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Abstract In this paper, a graph-based method of active
contour models called network snakes is presented and inves-
tigated. Active contour models are a well-known method in
computer vision, bridging the gap between low-level fea-
ture extraction or segmentation and high-level geometric
representation of objects. But the original concept is lim-
ited to single closed object boundaries. Network snakes are
the method enabling a free optimization of arbitrary graphs
representing the geometric position of networks and bound-
aries between adjacent objects. The main impacts of network
snakes are the combination of the image energy represent-
ing objects in the real world, the internal energy incorporat-
ing shape characteristics, and the topology representing the
structure of the scene. The introduction and exploitation of
the topology in a comprehensive energy functional turn out
to be a powerful technique to cope with complex questions
of object delineation from imagery. Network snakes are ana-
lyzed and evaluated with both synthetic and real data to point
out the role of the required initialization, the benefit of the
introduced topology and the transferability. Exemplary inves-
tigated real applications are the delineation of field bound-
aries from remotely sensed imagery, the refinement of road
networks from airborne SAR images and bio-medical tasks
delineating adjacent biological cells in microscopic images.
Concluding remarks are given at the end to discuss potential
future research.
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1 Introduction

Active contour models are a powerful, physics-based tech-
nique which is employed in various parts of computer vision
and computer graphics, for instance, segmentation, recon-
struction, registration, recognition, and manipulation of non-
rigid curves or surfaces from images and image sequences.
The so-called snakes were introduced as a first contribution to
this research field with the seminal paper by [17]. The inno-
vation of the method is to bridge the gap between low-level
feature extraction or segmentation and high-level geometric
representation of objects. The technique can also be regarded
as a method to delineate subjective contours or surfaces [16],
i.e. to derive good results even though the object of interest
is only partly represented in the image. Active contour mod-
els have received a lot of attention in the last two decades,
as reflected in numerous contributions, for an overview, see
[1,27]. Different applications using active contour models
have been investigated, for example, remote sensing applica-
tions [13,19,30], the tracking of objects in image sequences
[8,28] and medical image applications [22,24,32,35].

1.1 State of the art

Two directions of active contour models have been developed
as complements to each other: parametric active contours
[17] and geometric active contours [5,23]. The main differ-
ence is the explicit representation of parametric active con-
tours compared to the implicit representation of geometric
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active contours. Parametric active contours allow for an easy
direct interaction during the optimization while geometric
active contours are parameterized after curve evolution and
a direct interaction needs more efforts. On the other hand,
the implicit representation enables topological changes dur-
ing the evolution, whereas the topology of parametric active
contours is rigid and splitting or merging is complicated.
However, the idea behind both concepts is quite similar: the
coupling of the image data with an internal energy in an
energy minimization framework for parametric active con-
tours or the combination of the level set method with the
curve evolution theory concerning geometric active contours.
Both models, parametric and geometric active contours, are
originally defined for single closed object contours. For this
reason, advanced research extended these models to facilitate
solutions dealing with more than one object.

Contributions concerning multiple parametric active con-
tours are addressed in [25] to handle multiple snakes with
the additional opportunity to deal with topological changes.
A domain decomposition framework is proposed with an
iterative re-parameterization using a superimposed grid. The
case of multiple 3D deformable models with automated
topology changes is examined in [18], based on the work
of [20], where a generic model is presented to recover mul-
tiple shapes or to extract multiple surfaces from 3D data.
The approach of [9] detects intersections of edges control-
ling connected components automatically to eliminate over-
laps of object contours. In the work of [31], several contours
are initialized and evolve separately with the aim to merge
those within homogeneous image regions.

Research regarding multiple geometric active contours is
also discussed in several contributions. In the work of [44],
the authors use as many level set functions as the expected
kinds of regions. Depending on the proximity, each level set
moves to the nearest interface, overlaps and gaps are removed
in a separate reassignment step. Similarly, the exploitation
of prior knowledge concerning the number of regions char-
acterized by a predetermined set of statistical features is
the starting point of the work presented in [42]. Geode-
sic active regions are utilized in [29] to deal with frame
partition problems. The authors integrate boundary and
region-based information within a curve-based minimization
framework incorporating expected properties of defined clas-
ses. A multiphase level set formulation is given in [6,37] to
avoid the construction problems of overlaps and gaps during
image segmentation. However, the used region information
to define the boundaries of the segments is only reasonable
for the delineation of particular object classes.

The discussed work above concerning multiple active
contours does not cover the general problem of adjacent
or partly touching objects, where a change of topology
is not desired. Coupled active contours incorporate topo-
logical constraints to cope with similar image energies

characterizing neighboring objects. Regarding coupled para-
metric active contours, one example is the work of [47]:
the authors include a penalty force during the simultaneous
optimization of all contours taking into account that objects
cannot merge during the optimization. Thus, tasks such
as tracking of objects represented with similar intensities
or textures are possible without losing the given topology
under the assumption of a homogeneous background. Work
related to coupled geometric active contours is more com-
mon, first discussed in [26]. The authors enhance the tra-
ditional level set formulation, implying only one interface
separating two regions, to a coupled level set method dealing
with multiple level sets having multiple junctions. The diffi-
culty lies in establishing a constraint at triple junctions that
couples the three functions at a single point. In the cited
approach, this is achieved at each time step with a kind
of interface operation. This point is solved in the contribu-
tion of [33] by replacing each level set function after the
movement with a correction term defined by the overlap of
neighbored level sets. The handling of multiple objects with
multiple level sets is addressed in [43], where a coupling
constraint minimizes the overlap of touching objects. How-
ever, it is not guaranteed that the boundary between touching
objects is correctly located. Topological constraints are intro-
duced in the contribution of [14] to preserve the given initial
topology. The simple point criterion from digital topology
is applied by evaluating the implicit contour during the
evolution to avoid overlapping segments. A further article
dealing with the preservation of topology is given in [36]
in form of a polygon regularizer, particularly suitable for
textured objects. The approach prevents topology changes,
but adjacent polygons can still touch. In the work of [34],
the authors propose an enhancement by gradually adjust-
ing the original flow and a global regularization scheme to
avoid geometrical inaccuracies when preserving the topol-
ogy. Again, the given initial topology is identified as an
important prior knowledge to be considered during curve
evolution.

The mentioned approaches of multiple and coupled active
contours require particular conditions to handle multiple
objects such as homogeneous object representations in terms
of intensities, colors or statistical properties, which are only
suitable for specific segmentation applications. Alternatively,
additional steps of re-parameterizations of the contour are
needed during the optimization. The general question on
how to represent multiple and adjacent objects with only one
boundary in-between is unanswered. Moreover, the delin-
eation of adjacent objects without any available homoge-
neous object characteristics within the segments is unsolved.
In addition, objects represented directly by networks inde-
pendently of object and, thus, purposive image information
of the enclosed network segments, are not covered by the
discussed approaches.
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Fig. 1 Delineating adjacent objects with traditional parametric active
contours: initialization (blue), result and zoomed result part (red)

1.2 Graph-based optimization with active contour models

The main goal of this paper is the development of a new
method of active contour models that enable the optimiza-
tion of an arbitrary graph representing the geometric image
space positions of networks and boundaries between adja-
cent objects. The discussion of the state of the art points out
the need to deepen the understanding concerning the delin-
eation of adjacent objects, which are separated by only a
single boundary, and to develop solutions which enable the
delineation of networks. A new graph-based method of active
contour models called network snakes with a well-defined
mathematical model is proposed in this paper.

In Fig. 1, a synthetic example is taken to demonstrate the
general limitation of the traditional concept of parametric
active contours and to identify the challenge of this paper.
The four regions cannot be delineated with one contour
jointly; instead for each segment a single and closed contour
is required. Starting from a topologically correct initialization
(Fig. 1, left), the optimization leads to changes in topology
and thus to incorrect results (Fig. 1, middle). Focusing on the
center of the synthetic example (dashed white line), the gaps
and overlaps of the result are more apparent (Fig. 1, right).
This consequence is mathematically obvious, because the
individual contours do not consider adjacent ones due to the
fact that no topological knowledge about the objects of inter-
est is incorporated in the model of parametric active contours.

Three sub-goals can be defined as follows:

• Development of a new method of active contour models
which optimizes the geometric position of graphs con-
sisting of nodes of an arbitrary degree to enable the delin-
eation of open contours, closed contours and networks.

• Development of a new method of active contour mod-
els which segments imagery without gaps or overlaps to
enable the delineation of adjacent objects and networks.

• Development of a new method of image segmentation
and object delineation with a high generality and trans-
ferability to enable its applicability for a variety of tasks.

The term network snakes was already used in the work of
[11,12]. The authors insert a local network to reconstruct

3D-buildings: trihedral corners impose constraints of 90◦
angles between the three edges terminating at the corners.
Thus, the approach is only suitable for particularly con-
strained applications and a free movement of all nodes and
edges during the optimization is not possible. In contrast, the
goal of this paper is to develop a general and comprehensive
method enabling a free movement of all nodes and edges
of a graph during the optimization without any particular
constraints. Partly related work to the stated goals are adap-
tive adjacency graphs as introduced in [15] and enhanced in
[10] to extract networks of active contours. The authors con-
nect active contours at nodes during the deformation. The
connectivity of the graph is achieved by imposing external
energies in the form of constraints or springs to keep the
adjacent contours together. However, a mathematical basis
of the nodes with a degree unequal to two is not given and
holes can appear leading to an incorrect topology. This fact
contradicts to the aims of this paper in terms of a well-defined
mathematical model including a correct topology. A further
related framework concerning the defined goals is the region
competition approach for image segmentation presented in
[45,46] combining active contours and region growing tech-
niques to minimize a global cost function. The used general-
ized minimum description length (MDL) criterion assumes
regions with smooth boundaries and homogeneous intensity
properties within the image, which are defined by a list of
probability distributions. A topological control of adjacent
objects is not incorporated into the proposed approach. Sim-
ilarly, a global minimization of active contours is proposed in
[2] to avoid the dependence of the initial guess of the contour.
The authors introduce an edge indicator function to improve
the solely region-dependent image energy. But again, a topo-
logical control is not included why only partly represented
object boundaries in the image are hardly detectable.

The development of a general method satisfying the goals
of this paper has so far not been obtained, which not only
points out the methodical contribution, but also emphasizes
the impact to different real application scenarios. Potential
applications are for instance the delineation of road net-
works or field boundaries from remotely sensed imagery,
bio-medical tasks such as the delineation of adjacent biolog-
ical cells in microscopy cell imagery or industrial applica-
tions. A further goal of this paper is to develop a new method
of active contour models with a high generality and trans-
ferability concerning the delineation of adjacent objects and
any networks. The aim is to enable a free optimization of the
whole network considering a complete control of the object
shape at any contour parts. The incorporation of geometric
constraints and, thus, the limitation of the method to only
particular applications is not desired.

One important criterion is the possibility to control
and exploit the topology, particularly when dealing with
applications based on noisy image data or weak object
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representations. This criterion points to parametric active
contours for further investigations due to their explicit rep-
resentation of the contours. Even though a given topology
is required or has to be derived from the initialization, the
large benefit is the joint exploitation of the traditional energy
terms of active contours together with the newly introduced
topology represented in a graph. Thus, poor object represen-
tations in imagery can still enable good object delineations
supported by the proposed graph-based optimization. A sec-
ond important factor is the underlying image energy: geo-
metric active contours incorporate methodically the whole
image domain, even though approaches often use only a nar-
row band around the contour to speed up processing. Para-
metric active contours use local image information during
the optimization, which is a disadvantage when the object
topology is unknown, but an advantage when the topology is
known or no (region-based) image information is available
to specify topological changes. In particular, if the required
image information is only given at adjacent segment borders
or just at the geometric image space positions of the network
itself, the explicit concept is advantageous.

First ideas and concepts regarding network snakes are pre-
sented in the work of [3,4]. However, the contribution of [4]
only contains the idea that parametric active contours should
be enhanced to deal with networks not including a mathemat-
ical model of network snakes. The paper of [3] introduces
a draft mathematical concept, but not the complete frame-
work which is required to deal with arbitrary networks of
active contours. In contrast, this paper defines the general
model of network snakes and the required implementation
issues. For the first time, systematic investigations regarding
the initialization conditions, the benefit of the exploitation of
the topology and the generality are achieved using synthetic
examples. In addition, the method is applied to three different
real application scenarios to demonstrate the transferability
including an evaluation with numerical values. Thus, this
paper presents for the first time the overall approach includ-
ing its potential and limitations.

The next section presents the details of the mathemati-
cal basis and the energy minimization concept of parametric
active contours. In Sect. 3, the new method of network snakes
is presented. In Sect. 4, the developed method is analyzed and
evaluated with both, synthetic and real data to point out its
generality and transferability. Finally, in Sect. 5, concluding
remarks are given to point out further investigations.

2 Basics

The state of the art and the defined goals result in a solution
based on the concept of parametric active contours to develop
the new method of network snakes. This section presents the
basics and the details of the energy minimization concept to

provide a mathematical basis for the proposed new method.
We have introduced this section into the paper to make our
contribution more self-contained. Readers familiar with para-
metric active contours and the related energy minimization
scheme may wish to skip this section and continue directly
at Sect. 3.

2.1 Parametric active contours

A traditional parametric active contour, often called a snake,
is defined as a parametric curve C

C (s) = (x (s) , y (s)), (1)

where s ∈ [0,1] is the arc length, and x and y are the coordi-
nates of a closed 2D-curve. The core of active contour models
is to let the curve C evolve in an image I delineating the object
of interest. This aim is reached by minimizing an appropriate
energy functional E(C(s)) [17]:

E (C (s)) =
1∫

0

Ecurve (C (s)) ds

=
1∫

0

[
Eimg (C (s))

+ Eint (C (s)) + Econ (C (s))] ds

(2)

E (C (s)) → min.

The energy functional consists of the image energy Eimg

(C(s)) representing an optimal description of the object of
interest in the image, the internal energy Eint(C(s)) intro-
ducing modeled object knowledge concerning the shape and
movement behavior of the object and, finally, the constraint
energy Econ(C(s)) offering the possibility to insert any exter-
nal constraints to the energy functional. The constraint energy
Econ(C(s)), can e.g. be used to fix a point at a predefined posi-
tion. Econ(C(s)) is an optional part of the snakes concept,
however, and not further considered here (see the topology
preserving energy term discussion in Sect. 3.2 below). The
minimization of the energy functional E(C(s)) is accom-
plished using an iterative scheme starting from a given
initialization.

The image energy Eimg(C(s)) describes the object of
interest in the image I in an optimal manner, i.e. to let
the contour C being attracted by salient features in the
image representing the boundaries of the object of interest.
In the simplest way, the image energy can be expressed by the
image intensities themselves with

Eimgline (C (s)) = I (C (s)) (3)
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to detect light or dark lines. When the object of interest is
characterized by edges, the image energy can be defined as

Eimgedge (C (s)) = − |∇ I (C (s))|2, (4)

where |∇ I (C (s))| is the norm or magnitude of the gradi-
ent image at the coordinates x(s) and y(s). The negative
sign results in an attraction of the contour to large image
gradients during energy minimization. An alternative image
energy that significantly increases the capture range while
preserving accurate image boundaries is the distance poten-
tial force introduced by [7]. A distance map d(x, y) is derived
by calculating the distance between each pixel and the closest
already extracted edge point. An appropriate potential energy
Pdist(C(s)) can be defined as Pdist (C (s)) = −e−d(C(s))2

,
and the corresponding image energy is given by

Eimgdist (C (s)) = − |∇ Pdist (C (s))|. (5)

A further image energy improving the distance map is the gra-
dient vector flow (GVF), which aims at overcoming the gen-
eral problem of concave boundary regions [40,41]. It might
be helpful to utilize more than one resolution when minimiz-
ing the energy functional of active contour models, exam-
ples for the combination of different resolutions are given in
[21,39].

The second term of the energy functional representing
the active contour model is the internal energy Eint(C(s)).
The aim is to incorporate prior knowledge about the shape
characteristics or movement of the object of interest during
the energy minimization. The internal energy Eint(C(s)) is
defined as

Eint (C (s)) = 1

2

(
α (s) · |Cs (s)|2 + β (s) · |Css (s)|2

)
, (6)

where Cs and Css are the first and second derivatives of C
with respect to s [17]. The first term of the internal energy,
weighted by α(s), controls the elasticity or tension of the
curve. Large values of α(s) allow the contour to become very
straight between two points and hamper stretching, while
small values allow a higher bending. The second term of the
internal energy, weighted by β(s), controls the rigidity of the
curve. Large values of β(s) let the contour become smooth,
and small values allow the generation of corners.

2.2 Energy minimization

In this section, the minimization of the energy functional
E(C(s)) of parametric active contours is given in detail.
In general, the calculus of variations deals with seeking a
curve (or surface), for which a given functional F(C) in the
form of

F (C) =
1∫

0

E (s, C, Cs, Css) ds (7)

has a minimum or maximum considering the boundary
conditions C(0) = Cb, C(1) = Ce, where the values
Ce > Cb are given, and with Cs = ∂C/∂s, Css = ∂2C/∂s2.
The solution of the functional F(C) defined in (7) is obtained
by setting up the condition C (s) = C0 (s) + εη (s), where
η (s) is a function with η (0) + η (1) + ηs (0) + ηs (1) = 0.
Using the above definition, the functional F(C) is replaced
with the function F(ε), i.e. the variational problem becomes
an extremum problem

F (ε) =
1∫

0

E
(
s, C0 + εη, C0s + εηs, C0ss + εηss

)
ds,

(8)

fulfilling the condition ∂ F/∂ε = 0 for ε = 0. Using the
Taylor expansion one gets

F (ε)

=
1∫

0

(
E (s, C0, C0s, C0ss) + ∂ E

∂C
(s, C0, C0s, C0ss) εη

+ ∂ E

∂Cs
(s, C0, C0s, C0ss) εηs

+ ∂ E

∂Css
(s, C0, C0s, C0ss) εηss

)
ds. (9)

The introduced condition defined above leads to
1∫

0

η

(
∂ E

∂C

)
ds +

1∫

0

ηs

(
∂ E

∂Cs

)
ds

+
1∫

0

ηss

(
∂ E

∂Css

)
ds = 0, (10)

and with integration by parts considering the boundary con-
ditions for η (s) it follows

1∫

0

η

(
∂ E

∂C
− d

ds

(
∂ E

∂Cs

)
+ d2

ds2

(
∂ E

∂Css

))
ds = 0. (11)

The integral of (11) vanishes for every function η (s) result-
ing in

∂ E

∂C
− d

ds

(
∂ E

∂Cs

)
+ d2

ds2

(
∂ E

∂Css

)
= 0 (12)

which represents the general Euler differential equation.
In the following, this general solution is applied to the

minimization of the energy functional E(C(s)) of parametric
active contours. With constant weight parameters α(s) = α

and β(s) = β in order to simplify the representation, the
energy functional E(C(s)) of parametric active contours
given in (2) can be minimized by solving the correspond-
ing Euler equations:
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∂ Eimg

∂C
− α

∂2C

∂s2 + β
∂4C

∂s4 = 0. (13)

As the contour C is represented with the coordinates x and y,
cf. (1), (13) results in two independent equations concern-
ing both coordinates. The derivatives are approximated with
finite differences since they cannot be computed analytically:

∂ Eimg

∂C
+ α ((Ci − Ci−1) − (Ci+1 − Ci ))

+β (Ci−2 − 2Ci−1 + Ci ) − 2β (Ci−1 − 2Ci + Ci+1)

+β (Ci − 2Ci+1 + Ci+2) = 0. (14)

With ∂ Eimg/∂C = fC (C) (14) can be rewritten in matrix
form as

AC + fC (C) = 0. (15)

A is a pentadiagonal band matrix of dimension n, which
depends only on the parameters α and β. With substitution
of a = β, b = −α − 4β and c = 1 + 2α + 6β the matrix A
has the following structure for a closed contour:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c b a 0 . . . 0 a b
b c b a 0 . . . 0 a
a b c b a 0 . . . 0

0 a b c b a
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 a b c b a
a 0 . . . 0 a b c b
b a 0 . . . 0 a b c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

In general, the calculus of variations defines boundary condi-
tions, which for parametric active contours are incorporated
by fixed boundary values. For closed contours, the condition
that the first point is identical to the last one is introduced,
leading to additional entries in the upper right and the lower
left corner of the matrix A.

A solution to (15) can be derived by setting the right hand
equal to the product of a step size γ and the negative time
derivatives of the left hand side. It is assumed that the deriv-
atives of the image energy fC (C) are constant during the
time step, i.e. fC (Ct ) ≈ fC (Ct−1), resulting in an explicit
Euler step regarding the image energy. In contrast, the inter-
nal energy is an implicit Euler step due to its specification by
the band matrix A. The resulting equation reads

ACt + fC (Ct−1) = −γ (Ct − Ct−1). (17)

The time derivatives vanish at the equilibrium ending up in
(15). Finally, a solution can be derived by matrix inversion:

Ct = (A + γ I)−1 (γ Ct−1 − κ fC (Ct−1)), (18)

where I is the identity matrix and κ is an additional parame-
ter in order to control the weight between internal and image
energy.

In the presented energy minimization process, two
assumptions have been made. First, the approximation of the
derivatives with finite differences (14) requires unit distances
between neighboring points representing the contour. This
prerequisite is important because parameterization changes
can involve unwanted shape modifications [9]. In addition,
the approximated curvature of the contour using finite dif-
ferences will result in somewhat incorrect terms. Second,
the parameter s is assumed to be the arc length to represent
the curvature with the derivatives correctly [38]. In order to
avoid re-parameterizations during the minimization process,
a preservation of unit distances between neighboring points
can be incorporated in the energy functional.

3 Network snakes

The presentation of the mathematical basics of parametric
active contours and the discussion of the state of the art
demonstrate that the goals of this paper cannot be reached
with existing active contour models or related methodologies.
To overcome this limitation, the new method of network
snakes is introduced in this section.

3.1 Energy terms of network snakes

The new method of active contour models is represented by a
graph to incorporate the topological characteristics of a con-
tour network. The topology of the contour within the graph is
defined by the nodes, which are characterized by the degree
of nodes ρ(C). An example is shown in Fig. 2: nodes with
a degree ρ(C) = 1 represent end points of a contour, nodes
with a degree ρ(C) = 2 represent a normal part of a contour
and nodes with a degree ρ(C) > 2 represent nodes in which
more than two edges terminate. In this work, the contour net-
work is represented by a planar graph, i.e. it can be drawn in
a plane without crossing graph edges. Having the possibility
to distinguish between different contour parts, particularly
when forming a network, each part of the whole contour is
indexed as CA, CB, . . . , CZ (cf. Fig. 2). The nodes with a
degree ρ(C) �= 2 define the start or end points of the contour
parts.

The crucial point concerning the introduction of the topol-
ogy is the internal energy Eint(C(s)) of the energy functional
representing the shape model (cf. Sect. 2). Regarding the
minimization of the energy functional as defined in (7)–(18),
a solution of the required Euler equations optimizing the
internal energy Eint(C(s)) is only given for the tradi-
tional concept of parametric active contours. The reason
is the approximation of the required derivatives with finite
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Fig. 2 Topology for network snakes

differences (14). The consequence of this prerequisite is that
each node of the graph needs two neighboring nodes on both
sides to compute the derivatives. Obviously, this condition is
only fulfilled for closed object contours solely composed of
nodes with a degree ρ(C) = 2 with an identical first and end
point of the contour, i.e.C0 = Cn . But, the utilized deriva-
tives are not defined in the vicinity of nodes with a degree
ρ(C) �= 2, because the neighboring nodes are either not
available at open contour ends (nodes with degree ρ(C) = 1)
or exist multiple times (nodes with degree ρ(C) > 2), cf.
the center of Fig. 2 for a node with a degree of ρ(C)= 4.
Thus, the influence of the topology on the energy minimiza-
tion of parametric active contours requires a new definition
of the internal energy Eint(C(s)) to enable a shape control at
every contour part.

The derivatives as defined above are not usable in the com-
mon way at nodes with a degree of ρ(C) �= 2. In this work,
the boundaries of adjacent objects are defined by single con-
tour parts each ending in single nodes, where several contour
parts are connected to each other. Obviously, the same defi-
nition is valid for the minimization of networks.

The proposed solution divides the given initial graph into
separate contour parts CA, . . . , CZ connected at nodes Cn .
In Fig. 2, a synthetic example is taken to exemplify the con-
tour parts of the required network: the four contour parts
CA, CB, CC and CD describe a part of a contour network
representing for example the boundaries between adjacent
objects, each of them is depicted with a separate color. In gen-
eral, the contour parts meet with their respective end points
CAn , . . . , CZn in the common nodes Cn in such a way, that
the end points of the contour parts define an identical point,
i.e. Cn = CAn = CBn = · · · = CZn . Thus, the node Cn

is contained in each connected contour part and, addition-
ally, its position depends on the specific shape model of each
contour part.

The first term of the internal energy (cf. (6)), weighted by
the parameter α, cannot support the control of the internal
energy in the vicinity of Cn during the energy minimization.
The finite differences of the first term approximating the

required derivatives are only uniquely available for the two
nodes Cn−1 and Cn but not for Cn+1. Thus, no shape con-
trol is possible and the first term is not considered during the
energy minimization in the vicinity of nodes with a degree
of ρ(C) �= 2.

The second term of the internal energy, weighted by the
parameter β, can partly aid the control of the shape behavior
in the vicinity of Cn . This second term is rewritten using the
available finite differences for the nodes Cn−2, Cn−1 and Cn

of each contour part separately to control the curvature of
the contour network at nodes with a degree of ρ(C) �= 2.
The nodes Cn+1 and Cn+2 cannot support the calculation of
the internal energy near Cn , because as before these nodes
exist multiple times or do not exists. Thus, the internal energy
has to be rewritten in the vicinity of the nodes Cn using the
available finite differences for the nodes Cn−2, Cn−1 and Cn .
The new definition of the internal energy aims at controlling
the shape of each contour part separately concerning its spe-
cific curvature up to each node Cn with degrees ρ(C) �= 2
contained in the contour network. Simultaneously, the con-
nectivity of the terminating contours at the nodes Cn has
to be ensured. The new total energy functional for network
snakes at the common nodes with a degree ρ(C) �= 2 with
Cn = CAn = CBn = · · · = CZn is defined as

β
(
CAn − CAn−1

) − β
(
CAn−1 − CAn−2

) + fCA (CA) = 0

β
(
CBn − CBn−1

) − β
(
CBn−1 − CBn−2

) + fCB (CB) = 0

β
(
CCn − CCn−1

) − β
(
CCn−1 − CCn−2

) + fCC (CC ) = 0

(19)
...

β
(
CZn − CZn−1

) − β
(
CZn−1 − CZn−2

) + fCZ (CZ ) = 0.

Each possible contour part CA, . . . , CZ terminating in one
common node Cn is represented by one line in (19). The terms
on the left side represent the new internal energy, the other
terms fCA (CA) , . . . , fCZ (CZ ) represent the image energy
at the respective contour parts. All contour parts CA, . . . , CZ

intersect in the common single node Cn and can be optimized
simultaneously when minimizing the energy functional of
network snakes. The energy definition of (19) allows for an
energy minimization controlling the shape of each contour
part separately up to the common nodes Cn . At the same time,
the exploitation of topology is ensured during the energy min-
imization process due to the connectivity.

The new definition of the internal energy in the vicinity
of nodes with a degree ρ(C)> 2 introduced in (19) is sim-
ilar to the part of the traditionally defined internal energy
weighted by the parameter α, shown in (14). But, the param-
eter weighting the new internal energy is chosen to be β,
because compared to α, it controls the shape behavior of the
contours more naturally in terms of curvature and rigidity
(cf. Sect. 2).
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The new energy functional for network snakes developed
above and defined in (19) is given exemplarily for a node
with a degree ρ(C) = 3:

∂ Eimg

∂C
+ β

(
CAn−2 + CBn−2 + CCn−2

)

−2β
(
CAn−1 + CBn−1 + CCn−1

) + 3β (Cn) = 0. (20)

The given energy functional of a node with a degree
ρ(C) = 3 contained in (20) can be extended in a straightfor-
ward manner to nodes with higher degree. The general form
can be written in matrix form as

AnC + fC (C) = 0. (21)

Now, the matrix An incorporates not only the parameters α

and β controlling the shape, but also the given topology of
the contour network. The matrix A of (15), (16) is adapted
accordingly at the nodes with a degree ρ(C) �= 2 and their
neighbors to fulfill the new definition of the internal energy:
some parts of the originally banded structure of the matrix
are omitted to divide the contour parts, and other parts of the
matrix are filled up to include the topology building further
connections between different parts of the contour resulting
in the desired network snakes.

One exemplary matrix An representing the topology of the
synthetic example shown in Fig. 2, is given in (22) to dem-
onstrate the structure of the new matrix An . The four contour
parts CA, . . . , CD are connected at the common node Cn with
a degree ρ(C) = 4 describing the objects of interest in the

image incorporating the given topology. Each contour part is
assumed to consist of six nodes C0, . . . , C5. The substitution
for the energy minimization of network snakes is used with
a = β, b = −α−4β, c = 1+2α+6β, e = 1+α+5β, f =
−2β and g = 1+4β to define the complete matrix An of the
synthetic example. The matrix elements enclosed by the two
dashed lines represents the node Cn with a degree ρ(C) = 4
connecting the four contour parts CA, . . . , CD, the dotted
lines mark the beginning and end of the respective contour
parts. The new non-zero matrix elements besides the banded
structure express the connecting parts representing the topol-
ogy within the matrix An :

(22)

Moreover, the elements of the matrix An missing in compari-
son to matrix A from (16) point out that there is no connection
of the contour ends concerning their specific shape. The only
link is given in the single node Cn representing the topology
of the four contours within the network. Each contour part
CA, . . . , CD is connected to the common node Cn on one
end, and has an open contour end on the opposite side.

For this specific example, the open endings of the four
contour parts are allowed to move only along the borderline,
i.e. the x or y coordinate is fixed, respectively. In general,
open end points can be controlled by introducing a length
constraint to avoid a shrinking of the endings or, alterna-
tively, a small variable length can be allowed based on image
properties. The energy minimization of the synthetic example
using network snakes is depicted in Fig. 3 to demonstrate the
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Fig. 3 Delineating adjacent objects with network snakes: initial-
ization (blue), result and zoomed result part (red); dashed con-
tour part (dark red) as comparison to traditional parametric active
contours (cf. Fig. 1)

general functionality: starting from the initialization (Fig. 3,
left), the contour moves step by step to the desired result
(Fig. 3, middle). The given initial topology is preserved dur-
ing the energy minimization process and, moreover, is also
exploited. For example, the contour part CA (top) is not close
to the desired object boundary at the beginning, but as a result
of the connection of the contour part to the network the con-
tour part CA is pulled to the correct object boundary. Focusing
on the center of the synthetic example (dashed white line),
no gaps or overlaps arise. Compared to the result of tradi-
tional parametric active contours (Fig. 1), the new method of
network snakes by definition preserves the topology during
the optimization leading to a correct result (Fig. 3, middle)
and zoomed result part (Fig. 3, right).

3.2 Implementation

The implementation of the system is accomplished in an
object-based computer language. Three general tasks are
regarded here which must be considered realizing the sys-
tem of network snakes.

First, the iterative solution of the method requires both, an
initialization and a stopping criterion. Different approaches
are feasible to stop the processing: from a methodical point
of view, the energy minimization has converged, when the
movement of the contour network is zero. Practically, the
stopping criterion is activated when the movement is below
a specified threshold.

Second, several parameters control the energy functional
of network snakes (18). The internal energy Eint(C(s)) is
influenced by two parameters α and β to incorporate shape
characteristics of the object of interest (cf. Sect. 2). In addi-
tion, the parameterκ includes modeled knowledge in the min-
imization process to weight the image energy Eimg(C(s)) and
the internal energyEint(C(s)). The parameter γ defines the
step size during the iterative minimization (18). The parame-
ters have to be predefined properly or, alternatively, could be
defined automatically with given reference contours in terms
of a supervised parameter tuning.

Third, the introduction and, moreover, the exploitation of
the topology has to be considered as the prominent challenge

of this work. The concept of parametric active contours
as basis of the new graph-based method requires a given
topology which is assumed to be correct. Furthermore, the
exploitation of a given correct topology during the energy
minimization process presumes the preservation of this ini-
tial topology. This fact cannot be guaranteed in general,
because close contour parts can merge or nodes with higher
degrees can move around each other. These undesired effects
mean that the result does not necessarily correspond to a
planar graph any longer. The preservation of the correct
initial topology must be ensured during the complete pro-
cessing to avoid touching or overlapping contour parts and,
thus, changes of the original topology, cf. Fig. 4 for a neg-
ative example. To solve this problem, a topology-preserv-
ing energy Etopo(C(s)) is introduced to avoid changes of
topology:

Etopo (C (s)) = 1

dtopo (C (s))2 . (23)

The parameter dtopo(C(s)) with 0 < dtopo < dmax describes
the distance between two neighboring contour parts. Conse-
quently, a convergence of two contours becomes more expen-
sive within the energy minimization process as the distance
between two contours becomes smaller and, thus, practically
the introduction of Etopo inhibits merging. The distance is not
introduced as a linear force but instead as a quadratic term,
because the interesting point of control arises when object
contours are close to each other. In this case, a quadratic
term leads to the desired stronger push-off effect. In addi-
tion, the influence of the topology-preserving energy to the

Fig. 4 Synthetic example without the topology-preserving energy:
initialization (blue), optimization steps (white) and result (red)

Fig. 5 Synthetic example including the topology-preserving energy:
initialization (blue), optimization steps (white) and result (red)
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total energy functional can be restricted by an upper limit
dmax, because neighboring contours will only influence each
other within a specific spacing. In the vicinity of nodes with
a degree ρ(C) > 2 representing the junctions of a contour
network, the topology-preserving energy is not considered
due to the intended intersection. Hence, the positioning of
neighboring contour parts within the network is monitored
and controlled during the processing. In Fig. 5, the same
initialization is used as in Fig. 4. The topology-preserving
energy Etopo(C(s)) enables the exploitation of topology dur-
ing the energy minimization and yields a correct result.

4 Results and analysis

4.1 Goals of the analysis

The main goal of the analysis is to highlight the benefits and
limitations of the proposed new method of network snakes.
The focus is on issues resulting from the newly introduced
topology to the concept of parametric active contours. The
interesting point to be analyzed is the question of which
potential from active contours can be tapped when the topol-
ogy is exploited during the optimization of the energy func-
tional. Taking up the goals of this article, the following issues
are analyzed and evaluated.

Initialization Network snakes are based on the concept of
parametric active contours. Hence, an initialization close to
the true object boundary is required to enable the local optimi-
zation process. The aim of the analysis is to formulate rules,
how the term close initialization can be defined and which
requirements have to be considered. Furthermore, dependen-
cies between the shape characteristics of the object of interest,
the image characteristics and the initialization are content of
the investigations.

Topology The introduction of topology to parametric active
contours is the main innovation of this work. The question is
to which extent network snakes can improve results or allow
for coarser initializations of the contour. In addition, the rela-
tion of the topology to the image data representing the object
of interest is a prominent part of the examinations to point out
the contribution of the topology to overcome disturbances or
less concise and fragmented image features.

Generality and transferability Another goal of the work is
the generality and transferability of the developed mathemat-
ical model. Thus, the applicability of the new model is tested
with different synthetic and real application scenarios.

4.2 Synthetic examples

In Figs. 6–14, synthetic examples are given to demonstrate
and analyze the relation between initialization, topology and
image data. The arbitrary synthetic examples composed of
homogeneous adjacent regions were chosen such that any
disturbing influencing factors can be ignored. Naturally, the
synthetic examples represent networks themselves by the
borderlines of the adjacent regions, too. The derived image
energy is based on the distance potential force computed from
the edge map of the synthetic examples.

The starting point of the optimization of the energy func-
tional E(C(s)) of network snakes is a given initial contour
network. In general, an initial contour network will move to
the closest image features, which can be expected regarding
the mathematical definition of the image energy Eimg(C(s)).
In Fig. 6, the middle part of the right vertical contour is ini-
tialized beyond a critical position, i.e. closer to the wrong
object contour, which would cause a wrong final result opti-
mizing this contour part separately using traditional para-
metric active contours. In contrast, network snakes consider
the complete network simultaneously during the optimiza-
tion of the energy functional and, in particular, exploit the
connectivity of the individual contour parts. Consequently,
the adjacent and correctly initialized contour parts guide the
middle part step by step to the correct result. The internal
energy Eint(C(s)) has a dominant weight compared to the
image energy Eimg(C(s)) of the total energy functional to
control the network snake while exploiting the given ini-
tial topology. In Fig. 7, an increased critical initialization
with several wrong initial contour parts within the complete
network is chosen. Both wrongly initialized contour parts

Fig. 6 Initialization of network snakes exploiting the topology during
the optimization: initialization (blue), optimization steps (white) and
result (red)

Fig. 7 Critical initialization of network snakes exploiting the topology
during the optimization: initialization (blue), optimization steps (white)
and result (red)
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in the middle of the horizontal and vertical contour, respec-
tively, move as part of the network step by step to the correct
result. In general, contour parts farther away from the object
boundaries are more influenced by the internal energy com-
pared to the image energy, which is why the topology has
such a large impact to the optimization process. Thus, the
introduction and exploitation of the topology to the concept
of parametric active contours enables weaker initialization
requirements compared to the traditional concept.

Concluding the initialization requirements, the following
rule can be established: The length of the contour parts, dis-
cretized by the number of nodes C0, . . . , Cn , with shorter
distances to the true object boundary has to be larger than of
those contour parts with shorter distances to wrong contour
parts

Cn∑
i=C0

(
dcorrect < dwrong

)
>

Cn∑
i=C0

(
dcorrect > dwrong

)
. (24)

The parameter dcorrect is defined as the difference between
the initial contour and the correct object boundary dcorrect =
|Cinit − Ocorrect|, and the parameter dwrong is defined as the
difference between the initial contour and an arbitrary wrong
object boundary dwrong = |Cinit−Owrong| for the coordinates
x and y, respectively. The rule in (24) incorporates the con-
ditions of equal magnitudes of the image energy and a larger
weight of the internal energy Eint(C(s)) compared to the
image energy Eimg(C(s)), i.e. the parameter κ is defined as
0 < κ < 1. It has to be noted, that the established rule above
has a very theoretical background. Using real data and real
application scenarios, the estimation of the required condi-
tions could be difficult. Thus, the left part of (24) must be
guaranteed to be large enough to compensate in particular
disturbing image characteristics and the uncertainty of how
close the contour network is initialized to the true object
boundary.

A main benefit of the proposed new method of network
snakes is the exploitation of the topology during the energy
minimization process. However, the requirement is a given
topology which is assumed to be correct. In addition, the
preservation of the topology during the optimization pro-
cess has to be ensured within the complete processing to
avoid touching or overlapping contour parts, which change
the initial correct topology. The second prerequisite has
been solved with the introduction of the topology-preserv-
ing energy Etopo(C(s)) to the energy functional as defined
in Sect. 3.2. Since the prerequisite assuming a given cor-
rect topology cannot always be guaranteed, the influence of
a wrong topology is analyzed next. In particular, the impact
of a partly wrong topology to the result of the given adjacent
correct parts of the graph is investigated. In Figs. 8 and 9 one
and two contour parts, respectively, are added to the initial
network. The influence of the additional wrong contour part

Fig. 8 Optimization of network snakes exploiting a wrong topology
with one surplus contour part: initialization (blue), optimization steps
(white) and result (red)

Fig. 9 Optimization of network snakes exploiting a wrong topology
with two surplus contour parts: initialization (blue), optimization steps
(white) and result (red)

to the adjacent correct parts of the network is relatively insig-
nificant, even though the shape model of some contours is
split. The final result delineates the object borders correctly,
and the surplus contour parts move to the minimum with-
out the presence of a related object border. Consequently,
the introduction of surplus contour parts to a correct initial
topology does not influence the adjacent correct contour parts
of the network in the final result.

In Figs. 10 and 11, one and two contour parts, respectively,
are eliminated leading to an incomplete representation of the

Fig. 10 Optimization of network snakes exploiting a wrong topology
with one missing contour part: initialization (blue), optimization steps
(white) and result (red)

Fig. 11 Optimization of network snakes exploiting a wrong topology
with two adjacent missing contour parts: initialization (blue), optimi-
zation steps (white) and result (red)
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topology of the objects of interest. Starting the optimization
of the contour network it is apparent that the missing contour
part results in a missing delineation of the respective object
boundary. Compared to the optimization exploiting the cor-
rect topology, the adjacent contour part in the middle of the
vertical contour is not able to reach the true object bound-
ary. The topology-preserving energy Etopo(C(s)) prevents
a merging with the left contour part, but the final result of
the network comprises not only one missing but in addition
two wrong contour parts (Fig. 10). The exploitation of the
topology enables the delineation of wrongly initialized con-
tour parts due to the connectivity to adjacent correctly initial-
ized contour parts concerning the initialization requirements.
But, as already mentioned above, the length of the contour
parts with shorter distances to the true object boundary has
to be larger than that of the contour parts with shorter dis-
tances to a wrong boundary. In contrast to the investigations
depicted in Fig. 10, the contour part shown in Fig. 11 at the
bottom moves to the correct object boundary. The underly-
ing reason for this fact is the same as the one for the failure
described just before: in this case, the length of the contour
pieces with shorter distances to the true object boundary is
larger, which is why the adjacent missing contour part has
no adverse effect. In conclusion, missing or surplus contour
parts in the network lead to missing or surplus delineations of
the respective object boundaries caused by the fixed topology.
An initial wrong topology caused by missing boundaries can
result in wrongly delineated adjacent contour parts, if the
adjacent contours are incorrectly initialized. A concept to
involve a correction of the topology simultaneously with the
exploitation of the topology during the energy minimization
is needed to resolve this problem, but is beyond the scope of
this paper.

All analysis carried out in this section so far is based
on ideal object representations within the image to define
a clear framework for the investigations focusing only on the
respective contents of interest. However, the assumption of
given ideal object boundaries cannot be ensured, in partic-
ular, when using real application scenarios. Thus, the effect
of the topology to deal with poor or fragmented object rep-
resentations is investigated next, see Figs. 12, 13 and 14.
The corresponding images are generated by randomly cut-
ting holes out of the object representation, in Fig. 14 Gauss-
ian noise is added accessorily. The fragmented or blurred
edge image is the input for the distance map. Contour parts,
which are directly influenced by object boundaries and, thus,
are represented with attracting forces in the image energy,
move faster to the object boundaries compared to those parts,
where the holes cause a neutral image energy. In all examples
the concerned parts in the contour network can be delin-
eated successfully as a result of the integrated internal energy
Eint(C(s)) and the topology within the energy functional.
The added Gaussian noise in Fig. 14 blurs the precise object

Fig. 12 Impact of the topology to slightly fragmented object represen-
tations in the image, white blobs represent holes: initialization (blue),
optimization steps (light gray) and result (red)

Fig. 13 Impact of the topology to strongly fragmented object represen-
tations in the imagery, white blobs represent holes: initialization (blue),
optimization steps (light gray) and result (red)

Fig. 14 Impact of the topology to strongly fragmented object repre-
sentations in the imagery with added Gaussian noise, white blobs rep-
resent holes: initialization (blue), optimization steps (light gray) and
result (red)

borders: this worsening becomes critically when the object is
only represented by very small object features, e.g. very small
edge features between close holes. In general, the established
statements in this section involve a balanced parameter set-
ting to enable the preservation of the shape model during
the complete optimization process. Here, the parameters are
defined with α = 0.1, β = 2, γ = 6 and κ = 0.9. The point
of a balanced parameter setting is important, because the
intended exploitation of the topology is related to the initial-
ization requirements, the parameter control and the iteration
behavior.

The shown synthetic examples in Figs. 12, 13 and 14 point
out the benefit and robustness of network snakes based on
parametric active contours due to the direct exploitation of
the topology together with the image energy and the inter-
nal energy. The topology is the crucial factor to deal with
fragmented and blurry object representations in imagery.
In addition, only locally available image information at
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networks or adjacent object borders has a purposive effect to
the correct result, if region-based image information within
the enclosed network segments is not useable due to hetero-
geneous object classes. This fact points out the advantage of
the proposed method compared to geometric active contours.

4.3 Real examples

Regarding the defined goals at the beginning of this sec-
tion, two points have not been investigated so far: the anal-
ysis of the generality and transferability of the proposed
new method of network snakes, and, the contribution of the
topology concerning its impact to overcome disturbances or
less concise object feature represented in real imagery. These
goals are analyzed with three real application scenarios: the
delineation of field boundaries from remotely sensed images,
the refinement of road networks using airborne SAR images
and the delineation of adjacent biological cells in micro-
scopic cell images. The detection of field boundaries is an
important task for the geo-sciences and the agricultural sec-
tor, for example for the derivation of field-based risks of
soil loss, precision farming or the monitoring of subsidies.
The geometric refinement of road networks to improve GIS-
databases is the topic of many current investigations to
improve the basic data for traffic navigation and planning.
The detection of cells and their derived properties regard-
ing shape, size and intensity distribution is an increasingly
important task in bio-medical research such as pharmaceuti-
cal drug discovery. All examples are chosen to demonstrate
the transferability to different applications and, moreover,
the examples are well-suited to point out the impact of the
proposed new method of network snakes.

In Fig. 15, a typical example of a pan-sharpened IKO-
NOS CIR-image with a ground resolution of 1.0 m is shown,
displayed is a part of 1,000 × 1,000 pixels. The delin-
eation of field boundaries is started with a preliminary
segmentation realized as an automatic system with a combi-
nation of a region- and edge-based approach: a multi-channel
region growing is carried out using all available channels in a
coarser resolution, because at that point the geometric accu-
racy is not essential. Neighboring pixels are aggregated into
one and the same region, if the difference in color does not
exceed a predefined threshold. In addition, extracted edges,
evaluated concerning their length and straightness, are intro-
duced into the region growing process to restrict expansion
beyond potential field boundaries. The derived initial contour
network consists of 120 contour parts represented by 1,850
nodes (Fig. 15, top). The end points of the contour network
with a degree ρ(C) = 1 at the image borders are chained
there and are allowed to move only along the borderline.
The image energy is derived from the standard deviation of
the intensity channel of the CIR-image within a quadratic

Fig. 15 Delineation of field boundaries from remotely sensed
imagery. Top initialization of network snakes using the initial segmenta-
tion (blue). Bottom final result of the optimization using network snakes
(red)

mask, because high values typically belong to field bound-
aries. Since the objects to be delineated are rather straight,
the parameter β is set to a large value compared to α, i.e.
α = 0.1, β = 30, γ = 6 and κ = 0.9. In the presented exam-
ples in this section, the parameters are constant for every
node to ease the comparison of the results. Of course, a
more flexible parameter setting is possible to introduce prior
shape-knowledge about specific contour parts, for exam-
ple different parameters can be selected at or near corners.
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Fig. 16 Top series detail of the utilization of network snakes shown in
Fig. 15 using the correct initial segmentation. Bottom series upwards
shifted initialization of network snakes. Both series initialization (blue),
optimization steps superimposed to the image energy (white) and final
result (red)

The optimization applying network snakes aims to improve
the geometric accuracy of the field boundaries exploiting the
image energy, the internal energy and the topology in a simul-
taneous optimization of the contour network (Fig. 15, bot-
tom). The initial segmentation is compared to the reference
data within a buffer of 10 pixels obtaining a completeness
of 79%, a correctness of 83% and the geometric accuracy as
expressed in the planimetric root mean square value is 4.9
pixel equivalent to 4.9 m. The segmentation reflects a typical
result concerning the completeness and correctness; only a
few initial boundaries are missing. In addition, the result after
applying the network snakes is compared to the reference
data within a buffer of 10 pixels: the completeness increases
to 83%, the correctness to 87% and the geometric accuracy
improves about 36% to 3.6 pixel or 3.6 m. The refinement
is rather good, because the geometric accuracy achieves a
quality which is provided by the information contained in
the image representing the field boundaries. In particular,
the heterogeneous structures within the fields cannot support
region-based image information and, additionally, the field
boundaries are mostly represented only with blurry features.
Thus, the newly introduced and the joint graph-based opti-
mization enable the good delineation even though the object
representation is poor. The improvement of the complete-
ness and correctness represents an enhancement of the field
boundaries, which are contained in the buffer of 10 m and,
thus, are usable for this specific application compared to the
initial segmentation.

The automatic segmentation used as real initialization to
start the optimization process (Figs. 15, 16, top series) is
exemplarily shifted upwards to vary the initialization con-
ditions (Fig. 16, bottom series). Now, the completeness of
47% and the correctness of 48% of the shifted initialization

are considerably worsened compared to the correct initiali-
zation. But, the optimization using network snakes improves
both quality measures to nearly identical values compared
to the results obtained with the original initial segmentation,
i.e. the completeness improves to 73% and the correctness
to 78%. In addition, the geometric accuracy improves about
55% to 3.8 pixel or 3.8 m using the shifted initialization,
which is more or less the same compared to the geometric
accuracy using the correct initialization. The results demon-
strate that a moderate shift of the initialization can be com-
pensated using network snakes.

In Fig. 17, an airborne SAR image with a ground resolu-
tion of 1.0 m is shown, displayed is a part of 900 × 1,000
pixels. The geometric refinement of the road network is ini-
tialized with road data taken from a GIS database (Fig. 17,
left). The contour network consists of 27 contour parts
represented by 1,200 nodes. Again, the end points of the
contour network at the image borders are chained there allow-
ing movement only along the borderline. The image energy
is derived from the Laplace of Gaussian (LoG) operator of
the SAR image, because the result represents roads in a dis-
criminable way compared to the local background. Since
the objects to be delineated are rather straight, compara-
ble to the delineation of field boundaries, the parameters
are set identically with α = 0.1, β = 30, γ = 6 and κ = 0.9.
The initial GIS database road network is compared to refer-
ence data within a buffer of 25 pixels yielding a complete-
ness of 92% and a correctness of 100%. The buffer of 25
pixels guarantees the consideration of all database objects,
the reduced completeness is caused by few missing roads in
the database (lower right part of Fig. 17). However, the focus
is on the geometric accuracy as expressed in the planimetric
root mean square value which is only 9.6 pixel equivalent
to 9.6 m. The result after applying the network snakes is
compared to the reference data within the same buffer: obvi-
ously, the completeness of 92% and the correctness of 100%
are kept constant, but the geometric accuracy increases to
2.6 pixel or 2.6 m. This improvement is very good, in partic-
ular considering the complex properties of the SAR image
caused by the typical speckle-effect, layover and shadow-
ing. The benefit of network snakes exploiting the topology
during the graph-based optimization together with the image
energy and the internal energy is evidently. In addition, only
the local image information at the network has a purposive
effect to the correct result, because the region-based image
information within the enclosed road network segments is
not useable due to the different object classes (settlement,
fields, grassland) (Fig. 18). This fact points out the advan-
tage of the proposed method compared to the latest research
of multiple adjacent geometric active contours (cf. Sect. 2).

In Fig. 19, typical multi-channel fluorescence labeling
are shown with a size of 200 × 200 pixels: cell nuclei
image (left) and microscopic cell image (middle). Each cell
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Fig. 17 Delineation of a road
network from airborne SAR
image. Left initialization of
network snakes using the road
database (blue). Right final
result of the optimization using
network snakes (red)

Fig. 18 Detail of the utilization of network snakes shown in Fig. 17:
initialization (blue), optimization steps superimposed to the image
energy (white) and final result (red)

nucleus is located within the associated cell membrane,
which allows to take this information as seed point to derive
the topology delineating the boundaries of adjacent cells.
The segmentation of the cell nuclei within the first channel
leads to a contour network with 48 contour parts represented
by 1,500 nodes (Fig. 19, left). Obviously, the detection of
all cell nuclei leads to a correct topology. The initial seg-
mentation process is compared to manually derived refer-
ence data in a 10 pixel wide buffer, 10 pixels are equivalent
to approximately 1.5µm. Thus, the requirement of a mini-
mum accuracy for the usability of cells is reached considering
the provided resolution and noise within the image. All cell
nuclei are detected correctly, which leads to quality measures
of 100% for both, completeness and correctness. The geo-
metric accuracy as expressed in the root mean square value
is 3.1 pixel. This strategy is well-known in detecting and
tracking cells, because the machine-dependent artifacts like
noise and typical object characteristics like homogeneous
areas in the intensity distribution at cell boundaries cause
major difficulties using only one image channel. The network
snakes approach is used to optimize and improve the accu-
racy using the second channel representing the cytoplasm
(Fig. 19, middle, right). Since the objects to be delineated

have a specific range of curvature, the parameter β is set to a
large value compared to α, but is not set to such a large value
compared to the delineation of mostly straight field bound-
aries or roads, i.e. α = 0.1, β = 10, γ = 6 and κ = 0.9. The
final result is compared to the reference data: obviously, the
completeness and correctness are kept constant at 100%, but
the geometric accuracy increases to 2.9 pixel. The improve-
ment of the complete network is only moderate, because
the optimization works well in the center of the example,
but works poorly at the borders of the image. This fact is
confirmed regarding only the quality measures in the center
of the example excluding the border area: the initial geo-
metric accuracy with 3.0 pixel is similar compared to the
complete initialization, but after the optimization using net-
work snakes the accuracy increases to 2.2 pixel. The differ-
ent improvement of the cells concerning the whole example
and the center area is caused by the exploitation and impact
of the topology. In particular, noisy image data and weak
object representations in the image energy point out the ben-
efit of the introduced topology. Moreover, the results dem-
onstrate the general advantage of network snakes compared
to geometric active contours and area-based segmentation
methods, because the poor object representation and the dif-
ficult discrimination of the objects require the utilization of
local image information combined with global topologically
knowledge.

In Fig. 20, a detail of Fig. 19 is shown (top series). In con-
trast, the part of the example shown in Fig. 20 (bottom series)
does not include the topology- preserving energy Etopo(C(s))
defined in Sect. 3.2. Thus, the two neighboring nodes, which
are close to each other located on the right side, move around
each other and change the correct initial topology leading to a
wrong result. The example demonstrates the impact of the uti-
lization and preservation of the topology. The other depicted
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Fig. 19 Delineation of
biological cells. Left cell nuclei
with derived initialization
(blue). Center initialization
superimposed to the
microscopic cell imagery (blue).
Right final result of the
delineation of cells using
network snakes (red)

Fig. 20 Top series detail of the utilization of network snakes shown
in Fig. 19 incorporating the topology-preserving energy. Bottom series
detail of the utilization of network snakes without the incorporation
of the topology-preserving energy. Both series initialization (blue),
optimization steps superimposed to the image energy (white) and final
result (red)

contour parts of the network move to the correct boundaries
of the cells, even though the object representation within the
image energy is not very distinct.

5 Conclusions

The main goal of the paper was the introduction and overall
investigation of the general framework of network snakes,
which enables the delineation of arbitrary graphs repre-
senting the geometric position of networks and boundaries
between adjacent objects. The presented method solves this
task with the introduction of a graph-based model based on
the concept of parametric active contours. In addition, the
role of the required initialization, the generality and trans-
ferability of the approach was investigated with a systematic
analysis of synthetic and real images in order to point out the
usefulness of the new method for a large variety of differ-
ent applications. The main impact of network snakes is the
combination of the image energy representing the objects in
the real world, the internal energy incorporating the shape

characteristics, and the topology representing the structure
of the scene in a common comprehensive energy functional.

The analysis of the results shows, that adjacent objects
without any available homogeneous object characteristics
within the segments and, moreover, objects represented
directly by networks independently of object and purposive
image information of enclosed network segments, can be
well delineated. Thus, the introduction and exploitation of the
topology is a very prominent factor to deal with fragmented
and blurry object representations in imagery. Hence, the well-
known active contour models as an important method in com-
puter vision are enhanced and can be employed for a new
class of objects.

Two main points are of special interest for possible future
research: The first point concerns the given rigid topology
in conjunction with the dependence on the quality of the
initialization. The question is whether a potential change in
the topology can be introduced into the proposed mathemati-
cal model and whether the dependence on the initial position
of the network can be reduced in this way. The underlying
concept of parametric active contours includes an explicit
representation of contours in their parametric form during
the deformation process resulting in rigid topology. This fact
involves three issues: first, an initialization needs to be pro-
vided; second, the initial topology is assumed to be correct;
and, third, the given topology must be preserved in terms of a
planar graph during the optimization process. The third point
has been fulfilled with the incorporation of the topology-
preserving energy Etopo(C(s)). The first and second point
constitute important constraints regarding the given initiali-
zation and topology. The local optimization involves a depen-
dence on the given initialization. The exploitation of the
topology reduces the role of the initial quality as shown
regarding the synthetic examples. Nevertheless, the proposed
method depends on initializations, thus requiring a prepro-
cessing or segmentation step prior to the optimization. For the
presented three real examples, the initialization is provided
automatically using different preprocessing steps: automatic
initial segmentation for the field boundary delineation, data
from a GIS database for the road network refinement, and
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automatic detection of cell nuclei for the delineation of adja-
cent biological cells. However, a common automatic pre-
processing method for providing initial values for different
applications is not given in this paper. A further crucial point
is the issue of whether the exploitation of the rigid topology
can be combined with the detection of topology errors and
their elimination in one optimization process. The develop-
ment of strategies and approaches to introduce the possibility
to change the topology in conjunction with their exploitation
is a sophisticated task for future research.

The second interesting point for possible further inves-
tigation is the question of whether an internal evaluation
of the contour network can provide quality measures for the
obtained results. The question of internal evaluation is related
to the problem of rigid topology discussed above. A statement
concerning the quality of a contour part during the optimi-
zation of the network can provide evidence to delete a con-
tour part, thus changing the topology. Yet, decisions in this
context could be deceptive: for example, the utilization of
the image information to provide a new assessment crite-
rion regarding a contour part could lead to a wrong decision.
Active contour models have the advantage compared to other
methods of combining the image energy with internal energy
terms and, thus, delineating a contour correctly even though
the image information is non-purposive. The introduction of
the topology improves this characteristic because network
snakes enable a larger independence of the image informa-
tion exploiting the topology. Consequently, the utilization of
the image information during the optimization to derive qual-
ity measures of the contour parts of the network is difficult.
In addition, an internal evaluation requires redundant infor-
mation which causes a modification of the proposed method
of network snakes to derive that independent information,
which up to now has not been considered. The internal eval-
uation of network snakes to provide quality measures and to
give evidence to change the topology is thus another chal-
lenging task for further research with the aim of developing
strategies to improve the general methodology of network
snakes.
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