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ABSTRACT 

Due to the very high resolution of state-of-the-art SAR sensors, both airborne (e.g. ESAR, PAMIR, 
MEMPHIS) and space borne (e.g. TerraSAR-X, CosmoSkyMed), new application scenarios arise 
especially in urban scenes. The focus of this paper is on bridges since they play a key role in ur-
ban infrastructure. Their condition has to be monitored and evaluated in particular in the case of 
natural hazards or political crisis. SAR scenes of bridges over water have already been examined. 
In this paper the appearance of bridges over land is discussed and some first findings of a long 
term project are presented. Due to layover effects and occlusion the interpretability of SAR imagery 
is deteriorated. One possibility to overcome such effects is the fusion of the SAR image with an 
optical image. The latter are basis of land surveying in many countries and it is reasonable to as-
sume availability of such imagery in the archieves for comparison with actual SAR data. The opti-
cal image provides additional information in occluded areas as well as multi-spectral information. A 
semi-automatic registration approach based on line features is proposed for the improvement of 
the bridge scene of interest. In case of the optical image, a road extraction approach based on 
measuring spectral angels in colour imagery is used. Thresholding and morphological operators 
are applied for bridge extraction in the SAR image. In order to transform discrete line segments to 
continuous 2-dimensional information, distance maps are calculated. Such distance maps are then 
registered using a global transformation and a metric based on cross-correlation. 

INTRODUCTION 

Modern airborne SAR sensors provide geometric resolution well below half a meter. By means of 
SAR Interferometry (InSAR) from pairs of such images, a DEM of almost the same grid size can be 
obtained. Both, in single SAR images and in InSAR data, many features of urban objects become 
visible in detail, e.g. pillars of bridges. The characteristics of bridges over water in SAR imagery 
have already been discussed in detail for instance in (i,ii). In this paper high resolution SAR scenes 
containing bridges over land are introduced. They are somewhat more difficult to interpret because 
they do not show the multiple bounce line structure typical for bridges over water under certain 
viewing conditions. Their appearance very much depends on the terrain surrounding the bridge 
and on its superstructure. Additionally, the bridge height is important because the characteristic 
shadow of a bridge over land can only be seen clearly if the bridge is very high. A first step of ana-
lyzing and interpreting the new bridge scenes is to register them onto optical imagery. A simple 
semi-automatic registration approach was chosen in order to quickly register the images with rea-
sonably good accuracy. In general, SAR/optical registration approaches are either pixel-based or 
feature-based. Pixel-based approaches tend to fail on above ground structures in high-resolution 
SAR/optical imagery due to significant geometric and radiometric differences. Therefore, pixel-
based approaches show insufficient fusion accuracy particularly in urban scenes. Hence, an ap-
proach on a higher semantic level is required. Feature-based approaches have shown to deal well 
with geometric and radiometric differences and to provide appropriate fusion accuracy (iii,iv,v). The 
developed strategy is tested on aerial images with sub metric ground resolution. The single-pass 
X-Band InSAR data set (Figure 1(b)) has a resolution of approximately 38 cm in range and 18 cm 
in azimuth. It was acquired by Intermap Technologies with the AeS sensor. An optical image show-
ing the same scene was taken by an aerial sensor (Figure 1(a)). Figure 2(c)) illustrates a fusion 
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result, which was achieved by extraction of the height information and true position from the SAR 
data and the bridge’s width from the photo (1).The SAR images showing bridges over land (Fig-
ures 2(b) and 3) were captured with the MEMPHIS sensor by the Research Institute for High Fre-
quency Physics and Radar Techniques (FHR) of the Research Establishment for Applied Science 
of the German Armed Forces (FGAN). Since corresponding aerial imagery for the scene of interest 
was not available, a screenshot from GoogleEarth (Figure 2(a)) was used here.  

                       (a)                                                   (b)                                              (c) 

Figure 1: Test images of bridges near the city of Dorsten in southern Germany, (a) Optical aerial 
image, (b) InSAR magnitude image pair taken in X-Band (illumination direction from right to left), 
(c) 3D visualization of optical and InSAR data after fusion 

  

 

 

 

 

 

                        (a)                                                                            (b)  

Figure 2: Test images of a railroad bridge made of concrete-steel near the city of Zellingen in 
southern Germany, (a) Optical image from GoogleEarth, (b) SAR image taken by the MEMPHIS 
sensor in X-Band (illumination direction from top to bottom) 

                   (a)                                                          (b)                                                 (c) 

Figure 3: SAR test images of highway bridges acquired by the MEMPHIS sensor in X-Band, (a) 
SAR image of a bridge near Manching (illumination direction from left to right), (b) SAR image of a 
bridge near Wolnzach (illumination direction from top to bottom), (c) SAR image of a bridge near 
Schwaebisch Hall (illumination direction from left to right) 
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INSAR AND SAR IMAGERY OF BRIDGES 

By comparing the InSAR (Figure 1(b)) and the SAR data set (Figures 2(b) and 3) it can clearly be 
seen that the appearance of bridges in SAR data strongly depends on their environment. The In-
SAR scene shows bridges over a calm water surface. Due to the very calm water and the perpen-
dicular illumination direction, multiple-bounce effects occur. Hence, three parallel bright structures 
appear for each bridge. The first line in range direction corresponds to the layover of the direct 
bridge signal and the water signal. However, the direct signal from the bridge is dominant since 
most of the signal from the water surface is scattered away. Hence, this first stripe represents the 
height of the bridge body itself. The second line in range direction is due to double-bounce reflec-
tion between the bridge and the water surface directly under the bridge. Finally, the third one oc-
curs due to a triple-bounce effect where the signal first hits the water surface, then the bottom side 
of the bridge and again the water surface. The slant range distance between the three stripes de-
pends on the height of the bridge over the water surface. In order to calculate the bridges height, 
either the slant range distance ∆s between the first and the second or the second and the third 
stripe have to be measured. Since we precisely know the off-nadir angle θ of the SAR sensor, the 

bridge height h can be determined:  / cos( )h s θ= ∆  

In the SAR images covering scenes over land, the bridges appear differently. The double and tri-
ple-bounce effects that lead to two additional parallel lines in the InSAR data do not occur. This is 
due to the different reflectivity properties of soil and water. Calm water strongly reflects the signal 
whereas soil diffuses the signal. Hence, the bridge height cannot be measured directly from the 
line distances and the off-nadir angle. However, other features are worthwhile to be studied. The 
bridge body of the first test image (Figure 2(b)) appears particularly bright because of the rail-road 
track. Both the tracks and the power lines lead to strong backscatter. A large shadow area of the 
bridge over land occurs in the image. Since we can assume that the height of the bridge body and 
the flying altitude of the sensor are more or less constant, interesting measures can be conducted. 
For instance, the terrain height in the shadow area can be determined if the height of the bridge is 
known. The inverse way works as well. In case the terrain height in the shadow area is known, the 
height of the bridge can be estimated. The shadowed area may also be helpful for change detec-
tion purposes after the occurrence of natural hazards. The terrain height differences between the 
near range and the far range of the shadow of the bridge body can be determined if the width of 
the bridge body is known and vice versa. Additionally, the pillars of the bridge can be seen (Figure 
4). The shadows of the bridge pillars may be observed, too. However, the upper parts of the pillars 
can probably not be seen because they are occluded by the bridge body. Therefore, it is difficult to 
estimate the bridge height by measuring the pillars’ length in the image without additional informa-
tion.  

Figure 4: Bridge pillars (in red boxes) in the SAR image of the railroad bridge near Zellingen (illu-
mination direction from top to bottom) 

In Figure 4 details of different elements of the railroad bridge imaged by the SAR sensor are ob-
servable. Two relatively wide lines probably show the two railroad tracks on the bridge. Thinner 
lines display the superstructure of the bridge, e.g. the power lines of the railroad track.  
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The other three SAR test images shown in Figure 3 are more difficult to interpret. The highway 
bridges shown in the figures 3(a) and 3(b) are shorter and lower than the railroad bridge of Figure 
2(b). Hence, the shadows of these bridges are not developed as nicely as in the railroad bridge 
case. Bright backscatter on the highway bridges occurs due to guardrails. Usually, one guardrail 
on each side of the bridge and one guardrail separating the lanes appears on highway bridges. 
These guardrails can be used for the estimation of the width of a bridge. In order to start with im-
age analysis, first steps were limited to the SAR test image containing the railroad bridge shown in 
Figure 2(b). By comparing the SAR images of Figures 1, 2 and 3 it becomes obvious that detection 
of bridges over land in SAR imagery is a difficult task. The bridges’ appearance strongly depends 
on the aspect, the bridge itself (height, superstructure) and the terrain surrounding it. Typical prop-
erties of bridges over land in SAR imagery are developed to their full extent in Figure 2(b). None-
the-less, even in case of the railroad bridge, the outline is difficult to determine due to multiple-
bounce and layover effects. Hence, a semi-automatic registration approach was applied to the test 
images (Figure 2(a) and 2(b)). An overview of this fusion approach is given in the following chap-
ters. 

FUSION STRATEGY OUTLINE 

Different feature types may be thought of being useful for image registration, such as regions, 
points and lines. In urban areas, object boundaries of man-made objects consist mostly of straight 
contours. Therefore lines appear in high quantities. Hence, line features are extracted in both the 
SAR data and the optical image. For the optical image, a road extraction approach proposed in (vi) 
was applied. The SAR image is simply thresholded, since the rail road track is the brightest feature 
in the image. In order to transform lines to continuous 2-dimensional information, distance maps 
(Figure 5) are calculated from the line feature images.  

                                             (a)                                                    (b)                                                 

Figure 5:  (a) Distance map of the optical image, (b) Distance map of the SAR image 

 

In order to register both optical and SAR images, a registration framework implemented in 
OTB(http://otb.cnes.fr) is used. As input to the registration framework, a master and a slave image 
have to be defined. In this case, the distance map derived from the threshold image of the SAR 
intensity image is considered the slave image. The distance map of the optical feature image is the 
master image, respectively. The slave image is then registered onto the master image by means of 
a similarity measure that calculates the cross-correlation of the images. After the SAR image has 
been registered onto the optical image, change detection can be conducted for instance in case of 
a natural hazard. We assume that the optical image was taken before and the SAR image immedi-
ately after the hazard. The goal is now to compare the condition of the bridge after the hazard with 
its condition before. A possible technique consists of comparing features that describe the vital 
parts of the bridge. This comparison can be conducted on pixel-level, feature-level and object-
level.  
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FEATURE EXTRACTION AND IMAGE REGISTRATION 

For our case of bridge detection the extraction of lines provides good results since we deal with 
long and narrow objects. Lines are directed features, too, which is an advantageous property con-
cerning the rotation during registration. A robust road extraction approach presented in (6) is ap-
plied to the optical image. It calculates the spectral angle between the colour vectors in a multi-
dimensional vector space which has the dimension of the number of spectral bands b (Figure 
6(a)). The spectral angle, with a given reference pixel r and new pixels p to be assessed is defined 
as: 

The more similar the reference pixel r and the new pixel p are, the smaller the spectral angle gets. 
Hence, all pixels belonging to roads will appear dark in the spectral angle image. Pixels showing 
almost no similarity with the reference pixel will lead to great spectral angles and thus will appear 
bright in the spectral angle image. A gradient filter is then applied to the spectral angle image. This 
gradient filter has two images as outcomes: a gradient intensity image and a gradient direction 
image. Since all roads are dark in the image, it can be assumed that the gradient directions on 
both sides of the road will be diametrically opposed. The scalar product of the gradient vectors in a 
neighbourhood with the radius one around the central pixel is calculated for each pixel of the gra-
dient image. From the four pairs of pixels in the 3x3-neighbourhood the lowest negative scalar 
product is chosen. It points into the direction of the road. Pixels which do not show a maximum 
scalar product, i.e. the gradients are not exactly diametrically opposed, are removed. In the follow-
ing, the road pieces are vectorized by transforming them to paths and vertices. Several steps are 
necessary in order to remove aligned paths, split paths if sharp angles occur (road curves are 
smooth in general) and to link paths that are almost aligned but show gap (due to e.g. tree shad-
ows). Finally, a confidence value according to the spectral angle of the pixel is associated to the 
extracted road segments. In Figure 6(b) the extracted road segments are overlaid with the optical 
image.  

                                   (a)                                                                     (b) 

Figure 6: (a) Multi-dimensional vector space with three bands b1 to b3, the vectors of the reference 
pixel r, the vector of the new pixel p and the spectral angle SA, (b) Optical aerial image of the rail-
road bridge overlaid with the extracted lines (red) 

In the SAR image, the bridge body of the railroad bridge is extracted by applying a threshold. Since 
strong backscattering objects besides the bridge exist, morphological operations are carried out in 
order to optimize the result. Then, distance maps are calculated from the images containing the 
extracted bridges in order to transform the lines to continuous 2-dimensional information. Such 
distance images are then input to a registration framework (Figure 7) provided by OTB (vii). It reg-
isters a moving image onto a fixed with the indirect transformation method and consists of four 
components: a metric, an optimizer, a transform and an interpolator. For testing reasons, we 
choose a rather simple rigid transformation containing isotropic scaling, rotation and translation in 
x- and y-direction. For the interpolator a bi-linear approach is applied. The metric is a similarity 
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measure which compares the moving with the fixed image. It was decided to use cross-correlation 
as the similarity measure. The entire registration process is driven by an optimizer that minimizes 
the metric value. The optimizer slightly changes the transform parameters after every iteration fol-
lowing the maximum gradient. Since we deal with rather small shifts, a gradient optimizer with a 
regular step size was applied. 

 

Figure 7: Sketch of the OTB registration framework 

RESULTS 

In order to allow for visual evaluation of the image registration, the results are displayed in a 
checker board scheme (Figure 8). The first checkerboard box in the upper left corner shows a part 
of the optical image. In the box on the right side of the first one a part of the SAR image is dis-
played. The following box again shows the optical image and so on. It can be seen that the images 
have been registered globally with good accuracy.   

Figure 8: Checkerboard comparison of the SAR image and the optical after the registration 

However, for fine registration further adjustments of the proposed registration approach are 
needed. Obviously, the bridges fit well onto each other but all other objects do not. This is due to 
the different viewing geometries of SAR (slant range) and optical (nadir) sensors. SAR images 
show layover, foreshortening and occluded areas because distances are measured from a side 
looking sensor. This is not the case for optical images where angles between objects are meas-
ured from a nadir perspective. The simple rigid transformation used during registration does not 
take into account such local displacements of elevated objects. Therefore, a non-rigid transforma-
tion is needed in order to further improve registration accuracy.  

We also have to consider that we are dealing with a very particular case of image fusion. Since our 
object of interest is a railroad bridge, the railroad tracks appear very bright in the SAR image. Addi-
tionally, no other man-made structures leading to multiple-bounce effects and hence to strong 
backscattering of the signal exist in the image. Thus, it is relatively easy to properly extract the 
bridge body in this particular SAR image.    
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CONCLUSIONS 

In this paper SAR scenes of bridges over water and bridges over land were compared. It was 
shown that scenes with bridges over land are difficult to interpret. However, they also show promis-
ing effects that can not be seen in case of bridges over water. Furthermore, an approach for the 
registration of SAR and optical imagery was presented. However, this approach only works prop-
erly if we make certain assumptions. First of all, the appearance of the bridge in the SAR image 
very much depends on the aspect. The test image shown in this paper (Figure 1(b)) was taken 
under perfect conditions, i.e. the SAR sensor was flying parallel to the bridge. Hence, all effects 
related to multiple bounces of the signal are very well developed. In addition, a shadow of the 
bridge pillars and the bridge body itself can be seen nicely in the image. This shadow therefore 
may be used for the bridge model since it distinguishes the bridge from a simple road or rail track. 
Furthermore, the shadow can be used for terrain height estimation and terrain modelling. Assum-
ing we know the height of the bridge and the inclination of the sensor, we can estimate the terrain 
heights in the shadow area of the bridge body. In case we know the horizontal distance between 
the pillars’ foundation and the shadow of the bridge body and additionally the terrain heights in the 
shadow area, we can estimate the height of the bridge.  

In order to extract bridges over land in SAR images, more comprehensive modelling has to be car-
ried out. For example, the bridge shadow of high bridges should be integrated in the bridge model 
in order to distinguish elevated bridges from flat roads. Additionally, a sophisticated line extraction 
approach as mentioned for example in (viii,ix,x) has to be integrated in order to detect the line fea-
tures on top of the bridge body (railroad tracks, power lines, guardrails etc.). Finally, a object-
based classification has to be conducted in order to properly detect bridges over land in SAR im-
agery.     

Furthermore, a transformation taking into account the different viewing geometries of SAR and 
optical sensors has to be integrated. One possibility is to roughly register the images first with a 
rigid transformation that is then followed by a non-rigid registration for further refinements.  
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