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This paper introduces a new open source, knowledge-based framework for automatic interpretation of
remote sensing images, called InterIMAGE. This framework exhibits a flexible modular architecture, in
which image processing operators can be associated to both root and leaf nodes of a semantic network,
which accounts for a differential strategy in comparison to other object-based image analysis platforms
currently available. The architecture, main features as well as an overview on the interpretation strategy
implemented in InterIMAGE are presented. The paper also reports an experiment on the classification of
landforms. Different geomorphometric and textural attributes obtained from ASTER/Terra images were
combined with fuzzy logic to drive the interpretation semantic network. Object-based statistical agree-
ment indices, estimated from a comparison between the classified scene and a reference map, were used
to assess the classification accuracy. The InterIMAGE interpretation strategy yielded a classification result
with strong agreement and proved to be effective for the extraction of landforms.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction this new generation of programs represents a considerable ad-
Remote sensing technology delivers the most important infor-
mation for the identification and monitoring of land cover changes
and physiographic features on the earth surface, effectively sup-
porting the investigation of the interactions between the environ-
ment and agricultural, urban, and environmental planning
activities (Ehlers, Janowsky, & Gähler, 2002).

Presently, however, the lack of efficient automatic image inter-
pretation tools renders it difficult to achieve the goals of many
environmental monitoring applications. The large amount of time
spent from the acquisition of an image until its classification turns
out to be inappropriate to support critical decisions that may avoid
or mitigate the effects of environmental degradation or unplanned
urban expansion (Rego, 2003).

Currently, most remote sensing data analysis techniques re-
quire intense human intervention. The conventional digital images
analysis platforms, which exclusively operate with statistical
methods, have proved to be constrained for detecting targets of
greater complexity. Their results usually require careful inspection
by a human specialist for the identification and correction of inter-
pretation errors (Bückner, Pahl, Stahlhut, & Liedtke, 2001).

In this sense, some commercial software packages for the auto-
matic interpretation of images have been launched, aiming to over-
come the drawbacks imposed by conventional classifiers. Although
ll rights reserved.
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a).
vance in relation to the conventional classifiers, some important
challenges remain in the domain of automatic interpretation of
images, so as to assure a greater accuracy and detailing capacity
in feature extraction and in classification. There is consequently a
strong demand for the development of robust techniques for auto-
matic information extraction and interpretation of remote sensing
data (Blaschke, Lang, Lorup, Strobl, & Zei, 2000; Carrion, Gianinetto,
& Scaioni, 2002).

A rather successful approach for automatic image interpretation
is based on the explicit modeling – on a high level computational
environment – of the human interpreter’s knowledge concerning
the interpretation problem (Bückner et al., 2001; Clément, Girau-
don, Houzelle, & Sandakly, 1993; Liedtke, Bückner, Grau, Growe,
& Tönjes, 1997; Matsuyama & Hwang, 1990; McKeown, Harvey,
& McDermott, 1985; Sagerer & Niemann, 1997; Schiewe, Tufte, &
Ehlers, 2001; Witlox, 2005). In this approach human experts’
knowledge is organized in a knowledge base (Graham & Jones,
1997) to be used as input for automated interpretation processes,
enhancing the productivity and accuracy and reducing at the same
time the subjectivity of the interpretation process.

In this paper we introduce the architecture and main features of
a knowledge-based image interpretation system called InterIMAGE
(Section 1.1), an open source software development initiative, led
by the Computer Vision Lab of the Electrical Engineering Depart-
ment at the Catholic University of Rio de Janeiro (PUC-Rio) and
by the Brazilian National Institute for Space Research (INPE).

In the remainder of this article we describe the interpretation
strategy implemented in the system (Section 1.2) and a brief
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overview on the study area is provided in Section 1.3. Section 2
basically describes the data acquisition and pre-processing. Section
3 presents an actual image interpretation experiment related to
the classification of landforms in the municipality of São José dos
Campos, located in the southeastern State of São Paulo, Brazil. Sec-
tion 4 describes the results of this experiment, and a critical eval-
uation is conducted on the potential and drawbacks of the input
data and methodological procedures. Finally, some conclusions
and directions for future work are drawn in Section 5.
1.1. System description

InterIMAGE is based on the software GeoAIDA (Bückner et al.,
2001), developed at the TNT Institute of the Leibniz Universität
Hannover, Germany, and it inherited from that system the basic
functional design, knowledge structures, and control mechanisms
(Fig. 1). A new graphical user interface, a knowledge model debug-
ging tool, and some image processing operators are also available
in InterIMAGE (Laboratório de Visão Computacional – LVC, 2009).

In short, InterIMAGE implements a specific image interpretation
strategy, which is based on and guided by a hierarchical descrip-
tion of the interpretation problem, structured in a semantic net-
work. The bases for interpretation of digital image data are the
results generated by image processing operators. In this context,
an image processing operator is any operator that generates a
labeled result image of a given image. Such image processing oper-
ators are denoted here as ‘classifying operators’. They can imple-
ment virtually any decision rule based on spectral, texture or
structural features and form the basis for the interpretation of a
scene.

In most of the systems that use semantic networks for knowl-
edge representation, only the leaf nodes of the network can be
associated with image processing operators. The following group-
ing of the objects often produces a very high combinational diver-
sity, because all objects extracted from the image have to be taken
into account at the same time.
Fig. 1. InterImage sys
In InterIMAGE, holistic operators (Liedtke et al., 1997) can be
used to reduce the combinatorial diversity problem. Holistic oper-
ators aim at identifying specific types of objects independently of
the identification of their structural components. They can be con-
nected to any node of the semantic network, and their basic task is
to divide a region into sub-regions, reducing the need of processing
alternative interpretations. The structural interpretation of the
sub-regions that follows can verify or disprove the holistic results.

Moreover, InterIMAGE enables the integration of any such clas-
sifying operators in the interpretation process. The problem that
different operators can generate different information for the same
region in the image is solved by the use of additional knowledge
regarding the judgment of the competing interpretations. Further-
more, as different operators can process different types of data, the
system allows the integrated analysis of image and GIS data from
multiple sources.
1.2. Interpretation strategy

In InterIMAGE explicit knowledge about the objects expected to
be found in a scene is structured in a semantic network, defined by
the user through the system’s graphical user interface (GUI).

A semantic network contains nodes and edges; nodes represent
concepts and edges represent the relations between the concepts.
The network is actually a connected graph without cycles, i.e. a
tree. In each concept node, information necessary for the analysis,
such as the image processing operator specialized in the search of
occurrences of the concept, is defined. During the analysis, guided
by the semantic network, the system controls the execution of the
operators and generates a network of instances, each instance
defining a geographic region associated to a specific concept.

Interpretation of remote sensing data means to transform input
data into a structural and pictorial description of such data that
represents the result of the concerned analysis. In InterIMAGE,
the result contains a structural description (an instance network)
and thematic maps (Fig. 2). The final and all intermediate results,
tem architecture.



Fig. 2. Components of the interpretation strategy. Source: Pahl (2003).
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in terms of region descriptions, are stored in XML format, and can
be used for further external investigations.

The analysis process performed by InterIMAGE has two steps: a
bottom-up and a top-down one. The top-down step is model-dri-
ven (Fig. 3) and generates a network of hypotheses based on the
semantic network. The grouping of hypotheses and their accep-
tance or refusal is a task of the data-driven bottom-up analysis.
Fig. 3. Process flow of the top-down operator: this operator receives as input an image se
operator. The top-down operator generates as output a labeled image and the correspon
(objects). Source: Pahl (2003).
The final instance network results from the bottom-up data-driven
analysis.

In each node of the network the user defines the information
necessary for the execution of each processing step, that is, the im-
age processing (classification) operator and respective parameters
to be used in the top-down step (top-down operator) as well as the
decision rules to be used in the bottom-up step.
gment to be processed. An optional mask can reduce the area to be processed by the
ding list of classified regions, which thoroughly describes the generated segments
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The top-down operators are entrusted with separating regions
into sub regions and with building hypotheses for the concepts
of the semantic network, regions of the image associated to the
concepts. This task is realized recursively from the root to the leaf
nodes. For this purpose any (external) image processing operator,
which creates hypotheses for the sub-region, can be used in the
analysis process. The sub-region hypotheses can be defined by
means of consistency measurements. If certain textural metrics,
for instance, allow only a few possible hypotheses for a particular
region, no further investigation of other concept hypotheses is per-
formed for that region.

When the top-down analysis reaches the leaf nodes, the inter-
pretation turns from model-driven into data-driven (bottom-up).
The decision rules for the bottom-up step (Fig. 4) are defined in a
user friendly graphical language that provides functions for decid-
ing between spatially concurrent hypotheses generated in the top-
down step.

1.3. Study area

The municipality of São José dos Campos, with a total area of
1098.6 km2, is located in the east of São Paulo State, southeastern
Brazil (Fig. 5). The area of interest was selected for analysis due
to its landform diversity, the availability of previous local studies
(Florenzano & Csordas, 1993; Verdade & Hungria, 1966), and the
good accessibility for field work.

The study area is embedded in a mountain range, comprising
the Mar and Mantiqueira Ridges. This range is the most prominent
landform in eastern South America and it dates back to the Pre-
cambrian era (Almeida & Carneiro, 1998). Three events were
responsible for its physiographic settings and hence defined the
present lithological and geomorphological characteristics: (i) con-
tinuous interactions between continental plates (in the Proterozoic
era), which formed and successively reworked a series of accre-
tionary, collisional or transpressional mobile belts, (ii) the erosion
and leveling of a preexisting large region, with mainly igneous and
Fig. 4. Process flow of the bottom-up operator: this operator receives a list of hypothetic
change the corresponding labeled images, and they can be grouped into classes of objec
Pahl (2003).
metamorphic rocks, informally known as ‘Japi Surface’, during the
Upper Cretaceous to Lower Eo-Tertiary ages; and (iii) taphrogene-
sis (in the early Paleogene period), sedimentation, and half-grabens
filling (Almeida, 2000; Almeida & Carneiro, 1998).

Regarding its lithology, the area of investigation is composed of
crystalline rocks (igneous and metamorphic) belonging to the fol-
lowing complexes: (i) Amparo, (ii) Embu, (iii) Paraíba do Sul, and
(iv) Paraisópolis. Sedimentary rocks are also found in the Taubaté
Formation (Late Tertiary) and Quaternary deposits (alluvia). The
above mentioned complexes mostly consist of gneisses (Archaen/
mid-Proterozoic), sin- and post-tectonic granite suites (Late Prote-
rozoic), both derived from crust movements of the Brasiliana Oro-
genesis (Precambrian) (DNPM, 1983).

In the crystalline rocks, the geomorphological features comprise
high hills and mountains (Florenzano & Csordas, 1993). According
to Almeida and Carneiro (1998), plateaus and steep slopes lie on
more resistant rocks, while rocky lineaments and the drainage net-
work are influenced by faults, fractures, and shear zones. On sedi-
mentary terrains, Alluvial Plains (Florenzano & Csordas, 1993),
terraces (Verdade & Hungria, 1966), and Tertiary hills (Florenzano
& Csordas, 1993) are found. It is worth highlighting the presence of
several patterns of alluvial intermountain plains. Verdade and
Hungria (1966) acknowledged the existence of two levels of river
terraces in the right margin (southwest) of the Paraíba do Sul river,
that crosses the study area in the NW–SE direction. This can be as-
cribed to the river trend in shifting to the northwest direction
(Verdade & Hungria, 1966), caused by the north-northwest inclina-
tion of the half-graben (Almeida, 2000).
2. Data acquisition, data preprocessing, and reference data

2.1. Data acquisition

The data used comprised: (i) ASTER/Terra VNIR images (bands
3N and 3B, within the range 0.78–0.86 lm, with a nominal spatial
nodes with the corresponding labeled image. These nodes are evaluated, which may
ts of a higher level. A labeled image is obtained with the generated groups. Source:



Fig. 5. Study area: Brazil and São Paulo State (in black) on the left side, and on the right side the municipality of São José dos Campos (view of its shaded relief). Source:
Adapted from INPE – Instituto Nacional de Pesquisas Espaciais (2006).
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resolution of 15 m); (ii) a 1:10 000 vector file of the street network;
(iii) a 1:10 000 vector file of water streams; (iv) a 1:10 000 vector
file of 10 m interval contour lines; (v) scattered elevation data
points; (vi) a 1:50 000 vector file of geological units, and (vii)
109 GPS points with orthometric heights.

The ASTER/Terra images, acquired on 08/31/2004, are of pro-
cessing level L1B (geometric and radiometric correction) and they
present a base/height ratio of 0.6 (Abrams, Hook, & Ramachandran,
1999). The vector files belong to the geographic database ‘‘Cidade
Viva’’, issued by the local government of São José dos Campos
(PMSJC). The GPS coordinates were jointly obtained by the Aero-
nautics Institute for Advanced Studies (IEAv), the National Institute
for Space Research (INPE), and the Foundation for Space Science,
Applications and Technology (FUNCATE).

The Zscreen 2000 was used for stereoscopic visualization, and
the softwares PCI Geomatica 10.0.3, ENVI 4.3, and SPRING 4.3.3
were used for image processing as well as for the generation of
the digital elevation model (DEM) and the textural and geomor-
phometric variables.

2.2. Data preprocessing

Data preprocessing comprised the DEM generation, its valida-
tion, and the extraction of textural and geomorphometric vari-
ables, which were further used for the multilevel segmentation
and the object-based classification. For generating the DEM, the
software Geomatica 10.0.3 (module OrthoEngine) was used, in
which the following processing operations were executed: (1) col-
lection of ground control points (GCPs) and tie points (TPs); (2)
estimation of the mathematical model parameters and the stereo
pair orientation; (3) generation of epipolar images; (4) calculation
of parallaxes through stereo-correlation, and (5) DEM generation.
In steps 1 and 2, the ASTER/Terra sensor attitude and ephemeris
data, Toutin’s Model (Toutin, 2004a, 2006), 43 three-dimensional
GCPs, and 90 bi-dimensional TPs were used.

The employed model considers the collinearity (single images)
and coplanarity (stereo pair) equations, and is thus based on a rig-
orous photogrammetric model. Since the parameters for correcting
distortions (associated with the platform/sensor combination,
Earth rotation, and cartographic projection) are correlated, Toutin’s
model reduces such parameters to a decorrelated set, upon which
all the above mentioned corrections are simultaneously made
(Toutin, 2004a). The model positional accuracy can be improved
with the use of GCPs, employed in an iterative refinement proce-
dure based on the least square method (Toutin, 2002, 2004a,
2004b, 2006).

The GCPs planimetric coordinates were collected directly on the
streets network file, and the respective elevation coordinates were
obtained in an ancillary DEM, generated as well in Geomatica
10.0.3 for this specific purpose, using the contour lines and the
scattered elevation data points by means of bilinear interpolation.
The TPs are simultaneously collected on both images of the stereo
pair, and hence provide more robust models.

After the stereo pair orientation and the generation of epipolar
images (Fig. 6a and b), the parallaxes were automatically calcu-
lated. This task was accomplished by means of search and correla-
tion windows, which locate homologous pixels on both images
(Ehlers & Welch, 1987). The correlation measure employed by
the OrthoEngine algorithm is the normalized cross-correlation
coefficient (PCI Geomatics, 2006). Further information on this cal-
culation can be found in Russ (1998).

The DEM validation used the 109 GPS points, previously men-
tioned in Section 2.1. The ASTER/Terra DEM and these GPS points
were referenced to the same horizontal datum (SAD69/Brazil)
and to the same cartographic projection system (UTM). The dis-
crepancies (residuals) between the ASTER/Terra DEM and the
GPS points elevations were estimated. Further on, a descriptive
analysis of residuals was executed followed by a t-Student test,
meant to evaluate if the residuals mean showed a trend. The ob-
tained results were cross-checked with other scientific works,
which also evaluated the elevation accuracy of ASTER/Terra data.

The validated DEM, generated with the same resolution as the
stereo pair images (15 m), was not subject to any kind of post-pro-
cessing. This DEM was then used to extract the geomorphometric
and textural variables, which drove the expert classification sys-
tem employed in this work. Table 1 presents the input variables



Fig. 6. (a) Left epipolar image – Band 3N. (b) Right epipolar image – Band 3B.

Table 1
Input variables of the classification model.

Type of variable Description

Geomorphometric Elevation (ASTER/Terra DEM)
Slope
Vertical curvature
Horizontal curvature

Textural Entropy

Others Drainage density
Lakes and dams
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of the classification model. All these variables entered the model as
images with different formats (float, binary, 8 bits, 11 bits) and the
extension ‘.pfm’.

Slope is one of the components of an isotropic two-dimensional
vector of elevation gradient, which is obtained from the first DEM
derivative. The length of this component indicates slope steepness.
The second derivative provides the horizontal and vertical curva-
tures (Valeriano, 2003; Valeriano & Carvalho, 2003). The vertical
curvature indicates areas of gravitational acceleration and disac-
celeration and characterizes slopes in different types: concave
(negative values), convex (positive values) or straight (zero values)
(Shary, 2007). The horizontal curvature highlights the convergence
(negative values) and divergence (positive values) lines of surface
runoff (Shary, 2007).

In order to extract the textural variables, the gray level co-
occurrence matrix (GLCM) was used. A GLCM is a two-dimensional
histogram of gray levels for a pair of pixels which are separated by
a fixed spatial relationship, defined by the interpixel distance (d)
and orientation (h) observed in the spatial window of interest. En-
tropy measures the deviation from the uniform texture or lack of
‘organization’ of orientations. It is high when the elements of GLCM
have relatively equal values, and low when the elements are close
to either 0 or 1 (i.e. when the image is uniform in the window)
(Clausi, 2002; PCI Geomatics, 2006).

Drainage density was generated using a coarse segmentation le-
vel of the shaded relief and the vector layer of water streams (Sec-
tion 2.1) as input data for classification. For each segmented region,
we calculated the ratio of the surface area of water streams to the
area of the segment. The final map was sliced into two classes:
‘high drainage density’ and ‘medium and low drainage density’.
This binary layer was then converted into an image in ‘.pfm’ for-
mat. Finally, the input variable ‘lakes and dams’ was obtained by
a region classification of the band 3N, which was orthorectified
based on the generated ASTER/Terra DEM. This classification was
converted into a shape file, and this file was then reformatted as
a thematic raster layer, with extension ‘.pfm’.
2.3. Landform classes and reference map

The landform classes were based on the legend of the São Paulo
State geomorphological map (IPT, 1981), issued at scale
1:1 000 000. For the final classes selection (Table 2), two proce-
dures were adopted: (i) a visual interpretation of the ASTER/Terra
epipolar stereo pair, and (ii) field work, which was important for
the discrimination of the different river terraces levels, as reported
in Verdade and Hungria (1966).

The legend followed the International Institute for Geo-Infor-
mation Science and Earth Observation (ITC) system of geomorpho-
logical survey, which emphasizes the main terrain aspects
(morphography, morphometry, morphogenesis, and morphochro-
nology) and is employed in geomorphological mapping and natural
resources and hazards evaluations (Verstappen & van Zuidam,
1991). The landforms were then classified into groups of prevailing
morphogenetic processes: (i) structural-denudational landforms
(in purple); (ii) denudational landforms (in brown), and (iii) aggra-
dational landforms (in green). Further information on the lithology
of the study area obtained from the vector file of geological units
(Section 2.1) can be found in Table 2.

Due to the unavailability of detailed geomorphological maps for
the area (1:100 000 or greater scales), a reference map of land-
forms was specially produced in a 3D digital station by an experi-
enced geomorphologist, adopting the same set of classes used in
the semi-automated classification. This task was accomplished by
means of a restitution of the stereo pair of epipolar images, and this
reference map was used for validating the classification result.
3. Experiment design: object-based classification

The experiment implemented in this work was designed to
evaluate the performance of InterIMAGE for the specific purpose
of classifying landforms (geomorphological features). The knowl-
edge model for the automatic interpretation experiment is based
on a semantic network comprising five classes: (i) ‘Sedimentary
Low Hills’; (ii) ‘Ridges/Mountains/High Hills’; (iii) ‘Alluvial Plains’;
(iv) ‘Alluvial Intermountain Plains’, and (v) ‘Lakes and Dams’
(Fig. 7).



Table 2
Landforms classes, their main lithologic characteristics and prevailing morphogenetic processes.

Landforms0 Lithology Prevailing morphogenetic processes

Alluvial Plains Sandy clay sediments Aggradation
Alluvial Intermountain Plains Sandy sediments
Sedimentary Low Hills Sandy sediments and sandy clay sediments Denudation
Ridges/Mountains/High Hills Migmatites, gneisses, schistes, philites, and granite suites Tectonism-Denudation

Fig. 7. Semantic network for the classification of landforms in São José dos Campos.
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In InterIMAGE, the semantic network is structured so as to con-
tain an upper node, known as ‘scene node’, to which all other nodes
are subjugated. The node ‘Level 1’ contains the bottom-up opera-
tor. No top-down operator is attached to the nodes ‘Scene’ and ‘Le-
vel 1’. A top-down operator was attached to each of the nodes
‘Sedimentary Low Hills’, ‘Ridges/Mountains/High Hills’, ‘Alluvial
Plains’, and ‘Alluvial Intermountain Plains’. This operator performs
a segmentation of the ASTER/Terra DEM, using the region-growing
algorithm (Baatz & Schäpe, 2000), generating for each segment one
hypothesis of each of those concepts – geographically coincident
hypotheses. The parameters used in the segmentation were set
as: 50 for the scale parameter; 0.7 for the color factor; 0.3 for the
shape factor; 0.3 for compactness; and 0.7 for smoothness.

As stated in Kressler and Steinnocher (2006), the scale parame-
ter controls the maximum allowed heterogeneity per segment, and
thus, larger scales will lead to larger segments. The color and shape
factors are complementary, i.e., they sum to one and indicate how
color and shape information is used in the segmentation process.
The shape factor is further divided into compactness and smooth-
ness. A high value of compactness leads to smaller and very com-
pact segments, and hence, is more suitable for man-made objects,
while a high value of smoothness leads to segments optimized to
have smooth borders, which are on their turn more suitable for
natural objects (Kressler & Steinnocher, 2006).

Fig. 8 shows the bottom-up rules – placed at node ‘Level 1’ of
the semantic network – as they are represented in the graphical
user interface of InterIMAGE. The column to the left contains col-
ored boxes associated with the so-called elements, which corre-
spond to the basic structures of a decision rule. In our particular
case, the elements comprise: Class, Logic, Expression, Membership,
and Classify. The Class element is used for selecting hypotheses of a
specific class. The element Logic selects hypotheses that fulfill a gi-
ven criterion. It enables the user to choose attributes and specify
crisp selection criteria based on logical expressions. Expression is
used to set an attribute value. Membership is an element that uses
fuzzy logic to calculate and aggregate class membership values.
And finally, the element Classify solves spatial conflicts and classi-
fies the selected hypotheses according to their membership values
(LVC, 2009).

As shown in Fig. 8, initially all hypotheses associated to the chil-
dren of ‘Level 1’ have their membership to the respective concepts
set to null, so as to set equal conditions as to the competition
among hypotheses in relation to the existing classes of landforms.

The membership to the class ‘Sedimentary Low Hills’ is based
on three attributes, calculated for all segments generated by the
top-down operator: mean of the DEM (i.e. average height), mean
of entropy, and mean of slope (calculated for all pixels contained
in each segment). In Fig. 8, these attributes were coded respec-
tively as ‘media0’, ‘media5’, and ‘media1’. The final membership
to ‘Sedimentary Low Hills’ was defined as an aggregation of the
values obtained through the membership functions (or fuzzy sets)
‘dem_col’, ‘entro_col’ and ‘decli_col’ (Fig. 9). The element ‘Min’ re-
fers to the fuzzy minimum operator (Bonham-Carter, 1994) and
was employed for the aggregation of membership values. The fuz-
zy membership functions associated to each of the attributes
describing the class ‘Sedimentary Low Hills’ can be seen in Fig. 9.
The membership to ‘Ridges/Mountains/High Hills’ is also based
on three attributes. The first one is the drainage density, coded as
‘media4’. This first attribute is used to select only the hypotheses
(segments) that comply to crisp thresholds, corresponding to the
existence of the class ‘high drainage density’ on the drainage den-
sity image (Section 2.2). The non-complying hypotheses will re-
main with membership to ‘Ridges/Mountains/High Hills’ equal to
zero. The second attribute corresponds to the mean of the DEM
(‘media0’), and the third one to the mean of slope (‘media1’). The
final membership to ‘Ridges/Mountains/High Hills’ is defined by
an aggregation (minimum) of the values obtained through the
membership functions ‘dem_ser_mor’ and ‘decli_ser_mor’ (Fig. 10).

The membership to ‘Alluvial Intermountain Plains’ is once more
based on three attributes: amplitude of the DEM (‘amp0’), mean of
the DEM (‘media0’), and mean of slope (‘media1’). The amplitude
refers to the difference between the maximum and minimum
height values observed within a hypothesis (segment). Fig. 11 pre-
sents the membership functions associated to the attributes
describing the class ‘Alluvial Intermountain Plains’. On its turn,
the membership to ‘Alluvial Plains’ is based on two attributes:
mean of entropy (‘media5’) and mean of slope (‘media1’). The
membership functions associated to these attributes are shown
in Fig. 12.

Membership to ‘Lakes and Dams’ is exclusively defined through
an attribute derived from the thematic raster layer containing such
water bodies, coded as ‘media8’. The attribute value indicates the
percentage of pixels in the segment associated with a hypothesis
that fall into such water bodies, according to the thematic layer.
In a similar way, the scene background, acknowledged as a class,
was also identified through a single attribute. This attribute con-
sidered the lower threshold of the DEM values in terms of its back-
ground, thus creating a mask over the study area.

Finally, the ‘Spatial Resolve’ operator synthesizes the class
assignment and concludes the classification process. This operator
is responsible for selecting the hypotheses with the highest mem-
bership values among all geographically concurrent hypotheses,
and for discarding the other competing hypotheses. This classifica-
tion operator is followed by the element ‘Merge All’, in which all
neighboring objects assigned to the same class are merged into
one single object.



Fig. 8. Bottom-up rules for the landforms classification.

Fig. 9. Membership functions employed for identifying the class ‘Sedimentary Low Hills’.
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Fig. 10. Membership functions employed for identifying the class ‘Ridges/Mountains/High Hills’.

Fig. 11. Fuzzy membership functions employed for identifying the class ‘Alluvial Intermountain Plains’.
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In order to refine the classification initially produced, a se-
quence of topological operators was added at the end of the
semantic network. They basically consist of post-processing rou-
tines designed to reclassify wrongly classified objects according
to contextual rules, by taking into consideration the classes of
neighboring objects. Only one type of topological operator was em-
ployed, namely ‘enclosed by class’, which seeks objects that are to-
tally enclosed by one or more specific classes and reclassifies them
into another class (generally, the enclosing class). Please refer to
LVC (2009) for additional information. Fig. 13 shows the topologi-
cal operators used in this experiment, as they are seen in the inter-
face of the bottom-up decision rule.
4. Results and discussion

The validation results for the ASTER/Terra DEM obtained a root
mean square error (RMSE) of 9.38 m, and hence is consistent with
similar works (Oliveira & Paradella, 2008, 2009; Toutin, 2008). This
level of accuracy is up to the elevation standards required for map-
ping products at a 1:100 000 scale. Since the geomorphological
maps presented in this work consist of thematic products that
are not concerned with elevation accuracy, it is reasonable to as-
sume that these maps are up to the standards of regional mapping,
with scales ranging from 1:50 000 to 1:100 000, what complies
with the works of Bolten and Bubenzer (2006) and Bubenzer and



Fig. 12. Fuzzy membership functions employed for identifying the class ‘Alluvial Plains’.

Fig. 13. Topological rules for the landforms classification.

Table 3
Statistical indices used for the ASTER/Terra DEM validation.

ASTER/Terra DEM

Number of samples (GPS points) 109
Minimum error – Dminimum (m) �18.40
Maximum error – Dmaximum (m) 30.60
Mean error – Dmean (m) 4.14
Standard deviation – SD 8.40
Root mean square error – RMSE (m) 9.38
|tsample| 5.146
t(n�1, 5%) 1.659
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Bolten (2008). According to Siart, Bubenzer, and Eitel (2009), the
intended scale always governs quality thresholds, and, in reverse,
data quality predetermines the type of detectable landforms.

The statistical indices derived from the discrepancies between
the DEM and the GPS points and employed for the DEM accuracy
assessment are presented in Table 3. Additionally, a two-tailed t-
Student test (a = 10%) was also applied in order to check whether
a systematic trend could be detected. The t-Student test null
hypothesis (H0) of no difference between the DEM and GPS eleva-
tions was nevertheless rejected. This is in some sense to be ex-
pected, because the DEM is influenced by the height of objects
that extend above the surface, such as buildings and trees.
Fig. 14 shows the DEM with the study area boundary superim-
posed as a black line, the 109 GPS points (black dots), and areas
with no data (black circles), which mainly correspond to water
bodies and shadow. Since the variance between pixel gray values
in such targets is close to zero, the stereo-correlation and the auto-
matic extraction of parallaxes becomes unfeasible.

In Fig. 15a the reference map for the study area obtained from a
3D visual interpretation of the ASTER stereo pair (epipolar images
of bands 3N and 3B) using a digital photogrammetric station is de-
picted, whereas Fig. 15b shows the thematic map generated from
the final classification performed in InterIMAGE. Illustrative photos
of the morphogenetic landforms, taken during the field work, are
presented in Fig. 16 together with their respective inset boxes with
the shaded relief image. These photos are detached from the final
classification of the landforms draped over shaded relief.

Table 4 shows the confusion matrix between the ground truth
and the classification. All the classified objects (segmented regions)
excluding the ones used for training were taken into account for
assessing the accuracy indices (global accuracy and Kappa index).
The rows of the matrix show the classification results obtained
with InterIMAGE and the columns show the data from the refer-
ence map. The global result in terms of the overall coincidence
(global accuracy) between the reference map and the classification
is 95%, and the Kappa index attained 86%. Considering the



Fig. 14. DEM, study area boundary (black line), no data areas (black circles), and GPS points (black dots).

Fig. 15. (a) Morphogenetic landforms obtained from visual interpretation. (b) Morphogenetic landforms obtained from semi-automated classification.
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commission and omission errors, it is possible to observe that the
class ‘Sedimentary Low Hills’ presented confusion with both
‘Ridges/Mountains/High Hills’ and ‘Alluvial Plains’. This can be as-
cribed to the diversity of hill typologies, ranging from mildly flat to
moderately dissected surfaces. On the other hand, the confusion
between ‘Ridges/Mountains/High Hills’ and ‘Alluvial Plains’ was
of reduced extent and limited to the contacts between these units.
The Kappa index is regarded as of ‘strong agreement’ (Landis &
Koch, 1977), and the producer’s and user’s accuracies (Table 4) sug-
gest a substantial agreement between the reference map and the
classification result.

5. Conclusions

This article introduced InterIMAGE, a new knowledge-based
image interpretation platform developed in compliance with the



Fig. 16. Final classification of the morphogenetic landforms draped over shaded relief of the study area, illustrative photos of the landforms and respective inset boxes with
the shaded relief image.

Table 4
Error matrix, global accuracy, producer’s and user’s accuracies, and Kappa index for the landforms classification.

Classification Reference map (visual interpretation)

Ridges/Mountains/
High Hills

Sedimentary
Low Hills

Alluvial
Plains

Alluvial Intermountain
Plains

Producer’s
accuracy

User’s
accuracy

Ridges/Mountains/High Hills 4192 13 1 0 0.97 0.99
Sedimentary Low Hills 99 595 26 0 0.84 0.83
Alluvial Plains 9 100 317 0 0.92 0.74
Alluvial Intermountain Plains 0 0 0 2 1.00 1.00
Global accuracy 0.95
Kappa index 0.86
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open source philosophy and with a flexible architecture. The com-
bination of a model-driven followed by a data-driven analysis, as
performed by InterIMAGE, has the potential of an improved com-
putational efficiency in comparison to commercially available soft-
wares for object-based image analysis. In this way, InterIMAGE
offers innovative knowledge modeling possibilities.

The purpose of this work was to develop a semi-automated
method for geomorphological mapping in InterIMAGE, exploring
new ways of data fusion, integrating an ASTER/Terra spectral band
(3N), a DEM generated from a stereo pair of bands 3N and 3B, geo-
morphometric and textural variables extracted from this DEM, and
GIS vector layers. In face of the obtained results, the following
conclusions can be drawn.

In spite of its medium spatial resolution (15 m), the ASTER/Ter-
ra DEM was suitable for the identification of subtle landforms, like
terraces (contained within the Alluvial Plains) and a tiny alluvial
intermountain plain. In addition to their high discrimination
power, the ASTER/Terra images are price worthy, enable stereo-
scopic vision, and also an appropriate integration between multi-
spectral and elevation data. This integration is able to eliminate
errors prone to arise when handling data from different sources
(DEMs, multispectral images, etc.) and of different spatial resolu-
tion. Future works dealing with semi-automated identification of
landforms can now rely on ASTER GDEM, which is globally avail-
able and will enable time-saving classification procedures.

The hierarchical semantic network could embody rules repre-
senting the topological, contextual, geomorphometric, and textural
characteristics of the corresponding landforms. The cognitive ap-
proach employed in this work enabled the expert knowledge mod-
eling with a very good degree of fidelity, what led to a high
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performance in the semi-automated classification result, con-
firmed by the strong agreement of the Kappa index.

The presented semi-automated classification approach allows
the user to get acquainted with and to explore the behavior of mor-
phographic and morphometric characteristics of the concerned
landform classes. It also enables further investigations related to
the connections between such characteristics and the landforms
genesis (tectonics, basin sedimentation, etc.). Conventional survey-
ing and mapping methods do not deliver these inquiries in such a
short span of time.

Another major contribution of this approach is that it generates
detailed digital data on terrain features that can be easily retrieved
and disseminated for practical applications, like hydrological mod-
eling, mass movement simulations, cut and fill earth works, and
alike, which usually demand fast and precise information. And fi-
nally, an outstanding advantage of this method is the possibility
of replicating the hierarchical semantic network to other areas
with similar geomorphological characteristics, once the InterIM-
AGE platform allows the fine tuning of fuzzy membership func-
tions and their respective thresholds, so as to fit the model to the
peculiarities of particular landforms. In this way, it is possible to
save modeling efforts from the photointerpreter point of view as
well as computational processing time in terms of selecting the
optimal attributes. This is especially useful in geomorphological
mapping of large areas, as in the case of Brazil.

As the InterIMAGE project evolves, the task of implementing
more sophisticated knowledge-based models in InterIMAGE will
certainly become much easier. Further development of InterIMAGE
is under way. Multi-temporal interpretation functionalities, auto-
matic knowledge extraction functions, as well as built-in image
processing operators are some of the developments envisaged for
the near future.
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