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Abstract—Multiple modalities for stereo matching are bene-
ficial for robust path estimation and actioning of autonomous
robots in harsh environments, e.g. in the presence of smoke and
dust. In order to combine the information resulting from the
different modalities, a dense stereo matching approach based on
semi-global matching and a combined cost function using cross-
based support regions and phase congruency shows a good per-
formance. However, these computationally complex algorithmic
steps set high requirements for the mobile processing platform
and prohibit a real-time execution at limited power budget
on mobile platforms. Therefore, this paper explores the usage
of graphic processors for the parallelization and acceleration
of the aforementioned algorithm. The resulting implementation
performs the computation of phase congruency and cross-based
support regions at 68 and 5 frames per second for [960 x 560]
pixel images on a Nvidia Quadro P5000 and Tegra X2 GPU
respectively.

Index Terms—multimodal, stereo, matching, GPU, cross-based
support regions, phase congruency

I. INTRODUCTION

The combination of RGB and thermal imaging has already
proven to be useful in the field of robotics, especially in
search and rescue scenarios. In presence of dust, smoke or
difficult lighting situations, thermal imaging has shown to
be a robust supplement to traditional RGB imaging, since it
still provides usable images even then. However, as shown in
[1], RGB imaging provides more image features in ordinary
situations compared to the number of detectable features in
the more uniformly looking thermal images. Furthermore,
the features extracted from thermal images suffer from high
ambiguities. Therefore, the use of both imaging modalities
combines the advantages of feature count, matching quality
as well as robustness.

Using this sensor combination, [2] has shown that visual
odometry based on multimodal imaging can drastically im-
prove the robustness against partial, unimodal sensor failure
as it can occur in situations including smoke or challenging
illumination. Furthermore, [3] and [4] utilize this combination
for dense stereo matching. Since in [2] the scale of the re-
sulting trajectory is estimated based on different assumptions,
its accuracy depends on the validity of these hypotheses. A

combination with the approach of [3] or [4] could therefore
increase the robustness of this step. Unfortunately, due to
the algorithmic complexity of the solution, the multimodal
dense stereo matching approach is not suited for use in mobile
robotic applications, when only a CPU is available.

Consequently, in this paper we present a GPU-enhanced
implementation, to make the idea of [4] usable for a wider
range of applications. The computationally most complex
algorithmic parts of cross-based support region construction
and phase congruency map computation represent ≈ 70% of
the total runtime. Using different GPU-oriented optimization
techniques regarding parallelization and optimized memory
accesses, the runtime is drastically improved.

The remaining article is structured as follows: Section II
reviews existing implementations of algorithmic components
on graphic processors. In Section III the multimodal dense
stereo matching algorithm is presented, which is optimized
and migrated to the GPU in Section IV. The performance is
then evaluated in Section V. Finally, Section VI concludes this
paper.

II. RELATED WORK

The previously named computationally expensive parts of
the proposed multimodal dense stereo matching algorithm
have been partly accelerated in the following related publi-
cations on GPUs. A performance of corresponding 3.33ms
for stereo images with a resolution of [450 × 375] pixels for
cross-based support region computation has been achieved on
a Nvidia Geforce8800 GTX GPU using shared memory [5]. In
[6] the support region computation and aggregation consumes
≈ 70 % of the total runtime; it could be improved from
15 s (Core2Duo 2.20GHz CPU) to 0.095 s (NVIDIA GeForce
GTX 480). In [7] a significant speed-up using a NVIDIA
GeForce 7900 GTX GPU was reached in comparison to the
3.2 GHz CPU. For a stereo scene with resolution [384× 288]
pixels and 16 disparity levels, the total speed is about 17 fps
(numbers for support-region construction were not provided).
Phase congruency is used in different medical applications
and is accelerated on a GPU in [8]. A frame-rate of 15 fps
was reached for frames with a resolution of [720 × 576]
pixels. However, these implementations partly benefit from
approximate support regions, different support construction978-1-5386-5541-2/18/$31.00 ©2018 IEEE



paradigms or missing moment calculations. Therefore, they
are unsuitable for the mentioned multimodal dense stereo
matching approach.

An optimized CPU implementation of semi-global matching
is presented in [9]. Various GPU implementations have been
presented on a GeForce 8800 Ultra [10] (0.0057 fps at a reso-
lution of [640×480] pixels and 128 disparity levels), a Quadro
FX5600 [11] and a GTX 280 [12], [13]. On a Tesla C2050, a
high performance implementation with 63 fps at a resolution
of [640× 480] pixels and 128 disparity levels is demonstrated
in [14]. This CUDA-based implementation is used within the
proposed multimodal stereo matching algorithm for the SGM
acceleration.

III. MULTIMODAL DENSE STEREO MATCHING

To densely reconstruct a 3D scene from images that depict
it in different manners, is a challenging task in the field of
photogrammetry; especially, if the images are as different as
those taken with a thermal and a RGB camera. To nevertheless
be able to accurately estimate the depth for most of the pixels,
a robust image matching approach is crucial. For this purpose,
an approach based on a combined cost function operating on
phase congruency maps [15] and optimized by semi-global
matching [16] was proposed in [4] and is schematically shown
in Figure 1. In the following part of this section, a brief
review on the main elements of this approach is given. For
more details, the interested reader is referred to the original
publications.

A. Combined Cost Function

The core element of the underlying approach is a combined
cost function which consists of four elements: A modified
Census transformation (MC), Zero-mean Normalized Cross-
Correlation (ZNCC), Normalized Sum of Squared Differences
(NSSD) and a triangle-based depth prediction approach. The
combination itself is realized as a weighted sum of the
aforementioned metrics, using a confidence-based weighting
scheme. For this purpose, the confidence in each metric is
determined for every pixel separately based on the correspond-
ing cost function. Consequently, the metric with the highest
confidence score dominates the cost function for the current
pixel. In this way, the different strengths of the individual
approaches can be exploited and the overall performance
improved. Additionally, all metrics are applied to the images
transformed by phase congruency [15], in order to increase the
robustness against the differences introduced by the various
modalities.

B. Phase Congruency

Phase congruency is a concept used to transform images
into a representation which is invariant to differences in
illumination and contrast and was originally proposed in [15].
The basic idea is to analyze the phase information of an
image in a local context within the frequency domain. Since
it is not possible to accurately determine spatial position
and frequency simultaneously due to the Time-Frequency

Uncertainty Principle, a bank of Log-Gabor filters is utilized
to solve this task approximately. The response of a single filter
with scale n and orientation θ consists of an even and an odd
symmetric component and results from the convolution of the
corresponding filter part with the input image at position x:

[enθ, onθ] = [I(x) ∗Me
nθ, I(x) ∗Mo

nθ] . (1)

The phase congruency itself is then approximated by the
sum of all employed filters, divided by the amplitude of the
response Anθ(x). Additionally, ε is introduced to prevent the
denominator from becoming zero.
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In addition to the result of the phase congruency itself, the cor-
responding moments of the transformation can be employed
as well:
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1

2

(
c+ a+

√
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)
, (4)
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1

2

(
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)
. (5)

Following the approach proposed in [17], they can be used
to detect edges and corners robustly. As can be seen in
Figure 1, this additional information serves as input for the
subsequent steps of triangle-based depth prediction (corners)
and semi-global matching (edges). In order to determine this
information, the values of the maximum moment M and the
minimum moment m are compared to the thresholds εE and
εC : If M > εE in a certain point, this point is labeled as ’edge’
and if in addition m > εC the point is labeled as ’corner’. The
corresponding coefficients are defined as:

a =

Θ∑
θ

(PC(θ)cos(θ))2 , (6)

b = 2

Θ∑
θ

(PC(θ)cos(θ) · PC(θ)sin(θ)) , (7)

c =

Θ∑
θ

(PC(θ)sin(θ))2 , (8)

where PC(θ) denotes the phase congruency that only takes
into account orientation θ, including all scales.

C. Cross-based Support Regions

Referring to [18], stereo matching algorithms basically
consist of four elements: Matching cost computation, cost
aggregation within a support region, optimization and disparity
refinement. While for many local stereo matching approaches
cost aggregation is a major element, for global approaches it
only plays a minor role, since disparity estimates are obtained
within the optimization step. Nevertheless, many metrics for
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Fig. 1: Overview of the multimodal dense image matching approach proposed in [4].
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Fig. 2: Concept of cross-based support regions: Image (a)
shows a pixel raster of an object boundary represented by gray
values. In image (b), a possible cross-based support region
with a maximum spatial distance of 4 px is visualized. The
pixel of interest is shown in red, the vertical arms in pink and
the horizontal arms in blue.

matching cost computation take information of the local neigh-
borhood into account. Consequently, a support region around
the pixel of interest is still required. The simplest and most
common approach is to use a rectangular region with fixed size
centered on the pixel of interest. While this approach allows
easy and fast computation, it introduces some error: Near depth
discontinuities, also pixels with different disparities are taken
into account. These disparities have a direct influence on the
matching result, but should be considered as outliers. In order
to minimize the number of such outliers, the shape and size of
a support region should be adapted near depth discontinuities.

Proposed by [19], cross-based support regions are one way
to achieve this goal. For this purpose, a two-stage process
is performed: First, two vertical arms (shown in pink in
Figure 2b) are constructed, one upwards regarding to the
pixel of interest and one downwards. The length of these
arms is limited by thresholds for the spatial distance and the
difference of gray values between the pixel of interest and the
currently observed one. Starting from the pixel of interest, the
upward arm is enlarged until one of these values exceeds the

corresponding threshold. The same is done for the downward
arm. Subsequently, for every pixel on the vertical arms, a left
and a right horizontal arm is constructed (shown in blue in
Figure 2b). This is done analogously to the construction of the
vertical arms. In contrast to the original approach, the distance
to the center pixel is not measured with the L1 but with the L2
norm. This leads to support regions with a more circular shape,
as can be seen in Figure 2b. The critical part of this approach
is to find suitable thresholds. Especially, a good choice for the
maximum gray value difference can be challenging, since the
arms should ignore noise and small deviations but not cross
object boundaries.

IV. OPTIMIZATION

As proven in the original publication [4], the presented
method provides state-of-the-art results in terms of accuracy.
However, some of the steps are computationally intensive and
considerably slow down the process. In this context, three
components are particularly noticeable: The computation of
the cross-based support regions (39 %), the image transforma-
tion via phase congruency (32 %) and the optimization step
carried out by semi-global matching (5 %). The percentages
indicate the proportion of each component in the total run-
time of the process shown in Figure 1 based on the original
implementation. While there are already several optimization
approaches for semi-global matching listed in Section II,
this does not apply to the first two components mentioned.
Consequently, this work concentrates on the optimization of
these components.

In general, acceleration on a GPU is achieved by exploiting
the following principles:

• Work distribution by dividing the computational load
across parallel threads. Equally sized work loads and
a minimum of conditional execution within the kernel
reduces synchronization inefficiencies.

• Maximized memory bandwidth by strategically choos-
ing the best memory hierarchy from registers, thread-
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block shared memory, texture memory and global mem-
ory and thereby minimizing arithmetic pipeline stalls.

• Fused computation through the combination of multiple
computing steps in one kernel and thereby reducing the
amount of memory accesses. Additionally, SIMD tech-
niques can be used in order to minimize the amount of
memory accesses and the execution of vector operations
in a single instruction.

In the following subsections, a detailed overview of the
optimization techniques for the particular functions is given.
The implementation for the Nvidia GPUs is done in the
Compute Unified Device Architecture (CUDA) programming
language and thereby scalable for different power budgets.

A. Phase Congruency

The computation of the phase congruency map and the
corresponding moments (see Section III) is approximated with
a Log-Gabor filter bank. The processing pipeline employed
for this is explained in the following and also shown in
Figure 3. Each filter of the bank is specified by its azimuth
orientation Θ and scale N and precomputed prior to execution
of the phase congruency computation. The filter responses are
stored in the GPU global device memory. Subsequent to a
Fast Fourier Transformation (FFT) of the source image, the
filters are multiplied with the spectrum of the source image
within the frequency domain. For the FFT and inverse FFT
computation, the highly optimized cufft library from Nvidia
is used. By multiplying all filters at once, the source pixels
only need to be loaded once, thereby reducing the number of
memory accesses. Additionally, each thread block computes
a 2-dimensional image tile of the source spectrum with all
filters. Using intrinsic SIMD instructions of the GPU, the
instruction throughput within this step is maximized. On this
occasion, two neighboring pixels with complex 32-bit floating
point numbers are processed in parallel. Furthermore, loading
128 bit values at once reduces the number of memory accesses
as well.

Following the computation of the Log-Gabor filter bank,
each kernel processes only one orientation θ with N scales.
Thereby, the reduction across scales can be optimized and no

temporal storage is needed. The Postprocess kernel first shifts
the DC component of the inverse FFT and scales its values
with the FFT size. With the responses still in local registers,
the amplitude An,θ and the local energy is computed for
every pixel. Again, SIMD operations are utilized for efficient
instruction throughput and data loading. To compute the local
energy, the mean value for each pixel across all scales N is
needed and therefore calculated in a first iteration. In order
to avoid the necessity to load the source values from global
memory twice, they are stored in the local memory during
the FFT postprocessing step. From there they can be accessed
for later reuse. Lastly, the median value of the amplitude with
scale n = 0 within the space domain is needed to estimate
the noise for each orientation θ. For the purpose of efficient
computation, an optimized Radix sort algorithm [20] is used.

For the final computation of the coefficients a, b, c of the
minimum and maximum moments m and M , the transforma-
tions corresponding to the orientations θ are compressed in the
last kernel. Local SIMD accumulators are used to minimize
the external memory bandwidth.

B. Cross-based support regions

For the computation of the cross-based support regions,
a vertical arm for each pixel is constructed first, which is
then extended with horizontal pixels. The maximum size of a
support region depends both on a maximum spatial distance K
as the L2-norm to the current pixel and a maximum difference
in the gray values to the corresponding base point of the
current arm.

As no dependencies exist between neighboring support
regions, each source pixel can be processed in parallel.
Therefore, each thread is assigned to one pixel of the source
image and calculates the cross-based support region within one
kernel. Different sizes of the support region within the same
thread block can lead to different execution times and thereby
synchronization overhead. However, as the pixels are relatively
close to each other, neighboring support regions have a similar
shape and the runtime difference is negligible in comparison to
the overhead for additional load and stores in case of separate
construction of vertical and horizontal arms.
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An initial benchmark of the cross-based support region
kernel using global memory accesses shows that the high
amount of memory accesses leads to a high stall rate of
the threads, thereby minimizes computing efficiency. Using
cached texture memory, instead of the global memory, the
memory accesses are optimized at the expense of texture
binding and unbinding. Additionally, neighboring threads, e.g.
within the same thread block, share the majority of source
pixels, needed for support region construction. Therefore,
as another method, shared memory is introduced to speed-
up accesses to the relevant source image regions. Figure 4
illustrates the usage of shared memory for the cross-based
region computation.

Beside the pixel of each thread, pixels around the thread
block borders and inside a radius of the maximum spatial
distance K are loaded. Within the kernel, first each thread
loads its current pixel and then synchronizes with the other
threads in the same block. Threads on the border additionally
load the pixels of their respective border column or row. The
computing imbalance is maximized between central threads,
loading only one pixel, and corner pixels, responsible for
(K + 1)2 pixels before the synchronization. Subsequently,
all threads construct their support region in parallel and
benefit from high-bandwidth access to the source pixels in
shared memory. The size of the shared memory is limited to
49152 Byte per thread block, which is not critical for the
maximum thread block size of 1024 threads and a typical
threshold of K = 5 (1764 Byte).

V. EVALUATION

For the purpose of evaluation, two different GPUs from
Nvidia for different fields of application are used. A 256-
core mobile GPU variant of the Nvidia Tegra X2 processor
utilizing 8GB 128 bit LPDDR4 with a theoretical bandwidth
of 59, 7GB/s is evaluated for energy-limited scenarios with a

TABLE I: Execution time and percentage share of total
duration for the different kernels of the phase congruency
computation.

Kernel
Runtime [ms]

Quadro
Percentage

Quadro
Runtime [ms]

Tegra
Percentage

Tegra

FFT and
IFFT 2.77 42 % 40.9 53 %

Multiply
Filter Bank 0.67 10 % 6.4 8 %

Postprocess 0.69 11 % 7.0 9 %

Noise
Estimation 2.20 33 % 17.9 23 %

Phase
Congruency 0.27 4 % 5.5 7 %

Total 6.60 100 % 77.7 100 %

power consumption of less than 15W . For high-performance
mobile platforms, the Quadro P5000 GPU with 2560 CUDA-
cores, 16GB GDDR5X at a 256 bit memory interface and
288 GB/s theoretical bandwidth at 180W power consump-
tion is evaluated. Both platforms share the underlying Pascal
architecture. The evaluation is performed on an image with
size [960× 540] pixels and the runtime is averaged over 100
runs.

A. Phase Congruency

The portions of the runtime of the phase congrueny compu-
tation are presented in Table I for the Nvidia Quadro P5000
and Tegra X2 GPU. On both platforms the Fast Fourier Trans-
formation consumes the majority of the GPU computing re-
sources of ≈ 40 %, followed by the noise estimation algorithm
with 33 % and 23 % on the high-performance Quadro and
energy-efficient Tegra GPU, respectively. The latter processing
step can be approximated with a constant noise estimation for
a whole sequence or the same threshold for all orientations
θ with only little differences in the phase congruency map.
For the computation of the phase congruency, a thread group
size of tdx = tdy = 16 is found as the optimal configuration.
Comparing the runtime of the Quadro GPU with the Tegra
GPU, the former high-performance GPU is 11× faster than
the mobile GPU, which also offers only 10 % of the CUDA
cores in comparison to the Quadro. This indicates, that the
computation is compute bound and not limited by the available
memory bandwidth.

B. Cross-based support region

Beside the parallelization across multiple threads, the cross-
based support region computation is accelerated mainly by
using optimized or local memories, see Section IV-B. In case
of shared memory, an increase in the number of threads per
block ([tdx× tdy]) leads to higher reuse of data in the shared
memory. However, in the stage of loading these values, more
threads in the central part stall, while border threads copy data
and therefore reduce computational efficiency. In order to find
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Fig. 5: Execution time of the cross-based region implemen-
tation using different memories and numbers of threads tdx,
tdy in a thread block for an image of size [960× 540] pixels.

the optimum block size, first the execution time is evaluated
as illustrated in Figure 5. The usage of texture memory in
comparison to global memory does not result in a noticeable
speed-up, as the required areas are already cached. The results
are plotted in Figure 5a. A large improvement can be seen for
shared memory (Figure 5b), with a minimum runtime for small
block sizes of [4×1] of 8ms or 144ms on the Nvidia Quadro
or Tegra respectively. The big runtime difference of a factor of
18× between the Nvidia Tegra and Quadro GPU, which has
10 % of the computing resources of the latter, highlights the
fact, that the computation of the cross-based support regions
is highly memory bandwidth limited. The memory bandwidth
of the LPDDR4 DRAM is much smaller in comparison to the
GDDR5X memory and therefore, the threads of the mobile
GPU are not as busy as the Quadro GPU.

VI. CONCLUSION

The implementation of the phase congruency and cross-
based support region computation on the Nvidia Quadro P5000
and Tegra X2 GPU reach a framerate of 68 and 5 frames per

second respectively on images with a resolution of [960×560]
pixels, which is sufficient for the given use-case of mobile
platforms in harsh environments, as smoke. The detailed
analysis of the GPUs performance bounds provided valuable
insights which enabled the design of highly optimized kernels
and data flow.
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