14 15.4 ± 0.33 38.0 ± 1.73 31.6 ± 0.44 30.6 ± 0.46

STLa−i 33.7 ± 1.69 16.7 ± 0.24 46.0 ± 0.56 36.2 ± 0.92 36.3 ± 0.42

STLs−i – 45.3 ± 0.76 45.0 ± 0.60 47.9 ± 0.35 66.8 ± 0.71

MTLs−i – 59.3 ± 1.84 38.1 ± 1.26 51.9 ± 1.45 65.9 ± 1.53

MTLs−c – 44.2 ± 3.73 45.3 ± 2.77 48.3 ± 3.82 65.0 ± 8.03

Table 6.4: Average variable-specific overall accuracies µOAm ± σOAm

0 [%] (eqs. 5.12 and 5.14) of the ex-

periments addressing the effect of multi-task learning with incomplete samples. The results are

obtained on the test set of the dataset SILKNOW-a-i (MTLa−i, STLa−i) and the test set of the

dataset SILKNOW-s-c (STLs−i, MTLs−i, MTLs−c), respectively.

Experiment Variable m

depiction place material time technique

MTLa−i 71.2 ± 0.32 47.2 ± 0.41 75.6 ± 0.35 55.6 ± 0.36 69.8 ± 0.44

STLa−i 62.4 ± 0.18 28.2 ± 0.82 56.3 ± 1.35 52.6 ± 0.90 63.8 ± 0.43

STLs−i – 61.0 ± 0.35 78.8 ± 0.31 59.6 ± 0.25 76.7 ± 0.46

MTLs−i – 73.1 ± 0.23 75.3 ± 0.73 64.7 ± 0.86 83.3 ± 0.55

MTLs−c – 73.0 ± 1.69 76.7 ± 0.42 63.4 ± 1.92 83.0 ± 1.45

variables related to silk, whereas a larger amount of correct predictions can be obtained using a

C-SilkNet-based multi-task classifier. The F1-score is 5.2% better than the one for MTL, on the

other hand, the OA achieved by MTL is 11.3% better than the one of STL. Respective one-sided

two sample T-Tests with a significance level of 5% show that STLa−i achieves a significantly higher

F1-score and MTLa−i achieves a significantly higher OA. Analysing the variable-specific F1-scores

in Table 6.3, the inferior ability of the multi-task classifier to distinguish individual classes can

be confirmed for all of the variables. The smallest difference in the F1-scores of -1.3% can be

observed for place and the largest difference of -8.0% can be observed for material. In this context,

a significant negative correlation of 96% (p-value: 0.01) between the difference in the F1-score

(µF1m(MTLa−i) − µF1m(STLa−i)) and the achieved OA of MTLa−i exists, i.e. the larger the

OA of MTLa−i the larger the negative effect of MTL (MTLa−i) on the F1-score compared to STL

(STLa−i). Accordingly, it can be assumed that the multi-task classifier in MTLa−i tends to predict

the labels of well represented classes more often, leading to a higher OAm, whereas underrepresented

classes are predicted less correctly compared to the single-task classifiers in STLa−i, indicated by

a worse F1-score. In contrast, the overall accuracies of all classification tasks are improved by

MTL (MTLa−i) compared to STL (STLa−i). The smallest improvement of +3.0% is obtained
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for time, followed by technique (+6.0%) and depiction (+8.8%) and the largest improvements of

+19.0% and 19.3% are obtained for place and material, respectively. It can be concluded that

MTL with incomplete training examples helps to learn a more general classifier in terms of OA. It

is noteworthy that the two tasks place and material, achieving the largest improvements in OA,

are represented by the largest number of samples with a known class label; 73.1% of the samples in

SILKNOW-a-i come along with a label for place and 72.3% with a label for material, respectively.

Thus, it is assumed that a larger benefit in OA can be obtained in case more information is available

for a certain task in training and thus, the joint representation might be biased towards such tasks

because more loss terms for such a task contribute to the total loss (eq. 4.6).

Similar to the comparison of STL and MTL on the dataset SILKNOW-a-i, a comparison of these

approaches can be conducted for training on the datasets SILKNOW-s-i and SILKNOW-s-c, re-

spectively. Both of these datasets come along with a larger number of complete samples compared

to SILKNOW-a-i (SILKNOW-s-i: 12.3%, SILKNOW-s-c: 100.0%), which is assumed to be ben-

eficial for MTL. The average F1-scores and the overall accuracies of the respective experiments

STLs−i, MTLs−i, MTLs−c, all of them obtained on the test set of the dataset SILKNOW-s-c, are

listed in Table 6.1. In contrast to a comparison of the results of MTLa−i and STLa−i, both the

average F1-score as well as the overall accuracy are larger for MTL on SILKNOW-s-i (MTLs−i)

compared to STL (STLs−i). The average F1-score is improved by 2.5% and the OA by 5.1%, where

these improvements are both significant according to respective one-sided two sample T-Tests with

a significance level of 5%. Interestingly, the differences in the variable-specific quality measures

(Tables 6.3 and 6.4) between the multi-task classifier (MTLs−i) and the corresponding single-task

classifiers (STLs−i) give a more ambiguous picture: F1m is lower for technique (-0.9%) and mate-

rial (-6.9%) than it it for STL; this is also true for the OAm for material (-3.5%). Nevertheless, an

analysis of the differences in the variable-specific quality measures between the multi-task classifier

(MTLs−i) and the corresponding single-task classifiers (STLs−i) shows promising dependencies of

the effect of MTL on the characteristics of the class distributions of the individual tasks (Table

5.3). The larger the number of classes Km differentiated in a classification task m (Tables 5.5 and

5.7), the larger is the positive effect of multi-task learning (MTLs−i) compared to STL (STLs−i)

both in terms of the differences in the OAs (95% positive correlation) as well as in terms of the

differences in the F1-scores (99% positive correlation). Furthermore, the differences in the quality

metrics, µOAm(MTLs−i)−µOAm(STLs−i) and µF1m(MTLs−i)−µF1m(STLs−i), respectively, tend

to be larger for more imbalanced class distributions in terms of IR of the training dataset (Table

5.7). In particular, the average F1-score obtained for a variable in the experiment MTLs−i is highly

correlated with the IRs of the variables in SILKNOW-s-i, i.e. a significant positive correlation of

99% (p-value: 0.01) is determined. It can be concluded that MTL on SILKNOW-s-i is more ben-

eficial for more complex classification tasks (higher Km, higher IR) compared to STL. Multi-task

learning on the dataset SILKNOW-s-c (MTLs−c) could be expected to result in even higher qual-

ity metrics, because all training samples are completely labelled. Indeed, a lower average F1-score

(Table 6.1) is obtained in MTLs−c compared to both, STLa−i as well as MTLs−i. Nevertheless,

the F1-score of MTLs−c it is not significantly lower than the one achieved in STLa−i. Even though

the overall accuracy of MTLs−c (Table 6.1) is 5.0% higher than the one obtained for the respective

single-task classifiers (STLs−i), being a significant improvement, the overall accuracy of MTLs−c
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and MTLs−i are on par. The unexpectedly moderate quality metrics achieved for training with

complete samples (MTLs−c) might be caused by the much smaller sized training set of the dataset

SILKNOW-s-c used in MTL compared to the one of SILKNOW-s-i, because all incomplete samples

are excluded from training in SILKNOW-s-c. This assumption is supported by the comparatively

large standard deviation of 3.57% (Table 6.1) of the average F1-score for repeated experiments,

indicating a relatively unstable training on SILKNOW-s-c.

To sum up, investigations with respect to the impact of multi-task learning with incomplete

training samples compared to single-task learning showed that a C-SilkNet multi-task classifier is

to be preferred over corresponding single-task classifiers in terms of OA. Despite of the reduced

total training time as well as the lower total number of parameters to be trained, the predictions

of a multi-task classifier are correct in a larger amount of cases. This behaviour is observed for all

comparative experiments, i.e. MTLa−i and STLa−i, MTLs−i and STLs−i as well as MTLs−c and

STLs−i, respectively. The gain in OA per semantic variable tends to be related to the amount of

training data in case of predominantly incomplete samples (comparison of MTLa−i and STLa−i);

the more labeled training samples are available for a task, the higher the positive impact of MTL on

its OA, i.e. the larger the difference in OA caused by MTL compared to STL. While the developed

baseline multi-task training strategy leads to a C-SilkNet multi-task classifier (MTLa−i) that is not

as good as respective single-task classifiers (STLa−i) in correctly predicting all classes equally well

(lower F1-score) on SILKNOW-s-i, multi-task learning (MTLs−i) is to be preferred over single-

task learning (STLs−i) in that respect on SILKNOW-s-i (higher F1-scores). This is assumed to be

caused by the higher percentage of complete training samples in SILKNOW-s-i (12.3%) compared

to SILKNOW-a-i (0.2%). Accordingly, the research question Q.C 2a2 is partly answered positively

with respect to the F1-scores, i.e. the scores are significantly higher for MTL compared to STL

on the datasets SILKNOW-s-i and SILKNOW-s-c, but the scores are significantly lower for MTL

on the dataset SILKNOW-a-i. The latter finding will be revisited in subsequent sections in the

context of expanded multi-task training strategies. In contrast to the F1-scores, Q.C 2a is answered

positively with respect to the OAs, i.e. MTL results in a significantly better classifier in this regard

compared to respective STL classifiers on all three variants of the SILKNOW datasets.

6.1.2.2 Impact of using incompletely labelled samples in training on multi-task

classification

The analysis of classification results produced by different C-SilkNet-based classifiers aims to inves-

tigate whether the consideration of additional incomplete samples in training is beneficial compared

to training exclusively on complete samples. For that purpose the average quality measures in Ta-

ble 6.1 and the variable-specific measures in Tables 6.3 and 6.4 are compared for the experiments

MTLs−i and MTLs−c. It is assumed that considering additional incomplete samples in training

improves the multi-task classifier’s ability to correctly predict the labels of all tasks to be learned

instead of leading to a poor performance due to missing labels and, thus, missing knowledge about

the relatedness of different tasks.

2Q.C 2a (cf. section 1.2): Can multi-task training considering both completely labelled and incompletely labelled

samples improve the classification results compared to respective single-task classifiers distinguishing the same

sets of classes?
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Other than expected, the OAs obtained in the two experiments are on par, i.e. 74.1% of the test

samples are correctly classified in MTLs−i and 74.0% in MTLs−c, respectively. In particular, none

of the experiments MTLs−i and MTLs−c achieves a significantly higher OA than the respective

other experiment. Similarly, comparing MTLs−i to MTLs−c, the differences in the variable-specific

OAs (Table 6.4) are relatively low; they vary between -1.4% (material) and +1.3% (time). In

contrast, the average F1-score for the experiment MTLs−i is significantly higher according to a

T-Test than the one for the experiment MTLs−c; the difference amounts to 3.1%. This behaviour

of the average F1-scores is not reflected by all variable-specific F1-scores (Tables 6.3): training

with complete samples only (MTLKs−c) compared to MTL with additional incomplete samples

(MTLs−i) leads to an improvement in the variable-specific F1-scores for place (+15.1%), time

(+3,6%) and technique (+0.9%), whereas it has a negative effect on the F1-score of material (-

7.2%). Furthermore, it can be observed that the standard deviations of the average F1-score

and the average OA (Table 6.1), respectively, and the variable specific metrics (Tables 6.3 and

6.4) are much larger for MTLs−c compared to the standard deviations of all other classification

experiments. This is most likely caused by the number of available training samples in the dataset

SILKNOW-s-c so that the training is more unstable; SILKNOW-s-c contains roughly 1/9 of the

number of samples of the two other silk datasets SILKNOW-s-i and SILKNOW-a-i, respectively.

The larger number of available training samples due to the consideration of additional incomplete

samples in the dataset SILKNOW-s-i is also assumed to be the reason for the higher F1-scores

for three of the four variables. In this context, different connections between the differences in

the F1-scores µF1m(MTLs−i) − µF1m(MTLs−c) and the characteristics of the class distributions

(Tables 5.5 and 5.7) are identified: The more imbalanced the class distribution of a variable in

SILKNOW-s-c in terms of both, BD and IR (Table 5.7), the larger is the positive impact of using

additional incomplete samples in training (MTLs−i) compared to training with complete samples

(MTLs−c), i.e. µF1m(MTLs−i) − µF1m(MTLs−c) is 74% correlated with BD and 90% with IR,

respectively. Moreover, a significant positive correlation of 99% (p-value: 0.01) is identified between

µF1m(MTLs−i) − µF1m(MTLs−c) and the number of classes per task Km. Thus, it is concluded

that multi-task training using additional incomplete samples as in MTLs−i predominantly improves

the F1-score of tasks that are more complex in terms of BD, IR and Km compared to multi-task

training using complete samples (MTLs−c).

To sum up, it is indeed beneficial to consider incomplete training samples in multi-task train-

ing compared to the standard multi-task training scenario, being restricted to complete samples.

Training of all tasks becomes more stable in terms of a smaller standard deviation of the OAs

and F1-scores for repeated experiments compared to restricting the training to complete samples.

Moreover, particularly more challenging classification tasks (higher BD, IR, Km) benefit from the

consideration of additional training samples in terms of a higher F1-score, where the F1-score is

on average significantly higher for MTL with additional incomplete samples compared to MTL

restricted to complete samples. Accordingly, the research question Q.C 2b3 is answered positively.

Nevertheless, the F1-scores are much lower than the OAs for both of the experiments, indicat-

ing that techniques to mitigate problems with class imbalance are required. The results in the

3Q.C 2b (cf. section 1.2): Is it beneficial to consider incompletely labelled training samples in addition to complete

samples in multi-task learning, while considering the same sets of classes for all tasks?



6.1 Image classification using C-SilkNet 109

subsequent section allow to investigate the suitability of focal training to do so in the context of

multi-task learning with incomplete training samples.

6.1.3 Multi-task learning with imbalanced training distributions

The goal of the analysis in this section is to investigate whether focal multi-task learning helps to

mitigate problems with class imbalance in the context of training with incomplete samples. For

this purpose, the results of the baseline multi-task classification experiment MTLa−i are compared

to those of a C-SilkNet-based multi-task classifier trained with the focal variant of the MTL loss

for incomplete training samples (eq. 4.8) MTLfoa−i. The average quality measures are contained

in Table 6.1 and all analysed variable-specific F1-scores and OAs are listed in Tables 6.5 and 6.6,

respectively. Furthermore, the variable-specific F1-scores for the minority classes Mm (cf. section

5.1) of all variables are presented in Table 6.7 for the two experiments.

Comparing the average quality metrics for the experiments MTLa−i and MTLfoa−i, it can be

observed that the average F1-score as well as the overall accuracy are higher for a training with

focal weights; the F1-score obtained for the experiment MTLfoa−i is 4.0% higher than for MTLa−i

and the OA is 1.7% higher, respectively. According to respective T-Tests with a significance level of

5%, both of the quality metrics achieved in MTLfoa−i are significantly higher than the ones achieved

in MTLa−i. This behaviour can also be observed for the variable-specific F1-scores (Table 6.5)

except for those of depiction, and for the variable-specific OAs (Table 6.6) except for depiction and

material. While the effect of focal training on the OAs varies between -0.9% (material) and +4.9%

(place), the differences in the variable-specific F1-scores caused by focal training vary between -

0.7% (depiction) and +8.8% (material). The larger improvements in the F1-scores compared to

those in the OAs lead to the assumption that focal training can indeed mitigate problems with

class imbalance to a certain degree.

An analysis of the variable-specific F1-scores obtained for the minority classes Mm (Table 6.7)

shows that the difference of the respective F1-score for depiction is -0.6% using focal weights,

followed by the difference of +0.4% for technique and of +3.4% for place. The difference observed for

time amounts +8.7% and the largest difference of +13.7% is obtained for material. The differences

of the F1-scores for the minority classes are significantly correlated (97%, p-value: 0.01) with the

differences in the F1-scores considering all classes of a task (depiction: -0.7%, technique: +1.2%,

place: +4.2%, time: +6.8%, material : +8.8%). In case focal training has a positive effect on the

F1-scores (Tables 6.5 and 6.7), the improvement in the F1-score comparing MTLfoa−i to MTLa−i is

larger for the minority classes than it is for all classes. The rather unexpected behaviour of the F1-

scores of depiction, i.e. a difference of -0.7% for the average F1-score over all classes and a difference

of -0.6% considering exclusively minority classes cased by focal training, is assumed to be caused by

the low proportion of available training samples. As only 7.0% of the training samples come along

with a label for depiction in SILKNOW-a-i, their impact on the shared weights of C-SilkNet is low

compared to all other tasks. Thus, it can be assumed that the mapping learned by C-SilkNet is

not sufficient to produce features that help to differentiate different depictions in images depicting

silk. Nevertheless, in most tasks the higher improvements in the F1-scores for minority classes
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Table 6.5: Average variable-specific F1-scores µF1m ± σF1m

0 [%] (eqs. 5.11 and 5.13) of the experiments

addressing focal training. The results are obtained on the test set of the dataset SILKNOW-a-i.

The best result per variable is highlighted in bold font.

Experiment Variable m

depiction place material time technique

MTLa−i 27.2 ± 1.14 15.4 ± 0.33 38.0 ± 1.73 31.6 ± 0.44 30.6 ± 0.46

MTLfoa−i 26.5 ± 3.01 19.6 ± 0.60 46.8 ± 1.75 38.4 ± 1.02 31.8 ± 1.16

Table 6.6: Average variable-specific overall accuracies µOAm ± σOAm

0 [%] (eqs. 5.12 and 5.14) of the ex-

periments addressing focal training. The results are obtained on the test set of the dataset

SILKNOW-a-i. The best result per variable is highlighted in bold font.

Experiment Variable m

depiction place material time technique

MTLa−i 71.2 ± 0.32 47.2 ± 0.41 75.6 ± 0.35 55.6 ± 0.36 69.8 ± 0.44

MTLfoa−i 71.2 ± 1.40 51.5 ± 0.54 74.7 ± 0.43 60.5 ± 0.80 71.7 ± 0.85

Table 6.7: Average variable-specific F1-scores µF1m ± σF1m

0 [%] (eqs. 5.11 and 5.13) of the experiments

addressing focal training for the minority classesMm (cf. section 5.1) of all variables (background

class not considered). The results are obtained on the test set of the dataset SILKNOW-a-i. The

best result per variable is highlighted in bold font.

Experiment Variable m

depiction place material time technique

MTLa−i 22.6 ± 1.77 7.0 ± 0.31 14.0 ± 2.69 26.2 ± 0.91 8.3 ± 0.57

MTLfoa−i 22.0 ± 3.76 10.4 ± 0.74 27.7 ± 2.75 34.9 ± 0.87 8.7 ± 1.27

indicate that focal training does predominantly help to mitigate problems in correctly predicting

underrepresented classes.

To sum up, a general improvement in the quality measures, in particular of the F1-scores was

expected due to focal training. Applying the developed focal multi-task training strategy for

complete as well as incomplete training samples leads to a increase of 4.0% in F1-score and a

increase of 2.0% in OA compared to the developed baseline multi-task training strategy (MTLa−i).

Both of the measures were found to be significantly higher for focal training compared to the

baseline training strategy. Individual variable-specific F1-scores are up to 8.8% higher using focal

weights compared to an equal weighting, where in general larger increases of the F1-scores occurred

with the minority classes (up to 13.7% per variable). Accordingly, the proposed focal multi-task

training strategy indeed mitigates problems with class imbalance to a certain degree so that the

research question Q.C 3 4 is answered positively.

4Q.C 3 (cf. section 1.2): Does focusing on hard examples during multi-task training improve the classifier’s ability

to mitigate problems with class imbalance?
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6.2 Image retrieval using R-SilkNet

All experimental results dealing with descriptor learning for image retrieval using R-SilkNet (section

4.2) obtained in the experiments described in section 5.3.3 are presented and interpreted in this

section. The average quality metrics of all image retrieval results are presented in Table 6.8. The

results provided in Table 6.8 show the performance per retrieval experiment, i.e. the average

performance over all variable-specific kNN classifications conducted to evaluate the descriptors’

ability to reflect semantic similarity (see section 5.2.2). The table gives mean values over Nrun = 5

independent runs of the same experiment along with standard deviations, the latter indicating the

impact of the random components in training on the quality measures.

In general, the quality measures for the image retrieval experiments presented in Table 6.8 are

moderate. In this context, it has to be taken into account that high quality measures can only be

obtained in case that most of the k = 10 nearest neighbours of a test image in descriptor space

have identical class labels (the predicted class label in the kNN classification is the most frequent

one among the kNNs), whereas image retrieval is generally considered to be successful in case that

at least one of the retrieved images is meaningful. The average F1-scores obtained on the dataset

SILKNOW-a-i (Rsem, Rsem+co, Rsem+slf , Rsem+slf∗ , Rsem+slf+co) vary between 27.6% and 29.2%

and overall accuracies of 60.4% up to 61.7% are obtained on that dataset. That is, all of the

OAs are twice as large as the corresponding average F1-scores, indicating problems to properly

learn descriptors that reflect similarity of all classes of a certain semantic variable equally well.

Interestingly, the quality measures obtained in the context of image retrieval (Table 6.8) are in the

same order of magnitude as the quality measures obtained in the context of multi-task classification

(Table 6.1); the average F1-scores achieved on the dataset SILKNOW-a-i in Table 6.8 amount to

about 30% and the OAs (Table 6.8) are about 60%. Similar to the results of the image classification

experiments obtained on the test set of the dataset SILKNOW-s-c (Table 6.1), the quality measures

obtained in the context of image retrieval on that test set (Rsems−i and Rsems−c in Table 6.8) are larger

than those obtained on the test set of SILKNOW-a-i: The query descriptors of images in the test

set (SILKNOW-s-c) are predominantly the closest to descriptors belonging to images depicting silk

with an identical class label in roughly 70% of the cases (average OA over all variables m). The

average F1-scores of about 46.7% and 49.3% for the experiments Rsems−c and Rsems−i , respectively, are

also lower than the OA.

A detailed analysis of the variable-specific F1-scores as well as the variable-specific OA is pre-

sented in the subsequent sections. In section 6.2.1, the results of the baseline image retrieval

experiment will be presented, where image descriptors are forced to reflect semantic similarity

considering both complete and incomplete training samples in training. Section 6.2.2 contains an

analysis of the impact of considering samples with incomplete class labels in training on learning

descriptors to reflect semantic similarity. Finally, section 6.2.3 contains the image retrieval results

of the experiments that combine visual concepts of similarity with the concept of semantic similarity

for descriptor learning.
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Table 6.8: Average F1-scores µF1 [%] (eq. 5.11) and overall accuracies µOA [%] (eq. 5.12) of the image

retrieval experiments. Furthermore, the respective standard deviations σF1
0 [%] (eq. 5.13) and

σOA
0 [%] (eq. 5.14), respectively, are provided.

Experiment µF1 ± σF1
0 [%] µOA ± σOA0 [%]

Rsem 29.2 ± 0.66 61.7 ± 0.30

Rsems−i 49.3 ± 0.92 72.6 ± 0.21

Rsems−c 46.7 ± 0.63 71.4 ± 0.52

Rsem+co 28.7 ± 0.66 61.4 ± 0.32

Rsem+slf 27.8 ± 0.36 60.4 ± 0.33

Rsem+slf∗ 27.6 ± 0.67 60.5 ± 0.30

Rsem+slf+co 28.1 ± 0.37 60.5 ± 0.29

6.2.1 Baseline image retrieval exploiting descriptors learned using R-SilkNet

The investigation of the performance of the baseline image retrieval experiment Rsem aims to get

a general impression of the descriptors’ ability to reflect semantic similarity. For this purpose, the

variable-specific F1-scores F1m and the variable-specific overall accuracies OAm presented in Table

6.9 are analysed. Similar to the average F1-score of 29.2% and the OA of 61.7% (both in Table

6.8), the variable-specific F1-scores are much lower than the variable-specific OAs: The F1m for

the experiment Rsem vary between 16.9% and 40.2% and values between 44.9% and 75.3% can be

obtained for the OAm. This behaviour indicates that in general the descriptors are indeed able to

reflect semantic similarity to a certain degree (moderate to high OA), but not equally well for all

classes of a semantic variable (low to moderate F1-score). This is assumed to be caused by the

frequency with which certain class labels of a distinct semantic variable (silk property) occur in

the training data; semantic similarity is assumed to be learned for more frequent classes in a better

way, whereas underrepresented classes are assumed to be reflected poorly by the distances of the

learned descriptors.

Focusing on the variable-specific F1-scores obtained in the experiment Rsem, it can be observed

that the lowest score of 16.9% is obtained for place, followed by depiction and time with scores of

26.5% and 30.8% respectively. The second highest score is obtained for technique (F1m: 31.5%)

and the highest score of 40.2% is obtained for material. An analysis of the achieved variable-

specific scores in relation to the characteristics of the class distributions of the semantic variables

(Table 5.2) shows the following systematics: The larger the number of classes Km per variable

m (Table 5.2) the lower is the achieved average F1-score µF1m for that variable (Table 6.9); a

significant negative correlation of 90% (p-value: 0.04) can be identified between µF1m(Rsem) and

Km. The overall accuracies reflecting the percentage of test query images for which the majority

of the nearest neighbours in feature space share an identical class label are in the range between

44.9% (place) and 75.3% (material). Variables with a high F1-score also tend to obtain a high

overall accuracy (79% correlation). As observed in the context of the variable-specific F1-scores,

the variable-specific overall accuracies µOAm achieved in Rsem (Table 6.9) are negatively correlated

(82%) with the number of classes Km of a variable (Table 5.2). Moreover, a significant negative
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Table 6.9: Average variable-specific F1-scores µF1m [%] (eq. 5.11) and average variable-specific overall ac-

curacies µOAm [%] (eq. 5.12) of the baseline image retrieval experiment Rsem. Furthermore, the

respective standard deviations σF1m

0 [%] (eq. 5.13) and σOAm

0 [%] (eq. 5.14), respectively, are

provided.

Variable m µF1m ± σF1m
0 [%] µOAm ± σOAm

0 [%]

depiction 26.5 ± 1.39 69.4 ± 0.97

place 16.9 ± 0.66 44.9 ± 0.19

material 40.2 ± 0.40 75.3 ± 0.13

time 30.8 ± 0.51 53.7 ± 0.23

technique 31.5 ± 2.47 65.1 ± 0.42

correlation of 91% (p-value: 0.03) can be determined between the variable-specific accuracies µOAm

and the imbalance of a variable m in terms of IR (Table 5.2); interestingly, the negative correlation

between the IR and the variable-specific F1-scores µF1m is much lower (52%). Accordingly, it is

concluded that semantic similarity with respect to variables with less complex class distributions

(lower Km, lower IR) is learned in a better way (higher OA), where the number of classes seems

to be a key factor for learning to reflect semantic similarity for all classes of a variable equally well

(higher F1-scores for lower Km).

To sum up, semantic similarity is reflected to a certain degree by the Euclidean distances of

the image descriptors learned using R-SilkNet, which was the goal of learning semantic similarity.

The achieved quality measures are in the same order of magnitude as in the context of multi-

task classification, so that descriptor learning can be considered successful. On average, 61.7%

of the evaluated query images have identical class labels as the majority of the retrieved images

concerning all five semantic variables represented in SILKNOW-a-i. Accordingly, the distribution

of descriptors in feature space can be regarded as being related to the semantic similarity of the

images to a certain degree so that research question Q.R 1 5 is answered positively. The ability of

the descriptor distances to reflect semantic similarity with respect to a distinct variable tends to

be affected by the characteristics of the class distribution for that variable in the training data:

Semantic similarity with respect to less complex distributions (lower Km, lower IR) is learned

in a better way in terms of the OA, while higher F1-scores are obtained for variables with a

lower number of classes Km. In this context, the obtained OAs are about twice as large as the

obtained F1-scores, indicating problems with class imbalance. The subsequent sections will analyse

whether the incomplete nature of the available class labels per image might have a negative impact

on learning semantic similarity (section 6.2.2) and whether learning visual concepts of similarity

might support learning semantic similarity (section 6.2.2).

5Q.R 1 (cf. section 1.2): Is it possible to learn the proposed concept of semantic similarity of images with R-SilkNet

such that descriptors of images depicting historical artifacts with identical semantic properties are close to each

other in feature space?
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6.2.2 Impact of considering incomplete samples for descriptor learning on

image retrieval

Analysing the results presented in this section aims to find out whether considering incompletely

labelled training samples has a negative effect on training due to the missing information, i.e. an

uncertainty about semantic similarity u (xi, xo) > 0 (eq. 4.16), or whether such samples come along

with valuable knowledge that is introduced into training. Accordingly, the results of descriptor

learning using exclusively samples with a known class label for all of the variables (Rsems−c ), i.e.

u (xi, xo) = 0, are compared to the retrieval results obtained using descriptors that are learned

considering both, complete and incomplete training samples (Rsems−i ). Whereas the training set is

different for the two experiments, i.e. Rsems−c uses the training set of SILKNOW-s-c and Rsems−i the

one of SILKNOW-s-c, respectively, both of the trained R-SilkNets delivering image descriptors are

evaluated on SILKNOW-s-c. The average quality metrics achieved in the two experiments are

provided in Table 6.8 and the variable-specific quality metrics in Tables 6.10 and 6.11.

Comparing the average quality metrics obtained for the two experiments (Table 6.8), an im-

provement both in the average F1-score as well as in the OA can be observed in case additional

incomplete samples are used in training (Rsems−i ) compared to training on complete samples (Rsems−c ).

The average F1-score is 2.6% higher for Rsems−i than it is for Rsems−c and the OA is 1.2% higher.

Respective one-sided two sample T-Tests with a significance level of 5% show that both of the

metrics are significantly higher in case of Rsems−i . A similar behaviour can be observed for nearly all

of the variable-specific quality measures in Tables 6.10 and 6.11: F1m is on average larger (up to

4.4%) for all variables except for material using descriptors of a network trained using additional

incomplete samples (Rsems−i ), while OAm is larger (up to 2.3%) for all of the variables in Rsems−i . The

larger difference in the F1-scores, both in terms of average scores (Table 6.8) as well as variable-

specific scores (Table 6.10), compared to the respective differences in the OAs (Tables 6.8 and 6.11)

indicate that considering additional incomplete samples pre-dominantly improves the descriptors’

ability to reflect semantic similarity with respect to all classes of a variable in a better way. In

this context, it is worth noting that the variable-specific F1-scores achieved in Rsems−i are larger

for variables with a larger F1-score in Rsems−c , where the difference in the respective scores tends

to be larger (76% correlation) for variables with a larger number of classes Km (Tables 5.4 and

5.6). Thus, it is concluded that variables with a more complex class distribution (higher Km) tend

to benefit more from the consideration of additional samples. Furthermore, the variable-specific

F1-scores in Rsems−i tend to be lower for variables with a higher balance deviation BD (Table 5.6);

µF1m(Rsems−i ) is 92% negatively correlated with BD. Accordingly, variables with a more balanced

class distribution obtain higher F1-scores, indicating problems with class imbalance.

To sum up, incomplete samples could have been expected to have a negative effect on learning

semantic similarity, particularly because 87.7% of the training samples in SILKNOW-s-i are incom-

plete, which leads to a huge amount of images pairs with an uncertainty u(xi, xo) > 0 (eq. 4.16) of

the semantic similarity of images xi, xo. In contrast to this expectation, the additional incomplete

training samples significantly improved the descriptors’ ability to reflect semantic similarity with

respect to all classes in a better way, reflected by a significantly increased F1-score; the score is

on average 2.6% higher compared to an image retrieval based on descriptors trained exclusively on
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Table 6.10: Average variable-specific F1-scores µF1m ± σF1m

0 [%] (eqs. 5.11 and 5.13) of the image retrieval

experiments addressing the completeness of the class labels. All results are obtained on the test

set of the dataset SILKNOW-s-c. The best result per variable is highlighted in bold font.

Experiment Variable m

place material time technique

Rsems−i 45.9 ± 1.36 41.0 ± 2.27 50.7 ± 0.44 59.5 ± 0.76

Rsems−c 42.7 ± 1.03 41.5 ± 1.21 46.3 ± 1.18 56.5 ± 1.39

Table 6.11: Average variable-specific overall accuracies µOAm ± σOAm

0 [%] (eqs. 5.12 and 5.14) of the image

retrieval experiments addressing the completeness of the class labels. All results are obtained

on the test set of the dataset SILKNOW-s-c. The best result per variable is highlighted in bold

font.

Experiment Variable m

place material time technique

Rsems−i 69.6 ± 0.57 76.6 ± 0.68 64.6 ± 0.60 79.6 ± 0.42

Rsems−c 68.8 ± 0.65 76.3 ± 0.64 62.3 ± 1.05 78.4 ± 0.61

the complete samples (Rsems−c ). In this context, the F1-scores are increased by a larger amount than

the OAs (on average +1.2% in OA), indicating that semantic similarity is more homogeneously

reflected by the descriptors with respect to all classes under consideration of additional incomplete

samples. Nevertheless, the improvement in OA is significant, too. Accordingly, it can be concluded

that in general, considering additional samples indeed improves the ability of R-SilkNet to learn

descriptors, the distances of which are related to semantic similarity so that the research question

Q.R 2 6 is answered positively. Nevertheless, the magnitude of the obtained F1-scores is moderate.

This seems to be mostly related to the imbalance of the class distribution of a variable (BD); in

general, the more imbalanced the distribution, the lower the obtained F1-score.

6.2.3 Combining visual and semantic concepts of similarity for descriptor

learning

The goal of the investigations of the results presented in this section is to determine whether vi-

sual concepts of similarity can support the training of R-SilkNet to learn semantic similarity. For

this purpose, the average quality metrics (Table 6.8) as well as the variable-specific F1-scores and

variable-specific OAs in Tables 6.12 and 6.13, respectively, are analysed. The experiments, the re-

sults of which are analysed in this section, are an ablation study with respect to the impact of the

individual loss terms in the image retrieval loss (eq. 4.13) on the learned descriptors used for image

retrieval. Image retrieval results obtained using descriptors that are forced to reflect exclusively

semantic similarity (Rsem) are compared to image retrieval results of descriptors that are forced to

reflect different scenarios of visual similarity in addition to semantic similarity: whereas colour sim-

6Q.R 2 (cf. section 1.2): Does the completeness of the available semantic annotations matter for learning descriptors

to reflect semantic similarity?



116 6 Results and Discussion

Table 6.12: Average variable-specific F1-scores µF1m ± σF1m

0 [%] (eqs. 5.11 and 5.13) of the image retrieval

experiments combining different concepts of similarity for descriptor learning. The best result

per variable is highlighted in bold font.

Experiment Variable m

depiction place material time technique

Rsem 26.5 ± 1.39 16.9 ± 0.66 40.2 ± 0.40 30.8 ± 0.51 31.5 ± 2.47

Rsem+co 24.8 ± 1.37 16.6 ± 0.57 40.1 ± 0.91 30.9 ± 0.52 31.2 ± 1.00

Rsem+slf 24.1 ± 2.25 16.0 ± 0.40 38.9 ± 0.65 29.8 ± 0.43 30.3 ± 1.30

Rsem+slf∗ 24.0 ± 1.28 16.3 ± 1.02 38.3 ± 0.93 30.0 ± 0.84 29.6 ± 1.15

Rsem+slf+co 24.1 ± 1.56 16.1 ± 0.33 38.8 ± 0.32 30.6 ± 0.34 30.9 ± 1.26

Table 6.13: Average variable-specific overall accuracies µOAm ± σOAm

0 [%] (eqs. 5.12 and 5.14) of the image

retrieval experiments combining different concepts of similarity for descriptor learning. The best

result per variable is highlighted in bold font.

Experiment Variable m

depiction place material time technique

Rsem 69.4 ± 0.97 44.9 ± 0.19 75.3 ± 0.13 53.7 ± 0.23 65.1 ± 0.42

Rsem+co 69.4 ± 0.94 44.5 ± 0.52 75.2 ± 0.17 53.6 ± 0.31 64.4 ± 0.19

Rsem+slf 68.3 ± 1.36 43.0 ± 0.65 74.8 ± 0.36 52.6 ± 0.40 63.2 ± 0.11

Rsem+slf∗ 68.9 ± 0.69 43.1 ± 0.43 74.8 ± 0.29 52.5 ± 0.64 63.3 ± 0.16

Rsem+slf+co 67.8 ± 1.19 43.5 ± 0.28 74.7 ± 0.20 53.1 ± 0.31 63.7 ± 0.37

ilarity is additionally demanded in Rsem+co and self-similarity in Rsem+slf , Rsem+slf∗ , respectively,

both kinds of visual similarity are forced to be reflected by the descriptors in Rsem+slf+co.

Comparing the average quality metrics obtained for the results of these experiments in Table 6.8,

it can be observed that the average F1-scores vary between 27.6% (Rsem+slf∗) and 29.2% (Rsem) and

the overall accuracies are in the range of 60.4% (Rsem+slf ) to 61.7% (Rsem). The highest values are

obtained for Rsem with respect to both of the quality measures. Based on these average metrics, it

can already be concluded that additionally learning visual aspects of similarity to be reflected by the

descriptors’ distances does not improve the ability of the descriptors to reflect semantic similarity.

Analysing the variable-specific F1-scores F1m (Table 6.12) and variable-specific overall accuracies

OAm (Table 6.13), a similar behaviour can be observed; learning both, semantic similarity and a

scenario of visual similarity, does not improve the descriptors’ ability to reflect semantic similarity.

Interestingly, the impact of considering visual similarity in training does have a different impact

on the variable-specific quality measures of the individual semantic variables compared to the

measures obtained for Rsem. Whereas the F1m are 1.7% to 2.5% lower for depiction considering

visual concepts of similarity, the scores of all other variables are less affected; the scores of place

are 0.3%–0.9% lower, the ones of material are 0.1%–1.4% lower, and the scores of technique are

0.3%–1.9% lower. The score of time is 0.1% higher for Rsem+co and up to 1.1% lower for all other
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experiments. In this context, learning colour similarity in addition to semantic similarity (Rsem+co)

has no remarkable impact on the F1m compared to the one of Rsem for all semantic variables except

for depiction. In particular, a one-sided two sample T-Test with a significance level of 5% shows

that none of the achieved average F1-scores of Rsem and Rsem+co (Table 6.8) is higher than the

respective other one, which also applies to the average OAs (Table 6.8). This might be caused

by the low number of available samples with a known class label for depiction (7.0%), such that

additionally learning visual concepts of similarity is even more challenging, even more so as the

concepts of visual similarity are learned using all of the images (48,912) in training (section 4.4) and

and the depiction-related aspect of semantic similarity is learned based on training on much fewer

images (3,441). In general, such results could have been expected, because the evaluation relies on

semantic criteria and does not consider visual aspects of similarity. Other evaluation criteria, e.g.

those in (Schleider et al., 2021) relying on visual aspects of similarity for evaluation, probably would

have shown a significant positive impact of considering concepts of visual similarity in training on

the retrieval results, but such an evaluation is beyond the scope of this thesis.

In addition to the comparison of retrieval results with respect to the impact of learning visual

similarity jointly with semantic similarity, the impact of the two variants for defining self-similarity

on learning semantic similarity (section 4.2.2.3) can be assessed: Whereas the images x′
nslf

i showing

the same object as x
nslf

i are defined to be different images in the database showing the same object in

Rsem+slf∗ wherever possible, e.g. Figure 5.2, only synthetically generated images are used to obtain

x′
nslf

i in Rsem+slf . Both, the average quality metrics in Table 6.8 as well as the variable-specific

metrics in Tables 6.12 and 6.12, respectively, show that there is no remarkable difference in the

image retrieval performance comparing the two variants of defining self-similarity for training. The

average F1-score is 0.2% higher and the OA is 0.1% lower for Rsem+slf , where none of the metrics

is significantly higher (significance level of 5%) for either of Rsem+slf and Rsem+slf∗ . The variable-

specific F1m are slightly higher for Rsem+slf for three variables (depiction, material, technique)

and slightly lower for the other two (place, time), respectively; the OAm is slightly higher for

Rsem+slf for time, equally high for material and are slightly lower for the other three variables

(depiction, place, technique). It can be concluded that both variants of defining self-similarity

do have the same effect on learning descriptors to reflected semantic similarity reflected by the

calculated quality measures.

Whereas none of the visual similarity scenarios could improve learning semantic similarity, learn-

ing visual concepts of similarity does not have a large negative impact on learning semantic sim-

ilarity, either. In this context, an evaluation of the retrieval results with respect to their ability

to be visually similar to the respective query images would have been interesting. Nevertheless,

such an evaluation would require a reference defining similar and dissimilar image pairs, such as

in (Schleider et al., 2021)7, ideally with reference labels produced by several domain experts to

obtain a less subjective reference. Even though, as mentioned above, such an evaluation is beyond

the scope of this thesis, a first impression of the image retrieval results (see Figures 6.1 and 6.2)

from a non-expert point of view leads to the impression that combining semantic similarity with

7A manually labelled reference for a small dataset was used for evaluation in (Schleider et al., 2021). Two images

were considered to be visually similar in case at least two of three visual similarity criteria (pattern, colour,

appearance) were fulfilled.
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technique: damask damask damask damask damask damask
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unknown damask damask damask damask

unknown 20th c. 20th c. 20th c. 20th c.

unknown unknown unknown unknown unknown

(b)

Figure 6.1: Qualitative results with semantic annotations of the experiments Rsem (a) and Rsem+slf+co

(b) conducted on the SILKNOW-a-i dataset, where (a) and (b) the results for the same query

image. The left column shows the query image and the right column shows the corresponding

ten most similar images according to the respective similarity scenario, in ascending order by

descriptor distance from top left to bottom right. Images: © Museu Tèxtil de Terrassa/Quico

Ortega (IMATEX, 2018), Gaŕın 1820 (https://garin1820.com/).
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(a)
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vegetal animal animal animal vegetal

ES ES ES unknown ES

damask other other unknown other

20th c. 20th c. 20th c. unknown 20th c.

unknown unknown unknown unknown unknown

(b)

Figure 6.2: Qualitative results with semantic annotations of the experiments Rsem (a) and Rsem+slf+co

(b) conducted on the SILKNOW-a-i dataset, where (a) and (b) the results for the same query

image. The left column shows the query image and the right column shows the corresponding

ten most similar images according to the respective similarity scenario, in ascending order by

descriptor distance from top left to bottom right. Images: © Museu Tèxtil de Terrassa/Quico

Ortega (IMATEX, 2018), Gaŕın 1820 (https://garin1820.com/).
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visual aspects of similarity improves the descriptors, such that the most similar descriptors to a

query descriptor belong to images that are visually more similar to the query image. Figures 6.1

and 6.2 show two different exemplary query images as well as as the corresponding retrieval results

obtained in the experiments Rsem and Rsem+slf+co, respectively. The 10 most similar retrieved

images using descriptors that are forced to reflect only semantic similarity are shown in Figures

6.1 (a) and 6.2 (a), respectively, and the 10 most similar images, retrieved using descriptors that

are forced to reflect both semantic and visual similarity are shown in Figures 6.1 (b) and 6.2 (b),

respectively. In both Figures for both of the considered similarity scenarios, all of the retrieved

images seem to show the same kind of pattern as the respective query image, a circular floral

pattern in Figure 6.1 and more fine-grained, geometrical floral pattern in Figure 6.2. Whereas in

the results of Rsem the colours of the depicted fabrics contained in the retrieval results are mostly

similar to the one of the query image (Figures 6.1 (a) and 6.2 (a), respectively), the agreement

in colour between query image and retrieved images is even larger for the results of Rsem+slf+co.

Even though a much more substantial analysis of the results is required to make a solid statement,

the qualitative examples in Figures 6.1 and 6.2 indicate that the consideration of visual concepts of

similarity in training indeed is beneficial from a visual point of view. However, such an evaluation

is beyond the scope of this thesis, as already mentioned above.

To sum up, it was found that learning visual similarity in addition to learning semantic similarity

does not improve the image retrieval performance with respect to the calculated quality measures.

Accordingly, research question Q.R 3 8 is answered negatively. On the other hand, learning visual

concepts of similarity does not have a large negative effect on training R-SilkNet to learn semantic

similarity, either, compared to exclusively learning semantic similarity. In this context, learning

colour similarity was found to have no significant negative impact on the average quality metrics.

Moreover, the two variants of defining self-similarity do have a similar effect on learning semantic

similarity, i.e. none of the variants results in significantly higher quality metrics compared to the

respective other variant. Accordingly, in case learning self-similarity is meaningful in a certain

context, no additional information in the training data indicating several images of the same object

has to be available to enable learning self-similarity. Nevertheless, the investigations in this sections

exclusively rely on quality measures reflecting the ability of the descriptors to reflect semantic

similarity. An evaluation based on a reference considering visual aspects would be of interest in

the context of learning visual concepts of similarity, too.

6.3 Combined image classification and image retrieval using

SilkNet

Up to know, learning an image classifier using C-SilkNet and learning image descriptors for image

retrieval using R-SilkNet were investigated independently from each other. The results in this

section, i.e. those of the experiments described in section 5.3.4, aim to allow for an investigation of

the combined classification and descriptor learning approach using SilkNet (section 4.3). Section

8Q.R 3 (cf. section 1.2): Does learning the concepts of visual similarity in addition to learning the concept of

semantic similarity lead to an improvement of the descriptors’ distances to reflect semantic similarity?
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Table 6.14: Average F1-scores µF1 [%] (eq. 5.11) and overall accuracies µOA [%] (eq. 5.12) of the image

classification experiments with auxiliary feature space clustering. Furthermore, the respective

standard deviations σF1
0 [%] (eq. 5.13) and σOA

0 [%] (eq. 5.14), respectively, are provided. The

results of MTLa−i are identical to those in Table 6.1.

Experiment µF1 ± σF1
0 [%] µOA ± σOA0 [%]

MTLa−i 28.6 ± 0.46 63.9 ± 0.21

MTL+Rsem 30.5 ± 2.53 65.5 ± 0.70

MTL+Rco+slf 32.3 ± 0.32 65.9 ± 0.28

MTL+Rsem+slf+co 31.9 ± 2.45 66.2 ± 0.44

MTLfo +Rsem 31.4 ± 0.41 65.4 ± 0.32

MTLfo +Rco+slf 32.7 ± 1.33 65.8 ± 0.53

MTLfo +Rsem+slf+co 33.6 ± 1.03 65.8 ± 0.70

6.3.1 contains the results of the image classification experiments with an auxiliary feature space

clustering. Afterwards, the image retrieval results based on descriptors learned using an auxiliary

classification loss are presented in section 6.3.2.

6.3.1 Image classification with auxiliary similarity loss

In this section, all results of SilkNet-based classifiers (section 4.3.1) exploiting an auxiliary feature

space clustering for training (section 4.3.2.1) obtained in the experiments described in section

5.3.4.1 are presented and interpreted. The quality metrics per experiment are presented in Table

6.14, describing the average performance as well as the standard deviations obtained in Nrun = 5

independent runs of the respective experiments.

For the experiments on the dataset SILKNOW-a-i, the average F1-scores vary between 30.5%

(MTL+Rsem) and 33.6% (MTLfo +Rsem+slf+co). The respective OAs are in the range between

65.4% (MTLfo +Rsem) and 66.2% (MTL+Rsem+slf+co). Both, the F1-scores as well as the OAs,

are all higher than the respective metric obtained for the baseline image classification experiments

MTLa−i (Table 6.1 and Table 6.14, respectively). Even the smallest improvement caused by

an auxiliary clustering in terms of both the F1-score as well as OA is significant, i.e. the F1-

score of 30.5% and the OA of 65.5% achieved in MTL + Rsem are both significantly higher than

the metrics achieved in MTLa−i according to respective one-sided two sample T-Tests with a

significance level of 5%. This already indicates that an auxiliary feature space clustering indeed

can improve the ability of a multi-task classifier to correctly predict the class for a given image.

Furthermore, it can be observed that the combination of focal training with an auxiliary feature

space clustering leads to a higher F1-score compared to training without focal weights; the average

F1-score of MTLfo+Rsem is 0.9% larger than the one of MTL+Rsem and a 1.7% higher F1-score

can be obtained for MTLfo + Rsem+slf+co compared to MTL + Rsem+slf+co. Nevertheless, the

average F1-scores are not significantly improved by focal training for any of the three auxiliary

clustering variants, whereas all experiments considering an auxiliary clustering (with or without
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focal training) achieve significantly higher F1-scores than MTLa−i. Moreover, the average F1-score

achieved in MTLfo + Rsem+slf+co (33.6%, Table 6.14) is not significantly different from the one

achieved in STLa−i (33.8%, Table 6.1). Accordingly, revisiting the research question Q.C 2a that

in section 6.1.2.2 was answered positively for the OA and negatively for the F1-scores on the dataset

SILKNOW-a-i, Q.C 2a no longer needs to be answered negatively for the F1-score: When adding

clustering, MTL with incomplete samples (MTLfo +Rsem+slf+co) is on par with STL (STLa−i) in

terms of the F1-score.

Whereas the results in Table 6.14 allow for an analysis of the average quality of a trained SilkNet-

based classifier, the variable-specific quality measures is analysed in the sections 6.3.1.1 and 6.3.1.2,

respectively. In section 6.3.1.1, the impact of different clustering strategies, i.e. of different simi-

larity concepts considered in the corresponding loss function on the classification performance are

analysed, focusing on the effect on the individual classification tasks. In section 6.3.1.2, the aux-

iliary feature space clustering is analysed with respect to its ability to improve the classification

performance on imbalanced data, where both variable-specific metrics as well as the F1-scores with

respect for underrepresented classes are investigated.

6.3.1.1 Impact of the different auxiliary loss terms on the classification using SilkNet

In this section, the impact of different clustering strategies used in training on the classification

performance is investigated. In this context, classifiers trained using an auxiliary feature clustering

with respect to semantic similarity (MTL + Rsem), a clustering with respect to visual similarity

(MTL+Rco+slf ) as well as a clustering with respect to both types of similarity (MTL+Rsem+slf+co)

are compared. Moreover, the obtained results are compared to those of a classifier trained without

an auxiliary clustering (MTLa−i). All variable-specific F1-scores of the four experiments are listed

in Table 6.15. Furthermore, the variable-specific OAs of the four experiments are presented in

Table 6.16. The F1-scores and OAs of MTLa−i are identical to those already presented in Table

6.2 and are listed in those tables again to allow for a direct comparison.

Analysing the variable-specific F1-scores (Table 6.15), it can be observed that any auxiliary

clustering leads to higher variable-specific F1-scores for all of the variables except for cluster-

ing exclusively with respect to semantic similarity (MTL + Rsem) for the variable place. The

exception might be caused by the large number of classes Km to be distinguished for place;

both, training a classifier (MTLa−i, section 6.1.1) as well as descriptor learning with respect

to semantic similarity (Rsem, section 6.2.1), respectively, obtain the lowest F1-scores for se-

mantic variables with a challenging class distribution term of Km. In general, the highest

variable-specific F1-scores are obtained for a clustering with respect to visual aspects of similarity

(MTL + Rco+slf ). An analysis of the improvements in the F1-scores of the two best cluster-

ing experiments (MTL + Rco+slf and MTL + Rsem+slf+co ) compared to the baseline classifier

(MTLa−i) in relation to the characteristics of the class distributions of the individual variables

(Table 5.2) shows the following: Larger improvements tend to be obtained for variables with a

more balanced class distribution in terms of BD; both µF1m(MTL + Rco+slf ) − µF1m(MTLa−i)

and µF1m(MTL + Rsem+slf+co) − µF1m(MTLa−i) are 82% negatively correlated with BD. Fur-

thermore, the improvements in the F1-score caused by an auxiliary clustering tends to be larger
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Table 6.15: Average variable-specific F1-scores µF1m ± σF1m

0 [%] (eqs. 5.11 and 5.13). The results are

obtained on the test set of the dataset SILKNOW-a-i. The results of MTLa−i are identical to

those in Table 6.2. The best result per variable is highlighted in bold font.

Experiment Variable m

depiction place material time technique

MTLa−i 27.2 ± 1.14 15.4 ± 0.33 38.0 ± 1.73 31.6 ± 0.44 30.6 ± 0.46

MTL+Rsem 30.0 ± 4.55 14.7 ± 1.84 40.9 ± 4.38 36.0 ± 0.82 31.0 ± 1.73

MTL+Rco+slf 31.1 ± 1.29 16.8 ± 1.13 42.2 ± 1.64 38.1 ± 0.59 33.4 ± 1.99

MTL+Rsem+slf+co 32.1 ± 4.90 16.4 ± 2.05 42.0 ± 4.09 36.5 ± 1.27 32.7 ± 2.04

Table 6.16: Average variable-specific overall accuracies µOAm ± σOAm

0 [%] (eqs. 5.12 and 5.14). The results

are obtained on the test set of the dataset SILKNOW-a-i. The results of MTLa−i are identical

to those in Table 6.2. The best result per variable is highlighted in bold font.

Experiment Variable m

depiction place material time technique

MTLa−i 71.2 ± 0.32 47.2 ± 0.41 75.6 ± 0.35 55.6 ± 0.36 69.8 ± 0.44

MTL+Rsem 71.8 ± 1.23 49.0 ± 1.33 75.6 ± 0.45 59.8 ± 0.77 71.3 ± 1.41

MTL+Rco+slf 70.8 ± 1.18 50.3 ± 0.83 75.6 ± 0.49 60.8 ± 0.47 71.7 ± 1.23

MTL+Rsem+slf+co 72.3 ± 0.29 50.4 ± 1.04 75.3 ± 0.60 60.1 ± 0.83 72.8 ± 0.57

for variables with a lower number of classes Km; µF1m(MTL+Rco+slf )−µF1m(MTLa−i) and Km

are 72% negative correlated and µF1m(MTL+Rsem+slf+co)− µF1m(MTLa−i) and Km with 78%,

respectively. Even though an auxiliary feature clustering was expected to mitigate problems with

class imbalance, the observed behaviour of the F1m for the individual variables is to be expected

given the behaviour of the metrics obtained for the individual approaches (classification with C-

SilkNet, descriptor learning with R-SilkNet): As already mentioned above (sections 6.1.1 and 6.2.1,

respectively), the individual approaches tend to perform better for less challenging distributions of

classes. Nevertheless, a detailed analysis of the impact of an auxiliary clustering in training on the

classification performance of underrepresented classes will be presented in section 6.3.1.2.

Analysing the OAm obtained for the individual variables (Table 6.16), the highest accuracies

can be obtained for SilkNet-classifiers trained with an auxiliary feature space clustering. Whereas

the percentage of correctly predicted classes of material is equally high for the baseline C-SilkNet-

classifier (MTLa−i) and the SilkNet-classifiers using a clustering with respect to semantic similarity

(MTL + Rsem) as well as with respect to visual similarity (MTL + Rco+slf ), respectively, the

accuracies for all other classification tasks are higher for a variant of SilkNet compared to the C-

SilkNet baseline classifier (MTLa−i). Three of the five classification tasks, i.e. depiction, place and

technique, achieve the highest OA exploiting an auxiliary clustering with respect to both, semantic

as well as visual aspects of similarity (MTL+Rsem+slf+co): the OAm of depiction is 1.1% higher for

the experiment MTL+Rsem+slf+co compared to MTLa−i, the difference for technique amounts to
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3.0% and the difference for place to 3.2%. Even for the variable time, achieving its highest OAm of

60.8% in the experiment MTL+Rco+slf , the increase in OAm considering both types of similarity

for clustering (MTL+Rsem+slf+co ) amounts to 4.5% compared to MTLa−i. Both, highest values

of the F1m as well as the OAm, are achieved for time in the experiment MTL+Rco+slf , which is

assumed to be caused by the importance of the depicted object’s appearance in order to determine

the time of production of the object. A correlation analysis of the overall accuracies µOAm shows

that higher differences in the OAs caused by an auxiliary clustering compared to MTLa−i are

obtained for variables with a higher imbalance ratio IR (Table 5.2); a significant negative correlation

of 97% (p-value: 0.01) is determined between µOAm(MTL + Rco+slf ) − µOAm(MTLa−i) and IR;

µOAm(MTL+Rsem+slf+co)−µOAm(MTLa−i) and IR are significantly negatively correlated by 95%

(p-value: 0.02). This could indicate that the SilkNet-classifier delivers more correct predictions for

classes with a larger relative frequency of training examples than for classes with a lower relative

frequency of samples compared to C-SilkNet, because well represented classes constitute a larger

percentage of the data in case of a higher IR. Thus, a higher OAm can be obtained by simply

predicting the most dominant class more often. All the more interesting will be the analysis of the

ability of a variant of a SilkNet-classifier to correctly predict samples of underrepresented classes

in the subsequent section 6.3.1.2.

In general, the variable-specific quality metrics obtained for a SilkNet-based classifier are higher

compared to a C-SilkNet-based classifier; the variable-specific F1-scores are up to 6.5% higher

(MTL+Rco+slf ) compared to the baseline classifier (MTLa−i) and the OAs are increased by up to

5.2% (MTL+Rco+slf ), respectively. Whereas most of the variables obtain the highest F1-score for

the SilkNet variant considering exclusively a clustering with respect to visual aspects, the highest

OA for most of the tasks are obtained exploiting an auxiliary clustering both with respect to visual

as well as with respect to semantic aspects of similarity. In particular, all clustering strategies

achieve on average significantly higher quality metrics, both in terms of the F1-score as well as in

terms of the OA. Accordingly, research question Q.FC 1 9 is answered positively, where a clustering

with respect to visual aspects of similarity is more important for distinguishing individual classes

(higher F1-score) and a clustering considering visual and semantic aspects of similarity results in

a larger number of correct predictions (higher OA). In this context, the increase of the F1-score

caused by these two auxiliary clusterings tends to be larger for variables with more balanced class

distribution in terms of BD as well as less complex classification tasks (lower Km), whereas a larger

increase in the OAs is obtained for variables with a larger IR. These observations indicate that

a SilkNet-based classifier has problems with imbalanced class distributions. A detailed analysis of

SilkNet ’s ability to mitigate problems with class imbalance is provided in section 6.3.1.2.

6.3.1.2 Exploiting an auxiliary feature space clustering for imbalanced multi-task

classification using SilkNet

The goal of the analysis in this section is to determine whether an auxiliary feature space clustering

can mitigate problems with class imbalance. For this purpose, the results of the baseline C-SilkNet-

9Q.FC 1 (cf. section 1.2): Does an auxiliary feature space clustering with respect to visual and semantic properties

of the depicted objects improve the performance of the image classifier? If so, which concepts of similarity are

particularly important to be considered in this context?
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classifier (experiment MTLa−i, section 6.1.1) are compared to those of two variants of SilkNet,

each considering a different similarity scenario (experiments MTL + Rsem, MTL + Rsem+slf+co).

Furthermore, the performance of these two classifiers is compared to the one of the C-SilkNet-

classifier trained using focal weights (experiment MTLfoa−i, section 6.1.3). Finally, the two strategies

aiming to tackle class imbalance problems, i.e. focal training and an auxiliary feature clustering,

are combined in MTLfo+Rsem and MTLfo+Rsem+slf+co. Even though MTL+Rco+slf achieved

the highest average F1-scores (Table 6.14) as well as the highest variable-specific F1-scores for most

of the variables (Table 6.15), the highest average F1-score is achieved in MTLfo +Rsem+slf+co (cf.

Table 6.15) considering both visual similarity in the auxiliary clustering as well as focal training.

Thus, the quality metrics for MTLfo + Rsem+slf+co and MTL+ Rsem+slf+co are reported in this

section instead of MTLfo +Rco+slf and MTL+Rco+slf . To allow for a direct comparison of these

six experiments, the variable-specific F1-scores for all experiments are listed in Table 6.17. Table

6.18 shows the variable-specific F1-scores averaged over the minority classes Mm.

Analysing the variable-specific F1-scores (Table 6.17), it can be observed that the scores for

MTL + Rsem+slf+co are higher for all of the variables compared to those of the baseline classifier

(MTLa−i). In particular, they are higher than those of MTL + Rsem. Thus, it can be concluded

that an auxiliary clustering supports the classifier in distinguishing the individual classes and a

clustering with respect to both, visual and semantic aspects of similarity, is to be preferred (MTL+

Rsem+slf+co). Comparing the impact of an auxiliary clustering in training (MTL + Rsem+slf+co

compared to MTLa−i) to the impact of focal weights (MTLfoa−i compared to MTLa−i) on the

F1-scores, the clustering is more beneficial than focal training for technique (+2.1%) and depiction

(+4.9%), whereas training with focal weights is to be preferred over a clustering for place (+4.2%),

time (6.8%) and material (+8.8%). Moreover, both of the strategies (focal training in MTLfoa−i
and clustering in MTL+Rsem+slf+co) improve the scores of all of the classification tasks compared

to MTLa−i, with the exception of the score for depiction obtained using focal training. In section

6.1.3, it was assumed that this might be caused by the low proportion of available training samples

for depiction (7.0%). Accordingly, the auxiliary clustering is assumed to support the classifier

particularly in case of a low number of available training samples. This assumption is supported

by the scores obtained for technique (MTL+Rsem+slf+co and MTLfoa−i), having the second lowest

proportion of training data in SILKNOW-a-i (32.8%): technique is the second variable besides

depiction for which a higher F1-score can be obtained exploiting an auxiliary clustering (MTL +

Rsem+slf+co) compared to focal training (MTLfoa−i). Combining the two strategies for training

SilkNet (MTLfo+Rsem+slf+co) further increases the F1-scores compared to applying the strategies

independently from each other, i.e. compared to MTLfoa−i and MTL + Rsem+slf+co, respectively,

for most of the variables. An exception in this regard is depiction; the F1-score for training with

both strategies (MTLfo+Rsem+slf+co) is only slightly higher (+0.6%) than the one achieved in the

baseline experiment (MTLa−i). This could have been expected, because focal training (MTLfoa−i)

decreases the F1-score of depiction compared to MTLa−i (-0.7%) and thus, counteracts the positive

impact of the auxiliary clustering (MTL+Rsem+slf+co) inMTLfo+Rsem+slf+co. All other variables

obtain the highest F1-score in the experiment MTLfo+Rsem+slf+co, where improvements of up to

8.9% (material) compared to MTLa−i can be observed. In this context, a significant correlation

between the differences in the F1-score µF1m(MTLfo + Rsem+slf+co) − µF1m(MTLa−i) and the
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Table 6.17: Average variable-specific F1-scores µF1m ± σF1m

0 [%] (eqs. 5.11 and 5.13). The results are

obtained on the test set of the dataset SILKNOW-a-i. The results of MTLa−i and MTLfo
a−i are

identical to those in Tables 6.2 and 6.5, respectively. The best result per variable is highlighted

in bold font.

Experiment Variable m

depiction place material time technique

MTLa−i 27.2 ± 1.14 15.4 ± 0.33 38.0 ± 1.73 31.6 ± 0.44 30.6 ± 0.46

MTLfoa−i 26.5 ± 3.01 19.6 ± 0.60 46.8 ± 1.75 38.4 ± 1.02 31.8 ± 1.16

MTL+Rsem 30.0 ± 4.55 14.7 ± 1.84 40.9 ± 4.38 36.0 ± 0.82 31.0 ± 1.73

MTL+Rsem+slf+co 32.1 ± 4.90 16.4 ± 2.05 42.0 ± 4.09 36.5 ± 1.27 32.7 ± 2.04

MTLfo +Rsem 25.2 ± 1.72 18.6 ± 1.06 44.1 ± 1.78 37.7 ± 0.56 31.2 ± 0.89

MTLfo +Rsem+slf+co 27.8 ± 1.83 21.3 ± 2.01 46.9 ± 2.98 38.7 ± 1.56 33.3 ± 2.07

percentage of labelled examples for a variable in SILKNOW-a-i (cf. section 5.1.1.1) of 93% (p-value:

0.02) can be determined, i.e. a larger positive effect is observed for variables with a larger percentage

of labelled samples. As the differences in the F1-scores µF1m(MTLfoa−i)−µF1m(MTLa−i) also tend

to be larger for variables with a larger percentage of labelled samples (87% correlation, p-value:

0.06), it is concluded that the dependency of the improvements of MTLfo+Rsem+slf+co compared

to MTLa−i is caused by the need of focal training for a larger training set for a classification

task. In contrast, the feature clustering in training in MTLfo + Rsem+slf+co tends to mitigate

problems with class imbalance: the difference in the F1-score between MTLfo + Rsem+slf+co and

focal training (MTLfoa−i) is larger for variables with a larger balance deviation BD (71% correlation,

Table 5.2), while focal training (MTLfoa−i) does not have such an effect on the F1-scores compared

to MTLa−i. Moreover, variables with a larger number of classes Km achieve a larger F1-score

caused by the combined training strategy (MTLfo + Rsem+slf+co) compared to MTLfoa−i (70%

correlation). Accordingly, it is concluded that the combined training strategy tends to improve

more complex tasks in terms of BD and Km.

Analysing the performance of the different classifiers in correctly predicting underrepresented

classes on the basis of the F1-scores exclusively considering those classes (Table 6.18), there is a

trend that is similar to the one shown in Table 6.17: The highest F1-score for depiction is achieved

for training with an auxiliary clustering (MTL + Rsem+slf+co), whereas focal training (MTLfoa−i)

decreases the score compared to the baseline training (MTLa−i). Accordingly, the score obtained

by SilkNet trained with focal weights and clustering (MTLfo+Rsem+slf+co) is not higher than the

one in the experiment MTL+Rsem+slf+co. For the other four variables, focal training (MTLfoa−i) is

more beneficial than training with an auxiliary clustering (MTL+Rsem and MTL+Rsem+slf+co,

respectively), whereas the highest scores are obtained in the experiment MTLfo + Rsem+slf+co.

Differences in the F1-score for minority classes between MTLfo + Rsem+slf+co and MTLa−i of

up to +14.3% are achieved, where the differences in the F1-scores for underrepresented classes are

larger than the ones considering all classes. Whereas a significant negative correlation of about 90%

(p-values: 0.02-0.05) between all variable-specific F1-scores for minority classes in all experiments
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Table 6.18: Average variable-specific F1-scores µF1m ±σF1m

0 [%] (eqs. 5.11 and 5.13) of the minority classes

Mm (cf. section 5.1) of all variables (background class not considered). The results are obtained

on the test set of the dataset SILKNOW-a-i. The best result per variable is highlighted in bold

font.

Experiment Variable m

depiction place material time technique

MTLa−i 22.6 ± 1.77 7.0 ± 0.31 14.0 ± 2.69 26.2 ± 0.91 8.3 ± 0.57

MTLfoa−i 22.0 ± 3.76 10.4 ± 0.74 27.7 ± 2.75 34.9 ± 0.87 8.7 ± 1.27

MTL+Rsem 25.4 ± 3.87 5.6 ± 1.68 18.5 ± 6.80 31.7 ± 1.23 7.5 ± 2.48

MTL+Rsem+slf+co 27.3 ± 4.09 7.1 ± 2.01 20.2 ± 6.34 32.3 ± 1.80 8.6 ± 2.02

MTLfo +Rsem 20.5 ± 2.23 9.8 ± 1.32 23.6 ± 3.14 34.4 ± 0.85 8.3 ± 2.10

MTLfo +Rsem+slf+co 23.3 ± 2.90 12.3 ± 2.59 28.3 ± 4.87 35.7 ± 2.30 11.7 ± 3.82

(baseline training MTLa−i, focal training MTLfoa−i, auxiliary clustering MTL + Rsem+slf+co and

combined training strategy MTLfo + Rsem+slf+co) and BD (Table 5.2) can be determined, the

improvement in that score caused by the combined training strategy compared to focal training

is highly correlated to BD. Accordingly, larger µF1m(MTLfo + Rsem+slf+co) − µF1m(MTLfoa−i)

are achieved for variables with a larger BD, indicating that the combined training strategy indeed

further helps to mitigate problems with class imbalance compared to focal training. In this context,

as already identified in the context of the F1-scores for all variables, the focal aspect of training

tends to result in larger improvements in the F1-score for minority classes (comparing MTLfo +

Rsem+slf+co and MTLfoa−i to MTLa−i) in case more labelled training samples are available (cf.

section 5.1.1.1).

To summarize, the individual approaches aiming to handle problems with class imbalance, i.e.

focal training and exploiting an auxiliary feature clustering, improve the classifier’s ability to dis-

tinguish the individual classes (higher F1-scores). Combining these strategies leads to the best

performance with respect to the variable-specific F1-scores for all classes as well as for underrep-

resented classes, where the positive effect is larger for underrepresented classes. In particular, the

average F1-score as well as the average OA for combining an auxiliary clustering and focal training

are significantly higher compared to the baseline multi-task training strategy. In this context, a

clustering with respect to both visual and semantic aspects of similarity (MTLfo + Rsem+slf+co)

performed best. That is, research question Q:FC 2 10 is answered positively, and a combination of

the clustering with focal training can be recommended. In this context, the focal training aspect is

found to result in a larger positive impact on the F1-scores (for all classes and for underrepresented

classes) for variables with a larger number of labelled training samples. The clustering aspect in the

combined training strategy tends to improve predominantly more complex tasks in terms of BD

and Km compared to focal training without any clustering (higher F1-score), which is particularly

true for underrepresented classes of variables with an imbalanced class distribution (high BD).

10Q.FC 2 (cf. section 1.2): Does an auxiliary feature space clustering especially improve the classifier’s ability to

correctly predict semantic information for images belonging to underrepresented classes?
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Accordingly, feature space clustering and in particular feature space clustering combined with focal

training helps to mitigate problems with class imbalance.

6.3.2 Descriptor learning for image retrieval with auxiliary classification loss

The analysis presented in this section aims to identify whether considering an auxiliary classifi-

cation loss in training can improve descriptor learning, such that the image retrieval results are

semantically more similar to the respective query images for a larger amount of evaluated test query

images. For this purpose, the results of the baseline image retrieval experiment Rsem (section 6.2.1)

are compared to those of the experiments Rsem +MTLfo and Rsem+slf+co +MTLfo, respectively.

Learning semantic similarity is combined with the most successful training strategy for training

a classifier identified in section 6.1 as auxiliary classification loss in Rsem + MTLfo, whereas all

concepts of similarity as well as focal training are considered in Rsem+slf+co+MTLfo. The average

quality metrics of all experiments are listed in Table 6.19.

A first comparison of the average F1-scores shows that higher scores can be obtained using the

focal softmax cross-entropy loss (eq. 4.7) as auxiliary clustering loss for learning semantic similarity

(Rsem + MTLfo) compared to descriptor learning without auxiliary loss (Rsem); the average F1-

score is 0.8% higher. Similarly, the OA is 0.3% higher considering an auxiliary focal classification

loss in training. Whereas the OA achieved in Rsem + MTLfo is not significantly larger than the

one in Rsem, the F1-score of Rsem + MTLfo is indeed significantly larger than the one of Rsem

(significance level 5%). In contrast, combining semantic similarity and visual concepts of similarity

during descriptor learning with an auxiliary classification loss (Rsem+slf+co + MTLfo) leads to

slightly lower quality metrics compared to Rsem. Nevertheless, the auxiliary classification loss

supports the semantic aspect of similarity in Rsem+slf+co+MTLfo to a certain degree; the average

F1-score of Rsem+slf+co + MTLfo is 0.2% lower instead of 1.1% lower as in case of Rsem+slf+co

(Table 6.8) and the OA is 0.3% lower instead of 1.2%, respectively. In particular, both of the

quality metrics achieved in Rsem+slf+co + MTLfo are significantly higher than those achieved in

Rsem+slf+co.

It can be concluded that the semantic aspect of similarity is supported by an auxiliary classifica-

tion loss, but the positive impact of a classification loss in descriptor learning is by far not as large

as the positive impact of an auxiliary clustering on classification. (section 6.3.1). The impact of

the auxiliary classification loss on different variable-specific aspects of semantic similarity is inves-

tigated in section 6.3.2.1; an analysis focusing on rarely represented classes in conducted in section

6.3.2.2.

6.3.2.1 Impact of an auxiliary classification loss during descriptor learning on image

retrieval using SilkNet

In this section, the effect of an auxiliary classification loss on the quality metrics of the individual

variables will be analysed for SilkNet-based descriptors used for image retrieval. The variable-

specific F1-scores are presented in Table 6.20 and the variable-specific OAs in Table 6.21. Both of

the tables contain the results of the descriptor learning experiments exploiting an auxiliary focal
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classification loss, Rsem+MTLfo and Rsem+slf+co+MTLfo, respectively, as well as the respective

variable-specific quality metrics of the baseline descriptor learning experiment Rsem that were

already reported in Table 6.9.

Analysing the F1-scores in Table 6.20, it can be observed that the scores are highest for the

experiment Rsem +MTLfo for all of the variables. Whereas the differences of the scores achieved

in this experiment to the scores obtained in the experiment Rsem is negligible for place (+0.2%),

the largest difference between the scores of 1.5% can be observed for depiction. In this context,

the following relations between the differences µF1m(Rsem +MTLfo)− µF1m(Rsem) and the char-

acteristics of the data representing the individual variables (cf. section 5.1.1.1) can be identified:

The differences tend to be larger for variables with a lower number of classes Km (Table 5.2) (67%

negative correlation), which is assumed to be caused by the focal multi-task training strategy, i.e.

the variable-specific F1-scores of MTLfoa−i (Table 6.5) tend to be larger for variables with a lower

Km (82% negative correlation). Moreover, the differences µF1m(Rsem + MTLfo) − µF1m(Rsem)

are significantly negative correlated (88%, p-value: 0.05) with the percentage of available training

data for a variable, i.e. the lower the percentage of labelled samples for a variable the higher the

difference in the F1-score. Nevertheless, the differences in the F1-scores in Table 6.20 are com-

paratively small. The F1-score achieved in Rsem + MTLfo is significantly larger (5% significance

level) than the one in Rsem for depiction, material and time, whereas no significant improvement is

observed for the remaining two variables. Accordingly, in order to conclude that there are indeed

such dependencies between the improvement in the F1-score and characteristics of the data, the

differences would have had to be larger.

Analysing the OAs in Table 6.21, the largest accuracies for all variables except for material are

obtained forRsem+MTLfo. The differences of the variable-specific OAs obtained forRsem+MTLfo

compared to those obtained in Rsem vary between +0.1% (place) and 0.7% (time). These differences

are even smaller than the differences observed for the F1-scores in Table 6.20 and do not show any

connection to the characteristics of the training data. In particular, time is the only variable with

a significant (5% significance level) improvement caused by an auxiliary focal classification loss.

Nevertheless, training with an auxiliary classification loss at least does not have a negative impact

on descriptor learning in terms of OA.

Table 6.19: Average F1-scores µF1 [%] (eq. 5.11) and overall accuracies µOA [%] (eq. 5.12) of the im-

age retrieval experiments investigating descriptor learning with an auxiliary classification loss.

Furthermore, the respective standard deviations σF1
0 [%] (eq. 5.13) and σOA

0 [%] (eq. 5.14),

respectively, are provided. The results of Rsem and Rsem+slf+co are identical to those in Table

6.8.

Experiment µF1 ± σF1
0 [%] µOA ± σOA0 [%]

Rsem 29.2 ± 0.66 61.7 ± 0.30

Rsem+slf+co 28.1 ± 0.37 60.5 ± 0.29

Rsem +MTLfo 30.0 ± 0.52 62.0 ± 0.32

Rsem+slf+co +MTLfo 29.0 ± 0.59 61.4 ± 0.13
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Table 6.20: Average variable-specific F1-scores µF1m ± σF1m

0 [%] (eqs. 5.11 and 5.13). The results are

obtained on the test set of the dataset SILKNOW-a-i. The results of Rsem are identical to those

in Table 6.9. The best result per variable is highlighted in bold font.

Experiment Variable m

depiction place material time technique

Rsem 26.5 ± 1.39 16.9 ± 0.66 40.2 ± 0.40 30.8 ± 0.51 31.5 ± 2.47

Rsem +MTLfo 28.0 ± 1.18 17.1 ± 0.71 40.9 ± 0.29 31.7 ± 0.48 32.4 ± 0.84

Rsem+slf+co +MTLfo 25.1 ± 1.22 16.7 ± 0.57 40.3 ± 0.51 31.1 ± 0.24 31.7 ± 1.72

Table 6.21: Average variable-specific overall accuracies µOAm ± σOAm

0 [%] (eqs. 5.12 and 5.14). The results

are obtained on the test set of the dataset SILKNOW-a-i. The results of Rsem are identical to

those in Table 6.9. The best result per variable is highlighted in bold font.

Experiment Variable m

depiction place material time technique

Rsem 69.4 ± 0.97 44.9 ± 0.19 75.3 ± 0.13 53.7 ± 0.23 65.1 ± 0.42

Rsem +MTLfo 69.9 ± 0.77 45.0 ± 0.33 75.1 ± 0.20 54.4 ± 0.17 65.3 ± 0.63

Rsem+slf+co +MTLfo 68.9 ± 0.81 44.5 ± 0.26 74.8 ± 0.13 54.2 ± 0.20 64.8 ± 0.54

To sum up, an auxiliary classification loss for descriptor learning does not have a large, but

significant effect on the descriptors’ ability to reflect semantic similarity. The percentage of query

images for which the majority of the retrieved images is semantically meaningful with respect to

a specific semantic variable (OA) is hardly affected by the auxiliary classification loss for most of

the variables. An exception in this regard is time, for which a significant improvement is achieved

caused by the auxiliary classification loss. In contrast, most of the variables achieve a significantly

larger F1-score under consideration of the auxiliary focal loss, i.e. the scores of three out of five

variables are significantly improved. In particular, the average F1-score is significantly higher

considering an auxiliary classification loss. Accordingly, in general research question Q.FR 1 11 is

answered positively, i.e. in terms of the achieved variable-specific F1-scores for most of the variables

as well as in terms of the average quality metrics.

6.3.2.2 Learning semantic similarity for underrepresented classes using an auxiliary

classification loss

The goal of this section is to analyse the impact of the auxiliary classification loss on the descriptors’

ability to reflect semantic similarity with respect to underrepresented classes in the training data.

Table 6.22 shows the F1-scores obtained by averaging the F1-scores of underrepresented classes

Mm per silk property (semantic variable). The table shows average scores µF1m (eq. 5.11) over

Nrun = 5 independent runs of the same experiment and corresponding standard deviations σF1m
0

11Q.FR 1 (cf. section 1.2): Does adding an auxiliary multi-task classification loss improve descriptor learning such

that the ability of the descriptors to reflect semantic similarity is improved?
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(eq. 5.13). These scores are presented for the baseline image retrieval experiment Rsem (section

6.2.1) as well as for the experiment Rsem+MTLfo realising descriptor learning under consideration

of an auxiliary focal classification loss. As the analysis in the preceding section showed that the

results of Rsem+slf+co+MTLfo are inferior to those of both Rsem and Rsem+MTLfo, respectively,

the experiment Rsem+slf+co +MTLfo is omitted in the analysis in this section.

It can be observed that there is a larger number of cases in which the majority of the retrieved

images are more semantically similar with respect to underrepresented classes describing a certain

variable-specific aspect of semantic similarity in case an auxiliary classification loss (Rsem+MTLfo)

is considered in training compared to Rsem. In Table 6.22, the F1-score of place is 0.2% higher

for Rsem + MTLfo than it is for Rsem, the one of technique is higher by 0.7%, time achieves a

0.9% higher score and material and depiction achieve scores that are higher by 1.1% and 2.3%,

respectively. As already observed in the context of the average F1-scores of all classes (Table 6.20),

the smallest difference is observed for place and the largest difference for depiction, where the

differences are in the same order of magnitude as those observed in Table 6.20. Thus, the auxiliary

classification loss does not preliminary improve the descriptors’ ability to reflect semantic similarity

with respect to underrepresented classes. Similar to the differences in the scores µF1m(Rsem +

MTLfo) − µF1m(Rsem) in Table 6.20, the differences in the scores in Table 6.22 are negatively

correlated with the percentage of available training data per variable (76% correlation), i.e. the

improvement in the F1-score is higher for variables with a lower percentage of labelled samples.

Moreover, the F1-scores of the underrepresented classes of Rsem+MTLfo and Rsem are negatively

correlated (85% and 86%) with the balance deviation BD (Table 5.2) in contrast to the respective

scores of all classes in Table 6.20, i.e. the more imbalanced a class distribution (higherBD) the lower

the respective F1-score for underrepresented classes tends to be. This does not come as a surprise,

because the F1-scores of all classes in the focal classification experiment MTLfoa−i (Table 6.5) are

not remarkably (negative) correlated with BD (40%, p-value: 0.5), whereas a significant negative

correlation of 94% (p-value: 0.02) is determined between the F1-scores of the underrepresented

classes in MTLfoa−i (Table 6.18) and BD. Accordingly, it is concluded that more labelled training

samples help to achieve a higher F1-score both for all classes as well as for underrepresented

classes, and class imbalance is a problem particularly for learning semantic similarity with respect

to underrepresented classes independently of the consideration of an auxiliary classification loss.

The latter observation is most likely caused by the characteristics of the auxiliary focal classification

loss, i.e. focal training results in lower F1-scores for underrepresented classes in case of more

imbalanced class distributions (higher BD).

To summarize, an auxiliary classification loss supports learning descriptors to reflect semantic

similarity for underrepresented classes of some variables, but underrepresented classes are not

better reflected than the other classes, i.e. the differences in the F1-scores for underrepresented

classes are not larger than the ones in the scores for all classes. In this context, the impact

of the auxiliary classification loss seems to be larger for variables with a more balanced class

distribution (lower BD) in terms of the F1-scores both for all classes as well as for underrepresented

classes. Generally, the impact of an auxiliary classification loss on descriptor learning is much

lower than the impact of an auxiliary clustering loss on training an image classifier (section 6.3.1).

Moreover, the auxiliary classification loss does not primarily support to learn semantic similarity
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Table 6.22: Average variable-specific F1-scores µF1m ± σF1m

0 [%] (eqs. 5.11 and 5.13) of underrepresented

classes Mm (cf. section 5.1) of all semantic variables (background class not considered). The

results are obtained on the test set of the dataset SILKNOW-a-i. The best result per variable is

highlighted in bold font.

Experiment Variable m

depiction place material time technique

Rsem 20.4 ± 1.66 9.4 ± 0.87 17.4 ± 0.60 25.2 ± 0.44 13.0 ± 2.85

Rsem +MTLfo 22.7 ± 1.91 9.6 ± 0.85 18.5 ± 0.39 26.1 ± 0.44 13.7 ± 1.42

with respect to underrepresented classes, whereas the positive impact of descriptor learning on

image classification tends to be larger for underrepresented classes. Accordingly, research question

Q.FR 2 12 is answered negatively, which is assumed to be caused by the characteristics of the

auxiliary focal classification loss.

6.4 Comparison of SilkNet to approaches of other authors and

evaluation on WikiArt

This section aims to investigate the results of SilkNet compared to those obtained by methods of

other authors to get a more general impression of the performance of the approaches proposed

in this thesis. For this purpose, the classification results obtained on the test set of the WikiArt

dataset (section 5.1.2) by SilkNet as well as the image retrieval results on that dataset, respec-

tively, are provided in Table 6.23. For classification, the best variant of SilkNet identified in the

preceding sections is selected, i.e. SilkNet with an identical configuration as in the experiment

MTLfo + Rsem+slf+co (section 5.3.4.1), but trained with early stopping on the WikiArt dataset.

Similarly, the SilkNet configuration used in the experiment Rsem + MTLfo (section 5.3.4.2) is

used for learning image descriptors on the WikiArt dataset. In addition, the results of single-task

classifiers STLfo +Rsem+slf+co with identical settings as in the experiment MTLfo +Rsem+slf+co

are provided, where each of the three single-task classifiers comes along with a single branch in

the classification head in contrast to MTLfo + Rsem+slf+co. The overall accuracies obtained for

the predictions in MTLfo + Rsem+slf+co and STLfo + Rsem+slf+co as well as the overall accura-

cies obtained in the descriptor-based kNN classification in Rsem + MTLfo are provided in Table

6.23 in addition to the accuracies obtained in the works (Saleh and Elgammal, 2016), (Tan et al.,

2016), (Zhao et al., 2021) and (Zhao et al., 2022). Similarly to the SilkNet-based approaches, in

these works existing network architecture are adopted as feature extraction backbones and com-

bined with a new classification head; a variant of AlexNet (Krizhevsky et al., 2012), pre-trained

on ImageNet (Russakovsky et al., 2015) and fine-tuned on WikiArt, is used in (Tan et al., 2016);

similarly, Zhao et al. (2021) pre-train a ResNeSt50 (Zhang et al., 2022) and a EfficientNet-B3 (Tan

and Le, 2019), respectively, on ImageNet (Russakovsky et al., 2015) and perform fine-tuning to

12Q.FR 2 (cf. section 1.2): Does adding a focal variant of the multi-task classification loss to descriptor learning help

to improve the ability of the descriptors to reflect semantic properties that are rarely represented in the training

dataset?
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Table 6.23: Variable-specific overall accuracies OAm [%] (eq. 5.4) and average overall accuracies OA [%] (eq.

5.10) of different classifiers on the WikiArt dataset described in section 5.1.2. The best result

per variable is highlighted in bold font.

Model style genre artist Average

CNN fine-tuning (Tan et al., 2016) 54.5 74.1 76.1 68.3

EfficientNet (Zhao et al., 2021) 69.2 78.0 91.7 79.6

ResNeSt (Zhao et al., 2021) 66.8 77.1 83.8 75.9

BiT-M (Zhao et al., 2022) 71.2 82.4 93.5 82.4

Rsem +MTLfo (section 5.3.4.1) 41.5 68.4 52.8 54.2

MTLfo +Rsem+slf+co (section 5.3.4.2) 50.4 73.2 67.0 63.5

STLfo +Rsem+slf+co 50.0 73.6 67.2 63.6

adapt the network for art classification; the multi-label ImageNet variant ImageNet-21k (Ridnik

et al., 2021) is used to pre-train a ResNet50 that is fine-tuned on WikiArt in (Zhao et al., 2022).

In contrast to the SilkNet-based approaches, combining a descriptor learning loss and a classifi-

cation loss, the CNN-based classifiers just described exclusively come along with a softmax layer

for classification that is trained by minimizing the softmax cross-entropy. In this context, the test

set slightly varies between the experiments in the works of other authors and the SilkNet-based

approaches; as described in section 5.1.2 images that occur both in the training and in the vali-

dation sets (test sets), for any variable are omitted for the multi-task experiments. F1-scores are

not provided as the authors of the works just mentioned exclusively provide the overall accuracies

obtained for their approaches.

A general comparison of all results in Table 6.23 shows that the best results can be obtained

for the classifier variant BiT-M proposed in (Zhao et al., 2022), being on average 18.9% better in

terms of OA than the SilkNet multi-task classifier MTLfo +Rsem+slf+co. Furthermore, the results

obtained using the variant of EfficientNet and the variant of ResNeSt, both proposed in (Zhao et al.,

2021), as well as CNN fine-tuning (Tan et al., 2016), respectively, obtain higher overall accuracies

compared to the two SilkNet variants Rsem+MTLfo and MTLfo+Rsem+slf+co, respectively, both

proposed in this thesis. The same applies to the results of STLfo + Rsem+slf+co, demonstrating

that the incomplete nature of the training samples in MTLfo+Rsem+slf+co is not the reason for the

remarkably lower OAs. Furthermore, even though on the independent test set the quality metrics

achieved in MTLfo + Rsem+slf+co are comparatively low, the accuracies achieved on the training

set, i.e. an average training accuracy of 83.1% is achieved, show that this is not caused by the

capacity of SilkNet, because the training accuracies are much higher, i.e. the network overfits to

the training dataset. The difference in the overall accuracies between any of the approaches of other

authors and the SilkNet-based approaches can be caused by one or several of the following potential

reasons: The authors of the works just cited evaluate their method exclusively based on the overall

accuracies that were also assumed to be considered for selecting the optimal model. In contrast,

the F1-score was selected as the main metric for the model selection in this work motivated by the

class imbalance for classification tasks in the context of cultural heritage applications. Moreover,
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optimal hyperparameters were tuned on the SILKNOW dataset in this thesis, whereas WikiArt

was directly considered in the other works. The potentially most important difference is that a

validation set was used for the model selection in this work, i.e. for early stopping in the context of

training on the WikiArt dataset. In contrast, the two classifiers in (Zhao et al., 2021) were selected

on the basis of the best test performance; in (Tan et al., 2016; Zhao et al., 2022), the total data is

also split in two subsets, which leads to the assumption that the test accuracies might have been

optimized. Finally, the lowest overall accuracy obtained for Rsem + MTLfo was obtained by a

kNN classification based on image descriptors, i.e. the context of the experiment Rsem + MTLfo

is image retrieval and not image classification. Providing the kNN classification results was the

only option to compare the developed descriptor learning technique to results obtained by other

authors, even though it is a kind of unfair comparison from the perspective of the descriptor learning

method. The latter statement is also supported by the observation that the accuracies obtained

in Rsem +MTLfo are much lower than those obtained in MTLfo + Rsem+slf+co, where an image

classifier is trained. Nevertheless, the two experiments Rsem +MTLfo and MTLfo +Rsem+slf+co

on the WikiArt dataset demonstrate that the developed approaches indeed can be applied to other

collections of artifacts, such as paintings.

To summarize, the comparative experiments on the WikiArt dataset show that the SilkNet-based

approaches are inferior in the ability to correctly predict the majority of the class labels. Several

potential reasons for this observation could be identified, including potential overfitting, though the

actual reason remains unclear. Nevertheless, the results achieved by SilkNet are reasonable, being

higher than they would have been either in case of guessing a class or in case of predicting the most

dominant class for all samples, and demonstrate the transferability of the approaches developed in

this thesis. Furthermore, it is noteworthy that the techniques developed to train SilkNet are the

only ones that allow for a multi-task training on the incompletely labelled WikiArt dataset; the

other approaches analysed in this section perform single-task learning only.

6.5 Discussion

The results of the experiments described in section 5.3 were presented and analysed in sections

6.1-6.3. Furthermore, the findings in these sections were discussed with respect to the research

questions formulated in section 1.2. In this section, a general discussion of the experimental results

is provided. First of all, the results obtained by the C-SilkNet-based image classifier as well as

the SilkNet-based classifier are discussed in section 6.5.1. Afterwards, all results obtained in the

context of image retrieval exploiting image descriptors learned with R-SilkNet as well as learned

using SilkNet are discussed in section 6.5.2.

6.5.1 Classification

In general, the obtained quality metrics for a multi-task classification experiment both with C-

SilkNet as well as with SilkNet on the main dataset, SILKNOW-a-i, are moderate; while the overall

accuracies of up to 66.2% can be obtained for the experiments, the F1-scores are remarkably lower

(up to 33.6%). This already indicates problems with class imbalance for training a classifier.
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A comparison of the variable-specific F1-scores and those obtained for the minority-classes of a

variable demonstrates that the correct prediction of those minority classes is particularly challenging

for the trained variants of the classifier. This might be the case because the classes, particularly

the minority classes, might not be well represented by the given data. Understanding historic

silk fabrics as works of art, it is assumed that there is a huge variety of ways to design a certain

motif (variable depiction), e.g. a floral motif (class flower) or that there is a huge variety in the

appearance of different fabrics that are produced in a certain time in a certain country (variable

place), e.g. in the 19th century in France. Accordingly, it might not be enough to represent such

silk properties by some tens or hundreds of examples to be able to properly learn to predict such

classes and to learn to differentiate them from other classes.

A further challenge, originating from the used data, is the incompleteness of the training sam-

ples; only 0.2% of the training samples come along with a class label for all of the five classification

tasks. Thus, the key idea of multi-task learning, i.e. to benefit from interdependencies between

the tasks to be learned, cannot be fully exploited by training on SILKNOW-a-i. Not surpris-

ingly, the quality metrics obtained on SILKNOW-s-c by training on the dataset SILKNOW-s-i and

SILKNOW-s-c, respectively, in both cases considering four instead of five semantic variables and

simplified class structures, are higher than those obtained on SILKNOW-a-i: Overall accuracies of

up to 74.1% and F1-scores of up to 53.8% can be obtained (MTLs−i, section 6.1) on SILKNOW-

s-i, while on SILKNOW-a-i the largest F1-score amounts to 33.6% (MTLfo +Rsem+slf+co, section

6.3.1) and the largest OA to 66.2% (MTL + Rsem+slf+co, section 6.3.1). Moreover the degree

of incompleteness varies between the individual variables in SILKNOW-a-i so that variables with

more available labels are likely to have a larger impact on the update of the network weights com-

pared to tasks with a lower number of training samples. Such a behaviour was indeed observed in

the context of the OA obtained by a multi-task C-SilkNet (MTLa−i, section 6.1.2.1) compared to

respective single-task C-SilkNets (STLa−i, section 6.1.2.1); tasks with a larger amount of samples

benefit much more from MTL than tasks with a lower number of samples.

Moreover, the dataset SILKNOW-a-i is a heterogeneous dataset in many respects: Despite

of the different degrees of class imbalance for the different tasks as well as the different numbers

of known labels for a distinct task, the data originate from 12 different online collections (cf.

section 5.1.1.1). Comparing the results obtained on SILKNOW-a-i to those obtained on a dataset

of roughly 10k images exclusively originating from the IMATEX collection (IMATEX, 2018), i.e.

F1-scores of up to 93.5% and F1-scores of up to 89.0% (Dorozynski et al., 2019a), a larger variety of

data sources seems to have a negative impact on the quality metrics. Of course it has to be noted

that the class structures used in (Dorozynski et al., 2019a) deviate from the ones in SILKNOW-a-i

as well as the set of considered semantic variables. It might also have a negative impact on training

that some of the fabrics depicted in images in SILKNOW-a-i are partly destroyed, some of the

fabrics do not fill in the whole image, i.e. a background is visible, and some of the images still show

objects such as clothes instead of plain fabrics, regardless of the conducted automatic filtering by

object type. Finally, it has to be kept in mind that none of the semantic annotations were manually

checked. Even though the homogenisation of the labels, e.g. mapping 19thcent., 19thsieglo and

19thc. to 19thcentury, was conducted in a supervised manner by manually assigning annotations

occurring in the collections (19thcent., 19thsieglo and 19thc.) to the corresponding selected label
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(19thcentury), the assignments of the final labels to the individual images were taken from the

harvested online collections without any checking.

To sum up, it could be shown that the developed training strategies for incompletely labelled

training samples lead to promising results on the SILKNOW dataset. On average up to 63.9%

of the predictions were correct on the dataset SILKNOW-a-i, using the baseline training strategy

(MTLa−i), where up to 75.6% correct predictions could be achieved for the individual tasks. That

is, 11.3% more correct predictions were achieved compared to corresponding single-task classifiers.

The corresponding F1-scores for all classifiers are remarkably lower than the OA, indicating prob-

lems with class imbalance. While problems with class imbalance were not fully compensated, the

developed strategies to mitigate such problems in the context of multi-task classification could

significantly improve SilkNet in correctly predicting the individual classes, where underrepresented

classes tend to benefit most from the developed modifications. In this context, both focal training

(+4.0% in F1-score compared to MTLa−i) as well as an auxiliary clustering (+3.7% in F1-score

compared to MTLa−i) improve the results and the combination of these two approaches results in

the best performance, i.e. 33.6% in the average F1-score (+5.0% in F1-score compared to MTLa−i).

The best performing multi-task classifier based on SilkNet (MTLfo +Rsem+slf+co) is on par with

single-task classifiers in terms of the F1-score (STLa−i: 33.8% F1-score), while it outperforms

single-task classifiers in terms of the OA; the highest OA is on average 13.6% higher than the one

of single-task classifiers. This shows that MTL as developed in this thesis is not only feasible under

consideration of incomplete samples, but is to be preferred over single-task learning.

6.5.2 Image Retrieval

In general, as already observed in the context of image classification, the obtained quality metrics

are moderate; while overall accuracies of up to 62.0% can be obtained for the kNN-based classifi-

cation based on the learned image descriptors, F1-scores of up to 30.0% are obtained. Concerning

the general discussion of the experimental results, all arguments concerning the characteristics of

the dataset SILKNOW-a-i mentioned in the context of image classification are also relevant in

the context of descriptor learning. SILKNOW-a-i is a very heterogeneous dataset; the class

distributions are imbalanced, most of the samples are incomplete and the representations of the

silk properties, i.e. semantic variables, by images of silk objects originate from many different

data sources. Moreover, the available semantic annotations (class labels) describing different silk

properties (variables) were not manually checked. Accordingly, it is per se a challenging task to

learn descriptors such that the descriptor distances reflect the degree of agreement in the semantic

annotations, a concept referred to as semantic similarity. In case of imbalanced class distributions

of a certain variable, more frequent classes are more often considered in a triplet and thus, consid-

ered more frequently in training. Accordingly it is to be expected that lower F1-scores are obtained

for less frequent classes (minority classes) in the context of a kNN classification, indicating that se-

mantic similarity with respect to those classes is not reflected by the learned descriptors as well as it

is with respect to class labels that occur more frequently. Preliminary experiments in (Dorozynski

and Rottensteiner, 2022b) supported this theory; F1-scores of up to 42.9% can be obtained in kNN

classification based on descriptors learned for image retrieval if only class labels (of SILKNOW-a-i)
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that occur at least 150 times in the entire dataset are considered. Of course it has to be noted that

the class structures thus obtained accordingly consist of less classes than those in SILKNOW-a-i

except for material, and depiction was not considered at all, which is likely to have an impact on

the quality metrics, too.

In the particular case of incomplete training samples, the degree of semantic similarity that

can be derived from the known class labels might be relatively low for an image pair, even though

the depicted object in the two images constituting such an image pair might be identical for all

variables from a semantic point of view. This aspect is considered by means of an uncertainty

of the semantic similarity u(xi, xo) (eq. 4.16), but the best differentiation of image descriptors

in feature space according to semantic similarity Ysem(xi, xo) (eq. 4.14) can only be obtained

for descriptors belonging to images with known labels for all variables, i.e. for Ysem(xi, xo) ∈ [0, 1]

instead of Ysem(xi, xo) ∈ [0, 1−u(xi, xo)]. Furthermore, the degree of incompleteness varies between

the variables in the SILKNOW-a-i dataset so that variables with a larger number of known labels

contribute to the determination of semantic similarity more often. Accordingly, it could be assumed

that semantic similarity is learned for such variables in a better way, but interestingly no such

dependency could be identified in section 6.2. Nevertheless, the quality of the results is in the same

order of magnitude as identified in the context of image classification, which demonstrates that

learning semantic similarity is successful.

Finally, the utilized evaluation protocol is assumed to lead to values for the quality metrics

that do not fully reflect the potential of the developed descriptor learning strategies, particularly

in terms of visual similarity between retrieved images and the corresponding query images. As

mentioned earlier, image retrieval techniques are commonly evaluated on the basis of top-k-scores

describing the percentage of evaluated query images for which at least one meaningful result is

among the k most similar images. In contrast, an image retrieval experiment obtains high quality

metrics in this thesis in case the majority of the retrieved images are identical to the respective

query image in terms of a variable-specific aspect of semantic similarity for a large amount of test

query images. To obtain high quality metrics is much more challenging in such a scenario than in a

common image retrieval evaluation protocol. Nevertheless, such a protocol requires a reference per

image pair defining whether the two images are similar to each other or not, such that meaningful

retrieval results can be identified for each query image based on that reference. As such a reference

is not available, quality metrics obtained in a kNN classification are exploited to evaluate he image

retrieval experiments. Preliminary experiments in (Schleider et al., 2021), evaluated on a rather

small test set of 100 images with a manual reference produced by a single domain expert, show that

descriptors trained to reflect both semantic as well as visual aspects of similarity (similar to the one

used in the experiment Rsem+co+slf ) allow for image retrieval with a top-k-score of 54% (manual

inspection), while the respective F1-score amounts to 44.4% (kNN classification). Learning visual

similarity (similar to the experiment Rco+slf ) resulted in a top-k-score of 83% (manual inspection),

while the corresponding F1-score amounts to 40.8% (kNN classification). These results support

the assumption that an assessment of the image retrieval results by experts with respect to visual

aspects of similarity can better demonstrate that the consideration of visual concepts of similarity

in descriptor learning can have a large positive effect on the results from a visual point of view

other than an evaluation considering the semantic aspect only.
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To sum up, it was show that semantic similarity can be learned by means of R-SilkNet and

SilkNet, respectively. As the achieved quality metrics in the context of image retrieval are not much

lower than those obtained in the context of image classification, it is concluded that the concept

of semantic similarity is reasonable. On average 61.7% of the images have identical class labels

as the majority of the retrieved images using the baseline training strategy (Rsem). Nevertheless,

semantic similarity could not be learned for all classes equally well, indicated by remarkably lower

F1-scores (29.2% on average), which can be assumed to be caused by problems with class imbalance.

An expansion of the training strategy in the form of an auxiliary focal classification loss could

improve the quality measures; even though the measures were not significantly improved for all

of the variables, the average F1-score could be significantly improved (Rsem + MTLfo compared

to Rsem). Moreover, a visual inspection of the image retrieval results showed promising effects on

the appearance of the retrieved images compared to the query images caused by considering the

developed losses for learning visual similarity. In general, the techniques for descriptor learning

developed in this thesis allowed to learn descriptors for image retrieval without any reference

defining similar and dissimilar image pairs. Moreover, different aspects of semantic similarity were

considered, while allowing for incomplete training samples. Thus, certain semantic aspects can be

represented by the training data in a better way, i.e. by a larger number of images, leading to

increased F1-scores, on the one hand, and on the other hand, the developed descriptor learning

strategies can be applied to any database consisting of images with at least partly known class

labels, which is of huge interest for collections of historic objects.
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7.1 Conclusion

In this thesis, images with annotations for different semantic variables are exploited as a source of

information to both, automatically complete the metadata in cultural heritage-related databases as

well as to learn image descriptors that can serve as an index to such databases, so that a database

search becomes feasible.

For the purpose of semantically enriching incomplete collections, a multi-task image classi-

fication technique was developed, including a training strategy and CNN-based classifiers, referred

to as C-SilkNet, and the expansion of that CNN allowing for an auxiliary clustering loss, SilkNet,

respectively. In contrast to existing multi-task image classification techniques, the proposed ones

allow for using incompletely labelled training data, i.e. samples that do not come along with a

label for all of the tasks, in addition to samples with a known class label for all of the tasks. This is

important in the context of databases containing images with related metadata describing ancient

objects, because the available information is often incomplete. A clear advantage of the developed

multi-task training strategy is that it allows to maintain all classification tasks as well as the classes

differentiated for the individual tasks, which would not be possible when restricting the data to

complete samples, while implicitly exploiting interdependencies between the task in the context of

homogeneous multi-task learning. Furthermore, two training strategies to mitigate problems re-

lated to class imbalance in the context of multi-task multi-class image classification were proposed

that both allow for complete as well as incomplete training samples: The first training strategy,

relying on C-SilkNet, considers focal weights, which lead the training procedure to focus on samples

belonging to underrepresented classes during training. The second strategy relies on an auxiliary

feature clustering with respect to semantic and visual aspects of similarity using SilkNet and can

be understood as heterogeneous MTL, combining the tasks of classification and descriptor learning.

Potentially, both training strategies can be combined using SilkNet.

To allow for an automated search in historically relevant databases on the basis of im-

ages, a descriptor learning technique was developed, including a training strategy as well as CNNs,

referred to as R-SilkNet, and the expansion of that CNN allowing for an auxiliary classification

loss, SilkNet, respectively. As there does not exist any reference defining similar and dissimilar

image pairs, different concepts of similarity, i.e. a concept of semantic similarity and two concepts

of visual similarity, were developed to automatically derive training data for descriptor learning

from the information available in collections of data related to historically relevant objects. During

training, R-SilkNet is forced to produce image descriptors the Euclidean distances of which reflect

the different degrees of similarity. Furthermore, an expansion of descriptor learning by an auxiliary



140 7 Conclusions and Outlook

classification loss using SilkNet is proposed used to support learning semantic similarity. In this

context, both the auxiliary classification loss as well as the loss term considering semantic similarity

can cope with both, complete semantic annotations as well as incomplete annotations.

Comprehensive experiments investigating the developed methods were conducted focusing on

the application of collections of images depicting historic silk fabrics, i.e. using the data collected in

the context of the EU H2020 project SILKNOW. These experiments were designed to investigate the

impact of the different methodological developments of this thesis on the classification performance

and on the performance of image retrieval. Moreover, both of the methods were applied to a

dataset of images depicting paintings from the preceding centuries, i.e. the WikiArt dataset. Thus,

the approaches were compared to those of other authors and the transferability of the methods

developed in this thesis could be demonstrated.

The results obtained on the SILKNOW dataset in the context of image classification showed

that in general, it is possible to automatically predict different semantic properties describing a

depicted object by means of a SilkNet image classifier. Even though the characteristics of historic

digital image collections are challenging in many respects, they can be exploited as training dataset

for such a classifier to automatically predict missing information. The baseline C-SilkNet classifier

considering incomplete samples in training achieved an average F1-score of 28.6% and an average

OA of 63.9%, the latter being 11.3% larger than the one achieved by corresponding single-task

classifiers. In this context, larger quality metrics could be achieved for variables with a more

balanced class distribution, indicating problems with class imbalance just as the F1-scores, being

in general much lower than the respective OAs. It could be shown that the developed expansions of

the multi-task training strategies aiming to mitigate such problems indeed significantly improved

the quality measures. Considering focal weights in training C-SilkNet performs significantly better

than the baseline multi-task training strategy both in terms of the average F1-score (+4.0%) and

the OA (+1.7%). Similarly, auxiliary clustering strategies using a SilkNet classifier significantly

improved the quality metrics, where the best OA of 66.2% is achieved for a clustering with respect

to both visual and semantic similarity. Thus, an improvement of 13.6% in the average OA compared

to single-task classifiers is achieved. Combining that clustering strategy with focal training results

in the best average F1-score of 33.6% achieved by a multi-task classifier, being on par with

single-task classifiers (F1-score of 33.8%). Even though the variable-specific F1-scores are still

lower for variables with more imbalanced class distributions, the combined training strategy has

the largest positive effect on the F1-score of underrepresented classes; the variable-specific F1-scores

are improved by up to 8.9% compared to the baseline MTL classifier and the variable-specific scores

for underrepresented classes could be improved by up to 14.3%. It was shown that the developed

multi-task training strategies allowing for incomplete samples result in a multi-task classifier that

remarkably outperforms single-task classifiers in terms of the OA, while being on par

in terms of the F1-score.

The results obtained on the SILKNOW dataset in the context of descriptor learning showed

that in the majority of the evaluated test cases image retrieval using descriptors learned with R-

SilkNet leads to results in which the majority of the images is on average meaningful with respect to

all semantic variables considered to define semantic similarity (OA of 61.7%). In this context, it was
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found that semantic similarity is not learned for all classes of a semantic variable, i.e. a silk property,

equally well indicated by relatively low F1-scores (29.2% on average) obtained in the conducted

kNN classification on the basis of the learned descriptors. An analysis of the impact of additional

incomplete samples on descriptor learning showed that the quality measures could be improved

significantly, i.e. +1.2% were achieved in OA and +2.6% in the average F1-score compared to

training on complete samples only. Furthermore, considering visual aspects of similarity in addition

to semantic aspects of similarity seem to be promising in terms of the visual similarity between

query images and the corresponding retrieved images according to a qualitative inspection of the

results. At the same time, the quality metrics assessing the descriptors’ ability to reflect semantic

similarity remain relatively unaffected, in particular colour similarity does not lead to significantly

lower quality measures. Moreover, learning descriptors with an auxiliary classification loss using

SilkNet turned out to result in higher quality metrics; learning semantic similarity only could be

improved significantly (+0.8%) by the auxiliary loss in terms of the average F1-score leading to the

best achieved F1-score of 30.0%, while the best OA of 62.0% is achieved in that experiment,

too. These results could be obtained even though there was no manual reference defining

similar and dissimilar images and even though the available data basis was challenging in many

respects. The developed concepts of similarity allowed to notwithstanding automatically generate

a reference for descriptor learning.

To summarize, the goals formulated in the beginning of this thesis were achieved, i.e. to

develop methods that allow to predict properties of works of art, in particular silk fabrics, on

the one hand, and on the other hand, to search for similar objects in a database on the basis of

images. In this context, the methods that were to be developed had to handle complex input data

in terms of the incompleteness of the available information as well as in terms of class imbalance.

In this thesis, it could be shown that the developed classification method allows for multi-task

learning on incompletely labelled datasets. Even though problems could partly be mitigated by

training strategies developed in this thesis, the lower F1-scores indicate that such problems still

exist. Nevertheless, the results are promising and are assumed to be a solid basis for completing

the metadata in databases of historically relevant objects. In particular, providing the predictions

thus obtained to a user, e.g. with an according softmax score as well as an information about the

origin of the prediction, is assumed to be preferred over having no information about a certain

object. Furthermore, in this thesis strategies for automatically generating a reference for descriptor

learning as well as a loss for descriptor learning could be developed. The achieved results are in

the same order of magnitude as in the context of image classification. Thus, it is concluded that

the concept of semantic similarity seems to make sense and can also be learned to be reflected by

image descriptors. Even though further evaluations by domain experts are required to get a solid

impression of the retrieval results with respect to visual aspects of similarity, the developed method

is the first one allowing to retrieve semantically meaningful objects in a database of artifacts on

the basis of provided user images.
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7.2 Outlook

There are several directions for potential future work related to the topics of this thesis.

Further investigations of the two developed approaches in the context of silk could

focus on the requirements of the silk application with respect to the data basis or on the optimization

of the approaches in order to increase their performance. First of all, it would be of interest to

determine the minimal number of examples per class and variable required to be able to differentiate

a class from the rest. At least in the context of image retrieval, a threshold for a minimum required

number of samples is assumed to be reasonable, because a comparison of the results in (Dorozynski

and Rottensteiner, 2022b) and those in the current thesis indicate that underrepresented classes

might not be properly learned. In this context, an analysis of the respective performance dependent

on the number of examples for a certain class would be of interest. Such an analysis would deliver a

compromise with respect to the granularity of the class structure between two contradictory goals

defining a classification problem, namely, on the one hand, one would like to have as many classes

as possible to be able to obtain very fine-grained information about the input data, while on the

other hand one needs a balanced set of training samples with as many samples as possible per

class to get stable predictions. Furthermore, there is a potential for an increase in the performance

by further adapting the values of the training hyperparameters, e.g. those defining the number

and the size of the fully connected layers. Particularly, jointly varying several hyperparameters

as well as more fine-grained searches for an optimal configuration of the network heads could be

investigated. It can be assumed that remarkably higher quality measures can thus be obtained for

the predictions on the WikiArt dataset.

Another option for future work could be the modification of the data basis for further

experiments. It could be observed that lower accuracies tend to be obtained for classes with a

low number of training samples. Thus, data augmentation strategies could be applied in order to

synthetically increase the number of training samples for such classes, similar to (Chawla et al.,

2002). In this context, generative adversarial networks might be exploited to obtain synthetic data,

e.g. (Tan et al., 2018; Garozzo et al., 2021; Mohazzab et al., 2021; Pérez and Cozman, 2021). Up

to now, it could not be clarified how many labels per task in relation to the total number of images

are required to learn a task. Furthermore, it is not clear whether this might be dependent on the

availability of the labels for other tasks, e.g. in case the most related task in some respect, e.g. in

terms of Cramér’s V (Cramér, 1946) calculated for the class labels of two tasks, comes along with a

huge number of examples, the regarded task might requires fewer labels. Furthermore, it is unclear

how large the percentage of complete training samples should be in order to benefit from multi-

task learning compared to single-task learning. For this purpose, a fully labelled multi-task dataset

would be desirable in order to allow for an incremental reduction of the available training labels, by

systematically omitting known labels. This might be realized based on the MultitaskPaintings100K

dataset of the Painters by Numbers Kaggle competition1.

Moreover, that dataset as well as other datasets, e.g. OmniArt (Strezoski and Worring, 2017) or

SemArt (Garcia and Vogiatzis, 2018), could be exploited to further demonstrate the transferability

1https://www.kaggle.com/c/painter-by-numbers, accessed on 01-06-2023
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of the two approaches developed in this thesis in the context of heritage-related applications.

Applying both of the methods, i.e. the image classification method as well as the descriptor

learning technique, to a dataset with images and annotations for several semantic variables, and

ideally a reference for similar and dissimilar images, from a different context would be of interest,

too. This would allow for an analysis of the transferability of the approaches beyond applications

in the context of cultural heritage preservation.

From the perspective of image retrieval, an expansion of the silk heritage-related data basis by a

manual reference defining similar and dissimilar images would be of interest. Such a reference would

not only allow for an analysis of the impact of the visual concepts of similarity during training on

the retrieval results, but also allow for a comparison to works of other authors that require such a

reference for training.

Future methodological work related to both of the methods could address modifications

of the mapping from an input image to high level images features by modifying the used neural

network. A strategy to do so could be to apply another network as generic feature extractor than

ResNet-152 (He et al., 2016b), e.g. adopting a variant of ResNeSt (Zhang et al., 2022), which

in (Zhao et al., 2021) has been shown to result in a classifier with superior performance compared

to one using a ResNet-50 (He et al., 2016b) in the context of predicting class labels for ancient

paintings. Furthermore, the different recording scenarios realized in the creation of the silk images

(see Figures 5.1 and 5.2) could be addressed by an expansion of the methods, e.g. the parameters

of an affine transformation could be learned (Chen, 2021). Thus, the images could be normalized,

e.g. with respect to different scales, rotations and shearing, and are afterwards provided to the

developed image classification method and the image retrieval method, respectively.

Moreover, the class labels of the semantic variables in this thesis were understood in the context

of multi-class classification problems with equally important variables. An alternative could be

to allow for a multi-label representation, which would additionally allow to consider annotations

that do not fit in a class structure with mutually exclusive classes. In the context of classification,

multiple binary classification problems learned using multiple sigmoid losses would be considered

per task, i.e. per semantic variable, instead of a variant of the softmax cross-entropy loss. In the

context of descriptor learning, the label vectors (the values of the elements of which are compared

in equation 4.15) would potentially contain multiple ones instead of up to one in such a multi-

label scenario, which (in equation 4.15) would require a normalization by the number of available

labels for a variable. Moreover, particularly in the context of image retrieval, it might be useful

to consider some of the variables to be more important than other variables to define semantic

similarity. To do so, variable-specific importance weights could be introduced in the formula for

calculating semantic similarity (equation 4.14). The values for such weights would need to be

determined in collaboration with cultural heritage domain experts, where the inspection of the

retrieval results for different realizations of the weighting by the experts is assumed be useful.

Future methodological work related to image classification could address the consider-

ation of an additional ensemble method in order to move from individual image-based predictions

for several images depicting the same object to an ensemble prediction for a silk object in the
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database. Furthermore, further additional data available for the SILKNOW dataset could be ex-

ploited for training, requiring methodological modifications of the training strategy to do so. There

exist different levels of granularity of the class labels in the SILKNOW knowledge graph that could

be exploited to hierarchically enrich training like in (Dorozynski et al., 2019b).

Another starting point for future work could be exploiting the information about the different

collections of a silk object. As the SILKNOW dataset is very heterogeneous in this respect, this

information could be used to investigate the effect of domain adaptation techniques in order to

mitigate problems due to this heterogeneity, e.g. by means of a gradient reversal layer (Ganin et

al., 2016). This would, of course, require a preliminary analysis of the impact of the used different

data source on the classification performance.

Furthermore, the SILKNOW knowledge graph provides both, information about relations be-

tween different instances, such as certain properties, as well as a longer textual description per silk

object: The relations in the graph could be exploited similarly to (Garcia et al., 2020), where a

node2vec (Grover and Leskovec, 2016) representation is exploited to derive additional features from

the graph per training sample. The textual descriptions could also be considered in the context of

multi-modal classification, being a growing field of research. Preliminary experiments involving the

combination of images, class labels and textual descriptions (Rei et al., 2022) have shown promising

results for the classification of historic silk fabrics.

Another option for future work could be the investigation of semi-supervised classification in order

to address multi-task learning with incomplete samples. This could, for example, be realized by an

expansion of the approach in (Yang et al., 2021) from single-task learning to multi-task learning.

Thus, pseudo labels for each task based on a k-means feature clustering could be generated, in case

the class labels for a certain task are not available for some of the images.

Finally, the principle of task balancing is often applied in the context of multi-task learning.

Whereas it was already shown in (Yang et al., 2022) that task balancing is beneficial for multi-

task learning with complete samples in the context of cultural heritage applications, it would be

interesting to develop and investigate an according approach for incomplete training samples. In

this context, analysing potential dependencies on the degree of incompleteness of a certain task

would be interesting as well as the mutual effects of task balancing and class balancing on each

other.

Future methodological work related to descriptor learning for image retrieval could

investigate the impact of other auxiliary losses operating on a semantic level of image similarity in

order to support learning descriptors to reflect semantic similarity. For instance, the spherical loss

or the center loss presented in (Lin et al., 2019) could be applied for each semantic variable that

is considered in the definition of semantic similarity. In addition to thus directly support learning

semantic similarity, substituting the self-similarity loss by a representation learning strategy as the

one proposed in (Chen and He, 2021) is assumed to support the descriptors in both, allowing for

semantically as well as visually meaningful retrieval results. In contrast to the self-similarity loss

presented in this thesis, which directly forces the descriptors of two images of the same object to

be similar, Chen and He (2021) allow the network to learn a mapping between the descriptors.
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Moreover, mining strategies could be investigated that force the descriptor learning network to

focus on hard image pairs or triplets, respectively, during training. In this context, hard pairs

could for instance be pairs of images the descriptor distances of which are in contrast to the known

image similarity. This could either be realized on the basis of the gradual concept of semantic

similarity, considering all semantic variables, or in a selective way by considering the degree of

semantic similarity of a subset of semantic variables that are expected to be poorly learned, e.g.

because of a lower number of labelled examples compared to other variables.

As in the context of image classification, additional knowledge available in the SILKNOW knowl-

edge graph could be exploited for image retrieval: Information about relations between different

instances in the graph could be considered for the representation of a silk object, e.g. in form of

a node2vec (Grover and Leskovec, 2016) representation, as well as features derived from known

descriptive texts, e.g. in a similar way as in (Garcia et al., 2020). Both representations could be

exploited for descriptor learning in addition to the representation derived from the corresponding

images by means of SilkNet.

Furthermore, in case textual descriptions are available, cross-modal retrieval techniques could be

developed, e.g. (Garćıa-Laencina et al., 2008), allowing a user to search in a database for images

of artifacts by means of a textual description or vice versa, to obtain descriptive information for a

provided image. Such techniques become increasingly important in the context of curating digital

collections in the field of cultural heritage preservation. Finally, task balancing could not only be

investigated in the context of learning a multi-task classifier, but also in the context of heterogeneous

MTL, i.e. for balancing the two tasks of descriptor learning and learning an image classifier.
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