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ABSTRACT: 
 
This paper describes a semi-automatic system for road update based on high resolution orthophotos and 3D surface models. Potential 
update regions are identified by an object-wise verification of all existing database records, followed by a scene-wide detection of 
redevelopment regions. The proposed system combines several road detection and road verification approaches from current 
literature to form a more general solution. Each road detection / verification approach is realized as an independent module 
representing a unique road model combined with a corresponding processing strategy. The object-wise verification result of each 
module is formulated as a binary decision between the classes “correct road” and “incorrect road”. These individual decisions are 
combined by Dempster-Shafer fusion, which provides tools for dealing with uncertain and incomplete knowledge about the 
statistical properties of the data. For each road detection / verification module a confidence function for the result is introduced that 
reflects the degree of correspondence of an actual test situation with an optimal situation according to the underlying road model of 
that module. Experimental results achieved with data from the national Belgian road database in a test site of about 134 km² 
demonstrate the potential of the method. 
 
 

1. INTRODUCTION 

1.1 Motivation 

From 1990 till 2007, the National Geographical Institute (NGI), 
the Belgian national mapping agency, performed their first 
collection of midscale digital topographical data by 
stereoplotting and field attribution. Since 2008, the NGI have 
been updating the main objects of their reference database in a 
3-years cycle. While, the process of quality control concerning 
the geometric, semantic and topologic coherence of the updated 
data has been automated recently with perfect satisfaction, the 
update mainly exists in visually comparing the data with new 
aerial photographs. Starting from the second update in 2011, the 
lower average age of the data causes a smaller number of 
changes per km², so that it becomes less efficient to visually 
scan the complete images for changes. The effort of visually 
scanning the images for changes thus become very time-
consuming compared to the total amount of real work. Thus, 
there exists a considerable potential of cost-saving for the 
production line by automatically comparing the new images 
with the three year old data before updating, so that the human 
operator can be guided to the spots where updating is needed.  

In the following we present a method for updating the road 
layer of the Belgian large scale topographic reference database 
on the basis of RGB orthophotos, a normalized Digital Surface 
Model (nDSM) and 1:100.000 landcover data. The orthophotos 
are generated from aerial images with 30 cm ground sampling 
distance. The nDSM with 1.5 m point spacing was generated by 
dense matching using the same aerial images. The presented 
experiments investigate the reliability and efficiency of the 
method. 

1.2 Related Work 

A large number of road detection approaches where developed 
in the last two decades. Already in (Mena, 2003) more than 250 
different references were listed, while a more recent overview is 
given in (Poullis and You, 2009). However, only a minor part 
of these works deals with updating databases, which can be 
seen as a natural application for road detection methods. The 
subsequent overview concentrates on those applications to 
identify the most relevant works for our basic strategy. 

In (Klang, 1998) a semi-automatic system for an enhancement 
of the Swedish road database based on a comparison with 
satellite imagery of SPOT and Landsat is described. The 
approach detects the position of road junctions within a 
tolerance radius around the position, indicated by the database. 
Based on this result the nodes are used as seed points for an 
active contour model which is applied to every road object of 
the database. Finally, a comparison of the extraction result and 
the corresponding database object provides the human operator 
with a number of potential objects for the updating process. The 
system was extended in relation to the task of the National 
Topographic Database of Geomatics Canada (Fortier et al. 
2001). Another relevant project in our context is the Automated 
reconstruction of Topographic Objects from aerial stereo 
images using Map Information (ATOMI) of Switzerland 
(Zhang, 2004). The approach extracts the complete road 
network by introducing information from the existing database, 
e.g. approximate geometry and network topology. In another 
approach Zhang and Couloigner (2004) describe a framework 
for road change detection. They present different map 
conflation techniques between the database and polylines 
detected in imagery, to classify road objects into: unchanged, 
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partly changed, changed, disappeared and created. As their 
focus is on map conflation they assume the existence of a 
perfectly detected road network as a basis. Poulain et al. (2010) 
describe a method that applies high resolution SAR and optical 
images for an automatic update of a road database in urban 
context.  In this work, for each database object features are 
extracted within a region around the position, indicated by the 
database. The features reflect different properties of a road but 
also those of typical urban context objects, i.e. buildings and 
vegetation. In a first step each road object is verified using the 
extracted features, where the features are combined by 
Dempster-Shafer theory. In a second step, road candidates are 
extracted from all over the image and verified by their 
proximity to the road network, verified in the first step.  

The work, described in the present paper is a part of the WiPKA 
project that was initiated in 2000 by the federal mapping 
agency of Germany for the task of quality control of 
topographic data (Busch et al. 2004). Within the project 
framework Gerke and Heipke (2008) presented a method for 
road verification on the basis of aerial or satellite imagery for 
rural areas. They extract linear objects within a region around 
the position, indicated by the database. Then, the extracted lines 
are compared with the database and only if an object is not 
covered by appropriate linear objects it has to be inspected by a 
human operator. In (Ziems et al., 2010), this strategy is adapted 
to urban areas by introducing additional road models that were 
explicitly designed for the urban context. Similar to (Poulain et 
al., 2010) buildings and vegetation are explicitly considered as 
context objects and were combined by Dempster-Shafer theory. 

1.3 Basic Strategy 

In accordance with conclusions from a review of the related 
work, we carry out an object-wise test for each database object 
on geometry, attributes and its topologic relations with other 
objects. Thus, we solve the task locally and introduce prior 
knowledge from the database to be updated. In order to achieve 
a high generality for the method, the test itself is based on 
several independent road models. This method is further called 
Multiple Model Verification (MMV) and will be introduced in 
Section 2. As such a strategy is not necessarily able to detect 
omission errors, we introduce a second method in Section 3, the 
Redevelopment Detection, which is applied to all regions that 
are indicated as undeveloped in the database. This method 
assumes the majority of the missing roads to be located within 
redeveloped regions. Finally, the revised objects from the MMV 
and the update regions indicated by Redevelopment Detection 
are forwarded to a standard GIS environment for a manual 
analysis. For implementation we use the open-source library 
CNES-OrfeoToolbox (www.orfeo-toolbox.org) providing 
various image analysis subroutines and the open-source library 
GeoAIDA (www.geoaida.berlios.de), which allows the 
knowledge based combination and the parallelization of 
different image analysis processes. 
 

2. MULTIPLE MODEL VERIFICATION  

It is the basic idea of the method to combine powerful 
approaches from current research in the field of road extraction 
to create a more general solution for the verification of road 
data. Our method relies on a set of existing object extraction 
algorithms realized as so called verification modules. Every 
road object in the database is checked by every available 
verification module. These modules are based on different 
models e.g., describing roads as lines, as homogeneous areas 
with parallel edges, by their spectral and structural differences 

with respect to their surroundings or by their relations to 
context objects such as buildings. Each algorithm can deal with 
a subset of these characteristics and its success is finally 
connected to the compliance of the model assumptions to the 
actual appearance of the roads in the image. In addition to its 
decision about the correctness of the road object each module 
delivers a confidence value C with 0 ≤ C ≤ 1 that reflects the 
degree to which the situation encountered for the road object 
corresponds to the optimal situation according to the module’s 
underlying object model.  The decisions from all modules are 
combined in a decision level fusion process in which the 
confidence values control the impact of a single decision on the 
final result.  
 
2.1 Dempster-Shafer Fusion Framework 

The fusion of the results from the different verification modules 
is based on the theory of Dempster-Shafer (Dempster, 1968 and 
Shafer, 1976). Our approach distinguishes the two classes road 
(R) and non-road (N). Consequently, the hypothesis space, 
which is called frame of discernment Θ in the terminology of 
Dempster-Shafer, contains only of two elements: Θ = {R, N}. 
The power set of Θ, denoted by 2Θ, is 2Θ = {Ø, R, N, R∪N} 
where Ø is the empty set. A probability mass m is assigned to 
each of the three classes by a “sensor” (verification module) 
such that 0≤m(x)≤1 and m(R), m(N) and m(R∪N) sum up to 1 
and thus Ø=0. The sum of all probability masses assigned 
directly to a class AŒ2Θ is called support sp(A) of A. If p 
sensors are available, probability masses mi have to be defined 
for all these sensors i with 1≤i≤p. The Dempster-Shafer theory 
allows the combination of the probability masses from several 
sensors to compute a combined probability mass for each class 
A Œ 2Θ: 
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 In our model for the original probability masses we assume that 
each verification module p delivers a binary decision for or 
against a road, i.e., either Rp or Np, and a confidence value 
Cp∈{0, 1} measuring the trust into this decision. Its negation 
Cp

N=1-Cp corresponds to the degree to which no decision can 
be taken by the module given the data. This can be modelled by 
assigning a probability mass of 1-Cp to Θ, thus 
mp(Rp∪Np)=1-Cp. If the module’s decision is Rp, we set 
mp(Rp)=Cp and mp(Np)=0; otherwise, we set mp(Rp)=0 and 
mp(Np)=Cp. Thus, the decision is weighted by Cp in the 
Dempster-Shafer framework. If the confidence value Cp is low 
for all modules p, the support for R and N will be relatively low, 
too, so that these cases can be found by applying a threshold to 
the support. 

 with Bj Œ 2Θ  (1) 

 

 
2.2 The Verification Modules 

In the following we give an overview of the eight modules that 
where applied for the experiments shown in section 4. As the 
main contribution of this work is the definition of the model 
specific confidence functions this aspect is explained in more 
detail. Further information concerning the algorithms can be 
found in the denoted references and in (Ziems et al., 2010). 

2D-line detection: The road extraction algorithm presented in 
(Wiedemann and Ebner, 2000) models roads as linear objects in 
aerial or satellite imagery with a resolution up to 2 m. The 
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underlying line extractor is introduced in (Steger, 1998). The 
parameters for the line extraction are adjusted for each database 
object individually by taking into account the positional and 
attribute information from the database to be verified. Then, the 
extracted lines are compared to the original database by 
explicitly checking geometry, shape and line width of each road 
object. If a major part of the road is covered by appropriate line 
segments the database object is decided to be correct, otherwise 
no decision is taken. A more comprehensive description of the 
verification approach is given in (Gerke and Heipke, 2008). As 
for the underlying line model a homogeneous surrounding of 
the road is a precondition, the algorithm leads to less confident 
results in heterogeneous surroundings. Hence, the confidence of 
the module’s decision is calculated from the image entropy E: 

( ) log ( )
g G

E H g H
∈

= − ⋅∑ g  

where H(g) is the histogram of the image region next to the 
road (see Figure 1). While the entropy is low for homogeneous 
context, the possible maximum entropy is defined by the 
radiometric resolution, e.g. 8.0 for 8 bit images. 
 

Figure 1: 2D line extraction result (blue) and region mask  
(yellow) for computing entropy E 

 
Thus, we consider a high confidence value C2D-line=0.9 for E=0 
and a low confidence value C2D-line=0.1 for the maximum 
entropy (E=8). Based on these two fixed values a sigmoid 
function is defined by the two parameters a and b:  

2 ( )

1
1D line aE bC

e− − +=
−

 (2) 

Thus, for increasing E we obtain a monotonically decreasing 
function for the confidence.  

  
 

Figure 2: Left: RGB image with database roads. Right: nDSM 
with 3D-line extraction result (cyan) and region mask for 
computing entropy (yellow) 

3D-line detection: This module is based on (Hinz and 
Baumgartner, 2003), where roads are detected as “valleys” in 
the nDSM. Analogously to the 2D-line detector the resulting 
lines are compared with the database objects to provide a 
decision about the correctness of a road object. The algorithm is 
designed for densely built-up areas, while less densely built-up 
areas show many linear structures in the nDSM that may lead to 
false alarms. However, the confidence is not affected in flat 
terrain at all. Thus, the confidence of the module is formulated 
by the entropy E in the nDSM next to the road (see Figure 2). 
Analogously, to the 2D-line detection a sigmoid function 
(Equation 2) is chosen for C3D-line=0.9 if E is minimal and 
C3D-line=0.1 if E is maximal. 
 

 

Parallel Edge Analysis: A frequently used characteristic of 
roads are parallel edge pairs to represent road borders in an 
edge image. In our system, this information is extracted by the 
method described in (Baumgartner et al., 1999). Only if a major 
part of the database object with length ldb is covered by 
extracted edge pairs of length lH+ with appropriate geometry, 
shape and spacing the object is considered as correct, otherwise 
no decision is taken and thus the confidence is set to zero. In 
case of high coverage the confidence of the module’s decision 
is determined by analyzing alternative hypotheses in the local 
surrounding that may result from buildings or tracks on crop 
fields. To achieve this aim, the projected length lH- of extracted 
edge pairs with contradictory geometry and shape is computed 
with respect to the database object with length ldb. The 
confidence is defined as follows: 

H H
parallel

db

l l
C

l
+ −−

=     ∀ ( )
H H

l l+ −− ≥ 0

Similarity of Histograms Analysis: This model was 
introduced by Fujimura et al. (2008) to remove a parallel shift 
of cartographically generalized road data. The basic idea is that 
the image region belonging to a road can be identified by the 
uniqueness of its intensity distribution compared to its 
surroundings. A road object is considered to be correct if the 
sum of the similarities of the histograms (SSH) associated to the 
road in the database is significantly lower than the SSH scores 
of the surrounding image regions. Figure 3 shows the strategy 
of the verification; the road geometry and width information 
from the database is used to define several image regions with 
identical shape and area. While intensity distributions in areas 
in the vicinity of a road are similar to each other, the road 
related histogram leads to a lower SSH (see Figure 3 lower left). 
The optimal realization for the underlying model is 
characterized by a homogeneous neighbourhood in a direction 
orthogonal to the given road axis. The model can also deal with 
inhomogeneous neighbourhoods if there is no single non-road 
region having a low SSH score. Thus, a continuous function for 
the confidence CSSH is useful. CSSH is modelled as the difference 
of the actual configuration and the optimal model SSHmodel (see 
Figure 3 lower right): 

( ) ( )( )
1

1 R

SSH model
r=

C = SSH r SSH r
R
⋅ −∑  

where r is the region index and R is the number of regions 
considered. CSSH mainly depends on the surroundings of the 
road. A confidence CSSH = 1.0 is achieved if all non-road 
regions have the same intensity histogram and only the road 
region is different. A confidence CSSH = 0.0 corresponds to a 
situation where every non-road region has a histogram that is 
totally different to the histograms of all the other non-road 
regions. 
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Figure 3: Input image superimposed by one road region (blue) 
and 24 non-road regions (yellow). Lower left: the 
computed SSH scores over the profile index. Lower right: 
and an optimal SSH configuration. 

 

Edge Direction Analysis: This module is based on the method 
developed by Youn et al. (2008) for the task of road extraction 
in urban areas, where the buildings form regular grids. The 
underlying model is based on the structural differences between 
a road and a row of buildings. Several lines are defined, which 
are parallel to the database object (see Figure 4).  Then the 
number of intersections of these lines with edges extracted from 
the image is counted. The lower part of Figure 4 shows the 
distribution of this count for the lines. The small values in the 
centre indicate the true position of the road, whereas greater 
values indicate buildings. The minimum of the histogram is 
assumed to correspond to the road centre line. If the distance 
between the position of this minimum and the position of the 
centre line indicated by the database is below the maximum 
allowable error according to the specifications of the database 
the road is decided to be correct.  
 

   
 

Figure 4: Strategy of edge direction analysis (extracted edges = 
black, expected road centre line = dotted cyan, parallel 
profiles = blue). Lower left: the computed histogram of the 
intersection counts over the profile index. Lower right: an 
optimal model configuration. 

 

For urban areas containing a lot of small houses, the model is 
robust. However, more homogeneous context such as grassland, 
paddy fields or huge industry halls, is not covered by the model. 
Therefore, the confidence value is modelled as a function of the 
surrounding structure elements. The actual histogram is 
compared with a histogram based on the optimal situation for 
that model, exemplarily depicted in the lower right of Figure 4. 
This optimal situation is an absolute free passage through the 
expected road and a number of intersections on each side of the 
road, which occur if a row of buildings of standard size is 
situated next to the road with a specific width. The confidence 
Cdir for the edge direction analysis is calculated as the area ratio 
of the actual histogram H and an optimal histogram Hmodel:  
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where n is the profile index and A is the index of the centre line 
profile. Δ(n) = Hmodel(n) - H(n) if Hmodel(n) ≥ H(n) and Δ(n) = 0 
otherwise. As the neighbouring areas may be fairly different on 
both road sides, the area to the left and the area to the right of 
the road are considered by different terms. 
 

Colour Classification: An image region belonging to a road 
has specific radiometric properties that can be defined in 
advance. Analogously to the approach described in (Fujimura et 
al., 2008), we use a Support Vector Machine (SVM) classifier, 
introduced by Vapnik (1998), in the implementation of the 
open-source library LIBSVM (Chang & Lin, 2001). The object-
wise classification is realized in the RGB feature space for the 
two classes road and non-road. As the radiometric properties for 
both classes depend on local characteristics, e.g. road surfaces, 
sun-angle, presence of shadowed areas or roof colours, a 
training step is required for each scene. The underlying model 
is appropriate if the colour contrast between the road and its 
local surrounding is high and if the training data represent the 
tested object but unreliable otherwise. Both aspects are 
considered for the definition of the confidence function. The 
contrast is determined based on the feature space distances 
d(z,xl) and d(z,xr) between the feature vector of the road 
candidate z and the two feature vectors xl and xr from both sides 
of the road. The latter are computed from the regions next to the 
road that have similar shape and area, comparable to the SSH 
strategy, see Figure 3. Furthermore, the feature space distance 
d(z,υ) between the training dataset, represented by a Support 
Vector Domain Description (SVDD) (Tax and Druin, 2004), 
and the feature vector of the road candidate z is computed. The 
confidence Ccol is defined as follows: 
 

( ( , ) )

( , ) ( , ) 1
1

l r
col a d z b

d z x d z xC
ed d υ− ⋅ += ⋅ ⋅

−
(3) 

where d̄ is the average distance of the feature vectors, used for 
training, to the SVDD surface. Thus, the value reflects the 
density of the training data. The parameters a and b for the 
sigmoid function are selected so that the term becomes 0.9 for 
d(z,υ)=0 and 0.1 for d(z,υ)= d̄. A more comprehensive 
description is given in (Ziems et al., 2011). 

Building Detection: The explicit consideration of buildings as 
vote against the correctness of the road object is frequently 
applied in literature, e.g. (Hinz and Baumgartner 2003), (Zhang, 
2004), (Poulain et al., 2010). As we are not interested in the 
buildings themselves the building detection strategy is kept 
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simple. Firstly, a 3m threshold in the nDSM is applied; 
secondly the trees are removed by introducing a vegetation 
mask, which is computed on the basis of the hue in HSI colour 
space. A road object is decided to be wrong if its centre line 
intersects an extracted building (see Figure 5). However, the 
nDSM is unreliable for regions that are not visible in at least 
two aerial images, used for the nDSM generation. Due to 
occlusions such situations occur frequently close to high 
buildings. As the raw data of the matching process and the 
camera orientations are not available for the task, the 
confidence function is only based on the height h of the 
intersecting building and the road width w, stored in the 
database. The confidence Cbuild is defined as follows: 

( )

1

1
build wa b

h

C
e
− +

=
−

 

 

where the parameters a and b for the sigmoid are selected so 
that Cbuild=0.9 for w/h =1.0 and Cbuild=0.1 for w/h =0.1. 

 
 

Figure 5: Building detection strategy. Top: RGB image 
superimposed with database roads containing one incorrect 
road object. Bottom: nDSM superimposed with extracted 
buildings (cyan) and evaluation result (rejected road = red, 
no decision = yellow) 

 

Grassland Detection: In (Zhang, 2004) and (Youn et al., 2008) 
grassland was considered as a hint against the existence of a 
road. As changes concerning the road network are frequently 
connected with a redevelopment of grassland areas it is usually 
a good indicator for changes, exemplarily shown in Figure 6. 
Thus, we use a ground vegetation mask to detect intersections 
between grassland area and the road centrelines. The ground 
vegetation mask containing all green image regions is computed 
from hue in HSI colour space and from the nDSM heights. The 
confidence of the decision relies on the quality of the ground 
vegetation mask. As the vegetation areas of interest have 
usually a small size only, local radiometric properties can 
significantly affect the result and lead to misclassifications, e.g. 
within dark road surfaces or shadowed road areas. Thus, the 
brightness of the intersecting image region is considered for the 
confidence Cveg: 

( )

1
1veg ai bC

e− +=
−

 

where ī   is the mean intensity value of the intersecting pixels in 
the green band. The parameters a and b for the sigmoid function 
are selected so that Cveg=0.9 for ī  =Ī   and Cveg=0.1 for  ī  =0.0, 
where Ī denotes the mean intensity value of the whole scene in 
the green band. 

 

Figure 6: Redeveloped traffic circle identified by grassland 
detection (rejected roads = red, no decision = yellow) 

 

2.3 Combination  

All results provided by the verification modules are combined 
by Dempster's rule (see Equation 1). As short road objects are 
not necessarily covered by one of the models introduced so far, 
a subsequent topologic analysis is applied on short objects. The 
basic idea is that short roads can be additionally evaluated by 
junctions, exemplarily shown in Figure 7. This is realized by 
initially evaluating all the junctions in a scene through the 
longer roads connecting them. Therefore, the roads are 
interpreted as “sensors”, providing probability masses for both 
classes: junction and non-junction. Then the classified junctions 
are applied as additional modules for short roads.  

Figure 7: Topologic Analysis: A short road object is not 
decided by one of the verification modules. According to 
the topologic analysis it will be additionally evaluated by 
the two connected junctions and thus, decided as correct 
(correct = green, undecided = yellow).  

 

Finally, both sp(R) and sp(N) can be computed for each road 
object. The normal case is that the class obtaining maximum 
support will be accepted. However, we know that we will not 
find a solution for all objects. Therefore, we consider explicitly 
the case of high uncertainty where we have small support for 
both classes R and N. If it is most important to ensure that all 
errors in the database are detected, each road for which the 
automatic analysis supports weakly the correctness has to be 
inspected by a human operator. In contrast, if the amount of 
manual post processing has to be minimized only roads for 
which the automatic analysis supports clearly the incorrectness 
have to be inspected manually. The outcome of both strategies 
will be investigated in Section 4, by applying two different 
setups: 
 

• Setup 1:  sp(R) < 0.5 (checks revised and undecided objects)  
• Setup 2:  sp(N) > 0.5 (checks only revised objects) 
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3. REDEVELOPMENT DETECTION 

The method, presented in Section 2, is able to detect omission 
errors in the database if these are associated with a 
rearrangement of existing roads. Such an assumption is 
meaningful for built-up areas but less so for other landcover 
classes. Thus, it is the basic idea of the method described in this 
section to check all the regions that are denoted as undeveloped 
in the database. To achieve this aim, an SVM based classifier is 
applied to separate the three classes: impervious surface, forest 
and ground vegetation. The feature vector is defined for each 
pixel by spectral mean and variance of the gradient image 
within a 15m neighbourhood. In addition to the three RGB 
channels the nDSM is used for the feature computation. As the 
roads of the database and the 1:100.000 landcover data for our 
test region have approximately the same update status we 
combine them to achieve a single class for impervious surface, 
which includes settlement, industry and the buffered roads. The 
resulting label image is compared to the area-wide classification 
result. Then, all contradicting regions that are classified as 
impervious surface are computed (see Figure 8, left). In order to 
filter out irrelevant objects, we apply a minimum threshold of 
500 m2 for the region size. The resulting regions are vectorized 
and introduced in a GIS environment as areal hints for new 
roads (see red enclosed area on the right in Figure 8).  

 
Figure 8: Redevelopment detection; Left: no contradictions to 

the database = green, irrelevant contradictions = blue, 
contradicting regions denoting impervious surface = red; 
Right: current road data = yellow, roads required to be 
updated  = blue, methods outcome  = red 

 

4. EXPERIMENTS 

In order to evaluate the proposed method, a test area of 134 km² 
around the Belgian city Zeebrugge was investigated. The 
reference data were generated on the basis of the latest manual 
update in 2008. The update was carried out on road data from 
1991 and thus includes many changes. We consider unchanged, 
new and disappeared as a possible status of a road in the 
reference. The status was computed from the differences 
between both datasets, changed roads are marked as 
disappeared and new. The 1991-dataset contains 5898 road 
objects of which 359 have disappeared. In the 2008-dataset 909 
new objects were added. Furthermore, the 1991-dataset contains 
769 dirt roads of which 111 have disappeared. In the 2008-
dataset 99 dirt roads are new.  

In the following efficiency and reliability of the proposed 
method are investigated. As all the generated update hints have 
to be inspected by a human operator, the amount of the relevant 
hints compared to the absolute number of hints is used to denote 
efficiency, while the reliability is described by the percentage 
of the disappeared and new roads that are actually marked for 
manual analysis. The results are presented for two different 
setups concerning the MMV (see Section 2.3.), where Setup 1 
was defined to achieve a high reliability, while Setup 2 aims at 

a high efficiency. Table 1 displays the system efficiency of the 
MMV and the Redevelopment detection for the two setups. A 
hint is denoted as relevant, if the hint intersects at least one new 
or disappeared road. For the first setup the MMV marks 789 
(13%) of the roads and 399 (52%) of the dirt roads for manual 
post processing, of which 61% were relevant for roads and 46% 
for dirt roads; the numbers for setup 2 can be found in Table 1. 
The computed hints in the first setup include a number of 
objects for which the MMV contains no appropriate model and 
thus, produces more false alarms than for the second setup. 
Figure 9 and Figure 10 show the effects of the two setups by 
means of colours: Setup 1 considers yellow and red objects, 
while Setup 2 considers only red objects.  

relevant hints / computed hints
MMV roads Setup 1  483 / 789 61 %
MMV roads Setup 2    90 / 110 82 %
MMV dirt roads Setup 1  184 / 399 46 %
MMV dirt roads Setup 2   91 / 172 53 %
Redev. detection. 26 / 46 57 %
Table 1: system efficiency 
 

Figure 9: MMV successfully detects changed roads within a 
residential area (MMV outcome: correct = green, incorrect 
= red, undecided = yellow, reference = blue) 

 

   
Figure 10: MMV does not contain an appropriate harbour  

(left) and the sea front model (right) (MMV outcome: 
correct = green, incorrect = red, undecided = yellow) 

 
 

 RedevD MMV detection ratio 
roads Setup 1 254 662 697 / 909 77 % 
roads Setup 2 420 508 / 909 56 % 
dirt roads Setup 1 12 84 84 / 99 85 % 
dirt roads Setup 2 63 64/ 99 65 % 
Table 2: new roads  
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