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As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.
– Albert Einstein



Abstract

In this thesis a new approach for automatic road database verification based on remote sensing

images is presented. In contrast to existing approaches, the applicability of the new approach is not

restricted to specific road types, context areas or geographic regions. The general applicability of

the approach is achieved by combining several state-of-the-art road detection and road verification

approaches that can deal well with different road types, context areas and geographic regions. Each

road detection or verification approach is realized as an independent module representing a unique

road model and a specific processing strategy. All modules provide independent solutions for the

verification problem of each road object stored in the database. Statistical reasoning is applied to

the outputs of the individual modules in order to find the optimal combined solution.

Each module provides a solution consisting of two parts. The first part is a probability distribution

with respect to the two possible states of a database object, correct and incorrect. This part is based

on the developments of the original state-of-the-art approaches. The second part is a probability

distribution with respect to the two states of a particular model, applicable and not applicable. This

part is a specific contribution of this thesis. It is always based on an assessment of the assumptions

implicitly made for the particular model, and only if all assumptions are fulfilled a model is considered

as applicable. In accordance with the original literature, such model assumptions refer to the presence

of specific road types, context areas or geographic regions, but also to the visibility of features and the

availability of representative training samples in case of statistically defined models. Consequently,

each module provides probabilities with respect to two state spaces (correct, incorrect and applicable,

not applicable). In accordance with the Dempster-Shafer Theory both probability distributions are

mapped to a new state space that includes correct, incorrect and unknown as the possible states of a

database object. Combination and classification are realized in the new state space, whose outcome

is considered to be the starting point for manual post-processing.

Experiments with real cartographic datasets provided by three national mapping agencies, showing

7742 correct and 669 incorrect road objects, are used to reveal the potential and the limitations of

the proposed approach. If a human operator investigates all database objects assigned to the states

incorrect or unknown and edits them if necessary, a database quality of 97.5–100% is achieved,

while the human operator must look at 25–33% of the road objects in the database. If a human

operator concentrates only on database objects assigned to the state incorrect, the database quality

is reduced by approximately 5%, but the human operator must investigate not more than 9% of

the road objects. Additionally, a comparison with other state-of-the-art road detection approaches

using benchmark datasets shows that in general the proposed approach provides better results than

other state-of-the-art approaches.

Keywords: geo-spatial databases, verification, image analysis, data fusion



Zusammenfassung

Diese Arbeit stellt einen neuen Ansatz zur automatischen Verifikation von Straßendatenbanken auf

Grundlage von aktuellen Luft- und Satellitenbildern vor. Im Gegensatz zu bereits vorliegenden

Forschungsarbeiten ist der neue Ansatz nicht auf spezifische Straßentypen, Kontextbereiche oder

geographische Regionen beschränkt. Dies wird primär durch eine Kombination unterschiedlicher

Forschungsarbeiten, welche als unabhängige Verifikationsmodule im Gesamtsystem integriert sind,

erreicht. Jedes der Module basiert auf einem spezifischen Straßenmodell, deren Anwendbarkeit auf

bestimmte Straßentypen, Kontextbereiche oder geographische Regionen beschränkt bleibt, die in

Kombination jedoch nahezu Allgemeingültigkeit erreichen. Die nicht modellierten Straßenobjekte

werden automatisch erkannt und können somit manuell verifiziert werden.

Die Kombination der Modelle basiert auf einer statistischen Auswertung der Ergebnisse aller Mo-

dule. Hierfür liefert jedes Modul zu jedem Straßenobjekt der zu verifizierenden Datenbank ein aus

zwei Teilen bestehendes Ergebnis. Der erste Teil ist eine Wahrscheinlichkeitsverteilung, welche den

Zustand eines Straßenobjektes (richtig, falsch) beschreibt. Die zugrunde liegenden Ansätze sind

weitgehend aus der Literatur übernommen. Der zweite Teil ist eine Wahrscheinlichkeitsverteilung,

welche den Zustand eines Modells (anwendbar, nicht anwendbar) beschreibt. Dieser Teilaspekt ist

grundlegend neu und somit ein wichtiger Beitrag der vorliegenden Arbeit. Die Idee dabei ist, dass

ein Modell nur genau dann anwendbar ist, wenn alle Modellannahmen bezüglich eines Straßenob-

jektes im Bild erfüllt sind. Ausgehend von den ursprünglichen Forschungsarbeiten beziehen sich die

Annahmen auf das Vorhandensein bestimmter Straßentypen, Kontextbereiche oder geographischer

Regionen, aber auch auf die Sichtbarkeit von Merkmalen oder, bei statistischen Ansätzen, auf die

Verfügbarkeit von repräsentativen Trainingsdaten. Somit liefern die Module Wahrscheinlichkeiten

bezüglich zweier Zustandsräume, welche auf Grundlage der Dempster-Shafer Theorie auf einen neuen

Zustandsraum abgebildet werden. Dieser neue Zustandsraum unterscheidet zwischen richtig, falsch

und unbekannt.

Experimente mit drei realen Straßendatenbanken, welche insgesamt 7742 richtige und 669 fehler-

hafte Straßen enthalten, zeigen das Potential des neuen Ansatzes. Dabei stellt sich heraus, dass eine

Datenbankqualität von 97.5–100% erreicht wird, wenn alle Straßenobjekte, die als unbekannt oder

falsch klassifiziert sind, von einem menschlichen Operateur betrachtet und gegebenenfalls berichtigt

werden. Hierbei müssen nur 25–33% aller Straßenobjekte vom Operateur betrachtet werden. Re-

duziert man den manuellen Aufwand weiter und berücksichtigt nur die maximal 9% der als falsch

klassifizierten Straßenobjekte vermindert sich die Datenbankqualität im Durchschnitt nur um ca.

5%. Weitere Experimente auf Grundlage von Benchmark-Datensätzen ordnen den neuen Ansatz

wissenschaftlich ein. Die Ergebnisse zeigen, dass der neue Ansatz in allen Testszenen mindestens

gleich gute Ergebnisse liefert wie der jeweils beste Ansatz des entsprechenden Benchmark Tests. In

zwei der sechs Szenen sind die Ergebnisse mit ca. 25% höherer Vollständigkeit sogar deutlich besser.

Schlagworte: räumliche Datenbank, Verifikation, Bildanalyse, Datenfusion
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1

1. Introduction

Road databases have large economical relevance as the basis for navigation systems and web services
like Google maps (www.google.maps.com) or bing-maps (www.bing.com/maps), whereby they have
become part of our everyday life, e.g. for finding the way to the office, booking a hotel or finding
the nearest shop for a good coffee. Beyond that, road databases have been known all along to be
an important part of the geodata infrastructure, e.g. as the basis for urban planning or organizing
emergency services. For many of those applications frequent updates and quality control are of
vital importance. Hence, the private sector, which is mainly represented by a relatively small
number of mapping companies, and the public sector, which is represented by national mapping
agencies, spend high efforts on their road databases. As an alternative to those professionally
working institutions, recently also crowdsourcing projects such as the Humanitarian OpenStreetMap
Team (www.hot.openstreetmap.org) are able to provide valuable road databases as they can activate
thousands of volunteers worldwide.

The availability of remote sensing data such as aerial and satellite images with a geometric res-
olution better than 2.5 m has significantly increased over the last two decades. Hence, up-to-date
imagery where roads can be observed is basically available (cf. Figure 1.1). Web mapping services
use these circumstances to visualize road databases superimposed on imagery (and other map con-
tents). Mapping agencies commonly use the available remote sensing imagery rather than in-situ
observations with gps devices to update or check their databases. In the meantime the open street
map project that was initially based on in-situ gps measurements also uses remote sensing imagery.
This allows the volunteers to participate in mapping from remote locations, which is especially
interesting for crisis events.

Figure 1.1.: Up-to-date imagery superimposed by an outdated road database.
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Despite the advantages of imagery to update road databases, the bottleneck is the manpower
required to search through the imagery. In this regard, editing efforts become less time consuming
if the frequency of updates increases because only small changes can be expected. Therefore, ap-
proaches that automatically identify the database errors on the basis of the imagery are of interest,
while the editing can still be carried out manually.

Figure 1.1 shows a possible scenario for the problem of automatically finding database errors.
It turns out that detecting these errors is challenging as roads and even more database errors
concerning roads are complicated to describe in general. This problem can partly be circumvented
by introducing additional knowledge into the process. Therefore, the actual research field dealing
with automatic updates basically distinguishes two tasks: First, the automated verification, i.e. the
analysis of all existing road database entries, and second the automated detection of missing road
database entries. Both subtasks induce specific strategies that exploit the knowledge given with the
original database in different ways.

Recent research has shown that approaches to verification and detection of missing roads can
provide promising contributions to the problem of updating road databases with a high time ef-
ficiency. However, neither of these approaches gained practical relevance. One reason for this is
that such approaches are only capable to deal with relatively small areas, where the roads appear
more or less similar, and thus can be explained by relatively simple models. For instance Youn et al.
[2008] basically restrict their approach to straight roads in a dense urban area, while Gerke & Heipke
[2008] basically restrict their approach to rural areas. Hence, the existing approaches cannot simply
be scaled up to achieve the goal of automation because real datasets usually cover large areas with
heterogeneous conditions for the underlying automatic image analysis processes.

1.1. Objectives and focus

The objective of the work described in this thesis is to develop a method that automatically verifies
road database objects on the basis of remote sensing imagery. In this context, verification means a
check whether a road database object can be found in the image and whether the required positional
accuracy is met. Hence, the approach has to define the state of a database object that principally
can be either correct or incorrect.

The approach presented in this thesis does not deal with the verification of attribute information
that is stored in some road databases such as road name, road width or road type. The approach is
not about automatically achieving corrected road geometries either, nor is it about finding completely
new roads. These three tasks, while important for practical applications, are beyond the scope of
this work.

In contrast to existing approaches for road database verification, the appearance of roads and their
local surroundings is not restricted. The new method can deal with very different conditions, e.g.
roads in urban, sub-urban and rural context areas, straight and winding roads. This is realized by
a combination of different state-of-the-art road detection methods, each of which has been proven
to operate successfully under specific circumstances, e.g. in urban, sub-urban and rural context
areas. The main contribution of this thesis lies in the integration of the partially incomplete and
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possibly contradicting solutions that the different methods provide. For that purpose, a statistical
framework on the basis of the Dempster-Shafer Theory (dst) is developed, which requires an indi-
vidual uncertainty measure for each solution provided by each method. It conceptually considers
always two states of a method: either its underlying model is applicable or it is not applicable for a
particular database object. The state is always determined by checking the correspondence of the
actual situation in the imagery with the assumptions made by the underlying model of the method
which represents the second important contribution of the thesis.

One method in the framework uses a support vector machine (svm) classifier, and hence its model
is implicitly defined on the basis of training samples. This model assumes the training data to be
representative for the test data. In order to check this assumption, the feature space distance of a
test sample from the training samples is evaluated. Therefore, a new kernel space metric is developed
on the basis of a support vector data description (svdd) which is the third important contribution
of this thesis.

The verification results of each method (correct, incorrect) and the corresponding model-uncertainty
(applicable, not applicable) are mapped to a new state space that includes three states: correct,
incorrect and unknown. The experiments are carried out with real cartographic datasets which par-
ticularly demonstrates the practical relevance of the additional state unknown. Further experiments
are carried out with benchmark datasets so that the new approach can also be put into the context
of the scientific literature.

1.2. Outline

This thesis is structured as follows: First, state-of-the-art approaches dealing with road detection
and verification of road databases are reviewed. In Chapter 2, the mathematical basics are described
in the context of the new approach. The methodology of the new approach is explained in detail
in Chapter 3. Seven different ways to verify road objects based on ten different road models are
explained and the strategy to combine their outputs is presented. Chapter 3 concludes with a
discussion of the presented approach. Chapter 4 reports on experiments, including an evaluation of
the svm-based uncertainty metric, an evaluation of the fusion concept based on benchmark datasets
and an evaluation based on real cartographic datasets. Finally, in Chapter 5 conclusions and an
outlook are given.

1.3. State of the art

Developments in the field of automatic road detection in remotely sensed imagery started in the
80’s, reaching a climax in the later 90’s; see [Auclair-Fortier et al., 1999; Mena, 2003] for extensive
literature surveys. Recent research tries to combine the basic concepts developed in the 90’s but also
integrates successful concepts from neighbouring disciplines, such as machine learning. However, the
scientific goal of providing techniques for practical applications has not yet been achieved.

The following review will primarily focus on approaches that use rgb aerial or satellite images
with a ground sampling distance (gsd) of 0.2–1.0 m, because this is currently the most realistic input
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available for potential applications of the proposed approach, e.g. at national mapping agencies or
other web map providers. Furthermore, approaches based on infrared information and stereo images
will also be considered because these kinds of data are expected to become more available in the
near future. Approaches relying on very high resolution imagery (gsd<0.2 m), Synthetic Aperture
Radar (sar) and Airborne Laserscanner (als) data are not explicitly reviewed but included if their
concepts seem to be transferable to the other data.

The objective of this thesis is road verification which in the first place requires the detection of
roads in the imagery. Hence, the first part of the following review (Sections 1.3.1 and 1.3.2) is
about road detection approaches, independently of what their motivation might be: detection from
scratch or specific tasks related to road databases such as database enhancement, verification or
update. In accordance with [Mayer, 1998] road detection approaches can be distinguished by their
underlying model which always describes at least some properties of roads in the imagery. In Section
1.3.1 the most promising properties considered in state-of-the-art approaches will be investigated
one after the other and independently of each other. In Section 1.3.2 strategies to combine different
road properties will be presented. In Section 1.3.3 particularly road detection approaches that deal
with road tasks such as database enhancement, verification or update will be investigated, before in
Section 1.3.4 the deficits of the existing road verification approaches will be discussed.

1.3.1. Road models

Line-based models: A significant group of approaches models roads as lines of more or less constant
brightness and width. The maximum curvature and the width of a line can be specified by intro-
ducing knowledge about the road type and the image resolution. Line-based models were defined
for panchromatic imagery with a gsd of about 1–2 m. For instance, Wiedemann & Ebner [2000]
initially apply the line detection algorithm described in [Steger, 1998], and then evaluate the result-
ing line segments according to their homogeneity, width and curvature. Higher resolution images
are usually down-sampled to a resolution of 1–2 m in order to reduce disturbances with respect to
the line model, e.g. [Bacher & Mayer, 2005]. Other authors apply the Steger line-detector but use
different input data. For instance, Gerke & Busch [2005] use ndvi1 images and Hinz & Baumgart-
ner [2003] use ndsm2 images. A deficit of the Steger line-detector is its restriction to homogeneous
background regions. Alternative line detection algorithms that are slightly more effective for hetero-
geneous background regions rely on wavelet-transform [Gruen & Li, 1995], Radon-transform [Zhang
& Couloigner, 2006] or Hough-transform [Hu et al., 2004]. Furthermore, specific line detectors have
been developed for sar data [Tupin et al., 1998] and for als data [Clode et al., 2007]. If an initializa-
tion is given, e.g. from a road database, the line property of roads can also be exploited by applying
active contours [Kass et al., 1988], as Klang [1998] and Koutaki et al. [2006] have demonstrated.

In conclusion, numerous line-based models have been developed for different types of input data
that are most effective for homogeneous background, as a benchmark test, organized by eurosdr

1The normalized difference vegetation index (ndvi), depending on the red and the infrared bands of an image shows
the vitality of the vegetation in form of grey values. Roads usually represent non-vegetated areas, and thus differ
significantly from vegetated areas such as grassland.

2A normalized digital surface model (ndsm) shows the height above the ground. Roads usually represent ground
surface areas, and thus differ from 3d objects such as buildings.
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has shown [Mayer et al., 2006]. However, for a heterogeneous background as it typically appears
in urban areas, such approaches suffer from high false alarm ratios due to confusion of roads with
other objects, e.g. rails, rivers, elongated houses or gaps between two elongated houses, rows of trees
and walls. As a consequence, some authors use stricter parameters but then achieve lower detection
ratios, e.g. [Hu et al., 2004; Zhang & Couloigner, 2006].

Models based on parallel edge pairs: These approaches model road borders as pairs of anti-parallel3

edges. The spacing between those edges is often specified according to the road type and the
given image resolution. Such methods usually rely on aerial images with a gsd ≤ 0.5 m, where
parallelism and distance between previously extracted edge segments are evaluated to determine road
candidates, e.g. [Heipke et al., 1995]. Zhang [2004] searches for parallel edge pairs in stereo images,
and thus considers three dimensions to determine road candidates. Given some initialization, Fua
[1996] uses ribbon snakes, a specific form of active contours, to consider anti-parallel edges. Göpfert
et al. [2011] present an extension of this method to the 3d case.

The benchmark test described in [Mayer et al., 2006] concludes that parallel edge pairs are mainly
useful in rural context areas. As an advantage to line-based approaches, approaches relying on
parallel edge models produce less false alarms even in heterogeneous image regions. However, they
also provide lower detection ratios because road borders are often partially occluded by trees, vehicles
and shadows.

Models based on edge directions: These approaches model roads as regions that are less frequently
intersected by edges than the background. Furthermore, if an edge intersects a road, it is expected
to have the same direction as the road. For instance, Youn et al. [2008] present an approach for
satellite imagery of about 1 m gsd in an urban environment, called acupuncture method. At first,
so-called acupuncture nails are defined by analysing the main directions of the road network. The
acupuncture nails represent plausible positions of roads. Then, the intersections of acupuncture nails
with image edges are counted: nails having low intersection counts are classified as roads. Gamba
et al. [2006] present an approach for sar images that applies direction-sensitive filters to determine
the frequency and the directions of edges and then integrate the filter responses along plausible road
paths that are known in advance from another processing step.

The results presented in [Gamba et al., 2006; Youn et al., 2008] show that these models can deal
with urban areas even if the imagery has comparably low geometric resolution. However, such a
model is restricted to a specific type of urban area, where roads appear in a regular grid between
buildings aligned in a rectangular pattern. If these preconditions are not fulfilled, for instance in
rural areas, the model is not applicable.

Colour-based models: Such approaches model roads as image regions with specific radiometric prop-
erties in each colour band. Such models require colour imagery, e.g. rgb or irrg4, mostly with a
gsd ≤ 0.5 m. As illumination conditions and the materials of the road surface and background ob-
jects can hardly be predicted and defined by humans, usually machine learning methods are applied
to parametrise the model on the basis of training samples. The training samples are either provided

3In the related literature the term anti means that the gradients have opposite directions.
4Here irrg denotes the colour bands infrared, red and green. Some authors use the term false colour infrared image
(cir).
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by a human operator (e.g. Song & Civco, 2004; Poullis & You, 2010) or by a second road detection
algorithm (e.g. Doucette et al., 2001; Bacher & Mayer, 2005). Nearly the full range of popular su-
pervised classification methods have been applied, e.g. the maximum likelihood classifier [Doucette
et al., 2001], classifiers based on Fuzzy-set theory [Bacher & Mayer, 2005], neural networks [Kuo-Tu,
1995], expectation maximization to determine the parameters of a Gaussian mixture model [Peng
et al., 2010; Poullis & You, 2010; Butenuth et al., 2011] and support vector machines [Song & Civco,
2004; Ma et al., 2008; Fujimura et al., 2008]. In addition, unsupervised classification methods have
been tested, e.g. isodata [Zhang, 2004] and k-means clustering [Zhang & Couloigner, 2006]. In that
case, the class assignment to the clusters is determined by fixed rules, e.g. low brightness in the
infrared and high brightness in the blue band.

Reviewing the experiments for colour-based models, their principal applicability to different con-
text regions is an advantage. A deficit, pointed out by Das et al. [2011], is that such approaches
usually suffer from many false alarms due to parking lots and roofs that have similar colour proper-
ties as roads. Thus, many authors using the colour model concentrate their experiments on scenes
where the roofs have different colour properties to the roads and parking lots are less relevant, and
thus achieve rather good results.

Texture-based models: Roads can also be modelled as image regions of specific texture. In this
thesis texture is understood to describe relations of grey values of different pixels within a certain
local neighbourhood, whereas colour is understood to describe the grey values of a pixel (or a set of
pixels) in different colour bands. A rather typical texture-based model is described in Quam [1978],
where cross correlation coefficients between a central image patch and several patches in a local
surrounding are computed to determine the most probable road direction starting from an initial
road pixel. Haverkamp [2002] defines a set of rotated rectangular patches around each image pixel,
where the width of the rectangle corresponds to the expected road width and its length depends
on how straight the roads are expected to be. For each pixel, the variance of the grey values of
each rectangle is determined and compared to those of the other rotated rectangles with respect
to the same pixel. The minima are assumed to indicate the road directions. The presence of one
or two significant minima indicates a road pixel, while the presence of more than two significant
minima indicates a road junction. Another strategy for exploiting texture properties is given in
[Mena & Malpica, 2005], where a histogram defined from a quadratic test patch is compared to
training histograms. The similarity of histograms is determined by the Bhattacharyya distance.
Fujimura et al. [2008] use a road database to define plausible road regions. Then, they determine
the similarity between the alternative solutions by comparing the respective histograms via the
Bhattacharyya distance. As it is assumed that only one image region in a local neighbourhood
can represent the true position of a road, the most dissimilar region from the rest of the regions is
classified as a road, i.e. the one that has the largest integrated Bhattacharyya distance from the rest.
Das et al. [2011] apply an svm classifier using the features mean, standard deviation, skew energy
and entropy of the grey value distribution extracted from a quadratic image patch around a pixel.

Usually, texture-based methods require a gsd ≤ 0.5 m, e.g. [Mena & Malpica, 2005; Das et al.,
2011]. However, this demand can be reduced to a gsd ≤ 2.5 m if rectangular image patches are
employed [Haverkamp, 2002; Fujimura et al., 2008]. As Haverkamp [2002] points out, adjusting the
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lengths of the patches to values larger than parking lots or buildings makes the method robust against
false alarms but also reduces the detection ratios for curved and short roads. Furthermore, errors
in texture-based models are particularly caused by occlusions or shadow as mostly homogeneous
texture properties along the road are expected.

Segment-shape models: A comparably small number of approaches models roads as elongated and
more or less rectangular regions of homogeneous image properties. One example is given by Ruskoné
& Airault [1997] who initially perform a watershed segmentation in a panchromatic image of about
0.5 m gsd, followed by a sub-selection of segments that have parallel borders. Jin & Davis [2005]
initially apply a k-means segmentation on the basis of Ikonos images and then select the road
segments based on the features mean width, elongation and size. Grote et al. [2012] first apply a
normalized cuts segmentation on the basis of an irrg image with 0.1 m gsd, considering features
such as brightness, hue, ndvi and local gradients. The resulting segments are classified according to
the shape descriptors: elongation, convexity, width and width constancy.

As Jin & Davis [2005] point out, approaches relying on segment shapes tend to produce low false
alarm ratios even for challenging environments. Grote et al. [2012] show that the detection ratios
of such approaches may decrease in situations where shadows or occlusions due to trees or vehicles
occur frequently.

Local context models: Local context objects such as road markings, vehicles, trees, buildings, grass-
land and water allow to indirectly infer the presence of roads. However, such models become complex
with an increasing number of considered objects. Therefore, most authors restrict possible inter-
actions. For instance, [Hinz & Baumgartner, 2003; Zhang, 2004] define semantic networks, i.e. a
relatively small number of (directed) edges represent specific relations between roads and context
objects. More recent approaches often concentrate on one type of context object only and model the
inference statistically. For instance, Gerke & Heipke [2008] consider rows of trees to infer occluded
roads. Poulain et al. [2010] use buildings to infer shadowed road regions and Butenuth et al. [2011]
use initially known road centrelines and areas classified as water to infer flooded roads.

As several authors have demonstrated, local context models can be very effective to provide
solutions for particular situations, e.g. for tree-lined roads [Gerke & Heipke, 2008] or for urban
canyons [Poulain et al., 2010]. However, they are far away from being generally applicable as they
concentrate on a few interactions with specific context objects only. Furthermore, it is worth noting
that such approaches require the positions of the context objects in the imagery which increases the
overall complexity of such approaches.

Network topology models: Roads are arranged in networks which implies that roads are never
isolated, a property that is considered by many authors to remove false alarms of former processing
steps, e.g. [Zhang & Couloigner, 2006]. Furthermore, it can be assumed that a road network connects
places at relatively short distances. One possibility to exploit this property is to add road segments
where a short connection seems to be missing, e.g. [Baumgartner et al., 1999]. Another possibility is
to adjust the detection process to be less restrictive in situations where a short connection seems to be
missing, e.g. [Fischler et al., 1981; Gerke & Heipke, 2008]. The approach presented in [Wiedemann
& Ebner, 2000] determines the shortest paths based on road candidates detected by a pre-processing



8 1. Introduction

step that itself achieves high detection ratios but also produces many false alarms. The basic idea is
that the true road candidates correspond to the most effective connections, whereas the false alarms
represent less effective connections. Another kind of approach that explicitly exploits the network
characteristics of roads relies on active contours that are initialized as a network and where the
internal energy forces the solution to preserve the character of that network, e.g. [Peng et al., 2010;
Butenuth & Heipke, 2012].

It can be stated that approaches that exploit the network properties of roads are quite powerful
if the initialization and hence the prior knowledge about the road network is nearly complete.

1.3.2. Combination strategies for different road models

The road models discussed in the previous section all have particular strengths and deficits. Many
authors combine these basic model properties to define more comprehensive models. To do so, the
combination of rather different extraction or classification methods is required in some way. The
subsequent review will examine the different combination concepts.

The either-or concept: An obvious possibility to combine (partially) complementary road models
is to select the respective method that seems to be the best for a given situation. For instance,
McKeown & Denlinger [1988] combine a texture-based method [Quam, 1978] and a method based on
parallel edge pairs [Nevatia & Babu, 1980] that both provide specific confidence measures depending
on local image properties. If the selected method falls below a pre-defined confidence threshold,
the system automatically switches to the alternative method. Bordes et al. [1997] enhance that
strategy by adding a network-based method that connects dead end roads if both other methods are
unconfident. Jin & Davis [2005] use prior knowledge from a database to select one of two possible
methods. One method is better suited for dense urban areas while the other is more appropriate for
sub-urban areas. The first method uses a Hough-transform to extract only straight lines that have
a length larger than the expected size of a building block. The second method is particularly useful
for sub-urban areas as it relies on a segment shape model that also considers curvilinear roads.

An advantage of the either-or concept is that complementary model properties can be combined
without the requirement of handling correlations. A problem of the either-or concept is that the
combined solution is never better than the most confident solution, and thus, a possible advantage
the of a fusion strategy is not exploited, namely the gain of knowledge by combining different
knowledge sources. Another considerable problem is the definition of the criterion to choose the
(one) optimal method.

The evaluation concept: This concept combines the outputs from one basic method with those of
other independently applied evaluation methods. The main idea is that the basic method provides
nearly complete results but it also produces many false alarms. The evaluation methods provide
solutions with lower completeness but high correctness. Then, the outputs of the basic method are
evaluated on the basis of the other outputs that potentially represent different road models. For
instance, Baumgartner et al. [1999] apply a line-based method [Steger, 1998] that produces many
false alarms in urban or sub-urban context regions. Then, the detected line primitives are evaluated
by analysing the presence of parallel edge pairs and homogeneous image regions in the vicinity.
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One difficulty of this concept seems to be the parametrisation of the basic method which is required
to provide relatively stable solutions in terms of the completeness.

The sequential concept: A further concept to combine different road models is to put some methods
into a sequence, where the output of the first method serves as the input for the second method and
so on. In contrast to the evaluation concept, the initially applied method is not required to provide
a complete solution. For instance, Bacher & Mayer [2005] start with a very restrictive edge-based
method which only provides the training samples for a colour classification method. The output of
the classification serves as the input for a line detection algorithm which provides the final result.
Zhang [2004] starts with colour classification to restrict the search space, followed by a method
relying on parallel edge pairs. The output of that method is used as the input for a context-based
model that considers road markings and shadow. Grote et al. [2012] start with a segmentation
method and then classify the segments by considering colour and shape features. The classification
results in fuzzy membership values for each segment which serve as a basis for a context-based
analysis considering vehicles, trees, buildings and grassland. Finally, the output is passed on to a
global network analysis that delivers the final road network including road junctions.

The main advantage of the sequential combination concept is that very complex models with
complementary road properties can be defined. All cited approaches [Zhang, 2004; Bacher & Mayer,
2005; Grote et al., 2012] use fuzzy membership values according to the Fuzzy-set theory [Zadeh, 1965]
in order to specify the relative quality of the outputs. The fuzzy membership values basically describe
the degree to which the outputs correspond to the underlying model and are mainly important
to control the interactions between the different methods rather than serving as a quality metric
for the final result. In theory, approaches like [Zhang, 2004] and [Grote et al., 2012] are able to
provide good results for nearly every imaginable situation if the parametrisation of all methods
is optimal. However, it turned out that the parametrisation becomes rather difficult, because the
parameters interact in a complex way. Changing the parametrisation of the first method may have
direct consequences for the optimal parametrisation of the second method and so on. Finally, the
relatively complex parametrisation makes an adaptation to new scenes very time consuming which
is a relevant problem when applying these approaches to real cartographic tasks.

The concept of independent methods: A further concept is to apply independent methods where
each method focuses on a particular road property. The outputs are then considered in a fusion
framework that has a relatively flat structure, i.e. the underlying methods are basically equally
ranked. One example is given by Hinz & Baumgartner [2003] who apply a parallel edge extraction
method, once on an image of fine scale and once on an image at a coarse scale. A third method
extracts single road lanes based on road markings. A quality measure based on the detection process
is defined in form of fuzzy membership values that control the impact of the method-specific outputs
on the final result. Gerke & Heipke [2008] apply a line-based method and a colour-texture-based
classification method that extracts rows of trees. Based on a statistical model, both methods provide
conditional probabilities (likelihoods) that are combined in accordance with the Theory of Bayesian
inference [Box & Tiao, 1992]. Gerke [2005] also presents an alternative approach considering the
same inputs but relying on the dst [Dempster, 1967; Shafer, 1976] instead of Bayesian inference.
Another approach using the dst is described by Mena & Malpica [2005] who basically apply the



10 1. Introduction

same classification algorithm three times, each time based on different colour-texture features. The
quality measures for classification outputs are defined in the form of probability masses that are
defined on the basis of the ratio of a distance from a test sample to the closest training sample and
the average distance between all training samples. A third approach using the dst is described in
[Poulain et al., 2010], where five linear classifiers are combined. All classifiers rely on the same basic
classification algorithm but the features always describe different road properties and the parameters
differ. The probability masses depend on the feature-space-distance to the decision-threshold; large
distances represent classification results of better quality than shorter distances.

Consequently, three significant fusion techniques Fuzzy-set theory, Bayesian inference and dst

can be identified in the related work. According to [Klein, 2004] all of them represent scientifically
founded techniques to combine confirming and conflicting information. The requirements for the
solutions to be combined (fuzzy membership values, probabilities or probability masses) are always
independence and consistency. The approaches described in [Hinz & Baumgartner, 2003; Mena
& Malpica, 2005; Poulain et al., 2010] combine methods using different input data, and thus the
authors assume independence. The strategies of the combined methods are similar which makes it
relatively easy to define consistent quality measures by simply using the same strategy for their
definitions. In contrast, Gerke & Heipke [2008] have to define a rather complex geometric-topologic
relationship model to achieve the required consistency because the methods to be combined follow
very different strategies.

Another fusion technique for independently operating detection methods incorporates machine
learning methods. For instance, Porway et al. [2010] combine the outputs of image classifiers that
deliver solutions for roads, buildings, vehicles, trees and parking lots. Potential conflicts concerning
the outputs of those methods are solved by non-recursive grammars that are learned in advance. Das
et al. [2011] apply two different methods, a texture-based svm classifier and a parallel edge detection
method. The outputs of both methods are passed on to a neural network classifier. The advantage
of solving the fusion problem with supervised machine learning methods is that one does not have to
care about the definition of consistent quality measures. However, the training data must represent
all possible qualities to all possible outputs in all possible constellations of the underlying methods.
Hence, the required amount of training data increases drastically with an increasing number of
methods to be combined.

Due to the stated difficulties concerning independence, consistency and amount of training data,
so far approaches that perform a combination of independent methods either consider just a small
number of methods [Gerke & Heipke, 2008; Das et al., 2011] or only use methods that rely on
similar strategies [Hinz & Baumgartner, 2003; Mena & Malpica, 2005; Poulain et al., 2010; Porway
et al., 2010]. Thus, these approaches do not achieve the same generality as approaches that apply a
sequential combination concept, e.g. [Zhang, 2004; Grote et al., 2012]. However, the independence
of the parameters of the methods makes frequent adaptations to new datasets much easier.

Feature-level fusion: The last combination concept discussed here is the combination of different
road models by machine learning methods on feature level. Machine learning methods have already
been described in the context of high level fusion, i.e. for combining the outputs of independently
operating detection methods that itself might rely on heuristics. Furthermore, machine learning has
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been mentioned in connection with colour and texture-based models which basically means that the
underlying feature spaces just cover colour or texture properties. Colour and texture features are
combined frequently by stacking the respective feature vectors, e.g. [Zhang & Couloigner, 2006].
Mnih & Hinton [2010] also follow this idea, but define the feature space in a much more general
way. In particular, they consider the grey values of all 64 × 64 pixels in a local neighbourhood.
As they use rgb images with 1.2 m gsd, the resulting feature vector has 12,288 dimensions and
represents an area of about 5, 000 m2 in object space. For the experiments a neural network classifier
with millions of parameters is learned on the basis of approximately 1.2 million training samples,
extracted automatically on the basis of a 500 km2 subset of a road database. Due to the huge
amount of parameters mainly computational aspects are discussed in [Mnih & Hinton, 2010]. The
authors report that training was resolved within three days. The advantage of such a strategy is the
automated parametrisation. A potential disadvantage is the high amount of required training data
that must represent the incredible large number of possibilities of the 64× 64 pixel set.

1.3.3. Working with road databases

Das et al. [2011] reviewed experiments from various state-of-the-art road detection approaches and
noticed that the test datasets are usually very small and comprise less than 200 road objects spread
over 2–8 small scenes.5 Commonly achieved detection ratios range from 75% to 85% and the topology
of road junctions is often unconsidered. Furthermore, automatically extracted geometries often do
not match the aesthetic requirements of road maps as they look blurred. In conclusion, state-of-
the-art solutions are basically not good enough for automatic road database acquisition. However, a
few approaches have been published that contribute some degree of automation to tasks related to
existing road databases. Three such tasks will be discussed in the following: geometric enhancement,
semi-automatic verification and semi-automatic detection of missing roads.

Geometric enhancement: A number of approaches geometrically correct existing road databases,
e.g. initiated by the national mapping agencies of France [Bordes et al., 1997], Switzerland [Zhang,
2004] and Japan [Koutaki et al., 2006; Fujimura et al., 2008]. All of these approaches limit the
search space in accordance with the given road geometries and the expected maximum spatial
discrepancies. Beyond that, some authors use further knowledge from the inaccurate database to
tune their algorithms. For instance, Bordes et al. [1997] adjust the parameters of their method by
additional object-specific knowledge such as road type and road width, stored in the geometrically
inaccurate database. Koutaki et al. [2006] use the inaccurate database to initialize an active contour
model. Fujimura et al. [2008] generate correction hypotheses on the basis of the geometrically
inaccurate database by assuming only parallel displacements which preserves the shape and hence
the aesthetic level of the man-made road geometries contained in the database.

The approaches to geometric database enhancement demonstrated high success rates, i.e. ≈ 85%

of the database roads in rural areas could be shifted to an acceptable position. A practical problem
might be that these approaches do not indicate the database roads that are still inaccurate (≈ 15%)

5The exceptions from that observation are the experiments published in [Gerke & Heipke, 2008] with over 530 road
objects, the experiments published in [Mnih & Hinton, 2010] with two scenes of 50 and 28 km2 size, respectively,
and the experiments published in [Das et al., 2011] with 200 small scenes.
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which means that a human operator has to check 100% of the database to correct the remaining
15% of the roads.

Semi-automatic verification: Such approaches automatically check whether a road database object
(a road hypothesis) can be found in the image and whether the required positional accuracy is
achieved. Potential errors are forwarded to a human operator who finally edits the database.

The automatic component suggested by Wiedemann & Mayer [1996] evaluates the grey value
profiles perpendicular to the road axes stored in the database with respect to their correspondence
with the parallel edge model described in Section 1.3.1. Klang [1998] proposed an approach that was
applied to the Swedish national road database. First, road junctions are detected in the vicinity of
the positions indicated by the database. Based on this result the junctions are used to initialize an
active contour model. Finally, a comparison of the extraction result and the corresponding database
provides the human operator with a number of potential errors. The results indicate that both
methods are able to detect database errors. Unfortunately, Wiedemann & Mayer [1996]; Klang
[1998] do not provide a quantitative evaluation.

Gerke et al. [2004] describe a verification approach that was applied to the German national
database. First, lines are detected in the vicinity of the road hypotheses stored in the database.
The width attribute is used to adjust the underlying line-detector [Steger, 1998] to each road object
individually. Finally, a road object is accepted to be correct if a line is detected over the whole
length of a road hypothesis. All other road hypotheses are considered as potential errors and have
to be checked by a human operator. This also means that correct road hypotheses that cannot be
explained by the line-based model fall into the second category. Gerke & Heipke [2008] enhanced the
evaluation component in order to also detect inconsistencies with respect to road shape and width.
This component provides a classification for each road hypothesis with respect to the classes correct
and incorrect. Additionally, road hypotheses for which the line detection algorithm does not provide
a solution over the full length, are classified as potentially incorrect. Beyond that, Gerke & Heipke
[2008] do not discriminate between incorrect and potentially incorrect objects and consider both
categories as rejected objects. Extensive experiments involving 530 road objects demonstrated the
applicability of the approach in rural areas. In particular, 65% of the roads were correctly accepted
while a sensitivity test with artificially generated errors resulted in a 100% rejection rate.

Poulain et al. [2010] propose a verification approach particularly for urban areas. Classifiers,
relying on different input data such as sar corner lines, parallel edges, shadow, buildings, vegetation
and sealed surface are applied. Then, each database road object is projected to the classification
results considering its centreline and width. Finally, each road hypothesis is classified on the basis
of the detection results as being either correct or incorrect. Results based on the French national
database show that their approach classifies 95% of the correct hypotheses as correct. A sensitivity
test with artificially generated errors resulted in a 92% rejection rate, i.e. 92% of the non-roads are
classified as incorrect. The lower rejection rate compared to [Gerke & Heipke, 2008] can be explained
by the fact that Poulain et al. [2010] do not question the ability of the underlying road model to
explain a situation. Instead, insufficiently modelled situations will also be classified, either as correct
or as incorrect. This point must be seen as critical against the background of potential cartographic
applications as it means that 8% of the artificially generated database errors remained undetected.
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Semi-automatic detection of missing roads: Such approaches explicitly search for roads that are
omitted in an existing database and forward their output as so-called update hints to a human
operator who finally edits the database. Reasons for missing roads might be the construction of
new roads or roads having been overlooked in prior updates. From the application viewpoint,
verification and the detection of missing roads have to be performed together, e.g. for updating a
database. In this regard, Auclair-Fortier et al. [2001] extended the approach of Klang [1998] by an
additional method that detects lines in the entire scene. The resulting line segments are filtered
mainly according to two criteria, a lower bound for the length and the requirement of a connection
to the verified road network. The authors tested their method using the national Canadian road
database. Unfortunately, they do not provide a quantitative evaluation of their experiments, but
it becomes clear that the search for new roads is much more challenging than verifying existing
database entries. Poulain et al. [2010] extend their verification method by a line-based extraction
algorithm. The resulting line segments are classified by the same approach as in their verification
component, just extended by an additional feature, the distance to the verified road network. The
line segments classified to be correct finally represent the update hints. The experiments show that
their approach detects 60% of the missing road objects, but they also have a false alarm rate of
50%. Beyen et al. [2012] describe a method for detecting new roads in rural areas. For that purpose,
they apply landcover classification with respect to the two classes settlement and vegetation. As
the authors assume new roads and buildings to be closely related, the classified settlement regions
that neither correspond to roads nor to buildings in the old database are interpreted as update
hints. The experiments show a detection rate of about 60% and a false alarm rate of 40%. The
quantitative analyses of all authors show that detecting missing roads is more challenging than road
verification and geometric enhancement. One reason is the lack of available prior knowledge for
missing roads but also the fact that the cited approaches just consider a few road properties, i.e. a
line based model [Auclair-Fortier et al., 2001; Poulain et al., 2010] or a colour-texture-based model
[Beyen et al., 2012].

1.3.4. Discussion

This thesis concentrates on road verification rather than on geometric enhancement or the detection
of missing roads. The review of the related work has shown that this focus is justified because the
three tasks favour different strategies. Also authors dealing with two of those tasks at once solve
the problems based on different strategies that introduce different kinds of prior knowledge, e.g.
[Poulain et al., 2010; Auclair-Fortier et al., 1999].

Gerke & Heipke [2008] demonstrate that a semi-automatic strategy can be implemented to solve
the verification problem, even if the underlying road detection methods have a limited performance.
The approaches described in [Gerke & Heipke, 2008] and [Poulain et al., 2010] show that the veri-
fication problem can effectively be transferred into a classification problem with respect to the two
states correct and incorrect. This strategy allows integrating prior knowledge from the existing,
possibly partially incorrect database, e.g. to specify road models for the detection by introducing
centreline geometry and road width.

A deficit of both approaches, [Gerke & Heipke, 2008] and [Poulain et al., 2010], is their restriction
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to specific context regions such as rural and urban areas. The reasons for the restriction can be
found in the underlying road models that concentrate on just a few road properties. Zhang [2004]
and Grote et al. [2012] present approaches to road detection (not road verification) that integrate
many more different road properties. This is realized by combining methods based on different road
models that were discussed in Section 1.3.1. These approaches can potentially deal with different
context areas. However, the sequential combination concept applied by Zhang [2004]; Grote et al.
[2012] is not useful to solve large scale verification problems as it requires complex parametrisation,
and thus leads to unacceptable manual efforts for the adaptation of the methods to new scenes.
As discussed in Section 1.3.2 concepts based on a combination of independent methods are better
suited with respect to parametrisation efforts but have not been realized for many different road
properties. One reason for that is the difficulty of defining consistent quality measures that control
the impact of the single outputs on the combined solution.

In the related literature quality measures usually refer to the question whether an observation in
the imagery corresponds to an underlying road model. How the correspondence can be determined,
mainly depends on the applied methods. For instance, [Hinz & Baumgartner, 2003; Poulain et al.,
2010] use by-products of the detection processes while other authors such as Gerke & Heipke [2008]
also consider additional knowledge. As discussed in Section 1.3.2 the consistency of the quality
measures is the most critical part for this kind of combination strategy. The more different the
detection strategies of the methods are and the larger the number of the methods is, the more
challenging is that problem. Therefore, most of the state-of-the-art approaches either restrict the
number of methods, e.g. [Gerke & Heipke, 2008; Das et al., 2011], or only use methods that rely
on similar detection strategies, e.g. [Hinz & Baumgartner, 2003; Poulain et al., 2010; Porway et al.,
2010].

In conclusion, mainly two reasons can be identified why the state-of-the-art approaches do not
meet the objectives formulated for this thesis:

• Road verification approaches, such as [Gerke & Heipke, 2008; Poulain et al., 2010] focus on
just a few road properties that can only be observed under specific circumstances, e.g. within
specific context regions.

• Road detection approaches, such as [Zhang, 2004; Grote et al., 2012] consider more different
road properties but their concept to combine multiple road models leads to inappropriate
parametrisation efforts.

Furthermore, it has to be noticed that none of the approaches in the related work explicitly considers
ignorance as a possible solution even though some of those approaches explicitly consider existence
of ignorance with respect to interim results [Mena & Malpica, 2005; Gerke, 2005; Gerke & Heipke,
2008; Poulain et al., 2010]. However, due to the objective of general applicability, knowledge about
the presence of ignorance is of vital importance.
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2. Basics

The basic strategy followed in this thesis is to solve a classification problem based on multiple
independent methods that all provide uncertain information about the same classification problem.
In the literature different meanings can be found for uncertain and for information. Therefore, the
meaning of this phrase needs to be defined for this thesis:

Definition: In accordance with the Probability Theory, uncertainty means that the state of a random
variable is expressed by a probability distribution. The term information, in this thesis,
stands for any probability distribution that refers to the main classification problem. Hence,
the phrase uncertain information means that the state of a primal probability distribution
(the information) is expressed by a secondary probability distribution. A primal probability
distribution has two possible states: Either it is interpretable1 or it is not interpretable for the
main classification problem.

Two major scientific problems arise from that. One problem concerns the combination of independent
and uncertain information in order to find an optimal solution for the classification problem. In this
thesis, this problem is tackled by a probabilistic approach based on the Dempster-Shafer Theory,
which will be introduced in the first section of this chapter. The second problem concerns the
determination of the required uncertainties. In this respect, supervised learning methods define
their model on the basis of training data. If the training data does not properly represent a test
sample, the solution provided by such a method is not interpretable in the context of the main
classification problem. In Chapter 3 the probability of an svm classifier to provide interpretable and
not interpretable outputs will be defined on the basis of the feature space distance of a test sample
to the training data. In the second section of this chapter a metric for the feature space distance on
the basis of a Support Vector Data Description will be presented.

2.1. Combination of uncertain information

2.1.1. The reasoning problem

Considering a classification problem with n mutually exclusive classes Ci with 1 ≤ i ≤ n, the
so-called frame of discernment Θ is defined as:

Θ = {C1, C2, ...Cn} (2.1)
1Alternatively, one might think of the primal probability distribution having two possible states correct and erro-
neous, but note that if a functional relation of a given (erroneous) primal probability distribution and their correct
version were known, the primal probability distribution would be interpretable by this functional relation. Hence,
not interpretable also means that this functional relation is unknown, which finally means that it is impossible to
infer anything useful from the primal probability distribution.
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Further let consider Θ to be a non-empty and exhaustive set where probabilities P are defined for
each element Ci. The probabilities P (Ci) ∈ R have to satisfy the three Kolmogorov axioms2: Any
set F ⊆ Θ must satisfy:

1. non-negativity :
P (A) ≥ 0 ∀A ∈ F (2.2)

2. normalization:
P (Θ) = 1 (2.3)

3. finite additivity :
P (A ∪B) = P (A) + P (B) ∀A,B ∈ F ∧A ∩B = ∅ (2.4)

where ∅ denotes the empty set.
Let there be S information sources that provide independent information to the introduced prob-

lem in the form of probabilities P . In the literature such a problem is often named a statistical
reasoning problem, and the information is frequently denoted as evidence to the reasoning problem.
Some authors such as Shafer [1976] also use the phrase degrees of believe instead of evidences. Both
notations shall emphasize the fact that the probabilities are interpreted in Bayesian sense and not
in Frequentist sense.

The most prominent reasoning approach is Bayesian inference which is completely founded in
Probability Theory. In accordance with [Klein, 2004], each source s is interpreted to provide infor-
mation in form of likelihoods P (xs|Ci) for all i. Bayesian reasoning searches for P (Ci|x1∩x2∩· · ·∩xS),
i.e. the probability for Ci given all available evidence. Based on the assumption of independence the
Combination Rule of Bayesian inference is defined as:

P (Ci|x1 ∩ x2 ∩ · · · ∩ xS) =

 ∏
1≤s≤S

P (xs|Ci)

 · P (Ci)

∑
1≤j≤n

 ∏
1≤s≤S

P (xs|Cj)

 · P (Cj)

 ∀Ci ∈ Θ (2.5)

where P (Ci) denotes the prior probability of a class Ci. The denominator normalizes the term so
that the resulting posteriors satisfy the second Kolmogorov axiom (cf. Equation 2.3). The denomi-
nator becomes small if the information coming from the different sources is largely contradicting3.
Note that total contradiction is impossible by design because in this case, the denominator would
become zero. In Equation 2.5 the ability of an information source to solve the classification prob-
lem is expressed by the likelihoods P (xs|Ci). For instance, a weak classifier, i.e. one that is only
slightly better than a random decision will result in likelihoods close to a uniform distribution. As
a consequence, the information provided by such a classifier nearly corresponds to the prior prob-
abilities. In order to prevent confusion, the term weak must consciously be discriminated from the

2The three axioms were defined in 1933 by Andrey N. Kolmogorov. The notation used in this thesis is in accordance
with [Shafer, 1976].

3In this context, contradictions are a consequence of the independence and not of erroneous likelihoods.
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term uncertain here.

Many applications require a hard decision for one of the classes Ci ∈ Θ as their final result. In
case of Bayesian inference the maximum a posteriori probability (map) criterion maps the resulting
distribution to a distinct optimal state. In this respect, the difference of the resulting posteriors
describes a property of the mapping which is sometimes denoted as an uncertainty measure. However,
this phrase is also avoided here to prevent confusions with the preceding definition of uncertain
information.

Next, it will be assumed that an information source s provides interpretable likelihoods P (xs|Ci)
for all i, only with the (known) probability Ps. This means that the actual class label is either
unknown (with a probability 1 − Ps) or just uncertain (with a probability Ps). However, a joint
probability of P (xs|Ci) and Ps does not exists in the classical Probability Theory which further
means that Equation 2.5 is not applicable for the given problem. Fortunately, the problem can be
solved with the Dempster-Shafer Theory (dst) that provides an expression for the joint probability
and an adequate extension to Equation 2.5. In the three subsequent sections the characteristics of a
dst-based reasoning in contrast to Bayesian reasoning will be introduced. A practical comparison
of Bayesian reasoning and the dst is provided in the Appendix A.1.

2.1.2. The Dempster-Shafer Theory

The foundations of the dst were laid by Dempster [1967] and [1968]. Shafer [1976] outreached the
theory to a broader community but also delimited their field of application. Since then, numerous
elaborations and applications of the dst have been developed. Today, the term Dempster-Shafer
Theory commonly addresses these works in their entirety, and thus includes many variations, e.g.
[Gordon & Shortliffe, 1984; Smets, 1990; Dezert, 2002].

Representation: Referring to the initially defined reasoning problem with the frame of discernment
Θ (cf. Equation 2.1), the state space defined in the dst is defined as the power set of Θ. This set,
commonly denoted as 2Θ includes all possible subsets of Θ and the empty set ∅. For the case of
n = 2 classes {C1} and {C2}, the state space is defined as follows:

2Θ = {C1, C2, C1 ∪ C2, ∅} (2.6)

In analogy to probabilities, the amount of evidence that an information source assigns to an element
A ∈ 2Θ is expressed by a probability mass4 ms(A).The probability mass function m for a set A ∈ 2Θ

has the following properties:
m(A) ∈ R ∧m(A) ≥ 0 ∀A ∈ 2Θ (2.7)∑

A∈2Θ

m(A) = 1 (2.8)

m(∅) = 0 (2.9)

4In the original publications of Dempster only the term lower probability can be found. Later, authors such as Shafer
[1976] used the expression mass in analogy to the physical mass of an object to consider the evidence as a quantity
that can move around, be split up, and combined.
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As Shafer [1976] points out, the constraints 2.7–2.9 correspond to the Kolmogorov axioms (2.2–
2.4), except the considered state space is 2Θ for probability masses and Θ for probabilities. In this
regard, probability masses are also additive (cf. axiom 2.8), but not necessarily for states A ∈ Θ,
i.e. the states representing the classes Ci. Based on Θ ⊆ 2Θ Haenni [2005] points out that the
dst includes the Bayesian reasoning as a special case, where non-zero probability masses are only
assigned to the states A ∈ Θ. This is why Dempster [1968] introduced his theory as a generalization
of Bayesian inference. Despite those similarities, some notations have very different meanings, e.g.
in the Probability Theory the notation P (C1 ∪ C2) means the evidence assigned to a set of two
states {C1} and {C2}, whereas in the dst the notation m(C1 ∪ C2) means the evidence assigned
to a single state {C1 ∪ C2} which excludes the states {C1}, {C2}. In the dst evidences assigned
to sets of states are expressed by help of additional functions, e.g. support (sp) and plausibility (pl)
that will be described below.

Dempster’s rule of combination: If S independent information sources provide probability masses
ms(Bs) with Bs ∈ 2Θ they are combined by applying Dempster’s rule [Guan & Bell, 1991] which is
the counter part to the Bayesian combination rule discussed above:

m(A) =

∑
∩Ss=1Bs=A

 ∏
1≤s≤S

ms(Bs)


∑

∩Ss=1Bs 6=∅

 ∏
1≤s≤S

ms(Bs)

 ∀A ∈
{

2Θ \ ∅
}

(2.10)

In Equation 2.10 the sums are taken over the valid permutations described by the terms under the
symbol for sum, i.e. the products are only defined for these permutations. The permutations defined
in the enumerator are required to have the intersection A, while the permutations defined in the
denominator are only required to have an intersection different from the empty set. Hence, the
denominator normalizes the probability masses such that the resulting probability masses satisfy
the constraint 2.8. According to Equation 2.5, the denominator becomes small if the information
largely contradicts but is undefined in case of total contradiction. Dempster’s combination rule
corresponds to the Bayesian combination rule if non-zero probability masses are only assigned to
the states A ∈ Θ.

Conflict mass: The degree to which the different sources contradict can be expressed by the conflict
mass [Shafer, 1976]:

K =
∑

∩Ss=1Bs=∅

 ∏
1≤s≤S

ms(Bs)

 (2.11)

The conflict mass K ∈ R ∧ 0 ≤ K < 1 represents a meta information of the fusion process, and
thus might be considered for internal evaluations. The conflict mass has the following relation to
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the denominator in Equation 2.10:

K = 1−
∑

∩Ss=1Bs 6=∅

 ∏
1≤s≤S

ms(Bs)

 (2.12)

Support and Plausibility: Given the probability masses m(B) for all B ∈ 2Θ the support sp(A) and
the plausibility pl(A) can be defined for all A ∈ 2Θ:

sp(A) =
∑
B⊆A

m(B) (2.13)

pl(A) =
∑

B∩A 6=∅

m(B) (2.14)

The support to a set A aggregates all probability masses that directly provide evidence to A, whereas
plausibility aggregates all probability masses that do not directly provide evidence against A. Based
on Equations 2.7–2.9 and 2.13–2.14 sp(A) and pl(A) have the following properties:

sp(A), pl(A) ∈ R ∧ 0 ≤ sp(A), pl(A) ≤ 1.0 ∀A ∈ 2Θ (2.15)∑
A∈2Θ

sp(A) ≥ 1.0,
∑
A∈2Θ

pl(A) ≥ 1.0 (2.16)

sp(∅), pl(∅) = 0 (2.17)

In general support and plausibility are not additive (cf. Equations 2.16) which stands in contrast to
probability masses (cf. Equation 2.8). Based on Equations 2.13 and 2.14, the following relations of
sp(A) and pl(A) can be found:

sp(A) ≤ pl(A) (2.18)

sp(A) = 1− pl(Ā) (2.19)

In Equation 2.19 Ā denotes the complementary set of A with respect to 2Θ. Support and plausibility
are the basis for the so-called uncertainty interval5 shown in Figure 2.1. This uncertainty interval
leads to a simplified representation of the probability mass distribution which might be helpful for
analyses where the state space 2Θ has large cardinality.

support plausibility0 1.0

unknown𝐴  𝐴

Figure 2.1.: The uncertainty interval.

5The notation interval is misleading because the uncertainty interval does not show the lower and upper bounds
of the probability masses (or probabilities), instead it shows the probability mass distribution aggregated to only
three sets. For any state A ∈ 2Θ the corresponding uncertainty interval has the same meaning: The left part
shows the probability mass for A being true, the right part shows the probability mass for A being false and the
centre part shows the probability mass for not knowing the state of A.
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2.1.3. Decision making

Many applications of statistical reasoning and almost every scientifically oriented benchmark test
finally require a hard decision for only one class Ci which means a hard decision for a state A ∈ Θ.
This implies a mapping from the intentionally defined state space 2Θ back to Θ, for which a variety of
different mapping functions have been defined in the literature.6 The three most prominent mapping
functions, the maximum support rule [Shafer, 1976], the maximum plausibility rule [Shafer, 1976]
and the maximum mean rule [Guan & Bell, 1991] will subsequently be discussed. In this regard, it
is mainly interesting how these mapping functions deal with probability masses assigned to states
A ∈ Θ in contrast to the states A ∈ 2Θ ∧A /∈ Θ.

Maximum support rule: The maximum support rule defines the decision state D as follows:

D= arg max
A∈Θ

sp(A) (2.20)

This rule represents the predominantly applied mapping function in the related literature, e.g. [Lee
et al., 1987; Gerke, 2005; Rottensteiner et al., 2007]. It simply provides the class Ci (a state A ∈ Θ)
that has the largest probability mass.7 It basically means that probability masses assigned to states
that represent ignorance are ignored. In this respect, it was experimentally analysed by different
authors, e.g. Lee et al. [1987]; Gerke [2005] that the maximum support rule leads to similar results
as Bayesian reasoning, if the existence of erroneous probability distributions is basically ignored.

le Hégarat-Mascle et al. [1997] extend the maximum support rule (cf. Equation 2.20) by adding a
rejection-state to the decision space:

D =

arg max
A∈Θ

sp(A) |sp(A) > sp(A)

rejection | otherwise
(2.21)

Equation 2.21 implies that if the probability mass assigned to the complement (the set A) is larger
than the probability mass assigned to the class with maximum probability mass (a state A ∈ Θ),
the decision is rejected. le Hégarat-Mascle et al. [1997] demonstrated that their decision rule is
applicable for a state space with a cardinality of

∥∥2Θ
∥∥ = 8. However, it is an open question if this

strategy is transferable to other problems.

Maximum plausibility rule: The maximum plausibility rule defines the decision state D as follows:

D = arg max
A∈Θ

pl(A) (2.22)

Barnett [1991] favours this rule over the maximum support rule (cf. Equation 2.20) by arguing that
the probability masses assigned to the states A ∈ 2Θ ∧ A /∈ Θ represent a potential voting against
the correctness of the states A ∈ Θ, and thus they need to be taken into account. The maximum

6This is in contrast to the Probability Theory, where the mapping is mostly realized by the maximum a posteriori
probability (map) decision rule. This rule assumes the state space and the decision space are equivalent and its
result is commonly denoted as Bayesian-optimal.

7As only the states A ∈ Θ are considered the use of probability mass or support (in Equation 2.13 ) would lead to
same result.
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plausibility rule would lead to similar results as Bayesian reasoning, if the potentially erroneous
likelihoods were replaced by a uniform distribution.

Maximum mean rule: The maximum mean rule defines the decision state D as follows:

D = arg max
A∈Θ

(sp(A) + pl(A)) (2.23)

Poulain et al. [2011] suggest this mapping function by arguing that it represents a trade-off between
the maximum support rule (cf. Equation 2.20) and the maximum plausibility rule (cf. Equation
2.22). Beyond that, it is hard to grasp its underlying assumption; it can merely be stated that the
probability masses assigned to the states A ∈ Θ are weighted somewhat higher than those that are
assigned to the states A ∈ 2Θ ∧A /∈ Θ.

An alternative decision rule: The mapping functions discussed above, do not necessarily provide
dst-optimal decisions because there might always be a state A ∈ 2Θ with larger probability mass
than the decision state D. Instead, the resulting decisions can be interpreted as Bayesian-optimal
under specific assumptions, e.g. by assuming a uniform distribution. However, neither of the cited
authors seems to be aware of the assumptions implicitly made by the decision rules or at least
had interest to discuss this problem. Another critical question is: Why using the dst in favour of
Bayesian reasoning if an answer representing ignorance is not of interest?

For the approach proposed in this thesis a new decision rule is defined that does not restrict the
decision space to classes Ci (states A ∈ Θ). Instead the decision space includes all states A ∈ 2Θ.
The new decision rule, the so-called maximum probability mass rule, is defined as follows:

D = arg max
A∈2Θ

m(A) (2.24)

Equation 2.24 provides a dst-optimal result and does not imply additional assumptions, nor does it
correspond to some Bayesian solution. However, the uncommon decision space needs to be discussed.

• Decisions D = A with A ∈ Θ still have the common meaning: The state D represents the
most likely class.

• Decisions D = A with A = Θ mean that most likely nothing is known. This aspect will play
a key role for the human-machine interface presented in Chapter 3.

A second specific property of the decision space defined in this thesis is the state invalid that is
considered as additional state in the decision space. If information from different sources is available,
the conflict of the information can be considered to indicate problems of the approach. In the dst

the conflict mass K (cf. Equation 2.11) is a measure of conflicting information, whereas for Bayesian
reasoning the denominator in Equation 2.5 can be interpreted in a similar way [Haenni, 2005]. In
theory, conflicts are justified by the independence of the information sources. However, Haenni
[2005] points out that in practical applications model errors may also lead to large conflict masses.
In this regard, some authors, e.g. Zadeh [1984] and Ruspini et al. [1992], presented examples
giving counter-intuitive results that emphasize typical problems of dst-based applications. In these
examples, highly conflicting probability masses are combined which leads to a small value in the
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denominator of Equation 2.10. Consequently, some authors suggested improvements to the dst

and the given examples. A rather important work on this topic was provided by Smets [1990] who
argued that the presence of a high conflict mass indicates that a possible answer has been overlooked.
Thus, the frame of discernment can no longer be assumed to be exhaustive. As a consequence,
Smets [1990] suggested an alternative approach that relaxes the strict closed-world assumption of
the classical dst. The work presented by Dezert [2002] shows that a high conflict mass can also be
caused by the presence of non-exclusive states in the frame of discernment. Therefore, Dezert [2002]
proposed enhancements to the classical dst that basically allow to deal with non-exhaustive and
non-exclusive sets. Haenni [2005] argues that the counter-intuitive results are directly related to the
counter-intuitive assumption that highly conflicting information might be completely reliable, and
thus suggests adjustments to the examples. In summary, nearly all attempted corrections of the
counter-intuitive examples lead to the conclusion that the problem is caused by a misapplication of
the dst; either the frame of discernment is not exhaustive and exclusive or the probability masses
are not defined in an adequate way. This conclusion is in accordance with Haenni [2005] who remarks
that a high conflict mass is a possible consequence of a violation of the pre-conditions for the dst.
In this thesis a high conflict mass (cf. Equation 2.11) is interpreted as an indicator for an erroneous
dst framework, and thus is considered as an exclusive state of the decision space called invalid.
Using Equations 2.11 and 2.24 the new decision rule is defined as:

D =

arg maxA∈2Θ m(A) |K < g

invalid | otherwise
(2.25)

where g ∈ R ∧ 0 ≤ g ≤ 1 is a parameter that needs to be defined in accordance with the cardinality
of 2Θ and the probability for an erroneous dst framework.

2.1.4. Derivation of probability masses

An essential question for any application based on the dst is how to define the probability masses.
Several models and strategies to define these probability masses have been developed.

le Hégarat-Mascle et al. [1997] consider a reasoning problem for different classes Ci, where a set
of probabilistic classifiers depending on different data xs provide probabilistic measures P (Ci|xs).
Basically they assign the available probabilities directly to probability masses, i.e. ms(Ci) =

P (Ci|xs). However, le Hégarat-Mascle et al. [1997] define exceptions from this kind of assign-
ment if two classes {Ci}, {Cj} cannot clearly be distinguished by a classifier. For these pairs of
classes they assign the full evidence to the state {Ci ∪Cj} which leads to ms(Ci) = ms(Cj) = 0 and
ms(Ci ∪Cj) = P (Ci|xs) +P (Cj |xs). The authors also present a second alternative, splitting up the
evidence to three states {Ci} , {Cj} , {Ci ∪ Cj}, which leads to ms(Ci) = ms(Cj) = ms(Ci ∪ Cj) =

3−1 (P (Ci|xs) + P (Cj |xs)).

In contrast to le Hégarat-Mascle et al. [1997], Lee et al. [1987] define a value αs ∈ R∧ 0 ≤ αs ≤ 1

for each classifier, interpreting αs to be the expected correctness of the classification outputs. The
values for αs are experimentally defined on the basis of a training dataset using cross validation,
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and thus automatically adjust the approach to different datasets based on the following definition:

ms(A) =


αs · P (Ci|xs) |A = Ci

1− αs |A = Θ

0 | otherwise

∀A ∈ 2Θ (2.26)

In Equation 2.26 the first case defines the probability masses for all A ∈ Θ, i.e. all classes Ci
contained in Θ (cf. Equation 2.1). The second case defines the probability mass assigned to the
state of ignorance Θ, i.e. the state corresponding to {C1 ∪ C2 ∪ · · · ∪ Cn}. The third case defines
the probability masses for all remaining states, i.e. the states A with A ⊂ Θ \A ∈ Θ that represent
partial ignorance.

Gerke [2005] mainly follows the concept introduced by Lee et al. [1987] but uses a different strategy
to define the αs. In [Gerke, 2005] the αs describe the ability of the respective classifier to contribute
to the main classification problem. The model for the αs is based on a heuristic.

All three approaches discussed so far interpret probability masses on the basis of probabilistic
measures related to Θ. As soon as the αs in Equation 2.26 are interpreted as probabilities8 that
describe the states of the P (Ci|xs), those approaches are in accordance with the theory of multi-
valued mapping described in [Dempster, 1967].

Apart from Dempster’s concept of multi-valued mapping, several strategies for defining probability
masses have been developed. For instance, Rottensteiner et al. [2007] define the probability masses
without probabilities as the basis. They present five independent two-class classifiers that directly
provide probability masses to different pairs A, A ∈ 2Θ with respect to Θ = {C1, C2, C3, C4}. One
important aspect is that neither A nor A must represent class Ci ∈ Θ; instead they are just assumed
to represent complementary sets of classes. Each classifier relies on specific features xs and provides
ms(A), ms(A) and ms(Θ) in accordance with the function depicted in the left part of Figure 2.2.
The set of variables {a, b, c, d, d′} denotes the parameters of the functions that rely on a heuristic
model.

Another approach that defines probability masses without a probabilistic background is described
in [Tupin et al., 1999; Poulain et al., 2011]. Similarly to [Rottensteiner et al., 2007] several two-class
classifiers are defined. Each of them provides probability masses ms(A), ms(A) and ms(Θ) using
the model depicted in the right part of Figure 2.2. The structure of the model is based on the
assumption that the classification output is more useful far away from the decision threshold than
near the decision threshold. Tupin et al. [1999] determine the parameters {a, b, c, d, d′} by fitting
the three functions to a histogram drawn from a training data set. Poulain et al. [2011] apply an
optimization to determine the parameters, where the objective function aggregates two terms. The
first term minimizes the squared empirical error and the second term maximizes the square of the
correct class assignments. Combining both objectives is important because minimizing the empirical
error alone has a trivial solution: m(Θ) = 1.0, whereas only maximizing correct class assignments
does not induce assignments to (partial) ignorance.

8Note that the αs fulfil the three Kolmogorov axioms (cf. Equations 2.2–2.4).
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Figure 2.2.: Models for probability masses. Left: [Rottensteiner et al., 2007]. Right: Poulain et al.
[2011].

2.2. An uncertainty metric for Support Vector Machines

In the field of remote sensing, support vector machine classifiers (svm; Vapnik, 1995) have empirically
been proven to be effective (e.g. in Huang et al., 2002; Foody & Mathur, 2004; Oommen et al., 2008;
Bruzzone & Marconcini, 2010). Bruzzone & Marconcini [2010] attribute the success of svms to the
following properties:

• the convexity of the objective function which allows to find an optimal solution

• the sparse representation of the model that is restricted to a subset of the training data

• the capability of addressing classification problems without defining class-related distributions

• the capability to solve not linearly separable classification problems.

Noticing other state-of-the-art machine learning approaches such as adaboost [Freund & Schapire,
1995] and random forests [Breiman, 2001] to be comparably effective for classification problems in
the field of remote sensing [Schindler, 2012], two variants of svms will be applied in this thesis. The
first variant is a conventional two-class svm which is applied in the same way as in the related work,
e.g. [Fujimura et al., 2008]. The second variant is a specific type of a one-class svm which is the
basis for the uncertainty metric discussed in this section. The following introductions refer to this
second variant even if some of the conceptional aspects hold out for svms in general.

2.2.1. The problem of partly non-representative training data

Machine learning methods define a model on the basis of training data. Having representative
training data is often considered to be a pre-condition, which is only realistic if the closed world
assumption is correct. For many remote sensing problems this is not necessarily the case, and thus
the problem is worth to be considered.

Figure 2.3 shows a situation in which a conventional two-class svm is applied. The (symbolic)
two-dimensional feature space is separated by a hypersurface (bold black line) which is learned from
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Figure 2.3.: Motivation for svdd.

training samples corresponding to the two classes: road (blue) and non-road (red). A test object
to be classified, such as the one indicated by the green star, may be far away from the training
clusters, and as a consequence, the classification result may be erroneous without any indication by
the classification algorithm. In particular, the distance to the two-class svm hypersurface separating
the two classes (bold black line) does not provide an appropriate measure to answer the question
whether the training data are representative for a test sample or not.

This problem can be interpreted as a one-class problem with respect to the training data that
include both classes roads and non-road. A test sample that resides far away from the training data
as the green star depicted in Figure 2.3 represents an outlier while a test sample located near the
training data would represent an inlier. The Support Vector Data Description (svdd, Tax & Duin,
2004)9 is a one class classifier that allows to separate inliers from outliers by only providing training
data for the inliers. In Figure 2.3 the svdd hypersurface is drawn by thin black lines around the
training data. The grey regions inside the svdd hypersurface indicate positions of inliers while the
rest of the feature space indicates possible positions of outliers. During the testing phase, points
outside the indicated regions, such as the green star corresponding to a row of trees, are considered
to be outliers. Note that the conventional two-class svm classifies it as a correct road. However, the
svdd hypersurface is not necessarily a good decision surface to separate inliers from outliers because
test samples very near the svdd hypersurface, i.e. those that reside in shaded area depicted in Figure
2.3, might still be represented by the training data. In this thesis, the svdd hypersurface will deliver
the basis for a metric, but will not be the metric itself. This requires some additional investigations
of kernel space metrics that will be presented in Section 2.2.4. Before that, the theoretical and
practical basics of the svdd will be presented briefly.

9Tax & Duin [2004] show that an alternative one-class SVM introduced by Schölkopf et al. [2001] leads to similar
classification results if comparable parameters are selected. However, the metrics discussed in this thesis are only
valid for the method described in [Tax & Duin, 2004].
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2.2.2. The Support Vector Data Description

In accordance with Tax & Duin [2004], the svdd approach constructs a hypersphere (a sphere in a
multi-dimensional space) of minimum volume enclosing most of the training data (cf. Figure 2.4).
The problem of finding the hypersphere of minimum volume represented by its centre a and radius
R, is formulated as:

min
R,a,ξi

R2 + C ·
∑

1≤i≤n
ξi (2.27)

s.t. (||xi − a||2 ≤ R2 + ξi) ∧ (ξi ≥ 0) ∀ i = 1, . . . , n

In Equation 2.27 the training data are denoted as feature vectors xi ∈ Xtrain where the training
dataset Xtrain has the cardinality n. The slack variables ξi allow a number of training samples
to lie outside the hypersphere, and thus make the approach robust against isolated samples. The
parameter C is a trade-off constant controlling the relative importance of the two terms.

𝑎
𝑅

𝑧

Figure 2.4.: A 2d-Hypersphere (centre a, radius R) with enclosed training data and test object z
outside the sphere.

Training of the SVDD: The constrained minimization problem in Equation 2.27 is solved by intro-
ducing the Lagrangian multipliers αi and γi. This leads to the following formulation:

min
R,a,α,γ,ξ

L(R, a, α, γ, ξ) (2.28)

with

L(R, a, α, γ, ξ) = R2 + C
∑

1≤i≤n
ξi −

∑
1≤i≤n

[
αi
(
R2 + ξi − (〈xi, xi〉 − 2〈xi, a〉+ 〈a, a〉)

)]
−
∑

1≤i≤n
[γiξi]

s.t. (αi ≥ 0) ∧ (γi ≥ 0) ∀ i (2.29)
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where 〈·, ·〉 denotes the inner product of two vectors. Setting the partial derivatives in Equation 2.29
to zero gives the following constraints:

∂L(R, a, α, γ, ξ)

∂R
= 0 :

∑
1≤i≤n

αi = 1 (2.30)

∂L(R, a, α, γ, ξ)

∂a
= 0 : a =

∑
1≤i≤n

αixi (2.31)

∂L(R, a, α, γ, ξ)

∂ξi
= 0 : C − αi − γi = 0 (2.32)

Using Equation 2.32 the Lagrange multipliers γi can be substituted by γi = C−αi which leads to the
new constraint 0 ≤ αi ≤ C. Re-substituting Equations 2.30–2.32 into 2.29 leads to the Lagrangian
dual form of the optimization problem:

max
α

L(α) (2.33)

with

L(α) =

 ∑
1≤i≤n

αi〈xi, xi〉 −
∑

1≤i,j≤n
αiαj〈xi, xj〉

 (2.34)

s.t. (0 ≤ αi ≤ C) ∀ i ∧
∑

1≤i≤n
αi = 1

Equation 2.33 describes a convex quadratic programming problem with the Lagrangian multipliers
αi as the unknowns. For such a problem efficient algorithms have been proposed, for instance the
one described in [Burges, 1998], which delivers solutions that are globally optimal. In the literature
this solution is frequently denoted as a sparse solution, because the αi that correspond to training
samples inside the optimal hypersphere are equal to zero, and thus play no role for the definition
of the hypersphere centre a (cf. Equation 2.31). The training samples xi ∈ Xtrain corresponding to
non-zero Lagrangian multipliers αi are called support vectors XSV of the hypersphere. Depending
on the parameter C, a fraction of the support vectors still reside outside the hypersphere. These
support vectors xi can easily be identified by their coefficients αi = C [Tax & Duin, 2004]. Only
the so-called bounded support vectors XbndSV = {xi ∈ Xtrain|0 < αi < C} reside on the hypersphere
surface, and can thus be used to determine the radius:

R2 = ||xl − a||2 ∀xl ∈ XbndSV (2.35)

Plugging Equation 2.31 into 2.35 gives:

R2 = 〈xl, xl〉 − 2
∑

1≤i≤n
[αi〈xl, xi〉] +

∑
1≤i,j≤n

[αiαj〈xi, xj〉] ∀xl ∈ XbndSV (2.36)

In theory the distances of all bounded support vectors XbndSV to the centre a are identical but
for practical reasons there might be small divergences. Thus, commonly the mean distance to
all bounded support vectors XbndSV is calculated to define the radius R. The computation of R
concludes the training step, and hence provides the model for the test case.
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The test case: A test sample z lies inside or on the bound of the previously defined hypersphere if
it satisfies the following inequality:

R2 − ||z − a||2 ≥ 0 (2.37)

Plugging Equation 2.31 into 2.37 defines the squared distance to the centre:

||z − a||2 = 〈z, z〉 − 2
∑

1≤i≤n
[αi〈z , xi〉] +

∑
1≤i,j≤n

[αiαj〈xi, xj〉] (2.38)

For a small number of support vectors the computational complexity of the test is very low which
is an advantage of the svdd over comparable one-class methods such as kernel density estimation
[Tax & Duin, 2004].

The implicit feature space mapping: As a simply shaped form like a hypersphere is not necessarily
a good description, the data are mapped to a new representation with a function Φ : Rd → H,
where Rd is the d-dimensional input feature space and H is some (possibly infinite-dimensional)
Hilbert space10 [Burges, 1998]. The hypersphere model is assumed to fit much better to the mapped
feature vectors Φ(xi) in H than to the original feature vectors xi in Rd. However, an explicit
computation in H could be problematic as the dimensionality of an appropriate space H might be
very high. Analogously to the conventional two-class svm, the Kernel Trick is applied to overcome
this problem. In Equations 2.34, 2.36 and 2.38, the inner products 〈·, ·〉 are replaced by a kernel
function K(xi, xj) = 〈Φ(xi),Φ(xj)〉. Now, the formulation as the Lagrangian dual form (Equation
2.34) and the consideration of squared distances in Equations 2.36 and 2.38 becomes clear, as all
the feature vectors only occur in the form of inner products. Therefore, the Kernel Trick allows to
carry out the whole svdd approach without explicitly defining H and Φ, and thus without much
additional computational complexity.

In accordance with Mercer’s condition [Vapnik, 1995], any symmetric and positive semi-definite
function represents an inner product in a Hilbert space, and thus is a valid kernel function. Hence,
various kernel functions have been developed but not all meet the initial assumption, according to
which the training data should (implicitly) be mapped into a spherically shaped area in H. Tax &
Duin [2004] showed that the radial basis function (rbf) satisfies the assumption quite well. The
rbf is defined as follows:

K(xi, xj) = exp

(
−||xi − xj ||

2

2σ2

)
s.t. σ 6= 0 (2.39)

Note that in general the inner product is a similarity measure in H, and hence the kernel function
is also a similarity measure based on Rd. In case of the rbf kernel (Equation 2.39) the similarity
of two feature vectors depends on their Euclidean distance ||xi − xj || in Rd. Using the rbf kernel,
also denoted as Gaussian kernel, simply corresponds to the assumption that Euclidean distances in
input feature space Rd are locally meaningful. The term local is related to the parameter σ that will
be discussed later. From a theoretical viewpoint, such an assumption seems to be quite meaningful
for many applications, and therefore it is not a big surprise that also experimental analyses mostly
10A Hilbert space is any linear space with an inner product that is complete with respect to the corresponding norm.

A Euclidean space is a Hilbert space with finite dimension.
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demonstrate superiority of the rbf kernel compared to alternative kernel functions, e.g. [Huang
et al., 2002]. Those alternative kernel functions often imply a more specific structure of the input
feature space. The most prominent alternative, the polynomial kernel K(x, y) = (〈x, y〉+ 1)p relies
on the inner product in Rd, which itself depends on the distances ||x|| and ||y|| from the origin in
Rd, and thus differences between samples that are far away from the origin are weighted higher than
those near the origin. The impact of this weighting effect depends on the value of p as Tax [2001]
has theoretically proven. In this thesis, only the rbf kernel will be applied because its theoretical
background let expect transferability between different datasets.

Introducing the rbf property that K(x, x) = 1, the optimization problem in Equation 2.33 can
be rewritten as:

max
α

−
∑

1≤i,j≤n

[
αiαj exp

(
−||xi − xj ||

2

2σ2

)]
(2.40)

s.t. (0 ≤ αi ≤ C) ∀i ∧
∑

1≤i≤n
αi = 1

In accordance with Equations 2.36 and 2.38 the hypersphere radius RH and the Euclidean distance
of a test sample Φ(z) to the hypersphere centre aH are defined as follows:

R2
H = 1− 2

∑
1≤i≤n

[
αi exp

(
−||xl − xi||

2

2σ2

)]
+

∑
1≤i,j≤n

[
αiαj exp

(
−||xi − xj ||

2

2σ2

)]
(2.41)

||Φ(z)− aH||2H = 1− 2
∑

1≤i≤n

[
αi exp

(
−||z − xi||

2

2σ2

)]
+

∑
1≤i,j≤n

[
αiαj exp

(
−||xi − xj ||

2

2σ2

)]
(2.42)

The index H in Equations 2.41 and 2.42 shows that these variables are explicitly defined in H and
not in Rd. However, the entities in H are all defined by feature vectors given in Rd. Finally, a test
sample is classified as an inlier if it satisfies the following inequality:

R2
H − ||Φ(z)− aH||2H ≥ 0 (2.43)

The implicit feature space mapping leads to a tighter description of the training data in Rd than
the original form. How tight the description is and how many support vectors are required to define
it mainly depends on the parameters σ and C that will be discussed below.

2.2.3. Hyperparameter adjustment

If the rbf kernel is applied, the two hyperparameters σ (Equation 2.39) and C (Equation 2.27)
have to be adjusted to find an appropriate solution for a specified problem. For conventional two-
class svms, several algorithms for an automatic adjustment exist, where the possible parameter
combinations are systematically evaluated on the basis of cross validation, e.g. [Hsu et al., 2003]. As
cross validation cannot be applied to the one-class problem, theoretical models have to be defined.
Therefore, a deeper understanding of the hyperparameters is required.
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Kernel width σ: The character of the solution of the optimization problem in Equation 2.40 depends
on the term:

exp

(
−||xi − xj ||

2

2σ2

)
(2.44)

For all i = j the Term 2.44 equals to one, irrespective of what value is chosen for σ. For all
i 6= j the Term 2.44 depends on the kernel width σ. For very small values of σ in the order of
mini,j ||xi − xj || ∀ i 6= j, the Term 2.44 converges to zero for all i 6= j. As a consequence, the
elements with i = j dominate the optimization, a case for which Tax & Duin [2004] have shown that
Equation 2.40 has a stable maximum at αi = n−1 for all i, i.e. each training sample is a support
vector. Hence, selecting such a small value for σ will lead to over-fitting. For the other extreme
case, where σ is selected very large, i.e. in the order of maxi,j ||xi − xj ||, the Term 2.44 converges
to one for all i 6= j or is equal to one for all i = j. Tax & Duin [2004] have shown that Equation
2.40 then has a stable maximum that always corresponds to a spherical description in Rd. Hence,
selecting such a large value for σ will lead to under-fitting. Tax & Duin [2004] argue that the best
choices for σ are moderate values, e.g. meani,j ||xi − xj || ∀i 6= j . As σ marks the inflection point
of a Gaussian function that is centred at zero (cf. Equation 2.44), the term is most sensitive to
distances ||xi − xj || ≈ σ, a case for which Tax & Duin [2004] have shown that only the few most
dissimilar training samples, i.e. those with largest ||xi−xj || become support vectors. As this agrees
rather well with the objectives of most applications, many authors such as Park et al. [2007] use the
following definition for σ that will also be applied in this thesis:

σ =

√
1

n(n− 1)

∑
1≤i,j≤n

||xi − xj ||2 (2.45)

Figure 2.5 displays the relationship between σ, the amount of support vectors and the tightness of
the svdd boundary, where the training samples Xtrain are drawn as black dots and the support
vectors XSV are highlighted by grey circles, while the decision surfaces are symbolized by black
lines.

small 𝜎 large 𝜎

Figure 2.5.: Influence of kernel width σ on the svdd.

Regularization parameter C : The second parameter to be adjusted is C which balances the length of
the radius with the tolerated empirical error introduced as ξ = {ξ1 + ...+ ξn} in Equation 2.27. All
training samples outside the svdd hypersphere are characterized by Lagrangian multipliers αi = C.
Additionally, the Lagrangian multipliers are limited by the constraint

∑
1≤i≤n αi = 1 (Equation

2.40) which allows to define a relation between the number of training samples outside the svdd

hypersphere nout and C, namely C =
(
nout

)−1 [Tax & Duin, 2004]. Hence, an empirical error ξ = 0

can be enforced by setting C > 1.0, whereas a value 0 < C ≤ 1.0 leads to an empirical error ξ > 0,
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which allows the most isolated training samples to reside outside the svdd hypersphere. Tax &
Duin [2004] use the relation between nout and C to define:

C =
1

ν · n
(2.46)

where ν is the fraction of training samples outside the svdd hypersphere. They argue that a proper
selection of ν has to go in accordance with the overlap of the inlier and the outlier distributions.
Hence, as soon as the relative amount of this overlap ν is known the optimal value for C follows
from Equation 2.46.

2.2.4. Kernel space metric

Due to the kernel mapping, two different representations have to be considered: Firstly, the original
input space, here denoted as Rd, where all the feature vectors are defined. Secondly, the possibly
infinite dimensional Hilbert space, here denoted as H, where the Euclidean distances of the feature
vectors to the hypersphere centre are defined (cf. Equations 2.41 and 2.42). The input feature space
is usually defined in accordance with a specific model, and thus allows a natural interpretation of
those Euclidean distances or at least of their relative amounts. In contrast, distances in the possibly
infinite dimensional Hilbert space do not have that clear geometrical interpretation. Thus, the goal
is to derive the distance of a test sample z to the svdd hypersurface in Rd. However, the svdd

hypersurface potentially has a complex shape in Rd which makes its computation in Rd difficult.
Hence, it is advantageous to determine the closest distance in H, where the svdd hypersurface has a
simple geometrical shape (a hypersphere) and then transfer the distance back to Rd where it can be
interpreted more easily. For that purpose, some general properties of the mapping and the relations
of the representations in Rd and in H are required.

Even if Φ is not explicitly known, some useful properties of the feature vector representation in H
can be defined, because the inner product in H is known by its functional relation to the Euclidean
distance in Rd, see [Burges, 1999]. In case of the rbf, this means that all input feature vectors
xi ∈ Rd are mapped onto a d-dimensional manifold in H. It is further known that this d-dimensional
manifold has a constant distance to the origin that is equal to one, which is easy to show as for
all xi ∈ Rd the norm11 becomes one; Figure 2.6 shows the situation in 2d. The svdd hypersphere
covers the part of the manifold that represents the training data in H. Any vectors that may not
reside on the manifold, such as the hypersphere centre aH in Figure 2.6, have no representation in
the input feature space.12 Hence, distances to aH, i.e. the radius RH of the hypersphere (Equation
2.41) and the distance ||Φ(z)− aH||H (Equation 2.42) do not have a straight-forward interpretation
in Rd either.

With respect to the representation in H, the situation is rather simple. A point sH on the decision
surface that has the closest distance to a test sample Φ(z) is situated at a straight line through the
hypersphere centre aH and the test sample Φ(z). The distance of sH to the hypersphere centre aH is
given by the radius RH. But caution, the point sH does not necessarily reside on the manifold, and

11The norm ‖xi‖ of a real vector xi equals the squared root of the inner product of the vector with itself.
12In the literature feature vectors xi ∈ Rd are denoted as pre-images of vectors Φ (xi) ∈ H, e.g. [Williams, 2002].
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Figure 2.6.: 2d projection of the svdd.

thus might have no representation in Rd. Therefore, an additional constraint has to be defined: The
point has to reside on the manifold. The point subsequently denoted by Φ(τ) is the nearest point to
Φ(z) that resides on the svdd hypersurface and on the manifold (cf. Figure 2.6). Its representation
in Rd (pre-image) is denoted by τ .

The following relationship is required to show that searching for the shortest distance of z and τ in
H is equivalent to searching for their shortest distance in Rd:

‖Φ(z)− Φ(τ)‖2H = 2

(
1− exp

(
−
||z − τ ||2Rd

2σ2

))
(2.47)

Equation 2.47 is derived by expanding the squared H-distance ‖Φ(z)− Φ(τ)‖2H to 〈Φ(z),Φ(z)〉 +

〈Φ(τ),Φ(τ)〉 − 2 〈Φ(z),Φ(τ)〉 and replacing inner products by the rbf kernel [Burges, 1999].

Guo et al. [2009] have proven that Φ(z) , Φ(τ) and aH are coplanar, and hence the three angles
{0,Φ(z), aH}, {0,Φ(τ), aH} and {0,Φ(z),Φ(τ)} corresponding to the three triangles are related by:

α = γ − β (2.48)

The triangle sides ||Φ(z) − aH||H and RH are defined by Equations 2.41 and 2.42, and the sides
||Φ(z)||, ||Φ(τ)|| are equal to one. Hence, only ||aH|| is missing to determine β and γ, and thus α
(cf. Figure 2.6). The sphere centre aH is defined as follows (cf. Equation 2.31):

aH =
∑

1≤i≤n
αiΦ(xi) (2.49)
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Hence, the squared distance of aH to the origin in H is defined as:

||aH||2 =
∑

1≤i,j≤n
[αiαj 〈Φ(xi),Φ(xj)〉] (2.50)

The inner products in Equation 2.49 are replaced by the rbf kernel, which leads to:

||aH||2 =
∑

1≤i,j≤n

[
αiαj exp

(
−||xi − xj ||

2

2σ2

)]
(2.51)

Hereafter, all required triangle sides are defined, and the law of cosines allows to determine β and γ
by:

cosβ =
1 + ||aH||2 −R2

H
2||aH||

(2.52)

cos γ =
1 + ||aH||2 − ||Φ(z)− aH||2H

2||aH||
(2.53)

Plugging Equations 2.52–2.53 into Equation 2.48 leads to the angle α, which can be used to define
the required distance in H:

||Φ(z)− Φ(τ)||2H = 2− 2 cosα (2.54)

Plugging Equation 2.54 into Equation 2.47 with some rearrangement gives the input space distance
to the decision boundary:

||z − τ ||Rd = σ
√
−2 · ln (cos(γ − β)) (2.55)

Equation 2.55 yields the Euclidean input space distance of any test sample z to the decision surface.
Figure 2.6 refers to a test sample z outside the svdd hypersphere. It is easy to see in Equations
2.48 and 2.54 that the preceding definitions for the distance also hold true for test samples inside
the svdd hypersphere. In order to prevent ambiguities, a signed distance fsvdd(z) is defined based
on the original decision rule introduced in [Tax & Duin, 2004] (cf. Equation 2.43):

fsvdd(z) =

−||z − τ ||Rd | R2
H − ||Φ(z)− aH||2H ≥ 0

+||z − τ ||Rd | otherwise
(2.56)

In the next chapter the probability for a particular test sample z being classified on the basis of a
valid model, defined through a two-class svm, is determined on the basis of distance fsvdd(z).
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3. New methodology

The new methodology that will be presented in this chapter is mainly inspired by the work described
in [Gerke, 2006; Gerke & Heipke, 2008]. Preliminary results of the new method have been published
in [Ziems et al., 2010, 2011a, 2011b and 2012].

This chapter is structured as follows: In the first section the basic strategy will be introduced,
followed by a detailed description of the approach in Sections 3.2 and 3.3. The chapter concludes
with discussions of some practical (Section 3.4) and theoretical (Section 3.5) aspects of the new
approach.

3.1. Basic strategy

The goal of this thesis is the automated verification of road databases on the basis of up-to-date
imagery. In this context, verification refers to the question of whether a road object can be found
in the image or not and whether its required positional accuracy is achieved or not. In accordance
with Gerke & Heipke [2008], a human operator is integrated into the workflow who investigates
potentially wrong road objects and corrects them if necessary. In accordance with [Gerke & Heipke,
2008; Poulain et al., 2010], the verification problem is interpreted as a classification problem by
considering the two possible states, correct and incorrect, for every road object stored in the database.
The approach to solve the classification problem is new. It is based on the following core ideas:

1. Combine several classifiers, all relying on different road models described in the literature.

2. Identify assumptions made by the underlying model of each classifier and check the correspon-
dence of the actual situation in the image with theoretical assumptions made by the model.
Use the correspondence to determine the so-called model-uncertainty which describes the state
of the underlying model being either applicable or not applicable.

3. Map the two state spaces {correct, incorrect} and {applicable, not applicable} to a new state
space that considers the three alternative states for every road object stored in the database
{correct, incorrect, unknown}. Combine the mapped outputs from all classifiers by applying
Dempster’s rule and consider the conflict mass to identify problems of the reasoning approach,
while flagging the output as invalid.

4. Classify each road hypothesis into correct, incorrect, unknown and invalid and forward this
result to a human operator who has the freedom to deal with the states unknown and invalid.

Compared to other state-of-the-art methods the main novelty of this approach lies in its strictly
modular concept. Each classifier works as a completely independent module, and hence represents
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a verification approach on its own. The so-called decision level fusion on the basis of the dst is
also novel even though other state-of-the-art road verification approaches used the dst to combine
lower level information, e.g. [Gerke, 2005; Poulain et al., 2010]. Another unique characteristic of
this approach is that the decision space explicitly includes the state unknown which exploits the
specific ability of the dst to express ignorance in a straight-forward manner. The road models
and detection strategies of the verification modules correspond to established state-of-the-art road
detection approaches. In this respect, the contribution lies in transferring those detection strategies
into strategies that are useful for the verification problem. Furthermore, some of the state-of-the-art
strategies are expanded to make them more effective for the overall approach, e.g. by introducing
prior knowledge of the road database or by focusing on weak points of other modules. Finally, the
analysis and the mathematical definition of the model-uncertainties for several state-of-the-art road
detection approaches are a particular contribution of this thesis.

Figure 3.1 gives an overview of the semi-automatic workflow starting with the input road database
and the imagery, and ending with the corrected road database.

manual pre-processing

system parameters

training samples

single database object

(polyline and road width)

per-hypothesis data preparation 

local image subsets

(nDSM and colour bands)

manual post-processing

Hi

corrected 

road database

incorrect

correct

unknown or invalid

output data

core component

imagery

road database

input data

locally operating verification modules

DST-based reasoning

support component

globally operating verification modules

Hi

Figure 3.1.: Overview of the proposed approach.
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Two of the boxes depicted in Figure 3.1 correspond to interactive tasks that require a human
operator. Firstly, the manual pre-processing where the approach has to be prepared to the actual
problem. Secondly, the manual post-processing, where the indicated database errors have to be
corrected. The other boxes represent fully automatic processing steps. The per-hypothesis data
preparation automatically defines image subsets showing the local surroundings of each single road
object stored in the database. Then the data are forwarded to the core component that includes all
verification modules operating locally and the reasoning approach. The core component is applied
to each road object separately, and thus finally provides a decision for each road object. The
support component contains the modules operating globally, i.e. those that are not restricted to a
per-hypothesis analysis. Therefore, the support component has access to the whole database and is
allowed to exchange intermediate results with the core component.

In the following, all components depicted in Figure 3.1 will be introduced briefly.

Input road database: For the thesis it is assumed that the input road database has an object-based
structure in which a road object is defined by its centreline and a unique value for the road width.
Further it is required that a single road object does not include junctions. Road objects that are
connected must have the same coordinates at their end points. The input road databases may have
different requirements for spatial accuracy which is considered by a parameter Dxy denoting the
required accuracy for the road centreline and Dwidth denoting the required accuracy for the road
width attribute. As the actual spatial accuracies of road databases are often different from what
is required, two additional parameters are defined: The root mean square (rms) error of the road
centreline Drms(xy) and the rms error of the road width attribute Drms(width). These four so-called
system parameters are listed in Table 3.1 and will subsequently be used in different equations. Below
more system parameters will be introduced and reviewed all together in Section 3.4.

Dxy [m] required accuracy of the road centreline

Dwidth [m] required accuracy of the width attribute

Drms(xy) [m] rms error of the road centreline

Drms(width) [m] rms error of the road width

Table 3.1.: System parameters: Spatial accuracy of the database.

Input imagery: For this thesis it is assumed that the geo-reference of the input imagery corresponds
to the road database and that the image is orthorectified. Beyond that, different kinds of imagery
with a gsd of about 0.2–2.0 m can be used. In particular, panchromatic, colour1, ndvi or ndsm

(aerial or satellite) images are considered as possible inputs. As will be shown later, the character-
istics of the input imagery have consequences to the applicability of the verification modules. The
actual gsd of the imagery is introduced as a system parameter (cf. Table 3.2).

GSD [m] ground sampling distance of the imagery

Table 3.2.: System parameter: Image resolution.

Manual pre-processing: This step is important to adapt the overall approach to different input
datasets. Here, a human operator has to define the system parameters and the training dataset.

1For simplification, the subsequent discussions refer to images having three bands such as rgb or irrg.
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According to Tables 3.1 and 3.2, the system parameters describe general properties of the input
data, while the training dataset is required to adapt the approach of the radiometric properties of
a scene. The related training algorithms will be discussed together with the respective verification
modules in Section 3.3. In summary, training samples for three different object classes are required:
roads, buildings and grassland objects (cf. Table 3.3).

Xroads training data set consisting of image regions that correspond to roads

Xbuildings training data set consisting of image regions that correspond to buildings

Xgrassland training data set consisting of image regions that correspond to grassland

Table 3.3.: Training datasets.

Per-hypothesis data preparation: Usually, the number of road hypotheses to be verified will be large
(> 1, 000), but the core component considers each database hypothesis individually. The automatic
pre-processing step generates a hypothesis H i for each road object stored in the database. For
practical reasons road objects that are longer than 100 m are subdivided into different hypotheses of
similar lengths. The index i denotes the particular road hypothesis. A set Hi includes nine elements:

Hi = {hxy
i , h

width
i , hlength

i , RH
i , R

H•
i , RH•

i , R
H||
i , R

[·H·]
i , R

]H[
i } (3.1)

Table 3.4 describes the meanings of all elements while Figure 3.2 provides a symbolical2 interpreta-
tion.

hxy
i 2d coordinate list of the centreline

hwidth
i width hypothesis

hlength
i length hypothesis

RH
i set of image pixels that are representing the road according to the database

RH•
i set of image pixels that contains all possible positions of the road hypothesis

RH•
i set of pixels that only show the road hypothesis

R
H||
i set of pixels that show all possible positions of the road borders

R
[·H·]
i set of pixels that show the road hypothesis and its context area

R
]H[
i set of pixels that show the context area, but not the road hypothesis

⇒ Hi = {hxy
i , hwidth

i , hlength
i , RH

i , R
H•
i , RH•

i , R
H||
i , R

[·H·]
i , R

]H[
i }

Table 3.4.: Input for verification modules.

The element hxy
i denotes the road centreline, i.e. a 2d coordinate list indicating the points of a

polyline. The elements hwidth
i and hlength

i denote the road width and the road length. RH
i denotes the

set of pixels corresponding to the database information (road centreline, road width), i.e. a direct
projection of the database entry into the image space. RH•

i denotes the set of pixels corresponding
to the database entry considering the tolerated spatial inaccuracies. To obtain RH•

i , morphological

2Figure 3.2 shows a simplified road hypothesis that only relies on a straight polyline and whose shape is simplified
at both ends. In general, polylines have more complex shapes that lead to image subsets of more complex shapes.
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Figure 3.2.: Definition of image subsets, related to a single road hypothesis.

dilation is applied to RH
i using a circular structuring element with radius r1, which is defined as:

r1 = 3

(
Drms(xy) +

1

2
Drms(width)

)
+ GSD (3.2)

In Equation 3.2, the rms errors of road centreline and road width are considered together with a one-
pixel distance (gsd) that compensates the effects of mixed pixels. The decimal factor 3 in Equation
3.2 is motivated by the three-sigma rule that states that nearly all values lie within three standard
deviations of the mean in a normal distribution. RH•

i is determined by morphological erosion of RH
i

using the same structuring element as for RH•
i , and thus includes only pixels that must correspond

to the road if the database entry was correct. Consequently, the set RH||
i = RH•

i \ R
H•
i defines the

tolerated spatial positions of the road borders. The set R[·H·]
i is defined by morphological dilation of

the set RH
i using a circular structuring element with radius r2 and removing pixels corresponding

to RH•
j ∈ Hj ∀ j 6= i. Here, r2 corresponds to the width of the local context region that has to be

considered. As the optimal value for r2 depends on the particular scene, it is introduced as another
system parameter that has to be defined manually (cf. Table 3.5).

r2 [m] width of considered local context region, perpendicular to the road centreline hypothesis

Table 3.5.: System parameter: Local context definition.

Removing pixels corresponding to RH•
j ∈ Hj excludes pixels corresponding to other road hypotheses

that have to be ignored for the per-hypothesis analysis. R]H[
i is defined by morphological erosion

of the set R[·H·]
i \ RH•

i with a circular structure element of radius r1 (cf. Equation 3.2) and thus
explicitly represents the local context region.

Core and support components: In accordance with Figure 3.3 the core component contains nine
independently and locally operating verification modules that rely on different road models. Each
verification module vm receives the pre-processed dataset Hi and provides a corresponding probabil-
ity mass function mvm

i : 2Θ → [0, 1] as output. Therefore, two different uncertainties are considered:
The verification-uncertainty, a probability function P vmi : Θv → [0, 1] and the model-uncertainty, a
probability function P vmi : Θu → [0, 1] that are both mapped to the state space 2Θ. The outputs
mvm
i are combined using Dempster’s rule and then mapped to a decision space that includes four

states {correct, incorrect, unknown, invalid}. The decision Di corresponding to a hypothesis Hi
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Figure 3.3.: Core component of the proposed approach.

is forwarded to the manual post processing. Additionally, the core component exchanges interme-
diate results with the support component which is not restricted to local image pixel sets. From
the support component the colour classification module receives the parameters for the distributions
Ninliers, N outliers and the adjacency analysis provides additional outputs for verification and model-
uncertainty. A detailed description of the core and the support components will be given in Sections
3.2 and 3.3, respectively.

Manual post processing: The input imagery and the database to be verified are visualized in a
standard gis environment together with the colour-coded decision outputs. The basic idea is
that the human operator can concentrate on a few objects only, instead of having to check the
whole scene. How the search over automatically verified road objects can be effectively imple-
mented, is discussed in [Beyen et al., 2008], and will not be dealt with in this thesis. Whether
or not a road object has to be investigated by the human operator depends on its decision state
{correct, incorrect, unknown, invalid} and on the cartographic task to be solved. Two scenarios
will be particularly considered in the experiments of this thesis. The first scenario focuses on a
high database quality where the human operator has to check every non-verified object, i.e. road
hypotheses assigned to the states incorrect, unknown and invalid. This scenario largely corresponds
to the scenario defined in [Gerke & Heipke, 2008]. The second scenario focuses on the reduction of
manual labour. Accordingly, a human operator only checks the detected errors, i.e. only road hy-
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potheses assigned to the state incorrect. Both scenarios do not distinguish the states unknown and
invalid, and thus a traffic light scheme with red (incorrect), yellow (unknown or invalid) and green
(correct) is sufficient to visualize the automatically achieved outputs (cf. Figure 3.1). However, the
states unknown and invalid determine different problems that will be stressed in Chapter 4.

3.2. The fusion framework

In this section, first the basic idea of the reasoning approach will be presented (Section 3.2.1) which
is followed by an introduction to the principle of determining model-uncertainties (Section 3.2.2).

3.2.1. Reasoning strategy

Basically two different probability functions are considered:

1. The verification-uncertainty, a probability function P : Θv → [0, 1] with:

Θv = {correct, incorrect} (3.3)

2. The model-uncertainty, a probability function P : Θu → [0, 1] with:

Θu = {applicable, not applicable} (3.4)

Subsequently, the states applicable and not applicable will be abbreviated by a and n/a.

The verification output: This verification-uncertainty represents a solution to the main classification
problem, according to which a road hypothesis might be either correct or incorrect. The verification
output is specific for each road hypothesis, and thus depends on some data term xvmv (Hi) derived
from the local dataset included in Hi. The function xvmv represents the subjective detection strategy
related to a verification module vm. As the road model and the detection strategy of each verifi-
cation module are rather specific, its individual output is not useful in a general sense. Hence, the
verification output is conditioned to the applicability of the underlying road model which leads to
the following interpretation of what each module effectively provides:

P (road = correct|xvmv (Hi),model = a.) = 1− P (road = incorrect|xvmv (Hi),model = a.) (3.5)

The model-uncertainty: This probability distribution, refers to the two possible states of the un-
derlying road model that might be either applicable or not applicable. As the model-uncertainty is
specific for each road hypothesis, it is also referred to a specific data term xvmu (Hi) derived from
the local dataset included in Hi. The function xvmu represents the analysis strategy of a particular
verification module vm for the data term and thus the model-uncertainty is expressed as follows:

P (model = a.|xvmu (Hi)) = 1− P (model = n/a|xvmu (Hi)) (3.6)
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The unknown distribution: In order to find a solution to the main classification problem, the condi-
tioning of the model to the state applicable needs to be removed:

P (road = correct|xvmv (Hi)) = P (road = correct|xvmv (Hi),model = a.)P (model = a.|xvmu (Hi))

+P (road = correct|xvmv (Hi),model = n/a)︸ ︷︷ ︸
?

P (model = n/a|xvmu (Hi))

(3.7)
In Equation 3.7 the term labelled with the question mark is unknown. In particular, it is expected
that there is neither an experimental nor a heuristical basis to define that term. If there was such
a basis, the verification outputs would have a general character and the conditioning on the state
of the model would be unnecessary because it could be replaced by another more comprehensive
model, which is applicable. A possible solution to Equation 3.7 is replacing the unknown distribution
by a uniform distribution such that:

P (road = correct|xvmv (Hi),model = n/a) = P (road = incorrect|xvmv (Hi),model = n/a) = 0.5 (3.8)

However, this definition is inapplicable for the given problem as will be demonstrated experimentally
in Chapter 4. To overcome the problem, the two probabilistic representations are transferred into a
representation based on the dst, where P (road = correct|xvmv (Hi),model = n/a) does not need to
be specified.

Definition of probability masses: In the dst the state space is defined by the power set of Θv:

2Θ = {correct, incorrect, correct ∪ incorrect, ∅} (3.9)

The state {correct∪incorrect} denotes the ignorance in discriminating the two states {correct} and
{incorrect}. The probability mass functions mi : 2Θ → [0, 1] are defined by mapping both kinds of
outputs, the verification output and the model-uncertainty output, to probability mass distributions
in 2Θ. In accordance with the discussions in Section 2.1.4 the mapping is defined as follows:

mvm
i (road = correct) = P (road = correct|xvmv (Hi),model = a.)P (model = a.|xvmu (Hi)) (3.10)

mvm
i (road = incorrect) = P (road = incorrect|xvmv (Hi),model = a.)P (model = a.|xvmu (Hi))(3.11)

mvm
i (road = correct ∪ incorrect) = P (model = n/a|xvmu (Hi)) (3.12)

mvm
i (road = ∅) = 0 (3.13)

Fusion and decision making: Dempster’s rule (cf. Equation 2.10) is applied to combine the proba-
bility mass functions mvm

i : 2Θ → [0, 1] of all verification modules vm to a single probability mass
function mi : 2Θ → [0, 1] for each road hypothesis Hi. Additionally, the conflict mass Ki is deter-
mined in accordance with Equation 2.11. Decision making is implemented analogous to Algorithm 1,
where the three states {correct, incorrect, correct∪ incorrect} are mapped onto the decision space
by applying Equation 2.25. In Section 2.1.3 the explicit consideration of large conflict masses for
the mapping was motivated by its potential to uncover internal errors of the approach. A value of
0.9 for the related threshold Ki turned out to be appropriate for the experiments applied for this
thesis.
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Algorithm 1 Decision rule.
if Ki < 0.9 then

if argmax
2Θ

(mi) = {correct} then
Di = correct

else if argmax
2Θ

(mi) = {incorrect} then
Di = incorrect

else if argmax
2Θ

(mi) = {correct ∪ incorrect} then
Di = unknown

else
Di = invalid

In this thesis the term unknown is used for the state {correct∪incorrect} because it highlights the
presence of different levels of knowledge. In this context the first level represents uncertain knowledge,
given in form of a probability function that describes the state of the road object (correct, incorrect).
The second level represents ignorance which means that the probability function that describes the
state of the road object (correct, incorrect) is unknown; such a decision reads: Given all evidences,
the state of the road object is most likely unknown.3

3.2.2. Model-uncertainties

As discussed in Section 1.3 state-of-the-art methods, and thus also the applied verification modules,
rely on rigid assumptions, e.g. they induce specific context areas or appearances of roads. The
basic idea is that only if these assumptions are satisfied the model is applicable and provides an
interpretable verification output. If at least one of the assumptions is violated the model is not
applicable and the verification output is not interpretable for the given task. Accordingly, the state
of a model can be defined by analysing the states of the critical assumptions ak that might be either
satisfied or violated :

P (ak = satisfied|xvmu,k(Hi), θ) = 1− P (ak = violated|xvmu,k(Hi), θ) (3.14)

The state of a critical assumption ak depends on a feature vector xvmu,k(Hi) and on a parameter set θ.
Considering K critical assumptions ak with 1 ≤ k ≤ K, the corresponding distribution is defined:

P (model = a.|xvmu (Hi)) = P (a1 = satisfied ∩ a2 = satisfied ∩ · · · ∩ aK = satisfied) (3.15)

m

P (model = a.|xvmu (Hi)) =
∏

1≤k≤K

P (ak = satisfied|xvmu,k(Hi), θ) (3.16)

Equation 3.16 requires independence of the different ak which is assumed because the feature vectors
xvmu,k(Hi) vary with k. The probabilities P (ak = satisfied|xu(Hi), θ) are always modelled by sigmoid
functions parametrised with θ. As shown in Figure 3.4 a sigmoid function allows a smooth transition
from the state violated (left) to the state satisfied (right).

The critical assumptions are identified with the descriptions in the original literature or other

3Bammer & Smithson [2008] provide a comprehensive discussion about levels knowledge and their probabilistic
interpretations.
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Figure 3.4.: Sigmoid function.

empirical analyses such as those carried out in benchmark tests. In accordance with those knowl-
edge sources the parameters of the sigmoid functions θ are defined on a heuristical or a statistical
basis. In Section 3.3, four different approaches to define the sigmoid parameters will be used,
the generative parametrisation approach, the discriminative parametrisation approach, the smooth
heuristic parametrisation approach and the rigid heuristic parametrisation approach. Each approach
is particularly useful for different kinds of assumptions that will be dealt with below.

The generative parametrisation approach: If probability density functions for feature values xvmu,k(Hi)

can be defined by Gaussians such that:

p(xvmu,k(Hi)|ak = satisfied) = N (xvmu,k(Hi)|µsat, σsat) (3.17)

p(xvmu,k(Hi)|ak = violated) = N (xvmu,k(Hi)|µvio, σvio) (3.18)

are known a sigmoid function is defined on the basis of the Bayes’ theorem which leads to the
following form (cf. Bishop, 2006):

P (ak = satisfied|xvmu,k(Hi), θgen) =
N (xvmu,k(Hi)|µsat, σsat)P (sat)

N (xvmu,k(Hi)|µsat, σsat)P (sat) +N (xvmu,k(Hi)|µvio, σvio)P (vio)
(3.19)

In Equation 3.19 P (sat) and P (vio) denote the prior’s. The generative parametrisation approach
requires to define the parameter set θgen = {µsat, σsat, P (sat), µvio, σvio, P (vio)}. Subsequently, this
parametrisation approach will always be used if there is a heuristical or a statistical basis to define
the parameters of the Gaussian likelihoods.

The discriminative parametrisation approach: In this case, the sigmoid function is defined using the
following form (cf. Bishop, 2006):

P (ak = satisfied|xvmu,k(Hi), θdisc) =
1

1 + exp (−t)
(3.20)

where t represents a quadratic function depending on xvmu,k(Hi):

t = t1
[
xvmu,k(Hi)

]2
+ t2

[
xvmu,k(Hi)

]
+ t3 (3.21)
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Equations 3.19 and 3.20 are actually equivalent. According to Bishop [2006] their parameters are
related by:

t1 =
1

2σ2
sat

− 1

2σ2
vio

(3.22)

t2 =
µvio

2σ2
vio

− µsat

2σ2
sat

(3.23)

t3 =
µ2
sat

2σ2
sat

− µ2
vio

2σ2
vio

− lnP (sat) + lnP (vio)− ln
1

σsat
√

2π
+ ln

1

σvio
√

2π
(3.24)

One advantage of the discriminative approach over the generative approach is that the number
of parameters is reduced from six to three: θdisc = {t1, t2, t3}. This allows to define simplified
regression models for the parameter training, and thus the discriminative parametrisation approach
is subsequently used in cases where all sigmoid parameters must be learned from a single training
dataset.

The smooth heuristic parametrisation approach: A disadvantage of the discriminative parametri-
sation approach is that the parameters {t1, t2, t3} do not have an intuitive meaning which makes
implementing heuristics difficult. In contrast, the generative approach may allow a heuristic def-
inition, but one has to be aware of the assumption that the likelihoods are Gaussians which will
sometimes be problematic. As discussed in Section 1.3 some promising road detection approaches
rely on heuristics, often realized through Fuzzy-membership functions, e.g. [Wiedemann & Mayer,
1996; Bacher & Mayer, 2005; Grote et al., 2012]. In this respect, the smooth heuristic parametrisa-
tion approach is defined to implement simple heuristics comparable to fuzzy membership functions,
such that for xvmu,k(Hi) = d1 the critical assumption is satisfied and for xvmu,k(Hi) = d2 the critical as-
sumption is violated. This heuristic is used to define the sigmoid parameters {t1, t2, t3} in Equation
3.20:

t1 = 0 (3.25)

t2 =
16

d1 − d2
(3.26)

t3 =
8
(
d2

2 − d2
1

)
(d1 − d2)

2 (3.27)

Considering the relation of the sigmoid parameters {t1, t2, t3} to the generative parametrisation
approach (cf. Equations 3.22–3.24), the parameters {d1, d2} have the following relations to the
Gaussian parameters:

µsat = d1 (3.28)

µvio = d2 (3.29)

σsat = σvio =
1

4
· |µsat − µvio| (3.30)

P (sat) = P (vio) (3.31)

This smooth heuristic approach, associated with the parameter set θsmooth = {d1, d2}, at least yields
a smooth transition of the sigmoid between d1 and d2. Subsequently, this parametrisation approach
will be used if an appropriate heuristic for d1 and d2 is available.
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The rigid heuristic parametrisation approach: The rigid heuristic approach is a further simplification
of the smooth heuristic approach. It is expected that a single value T can be defined that clearly
discriminates the two states of an assumption. Hence, P (ak = satisfied|xvmu,k(Hi), θrigid) might be
either zero or one. This corresponds to a sigmoid function based on Gaussians with infinitely small
standard deviations, i.e. limσsat,σvio→0 P (ak = satisfied|xvmu,k(Hi), θgen) (cf. Equation 3.19). In this
case the sigmoid function can be approximated by a delta function δ(xvmu,k(Hi) ≥ T ), with only one
parameter T . The setting for the rigid heuristic approach will further be denoted as θrigid = {T}.
This model will be used if such a simple heuristic seems to be sufficient.

In the subsequent sections the indices {gen, disc, smooth, rigid} will be used to emphasize the differ-
ent parametrisation approaches. Figure 3.5 exemplary shows realizations of the different parametri-
sation approaches for basically the same sigmoid function. For the generative approach it is:

P (a1 = satisfied|xvmu,1(Hi), θgen = {4.0, 1.0, 0.8, 4.0, 1.0, 0.8}) (3.32)

where the Gaussian likelihoods have the following definition:

N (xvmu,1(Hi)|µsat = 4.0, σsat = 1.0) (3.33)

Nxvmu,1(Hi)|µvio = 0.0, σvio = 1.0) (3.34)

For the discriminative approach and the smooth heuristic approach it is:

P (a1 = satisfied|xvmu,1(Hi), θdisc = {0.0, 4.0,−8.0}) (3.35)

P (a1 = satisfied|xvmu,1(Hi), θsmooth = {4.0, 0.0}) (3.36)

and for the rigid heuristic approach merely an approximation can be defined by:

P (a1 = satisfied|xvmu,1(Hi), θrigid = {2}) (3.37)

𝓝(𝒙𝒖,𝟏
𝒗𝒎(𝑯𝒊)|𝝁𝒗𝒊𝒐, 𝝈𝒗𝒊𝒐)
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Figure 3.5.: parametrisation approaches for the sigmoid function.
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3.3. Verification modules

In general, all verification modules rely on state-of-the-art road detection approaches. However,
new elements have been added to make these approaches more useful for the verification task.
Subsequently, all modules will be introduced by their underlying models, their verification strategies
and their model-uncertainties.

3.3.1. Colour classification

The colour classification module is mainly based on the work presented in Fujimura et al. [2008]
who developed an approach to correct geometric errors of roads caused by parallel displacements.
While the authors restrict their approach to rural areas, the extension presented below operates in
urban areas as well.

Model

The model basically assumes that image regions belonging to roads can be identified on the basis of
their radiometric properties that can be specified in advance, e.g. on the basis of training samples. It
is further assumed that such image regions have homogeneous radiometric properties and therefore
can be represented by a single grey value for each colour band. While this holds true for the original
approach described in [Fujimura et al., 2008], the proposed expansion relaxes the homogeneity
assumption slightly so that image regions are represented by two colour vectors. This allows to
cover situations where roads are partly affected by shadows which most frequently occurs in urban
areas. Here, the partly bright and shadowed road surface is assumed to be characterized by two
specific colours.

The model is defined for colour images with a gsd ≤ 0.5 m.

Verification strategy

In accordance with Fujimura et al. [2008], a two-class svm is applied to distinguish road and back-
ground image regions. The following paragraphs describe the definition of the feature vectors, the
training and the definition of the verification output.

Definition of the feature vectors: Initially, a grey value histogram is computed for each colour band
inside the image region corresponding to the set RH•

i ∈ Hi showing only the road surface if the
database hypothesis is correct (cf. Table 3.4). Fujimura et al. [2008] use the mean grey value in
each colour band to define a colour feature vector for the respective image region. In this thesis, a
Gaussian Mixture Model (gmm) is used to describe the distribution of the grey values in each colour
band. For each colour band a gmm is defined on basis of the grey values g ∈ RH•

i :

fgmm(g) =
∑

1≤q≤Q
wqN (g|µq, σq) (3.38)

where Q denotes the number of Gaussian components N (g|µq, σq) and wq denotes the mixing co-
efficients. The gmm is derived by the so-called expectation maximization method introduced in



48 3. New methodology

[Dempster et al., 1977] which is explained in the Appendix A.2. Only two of the Gaussian com-
ponents are assumed to represent the homogeneous road surface that is partly bright and partly
shadowed. It is further assumed that these Gaussian components are characterized by rather large
mixing coefficients wq and low standard deviations σq. However, the gmm might also represent other
objects such as road markings or vehicles by separate Gaussian components. In order to extract the
components that represent the road surface only, Equation 3.38 is altered to:

fgmm?(g) =
∑

1≤q≤Q
w?qN (g|µq, σq) (3.39)

where the parameters {µq, σq} correspond to the initial gmm in Equation 3.38 and the new mixing
coefficients w?q are defined for all q as:

w?q =


wq |wq ≥ 0.1 ∧ σq < 5 bit ∧ q = qmax

wq |wq ≥ 0.1 ∧ σq < 5 bit ∧ q = q2nd

0 |otherwise

(3.40)

with

qmax = arg max
q
wq (3.41)

q2nd = arg max
q\qmax

wq (3.42)

This definition leads to non-zero mixing coefficients w?q if the respective Gaussians satisfy three
constraints. The first two constraints wq ≥ 0.1 and σq < 5 bit are defined to suppress Gaussian
components that represent smaller objects such as cars or road markings. The threshold of 5 bit for
the Gaussian kernel width refers to 8 bit images with 256 possible grey values. The third constraint is
only satisfied for the two Gaussian components having the largest mixing coefficient and the second
largest mixing coefficients, respectively. Definition 3.40 leads to either two, one or zero mixing
coefficients w?q unequal to zero.

In case of two non-zero mixing coefficients w?q , the two corresponding µq values are used as part
of the feature vector in an ascending order. This is important because it means that the first vector
element always represents a darker region and the second vector element always represents a brighter
region. As the procedure is repeated for each colour band, the six-dimensional feature vector has
the structure: dark (band 1), bright (band 1), dark (band 2), bright (band 2), dark (band 3), bright
(band 3). The idea behind this order is that the image regions are usually not very saturated and
the main differences are due to the brightness. In other words, most pixels in an image can be
associated with vectors in rgb colour space that are predominantly located near the diagonal in
the rgb colour space. While this assumption seems to be quite realistic for most situations in
remote sensing images where the colour bands are strongly correlated, its violation would lead to
non-unique4 feature vectors, which is demonstrated in Figure 3.6, a problem that will be discussed

4In theory one could circumvent this problem by defining a gmm in 3d. However, the available amount of pixels
of approximately 5,000–10,000 per road hypothesis is much too small to learn the nine parameters per Gaussian
component simultaneously in contrast to only three parameters per Gaussian component.
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in the context of the model-uncertainty.
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Figure 3.6.: The feature vector representing the clusters 1 and 2 has the same marginal distributions
(black bars) as the feature vector representing the clusters A and B. The circles show
the colour according to the position in the feature space.

In case of one non-zero mixing coefficient w?q the corresponding µq is used twice as a part of the
feature vector. This strategy avoids feature vectors of different dimensions which is important for
applying the svm. In accordance with the initially discussed model, such situations are interpreted
as road surfaces that are either completely bright or completely in the shadow.

The third scenario is that no Gaussian component satisfies the constraints in Equation 3.40. In
this case the feature vector is not defined, which is considered by the model-uncertainty that will
be introduced below.

Figure 3.7 shows the feature vectors definition for several road hypotheses. The left column
shows the road hypotheses, the centre column the respective rgb histograms and the right column
the derived feature vectors. The µq for which wq ≥ 0.1 ∧ σq < 5 bit holds true even if they are
unconsidered are set in brackets, while the additionally considered µq are marked by a plus symbol.
The first question that may arise is why only two values µq are considered for each colour band. The
main reason is that each additional feature increases the required amount of training samples and
the benefit of an additional mean value is expected to be rather small because many image regions
can be represented sufficiently by only one or two mean values, e.g. examples a,b,c in Figure 3.7. In
this context it is worth noting that objects that are small compared to the gsd, e.g. cars or road
markings, result in Gaussians with large standard deviations because they are mainly represented
by mixed pixels (cf. Figure 3.7c). Hence, the mean values do not represent the colour properties
of small objects well. This leads to another question: Why are only the mean values considered
and not the other gmm parameters wq, σq? One reason can be seen from the examples depicted
in the Figures 3.7a and b. The appearance of the two correct road regions in the image is rather
different because the relative amounts of shadowed and bright road parts are different. However,
this difference only affects the parameters wq and σq and not the µq. Hence, the proposed strategy
requires fewer training samples because the relative amount of shadow is nearly irrelevant.

Finally, the restriction to (only) six features preserves the basic idea of the original method
proposed by Fujimura et al. [2008] who defined a relatively simple model that is still able to provide
good results without a high amount of training data. A possible disadvantage of the introduced
two-colour model can be seen in Figure 3.7d, where an incorrect road hypothesis is insufficiently
described by only two Gaussians. The ideal case would be an incorrect road region that is completely
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Figure 3.7.: Colour module feature extraction for four different road hypotheses.
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covered by a maximum of two background objects. Despite that problem the proposed extension
prepares the approach for dealing with shadows which is a weak point of most state-of-the-art road
detection approaches. As the other verification modules do not consider shadow in an explicit way,
this expansion is of central importance for the overall verification approach as will be shown by the
experiments in Chapter 4.

SVM training: For the classification a ν-svc [Schölkopf et al., 2000]5 in the implementation of the
open-source library libsvm [Chang & Lin, 2001] is trained on the basis of a set of feature vectors
Xsvmtrain. The training dataset contains correct road regions but also background regions such as
buildings and grassland. The basis for the training dataset are the image regions corresponding to
sets Xroads, Xbuildings, Xgrassland (cf. Table 3.3). However, only feature vectors whose computation
satisfies a pre-defined set of critical assumptions are considered in Xsvmtrain which will be dealt
with below in the context of model-uncertainty. Based on Xsvmtrain an rbf kernel is used for the
ν-svc (cf. Equation 2.39) whose hyperparameter σ is determined by Equation 2.45. The second
hyperparameter ν is determined by a step-wise search for ν = {0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30}
based on three-fold cross-validation [Chang & Lin, 2001].

Classification and verification output: A feature vector zi corresponding to xcol
v (Hi) is classified by

the previously trained model. The binary classification output of the ν-svc is interpreted directly
to define the probabilities required for the given verification problem:

P (road = correct|xcol
v (Hi),model = a.) =

1.0 |ν − svc classified road

0.0 |ν − svc classified background
(3.43)

The output of the ν-svc is a binary class assignment, and consequently also the verification output
is binary. Some approaches, e.g. the one in [Platt, 2000] have demonstrated that for two-class svms
probabilistic distributions can be defined on the basis of the distance to the hyperplane. However,
in this thesis this possibility is not investigated further.

Model-uncertainty

Four critical assumptions have been identified for the colour classification module. The fourth
assumption is specific for each colour band and thus considered three times which leads to, in total,
seven critical assumptions.

Critical assumption 1: The training samples represent the test data. As already discussed in Section
2.2, this is a critical assumption frequently made by applications of machine learning. In order to
detect potential violations, an svdd is trained with the same training data as the ν-svc. In contrast
to the ν-svc both classes road and background are aggregated to one inlier class. The respective
kernel function is selected in full accordance with the ν-svc. The regularization parameter is set to:

C = (0.01 · n)−1 (3.44)
5Schölkopf et al. [2000] introduced the ν-svc as a variant of the conventional two-class svm described by Vapnik
[1995]. The ν-svc replaces the regularization parameter C by a parameter ν. Using ν has the advantage that it
can be interpreted as the probability that a training sample is located on the wrong side of the hyperplane.
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As n denotes the number of training samples, this will usually result in a low degree of generalization,
i.e. the svdd hypersphere will be determined so that there will only be a few training samples outside
the svdd hypersphere (cf. Section 2.2.3). In accordance with Equation 2.56 the signed feature space
distance fsvdd(zi) of each test sample zi is obtained. As described in Section 2.2.3 fsvdd(zi) denotes
the distance of a test sample zi to the training data represented by the svdd surface. Basically, a
distance fsvdd(zi) ≤ 0 indicates that zi is represented by training data while a distance fsvdd(zi) > 0

indicates that zi is not represented by the training data. Consequently, fsvdd(zi) allows to evaluate
the fulfilment of the first critical assumption, and hence is directly interpreted as the indicator
feature to this critical assumption:

xcol
u,1(Hi) = fsvdd(zi) (3.45)

Next, the distribution P (a1 = satisfied|xcol
u,1(Hi), θ) has to be defined. This is difficult because the

typical distance from the svdd surface to an outlier is basically unknown. Note that the outliers
were not part of the training. As a consequence, knowledge about the distribution of the outliers is
required. In the test phase (the per-hypothesis analysis) outliers are very likely to appear. In order
to make that knowledge available, the svdd test data analysis is introduced as an extra module
outside the core component (cf. Figure 3.3) which shall be explained briefly.

As a part of the support component this module has access to the distances fsvdd(zj) of all test
samples zj . Hence, a set of all distances is defined: fsvdd(zj) ∈ Xsvddtest, for which the two subsets
for inliers X in and outliers Xout with X in, Xout ⊆ Xsvddtest are defined by applying the natural
decision threshold introduced by Tax & Duin [2004]:

X in = {fsvdd(zj) ∈ Xsvddtest|fsvdd(zj) ≤ 0}

Xout = {fsvdd(zj) ∈ Xsvddtest|fsvdd(zj) > 0}
(3.46)

Due to the hard decision threshold, the distributions of the fsvdd(zj) for X in and Xout do not
overlap. Now, it is supposed that these two distributions do not represent the true distributions
for the inliers and the outliers. Instead, the true distributions are assumed to correspond to Gaus-
sians. Therefore, X in and Xout are used to estimate the parameters for the respective Gaussians
N (fsvdd(zj)|µin, σin, P (in)) and N (fsvdd(zj)|µout, σout, Pout) that are exemplary shown in Figure
3.8. The determined Gaussian parameters are plugged into Equation 3.19 which corresponds to the
generative parametrisation approach introduced in Section 3.2.2:

P (a1 = satisfied|xcol
u,1(Hi), θgen{µin, σin, Pin, µout, σout, Pout}) (3.47)

One consequence of the definition in Equation 3.47 is that the decision threshold fsvdd(z) = 0

suggested by Tax & Duin [2004] is adapted according to the test data. Empirical analyses with
different datasets have shown that this adapted decision threshold represented by fsvdd(z)|P (a1 =

satisfied|xcol
u,1(Hi), θgen) = 0.5 is mostly larger than zero, the decision threshold suggested by Tax

& Duin [2004]. This finding corresponds to the intuition that test samples in the vicinity of the
training data are still covered by the trained model. The example depicted in Figure 3.8 has the
new decision threshold approximately at 1.2. The unit of distance drawn on the x-axis in Figure 3.8
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Figure 3.8.: Histogram of feature space distances to the svdd hypersurface, computed from 1, 154
test samples and overlaid by the estimated distributions Nin in blue and Nout in orange.

corresponds to the average distance of training data from the svdd hypersurface.

Critical assumption 2: The feature vector definition is unique. As mentioned above, the chosen order
of the vector elements requires the colour bands to be positively correlated. This problem can be
geometrically described by considering plausible colour feature vectors only to reside in a small
margin around the diagonal in rgb space. Outside that region the feature vector definition is not
unique. Subsequently, saturation and intensity are used to indicate the positions of the vectors in
the rgb space. For each pixel pb ∈ RH•

i saturation S(pb) and intensity I(pb) are determined in
accordance with Burger & Burge [2005]6:
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 (3.48)

S(pb) =
√
M2

1 +M2
2 (3.49)

I(pb) =
R+G+B

3
(3.50)

The presence of off-diagonal colour vectors is indicated by a high variance of saturation, considering
zero to be the expectation value for a feature value near the diagonal in rgb space:

Vars(R
H•
i ) =

1∣∣∣RH•
i

∣∣∣
∑

pb∈RH•
i

[S(pb)]
2 (3.51)

This value needs to be set in relation to the differences in direction of the rgb-diagonal. Hence,
the variance of intensity Vari(R

H•
i ) is defined by considering the mean intensity I(RH•

i ) to be the
expectation value:

Vari(R
H•
i ) =

1∣∣∣RH•
i

∣∣∣
∑

pb∈RH•
i

[
I(pb)− I(RH•

i )
]2

(3.52)

6The definition of Burger & Burge [2005] is different from the standard definition for saturation S(pj) as there is no
normalization over the intensity R+G+B.
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The fulfilment of the critical assumption is evaluated by the relative amount of both variances which
only becomes relevant if two dominant Gaussians have been observed:

xcol
u,2(Hi) =


0.0 |one dominant Gaussian

Vars(R
H•
i )

Vari(R
H•
i )

|two dominant Gaussians
(3.53)

The critical assumption is satisfied if xcol
u,2(Hi) = 0.0 because this means that only one combina-

tion of the vector components is possible. In contrast, the critical assumption is questionable if
xcol
u,2(Hi) = 1.0 because this means that the clusters 1, 2 and A, B in Figure 3.6 are equally plausible.

Furthermore, it can be expected that the probability of satisfying the critical assumption increases
smoothly with increasing values xcol

u,2(Hi). This heuristic is used to define the parameters of the
sigmoid function such that:

P (a2 = satisfied|xcol
u,2(Hi), θsmooth{0.0, 1.0}) (3.54)

Critical assumption 3: There is sufficient colour contrast. This critical assumption concerns the
colour contrast between road and background image regions. In areas with large parking lots or
building roofs that have similar colour properties as roads, the ν-svc tends to classify background
regions as roads. In order to evaluate the contrast locally, the adjoint regions on both sides of the
road hypothesis are classified in the same way as the original region (RH•

i ). For that purpose, two
additional image regions are defined by displacing the original region in a direction perpendicular to
the road centreline by twice of the road width. As background regions corresponding to grassland
or buildings are expected to be next to a road, sufficient contrast is only supposed to occur if both
displaced regions are classified as background. Accordingly, if the road hypothesis region is classified
as road and at least one of the displaced regions is also classified as road, the indicator feature
xcol
u,3(Hi) is set to zero and set to one otherwise. Only in the latter case the critical assumption

is supposed to be satisfied. This heuristic is rigid, and thus the rigid parametrisation approach is
chosen to define the sigmoid function, respectively:

P (a3 = satisfied|xcol
u,3(Hi), θrigid = {1.0}) (3.55)

Critical assumptions 4–6: The GMM? represents the actual distribution. As can be seen in Figure
3.7d, image regions may be poorly represented by two Gaussians, while other image regions may
not fit to a gmm at all. Another problem is that the expectation maximization method does not
necessarily provide an optimal gmm for a set of grey values. Consequently, the fgmm?(g) (cf. Equa-
tion 3.39) might not be a good representation for the stated problem. In order to describe this case,
the indicators to the critical assumptions 4–6 are defined based on Pearson’s correlation coefficient
[Press et al., 2007] between the distribution introduced by fgmm?(g) and the actual distribution
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fad(g) introduced by the histogram of the respective colour band:

xcol
u,4−6(Hi) =



∑
1≤g≤256

fad(g)fgmm? (g)

√√√√ ∑
1≤g≤256

(fad(g))2·
√√√√ ∑

1≤g≤256

(fgmm? (g))2
|
∑

1≤g≤256

fgmm?(g) > 0

0.0 | otherwise

(3.56)

The definition in Equation 3.56 is similar for all three colour bands, and thus holds true for the three
indicator features xcol

u,4−6. It has to be noted that fgmm?(g) does not necessarily describe a complete
density distribution because generally

∑
1≤g≤256 fgmm?(g) ≤ 1.0 has to be taken into account. One

consequence is that the case where
∑

1≤g≤256 fgmm?(g) = 0 needs to be considered (cf. second case in
Equation 3.56) because it corresponds to the third scenario where no Gaussian component satisfies
the constraints (cf. Equation 3.40). Another consequence is that those incomplete distributions also
let xcol

u,4−6(Hi) decrease with
∑

1≤g≤256 fgmm?(g). In particular lim∑ fgmm? (g)→0

[
xcol
u,4−6(Hi)

]
= 0.

Both circumstances are used to define a heuristic, according to which the critical assumptions 4–6
are fulfilled if xcol

u,4−6(Hi) = 1.0 but violated if xcol
u,4−6(Hi) = 0.0. Furthermore, it can be expected

that the probability of satisfying the critical assumptions smoothly increases with increasing values
xcol
u,4−6(Hi). This heuristic is implemented to define the sigmoid function as follows:

P (a4−6 = satisfied|xcol
u,4−6(Hi), θsmooth = {1.0, 0.0}) (3.57)

It is worth noting that these definitions probably violate the assumption of independence in Equation
3.16, because the features xcol

u,4−6(Hi) are defined by the same model (cf. Equation 3.56) based on
(probably) positive correlated data. Consequently, P (model = n/a|xcol

u (Hi)) may be defined too
large, which would reduce the effect of the colour classification module on the final verification result.

Criterion for training dataset definition: The discussed critical assumptions with k = {2, 4, 5, 6}
explicitly denote problems of the feature vector definition. In the training dataset Xsvmtrain only
those feature vectors are included that satisfy the following inequality:

∏
k={2,4,5,6}

[
P (ak = satisfied|xcol

u,k(Rt), θ)
]
≥ 0.8 (3.58)

Discussion

The most important aspect of the colour verification module is its ability to verify roads that are
partly in the shadow. Unlike other state-of-art approaches, shadow effects are not only modelled
as a possible disturbance for the appearance of the road surface. Instead, the shadowed surface is
considered in a similar way as bright areas, contributing features to the road region. Apart from
this, the model is rather simple and does not cover all imaginable situations. In particular, it does
not cover road hypotheses that are characterized by more than two different colours, which however,
leads to a violation of the critical assumptions 4–6. Such situations may occur more frequently for
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incorrect road hypotheses, e.g. those that correspond to more than one topographic object, such as
in the example shown in Figure 3.7d. However, road databases can be expected to be widely correct,
and thus this problem is expected to be less relevant. An even more problematic aspect is the colour
contrast (cf. critical assumption 3), because sometimes whole city-districts are characterized by
building roofs that have similar radiometric properties as roads. Note that the model-uncertainty
considers also this scenario.

Another important aspect of the colour verification module is that the model is instantiated on
the basis of training data, which is advantageous because radiometric properties of roads and even
more those of background objects can hardly be defined manually. Finally, the introduced concept
for the model-uncertainty allows a human operator to select partly non-representative training data
without direct consequences for the correctness of the final verification result.

3.3.2. Line detection

The three modules: pan-line detection, ndvi-line detection and ndsm-line detection share the same
strategy, and hence are described together in this section. Each module relies on different input
data, namely panchromatic, ndvi and ndsm images. If a panchromatic image is not available, the
colour band with the shortest wavelength is selected instead, which turned out to be the best choice
based on empirical analysis. ndvi denotes the normalized digital vegetation index and ndsm the
normalized digital surface model; both are encoded by 8 bit images.

The underlying models correspond to the works described in [Gerke & Heipke, 2008] for pan-line
detection, in [Gerke & Busch, 2005] for ndvi-line detection and in [Hinz & Baumgartner, 2003] for
ndsm-line detection. The strategy mainly corresponds to [Gerke & Heipke, 2008] who developed
a verification approach that focuses on rural areas. Extensions compared to this approach are
the use of different input data (ndvi, ndsm) and to a large extent the approach to determine the
model-uncertainty.

Models

The basic model which holds true for all three modules assumes that a road appears as a line of
homogeneous grey values that has a specific width in the imagery of about 1–2 m gsd. Depending
on the input data the models have different interpretations:

Pan-line detection: In homogeneous context areas the roads appear as bright lines in the panchro-
matic image. The brightness of these lines can be specified in form of a scene-dependent grey
value interval which can be defined on the basis of a few training samples selected from the
same scene.

NDVI-line detection: In vegetated areas the roads appear as dark lines in the ndvi image. The
maximum brightness of the lines can be specified in form of a scene-dependent value which
can be defined on the basis of a few training samples selected from the same scene.

nDSM-line detection: In dense urban areas roads appear as dark lines in the ndsm image. The
maximum brightness of the lines can be generally specified in form of a value that represents
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the threshold between above-ground objects such as buildings and trees and the ground surface.

Verification strategy

In accordance with [Gerke & Heipke, 2008], lines are extracted from the image and then verified
by comparing the extraction results with the database hypothesis. It is important to note that
the three line-based modules operate independently. This is different to [Gerke & Heipke, 2008]
who introduced independent detection methods but only one verification method that considers
all extracted geometries simultaneously. This means that in this work the pan-based module only
relies on lines detected in the panchromatic image, and so on. This difference is a consequence of
the modular concept which is expected to lead to simpler parametrisation as discussed in Section
3.1. This aspect becomes relevant here, because the overall approach proposed here combines ten
different verification methods and not only two as in [Gerke & Heipke, 2008].

Line extraction: The line detector introduced by Steger [1998] is applied to image subsets of the
panchromatic, ndvi or ndsm input image, where the extent of those image subsets is defined by
the set R[·H·]

i ∈ Hi (cf. Table 3.4). In the right column of Figure 3.9 three examples for such image
subsets are shown. Steger [1998] defined a set of parameters that allow adjustments of his approach
to different problems. These parameters are used to specify the line models with respect to the input
imagery (pan, ndvi and ndsm), but also to the radiometric scene properties and the road width
stored in the database. Some of the parameters are learned on the basis of the training datasets (cf.
Table 3.3); others are fixed in accordance with the introduced road models. The fixed parameters
are interpreted as parts of the underlying road models. They are not interpreted as parameters of
the proposed approach, and thus will not be discussed beyond this section. The parameters for the
Steger-algorithm are given in Table 3.6.

pan ndvi ndsm

line width hwidth
i 1.5 · hwidth

i 1.5 · hwidth
i

target bright line dark line dark line

Tlow trained =̂ -1.0 =̂ 0.0 [m]

Thigh trained trained =̂ 4.0 [m]

contrast high trained trained =̂ 4.0 [m]

contrast low trained trained =̂ 3.0 [m]

Table 3.6.: Parameter settings for the Steger line detection algorithm with respect to the three
possible inputs: panchromatic, ndvi and ndsm.

The first parameter in Table 3.6, the line width, is set in accordance with the database hypothesis
hwidth
i ∈ Hi (cf. Table 3.4). The parameter line width is among others responsible for adapting the

Steger-algorithm to a gsd < 1.0 m. As paved roadsides and side walks do not show a contrast to the
roads in ndvi and ndsm images, the line width is enlarged compared to the database information.
The second parameter target = {bright line, dark line} is a trivial consequence of the model, and
thus a constant for each type of input data. The parameter Tlow denotes the minimum grey value
allowed for pixels that correspond to the line. In case of ndvi and ndsm the thresholds are fixed
to the theoretical minima. For a better understanding, in Table 3.6 the values for ndvi and ndsm
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a) 

b) 

c) 

Figure 3.9.: Pan-line detection (a), ndvi-line detection (b) and ndsm-line detection (c). Left: Road
hypotheses given in the database (yellow). Right: Outputs of the Steger-algorithm
(cyan) and the context buffer (yellow) defined by the set R]H[

i .

are given with their original units, emphasized with the [ =̂ ] symbol. The parameter Thigh denotes
the maximum grey value for pixels that correspond to the line. In case of ndsm the value is fixed to
4 m, which is large enough to include trucks on the road surface and small enough to exclude small
buildings and trees. The parameter contrast high denotes the minimum contrast between grey values
that correspond to the line and grey values next to the line. The parameter contrast low denotes the
maximum difference of grey values corresponding to the same line primitive. In case of ndsm the
values are fixed to 4 m and 3 m, respectively, which is in accordance with the former discussion about
trucks and buildings. All parameters denoted by trained in Table 3.6 are automatically determined
on the basis of the training dataset for roads (Xroads, Table 3.3). The training algorithm analyses
the grey value histograms from image regions that correspond to the training data and their local
background. Further details of the training algorithm are given in [Ziems et al., 2007].

The right column in Figure 3.9 shows the line primitives (cyan) extracted by the different line
detection modules. All extracted line primitives that lie near the road hypothesis are subsequently
considered for the verification, while all others are ignored. A line primitive yp ∈ Y steger is considered
here if it satisfies the constraint reg(yp)∩RH•

i > 0, where the function reg provides the set of pixels
corresponding to the argument, i.e. all pixels of the input image that are intersected by a line
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primitive yp; see Figure 3.10 for an example.

𝒚𝟏

𝒚𝟐

𝐫𝐞𝐠(𝒚𝟏)

𝐫𝐞𝐠(𝒚𝟐)

Figure 3.10.: Principle for the definition of pixel sets corresponding to line primitives; reg provides
sets of pixels (shaded grey squares) under the line primitives y1 and y2. .

Comparison of extracted lines with the database hypothesis: This step is identical to the way
described in [Gerke, 2006; Gerke & Heipke, 2008]. In the following, a brief summary of their work
will be presented in order to motivate the subsequent discussions.

Initially, each extracted line primitive yp ∈ Y steger is projected to the centreline hypothesis hxy
i ∈

Hi, resulting in the projected primitive y′p for each yp ∈ Y steger. This projection is an orthogonal
projection with respect to the centreline hxy

i ∈ Hi; see Figure 3.11 for an example.

𝒚𝟏
′ 𝒚𝟐

′
𝒚𝟏

𝒚𝟐

𝒉𝒊
𝒙𝒚

Figure 3.11.: Principle of the orthogonal projection of extracted primitives on the centreline hy-
pothesis [Gerke, 2006]. The line primitives y1 and y2 are projected onto the centreline
hypothesis hxy

i which results in the projected primitives y′1 and y′2.

In order to check whether yp corresponds to the road hypothesis, and thus whether yp and y′p

can be assumed to be identical, two statistical tests are applied. The first test checks the identity
of the shape, providing a probability P (shape = identical|yp, y′p). For that purpose, the differences
of the first eight translation and rotation invariant line moments are determined. The second test
checks the identity of the orientation providing a probability P (orientation = identical|yp, y′p). The
orientation is defined as the angle from the start and the end points of y′p and yp, respectively. Both
tests are considered to be independent, and thus the identity of y′p and yp is defined as the joint
probability (see Figure 3.12 for the possible constellations):

P (primitives = identical|yp, y′p) = P (shapes = identical|yp, y′p)·P (orientations = identical|yp, y′p)
(3.59)

The outputs related to all line primitives yp ∈ Y steger are combined to one solution concerning the
whole road hypothesis represented by P (road = correct|Y steger). The length l′p of a projected line
primitive y′p controls its impact on the combined output such that:

P (road = correct|Y steger) =
1

N
·
∑
p

[
l′pP (primitives = identical|yp, y′p)

]
(3.60)

where N denotes a normalizing constant to make P (road = correct|Y steger) a probability.
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Shape and orientation not identicalShape identical, orientation not identical

Shape not identical, orientation identicalShape and orientation identical

Figure 3.12.: Identity of shape and orientation of two line primitives [Gerke, 2006].

Verification output: While Gerke & Heipke [2008] interpret P (road = correct|Y steger) already as a
posterior probability, in this thesis it is interpreted as the module-specific verification output under
the assumption that the respective line model is applicable for the dataset Hi. Hence, the outputs
for the three line detection modules are defined as follows:

P (road = correct|xlin1
v (Hi),model = a.) ⇔ P (road = correct|Y steger(pan)) (3.61)

P (road = correct|xlin2
v (Hi),model = a.) ⇔ P (road = correct|Y steger(ndvi)) (3.62)

P (road = correct|xlin3
v (Hi),model = a.) ⇔ P (road = correct|Y steger(ndsm)) (3.63)

Model-uncertainty

Many authors discuss the strengths and limitations of line-based models with respect to global
context areas. Gerke & Heipke [2008] restrict their pan-based line model to rural areas, where
the surroundings of the roads can be assumed to be homogeneous. With respect to the ndvi-
based line model this means that homogeneous vegetation is a precondition, and thus this model is
basically restricted to areas of rich vegetation. The model assumption of ndsm-based line detection
approaches is that there are buildings on both sides of the road which implies dense urban areas.
Another assumption of all three models is that a road surface appears more or less homogeneous
(cf. Steger-parameter contrast low in Table 3.6). For instance, tyre marks on the asphalt, road
markings or cars contradict that assumption in case of the pan-line detection. An advantage of
the ndvi-line model is that such situations do not violate the model assumptions, but vegetation
areas on the road surface or overhanging trees still do. Considering that the line detection modules
will be applied to different context areas and geographical regions without restrictions, not all road
hypotheses will necessarily correspond to the line models. Consequently, the assumption that roads
appear as such lines is basically questionable, and thus considered as the first critical assumption
for the model-uncertainty.

Another frequently discussed problem in the literature is that line detection approaches produce
a comparably large amount of false alarms (cf. discussion in Section 1.3.1). A reason for that is the
compliance of other landscape objects with the line model. Hence, the assumption implicitly made
by the line detection modules that their underlying model is discriminative, is also questionable.
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Critical assumption 1: Roads correspond to the Steger-line-model. If the assumption of homogeneous
road surfaces is violated, the line detector simply does not have any response, even if a road exists
at the considered position. This will also happen if the local surroundings appear heterogeneous
so that their contrast with the road is too low to be detected (cf. Steger parameter contrast high
in Table 3.6). Thus, a road or parts thereof might be overlooked by the verification step, and as a
consequence the verification output relies on incomplete data. This problem is also considered by
Gerke & Heipke [2008] in form of the coverage ci with:

ci =
hlength′

i

hlength
i

(3.64)

where hlength
i ∈ Hi denotes the total length of the road centreline hypothesis and hlength′

i the length
of the centreline covered by projected line primitives y′p. This definition of the coverage is directly
interpreted as the indicator feature to the critical assumptions:

xlin1−3
u,1 (Hi) = ci (3.65)

[Gerke & Heipke, 2008] further define a rigid lower bound ci = 0.8. Accordingly in this thesis, the
probability of the state satisfying the critical assumption is defined on the basis of the rigid heuristic
model:

P (a1 = satisfied|xlin1−3
u,1 , θrigid = {0.8}) (3.66)

Critical assumption 2: Only roads correspond to the Steger line model. This is a critical assumption as
non-road objects such as rivers, rows of trees, elongated buildings or gateways to buildings may also
appear as lines, very similar to roads. In the literature, this problem is often referred to as the false
alarm problem of the line-based road detection approaches (cf. discussion in Section 1.3.1). Against
the background of verification, this is usually less critical, because only image regions RH•

i ∈ Hi are
considered. Only if many of these objects appear within this relatively small image subset they gain
influence to the verification result. Hence, the probability that other linear objects occur in these
small regions, is interpreted to correspond to the probability that the critical assumption is violated.
In accordance with Lu et al. [2008], the probability of the occurrence of linear structures in remote
sensing images can be related to the image entropy determined for the local surroundings of a road
hypothesis. Hence, the indicator feature for the critical assumption is defined by the image entropy:

xlin1−3
u,2 (Hi) = −

∑
Tlow≤g≤Thigh

f]H[(g) · log f]H[(g) (3.67)

where f]H[(g) denotes the frequency of the grey values g defined in form of an 8 bit histogram for the
image region R]H[

i ∈ Hi, corresponding to the yellow boxes in Figure 3.9. The domain in Equation
3.67 is restricted to the parameters Tlow, Thigh because they define the lower and upper bounds of
pixels for the line primitives similar to the parameter set for the Steger-algorithm (cf. Table 3.6).

Now, a functional model for the sigmoid (cf. Equation 3.20) is required that explains the depen-
dency between the probability of linear structures and the image entropy in Equation 3.67. However,
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it turns out to be difficult to find a heuristic for that. It can merely be supposed that a larger image
entropy corresponds to a larger probability of linear structures because the Steger-algorithm is sen-
sitive to large image gradients that may also lead to a larger image entropy. Due to the imprecise
heuristics, the functional model for the sigmoid is defined on an statistical basis which leads to:

P (a2 = satisfied|xlin1−3
u,2 (Hi), θdisc = {t1, t2, t3}) (3.68)

The sigmoid parameters {t1, t2, t3} are determined in accordance with the approach described by
Platt [2000] who assumes t1 = 0. This basically corresponds to the assumption that the likelihoods
N (xlin1−3

u,2 (Hi)|µsat, σsat) and N (xlin1−3
u,2 (Hi)|µvio, σvio) in Equation 3.19 have equal standard devia-

tions (cf. Equation 3.22). Here, the same simplification of the sigmoid model is assumed. According
to [Platt, 2000] the optimal parameters t2 and t3 are determined by optimizing the objective:

min
t2,t3
−
∑

1≤q≤n

(
κq log

[
1

1 + exp(t2 · E(ytrain
q ) + t3)

]
+ (1− κq) log

[
1− 1

1 + exp(t2 · E(ytrain
q ) + t3)

])
(3.69)

with

n =
∣∣Y train

sat

∣∣+
∣∣Y train

vio

∣∣ (3.70)

κq =

1 |ytrain
q ∈ Y train

sat

0 |ytrain
q ∈ Y train

vio

(3.71)

The required training datasets Y train
sat , Y train

vio ⊆ Y train are defined without further human interactions.
They are based on the training datasetXroads used to train the Steger line parameters (cf. Table 3.6),
but their definition requires some additional steps. First, a training image consisting of rectangular
image patches that enclose the training dataset Xroads is defined. Then, the Steger-algorithm is
applied to the whole training image and not only to the surroundings of the road hypotheses as
before. The resulting line primitives are used to define the training dataset with ytrain

p ∈ Y train

for all 1 ≤ p ≤
∣∣Y train

∣∣. Figure 3.13 shows a training image and the detected line primitives by
different colours. The shown training image corresponds to a 0.5 m gsd pan image that consist of
7, 000× 7, 000 pixels.

Given the detected line primitives Y train and the training dataset Xroads denoting a set of pixels
that corresponds to true roads, the two sets Y train

sat and Y train
vio are defined as follows:

Y train
sat = {ytrain

p ∈ Y train|
(
reg(ytrain

p ) ∩Xroads
)

=
∣∣reg(ytrain

p )
∣∣ ∧ (reg(Y train \ ytrain

p ) ∩R]Y[
p

)
= 0}(3.72)

Y train
vio = {ytrain

p ∈ Y train|
(
reg(ytrain

p ) ∩Xroads
)

= 0 ∧
(

reg(Y train \ ytrain
p ) ∩R]Y[

p

)
> 0} (3.73)

According to Equation 3.72, the set Y train
sat includes all line primitives for which the corresponding

image regions lie completely within the training dataset and where the local surroundings are free
of other line primitives. According to Equation 3.73, the set Y train

vio includes all line primitives for
which the corresponding image regions lie completely outside the training dataset and where the local
surroundings contain other line primitives. The expression R]Y[

p denotes a set of pixels corresponding
to the surrounding of a line primitive yp, which is defined in the same way as the set R]H[

i ∈ Hi
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Figure 3.13.: Example for training data generation and application of a logistic regression model with
Y train
sat (green), Y train

vio (red), Y train\
(
Y train
sat ∪ Y train

vio

)
(cyan) and the derived probabilities

in the images displayed at the bottom (large probabilities signify bright grey values).
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(cf. Table 3.4) for the centreline hypothesis hxy
i ∈ Hi . In Figure 3.9 the sets Y train

sat (green) and
sets Y train

vio (red) are shown together with the line primitives that are assigned to neither of two sets
(cyan). The latter cannot be assigned automatically, and thus are ignored. A manual assignment is
too time consuming, because the set Y train usually has a large cardinality. For the training image
depicted in Figure 3.13 it is

∣∣Y train
∣∣ ≈ 12, 000. Figure 3.13 further confirms the expectation that

the pan-based line extraction results in many false alarms in the settlements, indicated by the high
frequency of red line primitives in such areas. In Equation 3.69, E(ytrain

q ) denotes the image entropy
of the local surroundings of a line primitive yq ∈

{
Y train
sat ∪ Y train

vio

}
, which is defined as follows:

E(ytrain
q ) = −

∑
Tlow≤g≤Thigh

f]Y[(g) · log f]Y[(g) (3.74)

In Equation 3.74 f]Y[(g) denotes the frequency of the grey values g based on an 8 bit histogram
defined by the set R]Y[

q . Figure 3.14 shows the frequency of extracted line primitives yp having a cer-
tain entropy computed from their surroundings R]Y[

p . The plot is superimposed with the determined
sigmoid function. In the lower part of Figure 3.13, the resulting probabilities are shown, on the left
side for the line primitives ytrain

p ∈ Y train, and on the right side for the road hypotheses hxy
j ∈ Hj . In

both images brighter grey levels correspond to higher probabilities of satisfying the second critical
assumption.

E

1.0

0

0.5

𝐸(𝑦𝑞
train)

𝑷(𝒂𝟐 = 𝒔𝒂𝒕𝒊𝒔𝒇𝒊𝒆𝒅|𝒙𝒖,𝟐
𝒍𝒊𝒏𝟏−𝟑 𝑯𝒊 , 𝜽)

𝑌𝑠𝑎𝑡
train

𝑌𝑣𝑖𝑜
train

Figure 3.14.: Histograms over the image entropy (green, red) and the resulting sigmoid function.

Discussion

The area of application for the three line detection modules is expected to be different. For instance,
the pan-line detection is mainly useful for rural areas, while the ndsm-line detection is exclusively
useful for dense urban areas.

The proposed strategy includes many aspects of the approach introduced by Gerke & Heipke
[2008]. One difference is that not only the detection components, but the entire strategy is en-
capsulated, starting with the detection, via the evaluation of the hypotheses up to the definition
of the model-uncertainty. While this encapsulation is important to restrict the complexity of the
parametrisation, it also has disadvantages. A single road hypothesis can only be verified if it is fully
in accordance with at least one of the models. As a consequence, road hypotheses that partly appear
in dense urban area and partly in a park with grassland are not covered by the line-based models.

Another difference to [Gerke & Heipke, 2008] is the handling of the second critical assumption
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discussed above. Gerke & Heipke [2008] overcome the problem by restricting the approach to rural
context areas based on prior knowledge stored in the database. The proposed strategy evaluates the
situation for each road hypothesis individually. This is advantageous if, for instance, homogeneous
image regions appear within urban areas or heterogeneous image regions appear in rural areas.

Finally, it is important to note that the line detection modules only have a model for database
errors that are related to relatively small divergences of shape or orientation. Other database errors
related to to larger divergences or the non-existence of roads are not considered, and thus leave the
automatic solution in the state of ignorance.

3.3.3. Parallel edge detection

The parallel edge detection module is based on [Heipke et al., 1995], whose main objective was road
detection in panchromatic images in rural and sub-urban context. Here, the approach is extended
to the verification problem.

Model

The model basically assumes that the lateral road borders appear as parallel edge pairs in the image
and that the distance of those edges from each other is approximately known. This model is designed
to deal with panchromatic images with a gsd of about 0.2–0.5 m.

Verification strategy

The verification strategy consists of three main stages: The extraction of the parallel edges, the
comparison of the extracted edges with the database and the derivation of the verification output.

Parallel edge extraction: The Canny edge detector [Canny, 1986] is applied to the images showing
the local surroundings of the road hypothesis defined by the set R[·H·]

i ∈ Hi (cf. Table 3.4). The
resulting edge primitives yp ∈ Y canny are further analysed to determine the road border candidates
Y borders ⊆ Y canny. An edge primitive yp ∈ Y canny is assigned to Y borders if a pair of edge primitives
yp, yq ∈ Y canny exists that satisfies the following five constraints:

reg(yp) ∩RH||
i > 0 (3.75)

reg(yq) ∩RH||
i > 0 (3.76)

yp is parallel to yq (3.77)

reg(y′p,q) ∩ reg(yq) > 0 (3.78)(
hwidth
i −Dwidth

)
≤ dist(yp, yq) ≤

(
hwidth
i +Dwidth

)
(3.79)

where the function reg again denotes the set of pixels intersected by its argument (cf. Figure 3.10),
y′p,q denotes the orthogonal projection from yp on yq, and the function dist provides the minimal
Euclidean distance for two arguments. The interval in the constraint 3.79 considers the road width
hypothesis hwidth

i ∈ Hi but also the tolerated discrepancy of this attribute defined for a particular
database (cf. Table 3.1). Figure 3.15 shows a possible solution for Y borders and a road centreline
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hypothesis hxy
i ∈ Hi, respectively. The line primitives y1, y2, y3, y4 satisfy constraints 3.75–3.76

because they lie at least partly within the shaded image region representing the set RH||
i ∈ Hi, but

only the line primitives y1, y2 and y3 also fulfil the constraints 3.77–3.79. The red line segment y′1,2
in Figure 3.15 shows the orthogonal projection of y1 on y2.

𝑦1

𝑦2

𝑦3

𝑦1,2
′

ℎ𝑖
right xy

𝑦5
𝑦4

ℎ𝑖
left xy

ℎ𝑖
xy

Figure 3.15.: Determination of the road border candidates.

Comparison of the road border candidates with the database hypothesis: In order to evaluate the road
hypothesis on the basis of the border candidates Y borders, hypotheses for the road borders hleft(xy)

i

and hright(xy)
i are defined by shifting hxy

i ∈ Hi perpendicular to its main direction by half the road
width (±0.5 · hwidth

i ). Furthermore, the sets Y left(borders), Y right(borders) ∈ Y borders are defined for
each road border hypothesis:

Y left(borders) = {yp ∈ Y borders| dist(yp, h
left(xy)
i ) ≤ dist(yp, h

right(xy)
i )} (3.80)

Y right(borders) = {yp ∈ Y borders| dist(yp, h
left(xy)
i ) > dist(yp, h

right(xy)
i )} (3.81)

where dist still provides the minimum Euclidean distance between two primitives. Similarly to
the verification strategy for the line detection modules, the road border hypotheses are compared
with the detected edge primitives using the approach described in Section 3.3.2. Here, the com-
parison is applied for each road border hypothesis separately, so that two probability distributions
P (left border = correct|Y left(borders)) and P (right border = correct|Y right(borders)) are defined.

Verification output: Finally, the two probability distributions are combined to a joint distribution
representing the verification output. This is realized as the mean of both distributions, which results
in:

P (road = correct|xedg
v (Hi),model = a.) = 0.5 · P (left border = correct|Y left(borders))

+0.5 · P (right border = correct|Y right(borders)) (3.82)

Model-uncertainty

As discussed in the review of the related work in Section 1.3.1, parallel edge detection methods
often provide results of relatively low completeness. It is a well known problem of the underlying
model that quite often the road sides are not observable because of occlusions by trees, bushes,
parked vehicles or due to shadow effects. The advantage of parallel edge detection methods over
other approaches is that their results usually show low false alarm rates. Even though the model
is discriminative to most background objects that appear in remote sensing images, under specific
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circumstances, e.g. in the presence of elongated buildings, false alarms possibly occur. Consequently,
two critical assumptions are identified.

Critical assumption 1: The road borders can always be observed in the image. If the road borders
cannot be detected completely, the verification output relies on incomplete data. Therefore, the
coverage of the road centreline hypothesis hxy

i ∈ Hi is considered in a very similar way as with
the line detection modules (cf. Equation 3.64). For the parallel edge detection module, this means
that the road border candidates yp ∈ Y borders are projected on the centreline hypothesis hxy

i . The
projections on hxy

i define the projected length hlength′

i . This also means that both sets Y right(borders)

and Y left(borders) are considered simultaneously. Hence, there is no difference whether two road sides
or only one road side have been observed. With respect to Figure 3.15 this means that the edge
primitives y1, y2, y3 cover nearly the whole road centreline. The value for hlength′

i and the length of
the hypothesis hlength

i ∈ Hi define the indicator feature for the critical assumption:

xedg
u,1 (Hi) =

hlength′

i

hlength
i

(3.83)

The current problem is rather similar to the problem discussed concerning the first critical assump-
tion made for the line detection modules in Section 3.3.2, so that the same rigid parametrisation
approach for the functional relation is chosen here, which leads to:

P (a1 = satisfied|xedg
u,1 (Hi), θrigid = {0.8}) (3.84)

Critical assumption 2: Only roads correspond to the parallel edge model. As discussed above, the
parallel edge model is discriminative to more background objects than the line models. Hence, in
general this assumption is less critical compared to the second critical assumption identified for the
line detection modules. The assumption is questionable only with respect to a few specific objects
such as very long buildings. Therefore, the presence of these specific objects is explicitly analysed
and not considered in form of the image entropy (cf. Section 3.3.2). If problematic objects appear in
a scene frequently, it can be expected that some of the extracted edges contained in the set Y canny

correspond to such objects. Considering these edges as elements of the set Y xborders, they are defined
as any edge primitive yp ∈ Y canny for which a pair of edge primitives yp, yq ∈ Y canny exists that
satisfies the following five constraints:

reg(yp) ∩
(
R

[·H·]
i \RH||

i

)
> 0 (3.85)

reg(yq) ∩
(
R

[·H·]
i \RH||

i

)
> 0 (3.86)

yp is parallel to yq (3.87)

reg(y′p,q) ∩ reg(yq) > 0 (3.88)(
hwidth
i −Dwidth

)
≤ dist(yp, yq) ≤

(
hwidth
i +Dwidth

)
(3.89)

The only difference to the constraints 3.75–3.79 is the mirrored search space. In the situation
depicted in Figure 3.15, only the one edge primitive y5 fulfils the new constraints 3.85–3.89. The
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presence of edge primitives yp ∈ Y xborders is quantified by length hxlength′

i that is defined as the
length of all projections yp ∈ Y xborders to the centreline hypothesis hxy

i ∈ Hi. The indicator feature
for the second critical assumption is defined as follows:

xedg
u,2 (Hi) =

xxlength′

xlength′

i

(3.90)

If hxlength′ is very small compared to hlength′

i , it is expected that this assumption is satisfied. In
this case, xedg

u,2 (Hi) is near zero. In contrast, if hxlength′ is very large, i.e. if hxlength′ ≈ hlength′

i ,
the critical assumption is violated. Furthermore, it is expected that the probability of violating the
assumption increases smoothly with increasing values xedg

u,2 (Hi), and thus the sigmoid function is
defined as follows:

P (a2 = satisfied|xedg
u,2 (Hi), θsmooth = {0.0, 1.0}) (3.91)

Discussion

The parallel edge detection module connects a part of the road detection strategy described in
[Heipke et al., 1995], with the verification component introduced by Gerke & Heipke [2008]. The
detected edge primitives are compared to road border hypotheses the same way as the detected line
primitives are compared to the centreline hypotheses. In contrast to the line detection modules, the
parallel edge detection module is expected to deal much better with heterogeneous context areas. A
weak point of the model is the road borders being partially occluded often, which usually leads to
incomplete results. Other authors such as Baumgartner et al. [1999] try to compensate this problem
by integrating other model properties for certain road parts, e.g. line primitives or texture. However,
the basic strategy followed in this thesis prevents such a low level combination.

3.3.4. The SSH method

ssh stands for Sum of Similarities of Histograms. The ssh module is mainly based on the work pre-
sented by Fujimura et al. [2008] who developed an approach to geometrically correct road databases.
Fujimura et al. [2008] assumed the errors to be caused by parallel displacements with a maximum
discrepancy of about 30 m.

Model

The ssh model assumes that image regions that correspond to roads have different texture properties
compared to their local surroundings. The texture properties are object-based, i.e. they refer to
image regions defined on the basis of widths and lengths of those road objects. The model is
designed to deal with panchromatic imagery with a gsd of about 0.2–2.5 m.

Verification strategy

The ssh computation is similar to [Fujimura et al., 2008], while the object definition and the output
are adapted to the verification problem.
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Parallel region definition: Starting from the set RH•
i ∈ Hi that represents the possible positions of

the road hypothesis in the image (cf. Table 3.4), a number of additional image regions are defined
by shifting the set RH•

i in both directions perpendicular to the centreline hxy
i ∈ Hi. The additional

image regions are assumed to represent the local context, if the road hypothesis is correct. The range
of shifts is defined by hwidth

i + 2r, which equals the width of the set RH•(cf. Equation 3.2). The
number of all considered image regions S depends on the width 2r′ of the image subset R[·H·]

i ∈ Hi

(cf. Table 3.2):

S = int

(
2r′

hwidth
i + 2r

)
+ 1 (3.92)

In Equation 3.92, the function int defines the integer part of a real argument. The S non-overlapping
image regions all have similar sizes and shapes; see yellow boxes in Figure 3.16 for an example. Each
image region is denoted by an index s with 1 ≤ s ≤ S. The index follows an ascending order from
left7 to right so that s = 1 denotes the leftmost region, s = 0.5 (S + 1) the road hypothesis and
s = S the rightmost region.

The SSH: Based on histograms fs(g) derived for each region s, the sum of similarities of histograms
SSH(s) is defined:

SSH(s) =
∑

1≤t≤S
(1− δs,t)BC(s, t) ∀ 1 ≤ s ≤ S (3.93)

with BC(s, t) =
∑

1≤g≤256

√
fs(g)ft(g) (3.94)

where BC(s, t) denotes the Bhattacharyya distance [Bhattacharyya, 1943] of the two histograms s
and t, and δ is the Dirac function. The lower part of Figure 3.16 shows the SSH(s) for the examples
in the upper row as a function of the index s. The model says that the minimum SSH(s) indicates
an image region that contains a road (cf. green arrows in Figure 3.16).

The verification output: The expectation is that the histogram corresponding to a roads is mostly
dissimilar from the rest. Hence, the centre region with index s = 0.5 (S + 1) must be represented
by the minimum SSH(s) if the road hypothesis is correct. This circumstance is used to define the
verification output:

P (road = correct|xSSH
v (Hi),model = a.) =

1.0 | 0.5 (S + 1) = smin

0.0 | otherwise
(3.95)

with

smin = arg min
s

SSH(s) (3.96)

The definition in Equation 3.95 allows the verification output to be either zero or one.

7Here, the definitions of left and right depend on the orientation of the centreline hxy
i ∈ Hi .
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s

SSHSSH

s

𝑥𝑢,1
SSH 𝐻𝑖 = 0.11 𝑥𝑢,1

SSH 𝐻𝑖 = 0.98

Figure 3.16.: Demonstration of the ssh method. Left: A situation that fits well to the underlying
model. Right: A situation that is not covered by the ssh-model. The green arrows
indicate the position of the road. The red arrow indicates a second minimum related
to a bright façade.

Model-uncertainty

The underlying model implicitly assumes that all context regions (all regions except the road region)
are at least similar to some other context regions. If the surrounding area is heterogeneous in
orthogonal direction to the road hypothesis, this assumption is violated. In such cases, the minimum
ssh might denote some context region. The assumption is also violated if other elongated objects,
e.g. a row of trees or water canals, appear in a direction parallel to the road hypothesis. A further
critical assumption of the underlying model is that a database hypothesis can either be correct or
just affected by a parallel displacement. This assumption is realistic for the scenario described in
[Fujimura et al., 2008], but not necessarily for the verification problem discussed in this thesis. For
instance, if an error is caused by a wrong shape or orientation or if there is no road at all, the
minimum ssh corresponds to some other object(s) than a road.

In all discussed scenarios, violating a critical assumption is expected to lead to a non-significant
minimum, either because all regions are nearly equally dissimilar or because a second region is also
dissimilar to the rest. Therefore, the discussed critical assumptions are substituted to one.

Critical assumption 1: The determined minimum is significant. The indicator feature for the signifi-
cance of the determined minimum is defined as follows:

xSSH
u,1 (Hi) =


|SSH−min

s
SSH(s)|∣∣∣∣∣SSH− min

s\smin

SSH(s)

∣∣∣∣∣
|SSH < min

s\smin

SSH(s)

0.0 |otherwise

(3.97)
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In Equation 3.97 SSH defines the mean ssh of all regions. The term in the denominator denotes
the difference of the mean and the second smallest ssh of all regions. When the denominator equals
zero, the indicator is zero. The critical assumption is expected to be fulfilled if the following relations
hold true:

min
s

SSH(s) � min
s\smin

SSH(s) (3.98)

min
s

SSH(s) � SSH (3.99)

min
s\smin

SSH(s) ≈ SSH (3.100)

If the relations 3.98–3.100 hold true, xSSH
u,1 (Hi) is close to zero, otherwise xSSH

u,1 (Hi) becomes larger,
but not larger than 1.0. Furthermore, it is expected that the probability of violating the critical
assumption increases smoothly with increasing values for xssh

u,1(Hi). This heuristic is plugged into
the functional model for the sigmoid in Equation 3.20, which leads to:

P (a1 = satisfied|xSSH
u,1 (Hi), θsmooth = {0.0, 1.0}) (3.101)

Figure 3.16 shows two examples providing verification outputs with different model-uncertainties.
The situation on the left fulfils the critical assumption with probability P (a1 = satisfied|xSSH

u,1 (Hi) =

0.11, θ) = 0.99. The situation on the right violates the critical assumption because another image
region showing a bright façade also results in a small ssh. The situation leads to a low probability,
with P (a1 = satisfied|xSSH

u,1 (Hi) = 0.98, θ) = 0.0005.

Discussion

The strength of the ssh module compared to the other modules is its ability to deal with low image
resolutions of about 2.5 m gsd. This specific property is related to the object-based analysis strategy
that integrates the texture properties over the whole length of a road hypothesis that is usually a
large area with a sufficient number of pixels. Another strength of the ssh module is that it can
deal with low contrast conditions in the imagery because the differences between the histograms
integrate over the number of considered regions. Thus, tiny differences between the road-related
histogram and context-related histograms become relevant even if the differences between context
regions are larger. In the left part of Figure 3.16, it can be seen that the model is able to deal well
with heterogeneous context areas if the surroundings do not change completely for each considered
region. Fujimura et al. [2008] have also shown that the surroundings can be completely different on
both sides of the road.

One difference of the proposed strategy to the original approach is related to the image region
definition. Fujimura et al. [2008] defined the width of the image regions to be one pixel, which
corresponds to regions of 2.5 m width in their application. The proposed definition with the set
RH•
i ∈ Hi usually results in much larger regions. This difference is related to the difference between

the tasks. Fujimura et al. [2008] searches for the actual displacement. The advantage of using RH•
i

for the verification problem is that the central image region is covering the road region in any case,
whereas all shifted regions represent only the surroundings, if the database hypothesis is correct.
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3.3.5. Acupuncture method

The acupuncture module is mainly based on the work of Youn et al. [2008] who developed a road
detection method that focuses on urban and sub-urban areas.

Model

The underlying model assumes that an image region which corresponds to a road shows a lower
amount of edge structures orthogonal to the road centreline than the local surroundings, where
such structures appear more frequently, mainly due to buildings. The model relies on panchromatic
imagery with a gsd of 0.2–1.0 m.

Verification strategy

Edge image: The Canny edge-extractor [Canny, 1986] is applied to the image subset defined by
R

[·H·]
i ∈ Hi (cf. Table 3.4).

Acupuncture nails: What Youn et al. [2008] called acupuncture nails are basically groups of lines
with one pixel spacing across the whole image. In [Youn et al., 2008], these lines are defined in
accordance with the two main road directions that are determined by another method. In this
thesis, the acupuncture nails are defined on the basis of the centreline hypothesis hxy

i ∈ Hi, where
hxy
i directly defines the first acupuncture nail. All additional nails are defined by shifting hxy

i

orthogonal to the main direction of hxy
i . The distance of the shifts is always one pixel, independent

of the image resolution. Depending on the width of the considered context region R[·H·]
i (parameter

r2, Table 3.5) and the given image resolution (parameter gsd, Table 3.2), the number of acupuncture
nails is defined as:

U = int

(
2r′

GSD

)
+ 1 (3.102)

where int again defines the integer part of its argument. In the subsequent discussions, each acupunc-
ture nail will be denoted by an index u with 1 ≤ u ≤ U . The index has ascending order from left
to right so that u = 1 corresponds to the leftmost nail, u = 0.5 (U + 1) to the centreline hypothesis
hxy
i and u = U to the rightmost nail. This notation is rather similar to the one used for the ssh

module. The difference is that many indices u potentially represent the road hypothesis because the
distance between the acupuncture nails is only one pixel. Considering the required accuracy Dxy of
the database (cf. Table 3.1), a tolerance interval for the road hypothesis can be defined as follows:

0.5 (U + 1)− int

(
Dxy

GSD

)
≤ u ≤ 0.5 (U + 1) + int

(
Dxy

GSD

)
(3.103)

Figure 3.17a displays an example for an edge image, whereas Figure 3.17b shows the superimposition
of the edge image with the acupuncture nails defined on the basis of a correct road hypothesis.
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a b

model histogram

min

c

d

𝑓𝒩(𝑢)𝑓𝑠𝑎𝑡(𝑢) 𝑓acu(u)

𝑢 𝑢 𝑢

Figure 3.17.: Demonstration of the acupuncture method in a situation that fits well to its underlying
model because the road appears homogeneous and local context is characterized by
several detached houses. The extracted edges are drawn in black; the acupuncture nail
with the minimum number of intersections is drawn in green while the other nails are
drawn in cyan. The meaning of the plots in the second row is described in the text.

Histogram of intersections and Gaussian filtering: A histogram is defined that counts the intersections
facu(u) of each acupuncture nail 1 ≤ u ≤ U with the extracted edges. An example for this is shown
in Figure 3.17c. In order to enhance spatial accuracy of the original method, the resulting histogram
is filtered by a Gaussian kernel, whose kernel width is defined in accordance with the road width
hypothesis hwidth

i ∈ Hi (cf. Table 3.4):

fN (u) = facu(u) ∗ N (u|σ = hwidth
i ) (3.104)

An example for the smoothed histogram fN (u) is shown in Figure 3.17d. Due to the Gaussian
filtering, the centreline of a road appears as a clear minimum even if more than one acupuncture
nail representing the road surface has zero intersections with the detected edges. In Figure 3.17 the
acupuncture nail with a minimum number of intersections is highlighted by a bold green line.

Verification output: In accordance with Equation 3.103, a road hypothesis is correct if the centreline
hypothesis hxy

i corresponds to the acupuncture nail with minimum fN (u) by taking into account
the accuracy Dxy required for the database. This binary decision is used to define the verification
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output, which is also binary:

P (road = correct|xacu
v (Hi),model = a.) =

1.0 |uhyp − int
(

Dxy

GSD

)
≤ umin ≤ uhyp + int

(
Dxy

GSD

)
0.0 |otherwise

with (3.105)

uhyp = 0.5 (U + 1) (3.106)

umin = arg min
u
{fN (u)} (3.107)

Model-uncertainty

The model assumes recurring regular structures in the vicinity of roads, which is mainly true for
urban areas with a lot of small houses that are in the focus of Youn et al. [2008]. With respect to
the verification problem discussed in this thesis, this is a critical assumption because homogeneous
context areas such as grassland, crop fields or huge industrial buildings have to be taken into account.
For such situations, the module is not unlikely to provide erroneous outputs. A second critical
assumption is that fewer structures appear in road regions, which might be violated in the presence
of too many cars, road markings, trees or shadow effects. Furthermore, similar to the ssh module,
database errors are assumed to correspond only to parallel shifts. However, database errors related
to wrong orientations or shapes probably occur, and thus this assumption might be violated.

If at least one of the three identified critical assumptions is violated, the histogram facu(u) differs
from a histogram that would be expected by the underlying model. Consequently, those critical
assumptions can be substituted by only one.

Critical assumption 1: The actual histogram corresponds to the expectations of the model. Consider a
situation that perfectly satisfies the assumptions of the underlying model, represented by histogram
fsat(u), where the frequency of intersections is zero if an acupuncture nail corresponds to a road
region and is large for the context area. In order to determine how many intersections should be
expected in the context area, a synthetic situation is defined, which assumes the presence of detached
houses to occur every ten meters on both sides of the road. Each house is further expected to have
the same orientation as the centreline hypothesis hxy

i and to be represented by only two edges that
intersect the acupuncture nails (cf. Figure 3.18). Hence, the expected number of intersections o
corresponding to the synthetic situation is:

o =
hlength
i

5.0 m
(3.108)

An example for such a model histogram is shown in the lower left corner in Figure 3.17. The
frequency fsat(u) of the model histogram depends on the road hypothesis because the underlying
model depends on the road width hypothesis. Furthermore, fsat(u) depends on the position of the
minimum. Based on these thoughts, firstly the domain of the histogram representing the expected
road has to be defined. Let the index uleft represent the leftmost and uright the rightmost acupuncture
nails that are expected to intersect only the road surface by considering hwidth

i ∈ Hi (cf. Table 3.4)
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Figure 3.18.: Synthetic model for the number of intersections.

and umin (cf. Equation 3.107):

uleft = umin − int

(
0.5 · hwidth

GSD

)
(3.109)

uright = umin + int

(
0.5 · hwidth

GSD

)
(3.110)

Then, a threshold operation is applied on facu(u) to avoid penalizing larger numbers of intersections:

fT(u) =

facu(u) |facu(u) ≤ o

o |otherwise
∀ 1 ≤ u ≤ U (3.111)

Finally, fT(u) and fsat(u) are set in relation by considering the ratio of the areas under the densities
approximated by the two histograms. This leads to the indicator feature for the critical assumption,
which is defined as follows:

xacu
u,1 (Hi) =


∑

1≤u≤uleft

fT(u)

aleft


left

·

1−

∑
uleft<u<uright

fT(u)

aroad


road

·


∑

uright≤u≤U
fT(u)

aright


right

(3.112)

with

aleft = uleft · o (3.113)

aroad = (uright − uleft − 1) · o (3.114)

aright = (U − uright + 1) · o (3.115)

In Equation 3.112, each factor considers an interval of the histograms. The first interval represents
the left context area, the second interval represents the road region and the third interval represents
the right context area. This is important because the context areas might have different charac-
teristics on both road sides. As fsat(u) is a constant within each interval, the areas aleft , aroad and
aright can be defined as areas of rectangles, whereas the areas corresponding to fT(u) require the
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computation of the sums over the histogram domains.

If the road region is characterized by only a few intersections, e.g. facu(u) ≈ 0 and if the context
areas on both sides are characterized by many intersections, e.g. fT(u) ≈ o the initially defined
critical assumptions are satisfied. In this case xacu

u,1 (Hi) is nearly one (cf. Equation 3.112). In
contrast, if the context region of at least one road side is homogeneous, e.g. because of the presence
of a crop field, grassland or a large industrial building, xacu

u,1 (Hi) is near zero, which denotes a
violation of the critical assumptions. The same result is reached if the road region is represented by
many intersections, e.g. facu(u) ≈ o. Between these two extremes the probability of satisfying the
critical assumptions is expected to change smoothly, and thus the functional model for the sigmoid
is:

P (a1 = satisfied|xacu
u,1 (Hi), θsmooth = {1.0, 0.0}) (3.116)

According to Equation 3.116, the situation in Figure 3.17 satisfies the critical assumptions with
high probability P (a1 = satisfied|xacu

u,1 (Hi) = 0.95, θ) = 0.99 because the road region is rather
homogeneous and the surroundings show many detached houses. In contrast, Figures 3.19 and 3.20
show two examples where the underlying model is most likely not applicable. The situation in
Figure 3.19 satisfies the critical assumption only with low probability P (a1 = satisfied|xacu

u,1 (Hi) =

0.09, θ) = 0.001 because of the comparably low response for edge detection in the local context.
The situation in Figure 3.20 also satisfies the critical assumption with low probability P (a1 =

satisfied|xacu
u,1 (Hi) = 0.28, θ) = 0.03 because of the comparably high response for edge detection

within the road region. As can be deduced from the largely displaced bold red lines, the verification
outputs for the examples depicted in Figures 3.19 and 3.20 indeed assign the wrong state.

Discussion

The acupuncture model is especially designed to deal with sub-urban context areas that are char-
acterized by many small detached houses. As this is a weak point of most of the other modules, it
can be expected that the acupuncture module provides complementary information, and therefore
is important for the overall approach.

Despite that being mentioned, the model itself is rather specific. For instance, in (partly) rural
areas with homogeneous surroundings the model is not applicable. Failure must also be expected
for dense urban areas with high buildings that cast shadows on the road surface. In this case, the
shadows may lead to similar numbers of intersections with the acupuncture nails as the buildings
themselves.

The proposed verification strategy extends the original approach described in [Youn et al., 2008]
by a novel definition of the acupuncture nails. Youn et al. [2008] use an automatic method that
extracts the two main directions in the image and hence requires a grid-like structure of the road
network. As the proposed strategy uses the road hypothesis to define the orientation and the shapes
of the acupuncture nails, the approach can also deal with arbitrary road network structures. Another
extension of the original method is introduced by the Gaussian filtering (cf. Equation 3.104), which
makes the method more effective for smaller gsd because it explicitly determines the centreline and
not road region.
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model histogram

Figure 3.19.: Demonstration of the acupuncture method in a situation that does not fit its underlying
model because the context region appears to be homogeneous. The meaning of the sub-
figures corresponds to Figure 3.17.
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𝑢 𝑢 𝑢

model histogram

Figure 3.20.: Demonstration of the acupuncture method in a situation that does not fit its underlying
model because the road region is characterized by many road markings and vehicles.
The meaning of the sub-figures corresponds to Figure 3.17.
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3.3.6. Building and grassland detection

The modules building detection and grassland detection will be discussed together as they follow very
similar strategies. The difference between them mainly concerns the definition of the verification
outputs, which will be described separately.

The strategy is mainly based on the work described in [Rottensteiner et al., 2007] who developed
an approach to detect buildings on the basis of high resolution images and laserscanner data.

Models

The models basically assume that the objects roads, buildings and grassland are disjunct, i.e. they
cannot exist in the same place in the image. For this purpose, different authors, e.g. Youn et al.
[2008] and Poulain et al. [2010] explicitly considered such objects in order to define image regions
where roads probably do not exist.

With respect to the verification of outdated road databases, it is further assumed that temporal
changes of the road network are closely related to changes of buildings and grassland areas. Hence,
database errors related to temporal changes can be explicitly detected if a road hypothesis overlaps
with a new building or a new grassland object.

As the road model relies on buildings and grassland these objects have to be detected in the
imagery, which requires models for buildings and grassland, respectively. For the two modules the
models are defined in accordance with [Rottensteiner et al., 2007]:

Buildings: These topographic objects have a minimum height above the terrain that can be repre-
sented by a specific grey value in the ndsm image. Furthermore, buildings are non-vegetation
areas and therefore have a relatively small response for the ndvi.

Grassland: The height of grassland approximately corresponds to the terrain height that can be
represented by a specific grey value in the ndsm image. Furthermore, grassland objects are
areas of vital vegetation and therefore have a relatively large response for the ndvi.

The modules are designed to deal with ndsm and ndvi images that correspond to a gsd ≤ 1 m.

Verification strategy

First, the imagery is classified in order to determine sets of pixels for building and grassland areas.
This step is based on the work described in Rottensteiner et al. [2007]. Then, these sets are compared
with the database information, and consequently the verification outputs are defined.

Image classification: Initially four sets of pixels are defined. The set RB∪T denotes elevated areas
such as buildings or trees. The set RG∪R denotes areas close to the ground such as grassland or roads.
The set RG∪T denotes vegetation such as grassland or trees. The set RB∪R denotes non-vegetation
such as buildings or roads. Unlike in [Rottensteiner et al., 2007], a simple threshold is applied to
define the four sets by only considering the local surroundings of the road hypothesis represented
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by pixels pb ∈ R
[·H·]
i (cf. Table 3.4):

RB∪T = {pb ∈ R
[·H·]
i |nDSM(pb) ≥ 4.0 m} (3.117)

RG∪R = {pb ∈ R
[·H·]
i |nDSM(pb) < 4.0 m} (3.118)

RG∪T = {pb ∈ R
[·H·]
i |NDVI(pb) ≥ Thigh(NDVI)} (3.119)

RB∪R = {pb ∈ R
[·H·]
i |NDVI(pb) < Thigh(NDVI)} (3.120)

The threshold of 4.0 m for the ndsm heights (cf. Equations 3.117 and 3.118) is based on a simple
heuristic, which seeks to separate terrain with vehicles and small bushes from buildings and trees.
The definition of a comparable heuristic for the ndvi is difficult because the exact calibration of the
underlying colour bands is often unknown. Therefore, the threshold Thigh(NDVI) is defined based on
training data. For that purpose, the approach for determining the Steger-line parameters described
in [Ziems et al., 2007] is applied in a similar fashion to the ndvi-line detection module (cf. Section
3.3.2). Hence, the required value Thigh(NDVI) is equal to the value of Thigh(NDVI) in Table 3.3.

The set RB representing buildings and the set RG representing grassland are defined as intersec-
tions of the sets defined in Equations 3.117–3.120:

RB = RB∪T ∩RB∪R (3.121)

RG = RG∪R ∩RG∪T (3.122)

Verification output for building detection: In accordance with the initially defined model, a road
hypothesis is incorrect if a building (partly) occurs in the image region RH•

i ∈ Hi (cf. Table 3.4).
Consequently, the set {RB ∩RH•

i } represents the contradiction set between the database hypothesis
and the image classification output. The cardinality of this contradiction set is used to define a
binary verification output:

P (road = correct|xblg
v (Hi),model = a.) =

0.0 |
∣∣∣RB ∩RH•

i

∣∣∣ > 0

1.0 | otherwise
(3.123)

Figure 3.21 shows a situation where a small built-up area has been constructed. The outdated road
database information is shown in the left part of Figure 3.21. The right part shows the ndsm image
superimposed by the detected building segments RB (cyan outlines), the determined contradiction
set {RB ∩RH•

i } (red) and the non-contradiction set {RH•
i \RB} in green.

Verification output for grassland detection: While buildings and roads are absolutely disjunct, grass-
land objects are allowed to appear on road surfaces if their area is below the minimum mapping
unit defined for the respective database. This is related to cartographic generalization which may
allow for small traffic islands to be interpreted as parts of the road. In this thesis, the minimum
mapping unit is not directly considered. Instead, the squared value for the required spatial accuracy
Dxy (cf. Table 3.1) is introduced as an approximation for the minimum mapping unit. Hence,
the definition of the verification output for the grassland detection module differs from the one for
building detection (cf. Equation 3.123) in two points: Firstly, in the definition of the contradiction
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Figure 3.21.: Demonstration of building detection module for an outdated road database. Contradic-
tions (red) with the database information (yellow) and the detected building segments
(bright regions with cyan outlines). Left: rgb image. Right: ndsm image.

Figure 3.22.: Demonstration of the grassland detection module. Contradictions (red) with the
database information (yellow). Left: irrg image. Right: ndvi image.

set {RG ∩RH•
i }, and secondly in its tolerated cardinality:

P (road = correct|xgrs
v (Hi),model = a.) =

0.0 |
∣∣∣RG ∩RH•

i

∣∣∣ > (Dxy)2

1.0 | otherwise
(3.124)

Figure 3.22 shows a situation where a roundabout has recently been constructed. The outdated
road database is depicted in the left part of Figure 3.22 for an irrg image. The right part shows
the ndvi image superimposed by the contradiction set {RG ∩RH•

i } (red) and the non-contradiction
set {RH•

i \RG} in green.

Model-uncertainty

The definitions of the verification outputs in Equations 3.123 and 3.124 have two considerable
consequences. Firstly, a road hypothesis is assigned to the state incorrect with a probability of 1.0
if at least one single pixel pb ∈ {RB ∩ RH•

i } (building detection) or a few pixels pb ∈ {RG ∩ RH•
i }

(grassland detection) exist. This implies the assumption that the image classification is correct with
a probability of 1.0. This is critical because the ndvi values might be inaccurate, or the ndsm might
be geometrically inaccurate. Another consequence of the definitions in Equations 3.123 and 3.124
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is that any road hypothesis for which the contradiction set is empty (building detection) or has
small cardinality (grassland detection) is assigned to the state correct with a probability of 1.0. In
this case, not only the correctness of the image classification is a critical assumption, but also the
expectation that any database error can be explained by a redevelopment of buildings or grassland
areas.

Critical assumption 1: The vegetation threshold is clearly discriminative. Rottensteiner et al. [2007]
pointed out that due to a disadvantageous error propagation, the ndvi is affected by high standard
deviations in weakly illuminated areas. If the standard deviation of the ndvi is high, the assumption
that the decision threshold (cf. Equations 3.119 and 3.120) allows a clear separation is questionable.
Therefore, the standard deviation of the ndvi defined on the basis of the Gaussian law of error
propagation is considered as the indicator feature:

xblg,grs
u,1 (Hi) =

2 ·
√
g2

red

(
σgrey

ir

)2
+ g2

ir

(
σgrey

red

)2
(gir + gred)2 (3.125)

with

gir =


1

|RB∩RH•
i |
·

∑
pb∈{RB∩RH•

i }
ir(pb) | building detection

1

|RG∩RH•
i |
·

∑
pb∈{RG∩RH•

i }
ir(pb) | grassland detection

(3.126)

gred =


1

|RB∩RH•
i |
·

∑
pb∈{RB∩RH•

i }
red(pb) |building detection

1

|RG∩RH•
i |
·

∑
pb∈{RG∩RH•

i }
red(pb) | grassland detection

(3.127)

where gir and gred denote the means of the grey values of the red and infrared bands in the contra-
diction sets. The standard deviations σgrey

ir and σgrey
red have to be defined by a human operator, and

thus are system parameters of the proposed approach (cf. Table 3.7).

σgrey
ir [bit] standard deviation of grey values of the infrared band

σgrey
red [bit] standard deviation of grey values of the red band

Table 3.7.: System parameter: Standard deviations of grey-values.

Rottensteiner et al. [2007] found a heuristic, whereupon a standard deviation of 25% of the ndvi is
critical, while a standard deviation near zero is not critical at all. Based on these two values, they
describe the model-uncertainty by a smooth transition between these two values, which approxi-
mately corresponds to a sigmoid function. In close accordance to their definition, the probability of
satisfying the critical assumption is defined as follows:

P (a1 = satisfied|xblg,grs
u,1 (Hi), θsmooth = {0.0, 0.25}) (3.128)

Critical assumption 2: The surface model is spatially accurate. This assumption is critical because
dense matching methods used for the dsm determination tend to provide inaccurate outputs near
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Figure 3.23.: Possible problems of an inaccurate ndsm. Blue lines: The 4 m level curve. Red:
Contradictory sets. Shaded blue: Considered 3σ tolerance of the 4 m level curve.

large height gradients such as at the 4 m level curve.8 The problem is described by an additional
system parameter, the standard deviation of the building borders σxy

ndsm (cf. Table 3.8).

σxy
ndsm [m] standard deviation of the spatial position of building borders in the ndsm

Table 3.8.: System parameter: ndsm accuracy.

Figure 3.23 shows possible problems of a spatially inaccurate ndsm. If a house, whose true position
(black outline) next to the road is detected on the basis of a spatially inaccurate ndsm, then the set
RB might be displaced in direction towards the road (cf. Figure 3.23). As a consequence, the road
hypothesis is assigned to the state incorrect because the contradiction set is not empty although
the road hypothesis is correct. In contrast, a displacement in the opposite direction (direction away
from the road) does not have that effect.

If a tree (green outline in Figure 3.23) is located near the road, this usually does not have any
effect on the verification outputs because the presence of trees is not considered. However, if pixels
corresponding to a tree are misclassified as grassland, then the state incorrect may be assigned to a
road hypothesis although it is correct because the cardinality of the contradiction set may exceed the
threshold (Dxy)2. These types of misclassifications are expected if the 4 m level curve is displaced
in direction away from the road. Both situations are indicated in Figure 3.23, where the set RG

is defined on the basis of a spatially inaccurate ndsm. In contrast, a displacement in the opposite
direction (direction towards the road) does not have that effect.

Consequently, the critical directions of the spatial inaccuracies of the 4 m level curve are the
opposite for both modules. If the spatial uncertainty of the 4 m level curve corresponds to the blue
shaded area depicted in Figure 3.23, the presence of the contradiction sets in those areas would be
also considered as to be uncertain, and thus represents a valuable uncertainty metric for the given
problem.

According to the previous discussion the indicator feature is defined on the basis of the spatial
distance of contradictory sets to the 4 m level curve:

xblg
u,2(Hi) = max

pb∈{RB∩RH•
i }

dB∪T(pb) (3.129)

xgrs
u,2(Hi) = max

pb∈{RG∩RH•
i }

dG∪R(pb) (3.130)

8Matching and subsequent filter operations also lead to other kinds of errors that are not considered here.



3.3. Verification modules 83

In Equations 3.129 and 3.130, dB∪T(pb) and dG∪R(pb) denote the distances of a pixel pb, being
part of the contradictory sets, to the 4 m level curve. These distances are defined by applying the
positive Euclidean distance transform described in [Soille, 2003] to the two sets RB∪T and RG∪R,
respectively. Both sets are inverse to each other (cf. Equations 3.117 and 3.118), and thus the
direction with respect to the 4 m level curve is considered. It is important to note that only the
maximum distance of all pixels pb contained in the contradiction set is considered because the related
pixels are expected to contradict the road hypothesis with the maximum probability. Thus, if the
indicator features are larger than 3σxy

ndsm, the xy-positions of the contradictory sets are expected to
be accurate enough to satisfy the critical assumption, while for values near zero the assumption is
questionable. Furthermore, it is expected that the probability of satisfying the critical assumption
increases smoothly with increasing values xblg,grs

u,2 (Hi). This heuristic is plugged into Equation 3.20
which leads to the functional model:

P (a2 = satisfied|xblg,grs
u,2 (Hi), θsmooth = {3σxy

ndsm, 0.0}) (3.131)

Critical assumption 3: Database errors can always be explained by a redevelopment of buildings or

grassland. The assumption can only be interpreted to be satisfied if a building or grassland object
has really been observed. Therefore, the (negative) verification outputs are used to define the
indicator feature for this critical assumption:

xblg,grs
u,3 (Hi) = −P (road = correct|xblg,grs

v (Hi),model = a.) (3.132)

Due to the binary character of the verification outputs, the functional relation approximated by the
sigmoid function is:

P (a3 = satisfied|xblg,grs
u,3 (Hi), θrigid = {0.0}) (3.133)

Consequently, the building and grassland detection modules have only an effect on the final verifi-
cation result, if their verification output assigns the state incorrect to the road hypothesis.

Discussion

Both the building and the grassland detection modules explicitly search for evidence against the
correctness of road hypotheses, which is an essential difference to all other modules discussed so far.
Both modules are relevant for the overall approach as they focus on specific types of errors that are
not necessarily covered by the other modules.

Building detection and grassland detection are implemented as two independent modules, even
though they mainly share the same strategy. Hence, image classification is applied twice for each road
hypothesis. Despite that computational overhead, the independence of the modules is meaningful
because grassland and building objects have a different relation to road objects: Roads and buildings
are disjunct, but roads and grassland are not entirely because generalisation effects have to be taken
into account.

The identified problem of spatially incorrect ndsm is closely related to the production process of
those data. Therefore, using interim results of the production process such as the probability for a
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successful matching of pairs of pixels would be interesting. However, in this thesis this possibility is
not further investigated.

3.3.7. Adjacency analysis

In contrast to the other verification modules introduced so far, the adjacency analysis module does
not consider local image information. Instead, the verification outputs of the other verification
modules for neighbouring road hypotheses are taken into account. The special status of the adjacency
analysis among the verification modules can be seen through the workflow shown in Figures 3.1
and 3.3, where the adjacency analysis module is located outside the core component. Despite
that difference, the adjacency module also provides the typical per-hypothesis outputs that are
propagated back to the core component.

The verification strategy presented in this section does not have an explicit equivalent in the
literature but is related to works that consider road network characteristics in post-processing, e.g.
[Zhang & Couloigner, 2006].

Model

The model assumes the structure of the road network to be defined by its function, according to
which roads provide effective links between places. Thus, the position of a single road object is
related to the whole road network and in particular to its direct neighbours. It is further assumed
that redevelopment projects leading to outdated road databases have an extent larger than a single
road object, and thus do affect multiple road objects.

Verification strategy

The verification strategy of the module consists of two steps. First, the network topology is analysed
in order to identify adjacent road hypotheses for a given road hypothesis. Secondly, the verification
outputs of all other modules for the adjacent road hypotheses are transferred to the currently
considered road hypothesis.

Topology of the road network: All road hypotheses stored in the database form a graph. The
road centreline hypotheses hxy

i ∈ Hi are interpreted as the edges of the graph. Their end points
are interpreted as the nodes of the graph. Road centreline hypotheses that share a common end
point are connected to the same graph node. Subsequently, any road centreline hypothesis hxy

j with
j ∈ Xadj

i is considered to be adjacent to a road centreline hypothesis hxy
i , if it is connected to any

of the end points of hxy
i . Here, the set Xadj

i contains the indices of the adjacent road hypotheses.
The number of road centreline hypotheses that are connected to the same node defines the degree
of that node.

Definition of the verification output: First, it is assumed that for each adjacent road hypothesis
verification outputs of the form P (road = correct|xvmv (Hj),model = a.) are available. Furthermore,
a set X locmod is defined that includes the names of the other (locally operating) verification modules.
In fact, the adjacency analysis module just collects these outputs and assigns them to the road
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hypothesis Hi as its own verification output. Accordingly, the verification output of the adjacency
module is a set of probability functions P vmj : Θv → [0, 1]:

Padj
v = {P (road = correct|xvmv (Hj),model = a.)} (3.134)

∀ vm ∈ X locmod, j ∈ Xadj
i

The set Padj
v has the cardinality

∣∣∣Padj
v

∣∣∣ =
∣∣X locmod

∣∣ · ∣∣∣Xadj
i

∣∣∣. The whole set takes part in the
reasoning, which means that the number of verification outputs assigned to a road hypothesis Hi

grows by a factor
(

1 +
∣∣∣Xadj

i

∣∣∣). Figure 3.24 demonstrates the introduced strategy for a hypothetical
road hypothesis H3 that has four neighbours.

P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P grs :Θ→[0,1]
P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P grs :Θ→[0,1]

P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P grs :Θ→[0,1]

P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]𝑃1
𝑣𝑚 ∶ Θ𝑣 → [0,1]

P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]𝑃2
𝑣𝑚 ∶ Θ𝑣 → [0,1]

P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]𝑃5
𝑣𝑚 ∶ Θ𝑣 → [0,1]

P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]P adj :Θ→[0,1]𝑃4
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𝑣𝑚 ∶ Θ𝑣 → [0,1]
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Figure 3.24.: Vector stacking principle of the adjacency method. The colours indicate the informa-
tion stemming from the different adjacent road hypotheses.

Model-uncertainty

The underlying model of the adjacency module implicitly assumes that changes, such as those re-
lated to redevelopment projects, affect more than a single road hypothesis, which is critical if the
road hypotheses are longer than the extent of the area of change is. Furthermore, it is implicitly
assumed that a road hypothesis is completely embedded into road network, which is critical for hy-
potheses representing dead end roads. Thirdly, according to the previous discussions the transferred
verification outputs are still uncertain.

Critical assumption 1: Changes of the road network do not only affect single road hypotheses. This
assumption is critical for road hypotheses that are larger than the expected spatial extent of those
changes. The length of a road hypothesis hlength

i ∈ Hi (cf. Table 3.4) is introduced as indicator
feature such that:

xadj
u,1(Hi) = hlength

i (3.135)

The spatial extent of the expected changes has to be specified by the human operator as an additional
system parameter Schange (Table 3.9).
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Schange [m] expected spatial extent of changes in the road network

Table 3.9.: System parameter for the adjacency module.

For hlength
i near zero the critical assumption is expected to be satisfied. In contrast, for hlength

i >

Schange the critical assumption is questionable. Furthermore, it is expected that the probability of
satisfying the critical assumption increases smoothly for decreasing values of hlength

i . This heuristic
is introduced in Equation 3.20, which leads to a functional model for sigmoid of the form:

P (a1 = satisfied|xadj
u,1(Hi), θsmooth = {0.0, Schange}) (3.136)

Critical assumption 2: The roads are always completely embedded in the road network. This is critical
if a road hypothesis is not connected to two junctions because even big redevelopment projects may
only affect the outer limit of a dead-end road. Thus, the indicator feature xadj

u,2(Hi) is defined as
the number of nodes that are connected with the road hypothesis Hi and that have a degree larger
than one. Only if a road is connected with other roads at both ends, it is in accordance with the
model assumption. This heuristic allows a clear separation of the two possible states of the critical
assumption, which leads to a rigid parametrisation given by the delta function:

P (a2 = satisfied|xadj
u,2(Hi), θrigid = {2.0}) (3.137)

Transfer of model-uncertainty: The model-uncertainty outputs P (model = a.|xvmu (Hj)) given from
the verification modules vm ∈ X locmod for all j ∈ Xadj

i are considered by a set Padj
u including∣∣∣Padj

u

∣∣∣ =
∣∣X locmod

∣∣ · ∣∣∣Xadj
i

∣∣∣ probability functions P vmj : Θu → [0, 1]:

Padj
u = {P (a1 = s.|xadj

u,1(Hi), θ) · Padj(a2 = s.|xadj
u,2(Hi), θ) · P (model = a.|xvmu (Hj))|vm ∈ X locmod, j ∈ Xadj

i }
(3.138)

Consequently, the set Padj
u (Equation 3.138) defines the model-uncertainties corresponding to the

verification outputs Padj
v (Equation 3.134). Both Padj

u and Padj
v define a set of probability mass

functions madj(vm):
i : 2Θ → [0, 1] (cf. Figure 3.3).

Discussion

The other verification modules only consider the imagery in the vicinity of a particular road hypoth-
esis, but changes to the road network are usually not restricted to single roads. For instance, changes
caused by redevelopment projects affect larger areas with potentially many road hypotheses. An
example for this can be seen in the right part of Figure 3.25. On the other hand, the probability is
rather small that a short road hypothesis such as the one in the left part of Figure 3.25 is incorrect
if all surrounding road hypotheses are correct. The proposed strategy is simple as it merely transfers
the verification outputs from one hypothesis to the adjacent ones. Accordingly, information coming
from the adjacent road hypotheses is considered by the overall reasoning approach. The charac-
teristics of the transferred information are indicated by the colours of the circles in Figure 3.25.
For the situation shown in the left part of Figure 3.25, the proposed strategy works well because
all information consistently indicates that the short road hypothesis is correct, which it is indeed.
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Figure 3.25.: A typical problem of the proposed per-hypothesis strategy without the adjacency mo-
dule is that the states of short road hypotheses often remain unknown (yellow). Left:
A situation with only correct (green) road hypotheses in the neighbourhood. Right: A
situation with mostly incorrect (red) road hypotheses in the neighbourhood.

For the situation shown in the right part of Figure 3.25, the circles with two colours indicate con-
flicting information at the margin of the redeveloped area. This is problematic if the conflict mass
becomes large, i.e. Ki ≥ 0.9 (cf. Algorithm 1) because then the respective hypothesis is assigned to
state invalid, which means that the information provided by the other modules is ignored. Hence,
the adjacency analysis might affect the performance of the overall approach for road hypotheses at
the border of redevelopment projects. From the viewpoint of a practical application this might be
less problematic as the human operator will probably have a look at those objects when correcting
the adjacent one. On the other hand, this problem is relaxed by the introduced concept for the
model-uncertainty that lowers the effect of the adjacency analysis for longer road hypotheses. The
definition of the parameter Schange (cf. Table 3.9) directs the main task of the adjacency analysis
to find solutions for short road hypotheses, where it is expected to be most beneficial because this
is a weak point of the other modules. A reason for the weakness is that short road hypotheses
correspond to small amounts of pixels in the imagery, which makes a verification more difficult.

Further, it has to be noted that the proposed strategy of the adjacency module is still not global as
only the direct neighbours of a road hypothesis are involved. In the related work, several approaches
can be found that apply a global network analysis, e.g. [Fischler et al., 1981; Wiedemann & Ebner,
2000; Poullis & You, 2010]. The main reason why such global concepts are not realized in this thesis
is the fact that the current approach only concentrates on verification, and thus does not consider
new roads for which a global network analysis is most important. Furthermore, a global approach
will suffer from ignoring the new roads that potentially represent alternative connections.

3.4. Practical aspects of the approach

3.4.1. System parameters

Throughout the preceding sections, several so-called system parameters have been introduced. The
adjustment of these system parameters allows adapting the verification approach to different types
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of road databases, imagery, geographic regions and scene properties. Table 3.10 summarizes all
the introduced system parameters. The table is subdivided into three thematic groups describing
database, imagery and scene properties. The first group describing the database properties contains
the parameters for the required database accuracy Dxy and Dwidth that are responsible for the test
criteria of the verification modules. The parameters Drms(xy) and Drms(width) denote the actual
accuracy of the database geometries. In cases where Dxy � Drms(xy) and Dwidth � Drms(width)

holds true, using Drms(xy) and Drms(width) instead of Dxy and Dwidth enhances the performance
of the overall approach because the image regions can be defined more precisely. The parameter
Schange denotes the expected spatial extent of changes in the road network. Errors related to smaller
changes might be overlooked because the verification results from the adjacent road hypotheses gain
increasing influence on shorter road hypotheses.

The second group of parameters has to be set in accordance with the available input imagery. The
parameter for the gsd is mainly used for conversions between parameters defined in image space
and parameters defined in object space, e.g. for the definitions of the image sets contained in Hi

(cf. Table 3.4) and the definition of the number of the acupuncture nails in Equation 3.102. The
parameters σgrey

ir and σgrey
red denote the standard deviations of the grey values of the red and infrared

colour bands. In this thesis, the values are interpreted as meta data available for the imagery. The
parameter σxy

ndsm denotes the standard deviation of the x and y coordinates from the ground truth
in the ndsm image.

The third group of parameters refers to the particular scene properties. The parameter r2 defines
the extent of the local context area considered for the verification of a road hypothesis. It is a basic
requirement that the context properties mostly do not change within the distance r2 in a direction
perpendicular to the road hypothesis. Thus, it is important that r2 is not too large. In other
words, buildings next to a road should be included but a crop field behind the buildings should
not. However, a small value for r2 is also problematic because some modules such as the ssh and
the acupuncture method integrate the image properties over the context area, and thus are less
effective if r2 is defined too small. The correct values for the parameter r2 depends on the scene
characteristics, i.e. it describes how frequently the context area in a scene changes.

In addition to the parameter r2, there are a plenty of other parameters responsible for scene adap-
tation that are not listed in Table 3.10, e.g. the Lagrange multipliers for the svm-based classification
approaches, the gmm parameters and the Steger-line parameters. All these parameters have mainly
the task to adjust the approach to radiometric scene properties and all of them are instantiated on
the basis of the training datasets for roads, buildings and grassland objects (cf. Table 3.3).

Another parametrisation issue to be discussed here is related to the applicability of the verifi-
cation modules depending on the given input data. As can be seen in the first three columns in
Table 3.11, the individual requirements of the verification modules are rather different. In order
to make the approach flexible for different input datasets, the verification modules can be disabled
if the respective requirements are not fulfilled. Because every module represents an encapsulated
verification approach on its own the overall approach provides results even if only one verification
module (other than the adjacency analysis) is enabled. Given the fact that the imagery can always
be down-sampled, Table 3.11 only includes the upper limits for the gsd.
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da
ta
ba
se

Dxy [m] required accuracy of the road centreline

Dwidth [m] required accuracy of the width attribute

Drms(xy) [m] rms error of the road centreline

Drms(width) [m] rms error of the road width

Schange [m] expected spatial extent of changes in the road network

im
ag
er
y

GSD [m] ground sampling distance of the imagery

σgrey
ir [bit] standard deviation of grey values of the infrared colour band

σgrey
red [bit] standard deviation of grey values of the red colour band

σxy
ndsm [m] standard deviation of the spatial position of building borders in the ndsm

sc
en
e

r2 [m] width of considered context region, perpendicular to the road centreline hypothesis

Table 3.10.: Parameters of the proposed approach.

verification modules image type gsd [m] primary field of application v. output critical assumptions

colour classification colour ≤ 0.5 urban areas, binary generative 1
can deal with shadow smooth heur. 4

rigid heur. 1
pan-line detection pan ≤ 2 open landscape, distrib. discriminative 1

without any settlements rigid heur. 1
ndvi-line detection ir, red ≤ 2 dense vegetation areas distrib. discriminative 1

rigid heur. 1
ndsm-line detection ndsm ≤ 2 dense urban area distrib. discriminative 1

with attached houses rigid heur. 1
parallel edge pan ≤ 0.5 rural area including distrib. smooth heur. 1
detection small settlements rigid heur. 1
ssh method pan ≤ 2.5 rural area including binary smooth heur. 1

small settlements,
deals with weak contrast

acupuncture method pan ≤ 1.0 urban area with binary smooth heur. 1
detached houses

building detection ndsm, ≤ 0.5 development areas for binary smooth heur. 2
ir, red buildings and roads rigid heur. 1

grassland detection ndsm, ≤ 0.5 development areas for binary smooth heur. 2
ir, red roads and grassland rigid heur. 1

adjacency analysis - - short road objects - smooth heur. 1
rigid heur. 1

combination of all pan, ≤ 0.5 different context areas, 5 binary generative 1
colour, different road types 4 distrib. discriminative 3
ir, ndsm smooth heur. 12

rigid heur. 8
24

Table 3.11.: Summary of the module specific properties.
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3.4.2. Implementation issues

From the human operator’s viewpoint, the proposed verification approach consists of three parts.
The first part is interactive, i.e. the human operator defines the input data (road database and
imagery), adjusts the system parameters and provides the training samples. The second part is the
automatic image analysis, which concludes with a distinct decision for each road hypothesis. The
third part is again interactive as it requires the human operator to investigate at least a subset of
the road hypotheses.

When processing a large amount of data, i.e. thousands of road objects covering hundreds of
square kilometres in object space, the automatic part might be required to run over night, which
allows a human operator to proceed with the third part at the following working day. Hence, there
is no demand for a real-time application. However, the implemented per-hypothesis verification
strategy is ideal to be scaled up as it breaks down the verification problem into small sub-tasks.
Each fully encapsulated sub-task only needs to consider a small image subset R[·H·]

i ∈ Hi that will
usually be much smaller than one square kilometre in object space, and thus does not require more
than a few seconds of processing time for a single cpu. This opens up the possibility of parallel
processing to reduce the computation time further, if required.

3.5. Discussion

To conclude this chapter, the advantages and the limitations of the proposed verification approach
will be discussed.

A core characteristic of the proposed approach is its modular structure: Ten independent road
verification approaches are combined to get an overall solution. The road model for each module
focuses on a single road property, and is therefore comparably simple. The restriction to simple
models has the consequence that one module alone is not able to deal with every imaginable situation,
i.e. all possible appearances of correct and incorrect road hypotheses. However, different road
properties are considered by the individual modules. For instance, the pan- and ndvi-line detection
modules are designed for open landscape and rural areas; the acupuncture module for urban areas
with detached houses and the ndsm-line detection module for dense urban areas. Furthermore,
some of the modules are designed to be useful in situations where the other modules will fail, e.g.
the ssh module solves situations with weak contrast and the colour classification module is able
to deal with shadows. The idea behind the modular concept is that nearly any situation in the
imagery can be explained by simple models, but not necessarily by the same simple model. The
advantage of this strategy is that complex interactions between the model properties do not need to
be considered, which leads to a relatively simple parametrisation as was shown with the small set
of system parameters in Table 3.10. There is also a disadvantage in that: Not every situation might
be that simple. For instance, a road that is only partly observed by its parallel borders and partly
by its colour properties is not covered by the combined model, because it is not covered by at least
one single model.

The models and strategies for the modules are mostly defined in close accordance to successful
state-of-the-art road detection approaches. The most notable extension is the development of the
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colour classification module using a gmm to deal with partly shadowed roads. Another important
contribution of this work is the development of a verification strategy for the approaches that were
originally developed for road detection and not for road verification. Prior knowledge from the
database is introduced to define exact road hypotheses (cf. Table 3.4) and to specify the models
of the detection algorithms. The latter point is interesting, as it makes the respective models more
effective compared to their original versions, e.g. by a precise definition of the line width (cf. Section
3.3.2, line detection modules) or the precise definition of orientation and shape (cf. Section 3.3.5,
acupuncture module).

Another important aspect of the new approach concerns the proposed model-uncertainties that
are always based on an analysis of the fulfilment of the critical assumptions made for a particular
road model. In summary, 24 critical assumptions are considered. All proposed analyses are new,
except the line coverage assumptions (Equations 3.66 and 3.84) which were introduced by Gerke
et al. [2004].

The most notable analysis of a critical assumption concerns the assumption of representative
training data, which was introduced for the colour classification module (Section 3.3.1). This concept
can be transferred to many classification problems in remote sensing applications apart from the
context of road verification because assuming training data to be representative is quite often too
optimistic.

The proposed combination concept allows a single module (a state-of-the-art approach) to violate
its subjective closed world assumption. However, also the new (combined) approach is based on a
closed world assumption because the considered critical assumptions have been identified based on
the model descriptions, empirical results given in original publications and the experience gained in
benchmark tests, which is nothing else then another closed world. In other words: In the context of
world-wide applicability some critical assumptions may have been overlooked.

It is further worth noting that both the verification outputs and the model-uncertainties are
defined in terms of probabilities. One advantage of this strategy is that the Probability Theory,
which provides well-known concepts for classification and information fusion can be applied. The
probabilistic concept is realized for the whole framework: Starting with the definition of the module-
specific outputs up to the dst-based decision logic.

The dst framework explicitly expresses uncertainty and ignorance by only one distribution. This
ability is used to define a decision space that also considers unknown as a possible state. The
mapping to this decision space is realized by the maximum probability mass rule (Equation 2.24),
which is a specific aspect of the proposed approach compared to the related works where the states
expressing ignorance are mostly ignored by applying the maximum support rule (Equation 2.20).
In contrast, the idea followed in this thesis is that ignorance is resolvable by querying additional
information sources such as a human mind.
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4. Experiments

In this chapter, initially six datasets that serve as the basis for the experiments will be described and
discussed in the context of system parametrisation. As a sideline the dataset descriptions illustrate
potential applications of the proposed approach. Afterwards, three different sets of experiments will
be presented, each focussing on a specific aspect of the new methodology.

4.1. Datasets

The six input datasets used as the basis for the experiments show different properties concerning
imagery, vector data, context areas, road types and geographic regions. Subsequently, all datasets
will be briefly described.

EuroSDR-Ikonos: This dataset was provided by European Spatial Data Research (Eurosdr) as
the basis for a benchmark test for road detection approaches [Mayer et al., 2006]. The imagery
consists of two four band (ir,rgb) pan-sharpened Ikonos images with 1.0 m gsd. The reference
datasets also provided by Eurosdr represent the centrelines of the correct road objects. The images
are subdivided into three scenes of 1, 600 × 1, 600 pixels, each showing an area of the Kosovo (cf.
Figures A.2–A.4). The three scenes are described by Mayer et al. [2006] as:

• Ikonos1-sub1: sub-urban hilly scene of medium complexity (total length of the road network:
18 km)

• Ikonos3-sub1: flat rural scene of low complexity (total length of the road network: 8 km)

• Ikonos3-sub2: rural hilly scene of low complexity (total length of the road network: 6 km).

EuroSDR-Aerial: This dataset was also provided by Eurosdr and belongs to the same benchmark
test as the Eurosdr-Ikonos dataset [Mayer et al., 2006]. The imagery consists of three scanned
aerial images (rgb) with 0.5 m gsd, showing three different areas in Switzerland. Each aerial image
consist of 4, 000×4, 000 pixels (cf. Figures A.5–A.7). Reference data for the three scenes were made
available by Eurosdr. The three scenes are described by Mayer et al. [2006] as:

• Aerial1: sub-urban scene of high complexity (total length of the road network: 43 km)

• Aerial2: hilly rural scene of medium complexity (total length of the road network: 22 km)

• Aerial3: hilly rural scene of low complexity (total length of the road network: 23 km).
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ISPRS-Vaihingen: This dataset is part of a benchmark for urban object detection approaches, con-
ducted by the International Society for Photogrammetry and Remote Sensing (isprs) described in
[Rottensteiner et al., 2012]. In this thesis, a four band image (ir,rgb) with 0.2 m gsd and an
ndsm of 0.2 m point spacing was derived from the original imagery provided by the German Society
for Photogrammetry, Remote Sensing, and Geoinformation [Cramer, 2010]. The reference dataset,
provided by isprs, comprises centrelines of 99 road objects with an overall length of 9 km. The
image, having 4, 423× 5, 890 pixels, shows an urban area of medium to high density of development
(cf. Figure A.8).

MGCP-Algiers: This dataset is a part of the Multinational Geospatial Co-production Program
(mgcp). In accordance with [Farkas, 2009], the goal of mgcp is to generate a world-wide topographic
map of a scale of 1:50,000 on the basis of remote sensing data. The data are acquired by different
organizations all over the world. The road data represent the most important part of the maps1 and
their quality has to be checked by an independent authority after acquisition. This task is carried
out on the basis of the same remote sensing data that were used for data acquisition. So far, the
comparison of the road database with the remote sensing data is still carried out manually. As this is
a very time-consuming task, the mgcp-organizers are looking for methods that allow automation of
this work. For that purpose, they provided a test dataset to evaluate the approach presented in this
thesis. The test dataset consists of an Ikonos image with four colour bands (ir,rgb) that are pan-
sharpened with 1.0 m gsd. The image has 12, 000× 24, 000 pixels. Furthermore, the corresponding
subset of the mgcp road database that contains 1,378 paved roads with solid surface and 909 dirt
roads was provided. The overall length of the road network is 750 km, which is six times larger
than the total road length of the Eurosdr and isprs datasets together. The scene corresponds to
an area of 200 km2 and shows the coast of a region near Algiers in Algeria (cf. Figure A.9). A few
settlements are situated within an agricultural plain, while the hilly terrain in the interior is covered
by natural vegetation. The manual quality check of mgcp identified 33 incorrect road objects with
an overall length of 13 km. The errors identified manually will be used as the reference for the
proposed approach to evaluate its ability to detect errors under real conditions.

GSI-Uraga: This dataset is a part of the Japanese authoritative topographic cartographic database
(Fundamental Geospatial Data, which also is introduced into the Digital Japan Basic Map (Map
Information)), covering the whole urban area of Japan and corresponding to a mapping scale of
1:2,500. The data structure is standardized, but the data are produced by different local government
agencies and thus show heterogeneous quality. Therefore, the Geo-spatial Information Authority of
Japan (gsi) wants to establish quality control measures that ensure a consistent quality standard.
For that purpose, gsi uses up-to-date aerial images that are available for the entire area of interest.
However, due to the high efforts required for a complete manual comparison of the database with
the images for the whole country, a manual procedure does not seem realistic. In order to reduce the
huge manual efforts for this quality check, this task has to be automated without compromising the
data quality. Thus, gsi provided a test dataset to evaluate the approach proposed in this thesis with
respect to their task. The test dataset consists of an aerial image (rgb) with 0.2 m gsd that has

1It is worth noting that the mgcp database does not include all roads and buildings by design, i.e. less important
connections of the road network and buildings are allowed to be missing.
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3, 800×4, 600 pixels. The respective subset of the Digital Japan Basic Map contains 396 road objects
with an overall length of 15 km. The scene shows a sub-urban area, where significant differences
between the database and the image appear due to a large redevelopment zone that stretches from
the north-west to the south-east of the scene (cf. Figure A.10). Based on an interactive quality
check of the road database, 330 road objects were declared to be correct, whereas 66 were found
to be incorrect. This assessment serves as a reference for the automatic verification of an outdated
road database.

NGI-Zeebrugge: This dataset is part of the Belgian road reference database, corresponding to a
mapping scale of 1:25,000. The road database is maintained by the Belgian National Geographical
Institute (ngi). For the future it is planned to update the road database every three years based
on up-to-date imagery. Therefore, ngi investigates strategies to automate the updating process,
and thus provided a test dataset to evaluate the approach proposed in this thesis with respect to
their task. The test dataset consists of a colour image mosaic (irrg) with 32, 000 × 24, 000 pixels
and 0.5 m gsd. Furthermore, the dataset consists of an ndsm that was computed on the basis
of dense matching from stereo images (the same images that are the basis for the image mosaic).
The corresponding subset of the road database contains 5,836 road objects with 620 km length.
The test data correspond to an area of 134 km2 and show Zeebrugge and its surrounding area (cf.
Figure A.11). The region is nearly planar and shows compact settlements of different density, large
industrial facilities near the harbour and rural regions. With respect to the number of road objects,
the Zeebrugge dataset is the largest of the test, whereas the overall length of the road network is
slightly smaller than the mgcp-Algiers dataset (620 vs. 750 km). For the evaluation a road database
extract from 1997 is used, while the imagery was acquired in 2011. Hence, many discrepancies related
to recent road network improvements can be found, e.g. extensions to multi-lane roads and new
road junctions that connect by-pass roads with new built-up areas. Based on an interactive quality
check of a road database, whose latest update was in 2008, 5,259 road objects were declared to be
correct, whereas 577 were found to be incorrect. It is worth noting that, in 2008, a professional
cartographer required 20 full working days for the manual update of that database subset.

Discussion of the datasets

The six datasets have rather different properties. The gsd of the considered imagery ranges from
1.0 m for the Ikonos images to 0.2 m for the high resolution aerial images. Only for some datasets,
an infrared band or an ndsm are available. Furthermore, the datasets represent different geographic
regions with different characteristics.

The vector data differ with respect to the expected database errors. The three benchmark datasets
are error-free, the mgcp-Algiers dataset contains just a few database errors stemming from data
acquisition, the gsi-Uraga dataset contains many database errors related to one single redevelopment
project that is not contained in the database, and the ngi-Zeebrugge dataset contains predominantly
database errors related to lots of smaller redevelopment projects of the road network that were carried
out over a period of 14 years.

Another difference between the datasets originates from their purpose. The benchmark datasets
were designed to evaluate different road detection algorithms under controlled conditions. They
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consist of seven relatively small image subsets where each shows roads of different appearances. The
datasets mgcp-Algiers and gsi-Uraga represent a typical cartographic task, i.e. the quality control
of a database acquired by a third party. The mgcp-Algiers dataset is specific, as it is acquired
using the same imagery that is available for quality control. Accordingly, errors related to temporal
differences are widely ruled out, just as errors related to incorrect geo-referencing. In contrast, the
gsi-Uraga dataset shows a development area under construction. This is interesting with respect to
the introduced concept of model-uncertainty because such situations are not represented by any of
the introduced models. The ngi-Zeebrugge dataset represents another typical cartographic task, i.e.
verification as part of a database update. The temporal difference between database and imagery
is 14 years, and thereby unusually large. This has the advantage that the basis for analysing the
ability of the method to detect typical database errors is larger.

A further important aspect is the size of the datasets. In particular the datasets mgcp-Algiers
and ngi-Zeebrugge are large compared to the benchmark datasets as well as those datasets that are
commonly applied in the related work [Das et al., 2011]. Therefore, the numbers computed for these
datasets can be expected to be more stable.

Parameter settings

Table 4.1 shows the parametrisation of the proposed approach for the six datasets in accordance with
Tables 3.10 and 3.11 that were discussed in Chapter 3. The differences between the required database
accuracies Dxy, Dwidth for the three cartographic datasets are related to the different mapping scales
of those databases. For the benchmark datasets, such specifications are not available, and thus the
required values are set to 3 m, i.e. the rounded average value of the other cartographic datasets.
For the datasets ngi-Zeebrugge and gsi-Uraga the parameter Schange is set in accordance with the
diameter of typical redevelopment projects that occur in those scenes. As for the three benchmark
datasets and the mgcp-Algiers dataset, database errors related to redevelopment projects can be
ruled out, Schange is set to a relatively small value of 10 m. The parameters σgrey

ir , σgrey
red and σxy

ndsm

are set in accordance with the properties of the input data. They are required for the modules
building detection and grassland detection which are only applied to the datasets isprs-Vaihingen
and ngi-Zeebrugge. The parameter r2 is set to a small value (15 m) for all those datasets where
dispersed settlements occur frequently. For the datasets, ngi-Zeebrugge and gsi-Uraga r2 is set
relatively large because here the settlements form large compact regions. The training datasets
consisting of building and grassland areas are only required if the colour classification module is
applied, which is only the case if the image gsd is at least 0.5 m.

Due to the different input data properties, some verification modules are disabled for some
datasets. Only for the datasets isprs-Vaihingen and ngi-Zeebrugge, all modules are enabled because
only for these two datasets are all required input data available.
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da
ta

pr
op
er
ti
es

input imagery rgb,ir rgb irrg,ndsm rgb,ir rgb irrg,ndsm

platform Satellite Aerial Aerial Satellite Aerial Aerial

gsd 1.0 m 0.5 m 0.2 m 1.0 m 0.2 m 0.5 m

database mapping scale - - - 1:50,000 1:2,500 1:25,000

covered area 7.7 km2 12 km2 1.1 km2 200 km2 0.7 km2 134 km2

number of road objects 308 696 99 2,287 396 5,836

overall road length 32 km 88 km 9 km 750 km 15 km 620 km

da
ta
ba
se

Dxy 3 m 3 m 3 m 5 m 2 m 3 m

Dwidth 3 m 3 m 3 m 5 m 2 m 3 m

Drms(xy) 0.33 m 0.33 m 0.33 m 0.33 m 0.2 m 0.66 m

Drms(width) 0.66 m 0.66 m 0.66 m 0.66 m 0.33 m 0.66 m

Schange 10 m 10 m 10 m 10 m 100 m 30 m

im
ag
er
y

GSD 1 m 0.5 m 0.2 m 1.0 m 0.2 m 0.5 m

σgrey
ir - - 2.1 - - 1.8

σgrey
red - - 1.9 - - 1.7

σxy
ndsm - - 0.5 m - - 1.33 m

sc
en
e

r2 15 m 15 m 15 m 15 m 30 m 30 m

Xroads x x x x x x

Xbuildings - x x - x x

Xgrassland - x x - x x

ve
ri
fic
at
io
n
m
od
ul
es

colour classification - x x - x x

pan-line detection x x x x x x

ndvi-line detection x - x x x x

ndsm-line detection - - x - - x

parallel edge detection x x x x x x

ssh method x x x x x x

acupuncture method x x x x x x

building detection - - x - - x

grassland detection - - x - - x

adjacency analysis x x x x x x

Table 4.1.: Data properties and parameter settings (’x’ denotes enabled).
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4.2. Evaluation of the proposed methodology

In this Section three sets of experiments will be presented. The first set (Section 4.2.1) mainly focuses
on the svdd-based uncertainty metric as one of the key contributions of this thesis. The second set
(Section 4.2.2) focuses on the proposed fusion framework and the performance of the verification
modules in comparison with state-of-the-art road detection approaches. The third set (Section 4.2.3)
focuses on real cartographic datasets and thus analyses the applicability of the proposed approach
with respect to the main objectives of the thesis.

4.2.1. The SVDD-based uncertainty metric

An important contribution of this thesis is the proposed svdd-based uncertainty metric (cf. Sections
2.2 and 3.3.1). It was argued that, with an increasing feature space distance fsvdd(zi) of a test sample
zi to the training samples Xsvmtrain (cf. Equation 2.56), the probability for ignorance increases.
According to this argumentation, the proposition of misclassifications is also expected to increase
with the feature space distance. In order to check this hypothesis, the classification outputs of the ν-
svc are evaluated with respect to different feature space distances to the svdd hypersurface. Figure
4.1 displays the idea of the evaluation strategy subsequently described. In accordance with Figure
2.3, the feature vectors related to the training data are depicted in red (non-roads) and blue (roads),
whereas the feature vectors related to potential outliers (fsvdd(zi) > 0) are depicted in green. The
thin grey lines represent different decision thresholds between inliers (represented by the training
data) and outliers (not represented by the training data). By increasing a rigid distance threshold
βdsvdd, more and more test samples symbolized by the green stars will be classified as inliers.
Henceforth, it has to be checked if test samples displayed in a brighter colour will be misclassified
with larger probability than the darker ones that reside nearer to the svdd hypersurface.

ν-SVC hypersurfaceSVDD hypersurface

𝜷 𝒅𝐒𝐕𝐃𝐃

Figure 4.1.: svdd-based outlier detection applying different thresholds for the distance to the svdd
hypersurface.

Evaluation strategy

Only some parts of the colour classification module (cf. Section 3.3.1) are required for this set
of experiments: The colour feature extraction based on the GMM?, the ν-svc for classifying roads
and non-roads and the svdd-based kernel metric to determine the input feature space distance. In
Section 3.3.1, six critical assumptions were considered for the model-uncertainty. However, only
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the first critical assumption, i.e. The training samples represent the test data, is in the focus of
the current set of experiments. In order to exclude other effects, the state of the other critical
assumptions needs to be fixed. For that reason, only road hypotheses that satisfy the following
inequality are considered further on:∏

k={2,4,5,6}

[
P (ak = satisfied|xcol

u,k(Hi), θ)
]
≥ 0.8 (4.1)

The constraint 4.1 refers to the critical assumptions k = {2, 4, 5, 6} that deal with the uncertainty
of the feature vector definition (cf. Section 3.3.1).

The gsi-Uraga dataset, introduced in Section 4.1 serves as the basis for this set of experiments.
This dataset is particularly useful to demonstrate the performance of the svdd-based uncertainty
metric as it is characterised by a large redevelopment area under construction, which has obviously
different colour properties compared to the rest of the scene.

The required training dataset is deliberately defined to be partly non-representative for the scene.
It consists of 36 road objects that are all placed in the centre of the scene, indicated by the blue
lines in Figure 4.2. The 72 non-road objects used for training are generated from the road objects
by a parallel shift in both directions perpendicular to the main axis of the road objects. Hence, the
training data have a fairly homogeneous appearance while the characteristics of the redevelopment
area and the forest areas in the periphery of the scene are not represented.

In the test case, all road database objects in the gsi-Uraga dataset that satisfy the Constraint 4.1
and that do not correspond with the training data in the centre are classified. For the remaining 276
(of 396), road hypotheses feature vectors zi and feature space distances fsvdd(zi) (cf. Equation 2.56)
are computed. According to the feature space distances fsvdd(zi), the test samples zi are classified
as inliers or outliers. Unlike in [Tax & Duin, 2004], the decision threshold to discriminate inliers
and outliers is not set to fsvdd(zi) = 0. Instead, the threshold is defined as a variable that will be
adapted in the experiments. A test sample zi is classified as outlier if:

fsvdd(zi) > βdsvdd (4.2)

where dsvdd denotes the average distance of all feature vectors used for training that reside inside
the svdd hypersphere:

dsvdd =
1∣∣Xtrainsvm \Xsv(svdd)

∣∣ ∑
xi∈Xtrainsvm\Xsv(svdd)

fsvdd(xi) (4.3)

Equation 4.3 explicitly excludes the support vectors (Xsv(svdd)) that are characterized by feature
space distances ≥ 0 to the svdd hypersurface. The variable β = [0,∞] controls the distance
threshold, whereas dsvdd provides an intuitive unit for its value.

The classification output of the ν-svc (road, non-road) is only considered if the respective test
sample zi is classified as an inlier. Given the classification output and the reference dataset described
in Section 4.1, a confusion matrix can be defined:
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combination of svdd and ν-svc

road non-road outlier

re
fe
re
nc
e

road RR RN RO

non-road NR NN NO

Table 4.2.: Confusion matrix for the combined colour classification approach.

According to Table 4.2 two evaluation parameters are defined:

classification correctness =
RR + NN

RR + NN + RN + NR
(4.4)

classification completeness =
RR + NN + RN + NR

RR + NN + RN + NR + NO + RO
(4.5)

The classification correctness (cf. Equation 4.4) indicates the relative amount of correct class as-
signments with respect to all class assignments. Here, outliers are not considered. The optimal
value for the classification correctness is 100%, which means that all class assignments are correct.
The classification completeness (cf. Equation 4.4) indicates the relative amount of inliers.

Results

The reference dataset contains 330 correct road hypotheses and 66 incorrect ones. Applying the
constraint 4.2 and removing the hypotheses that were part of the training data leads to 227 test
samples that correspond to roads (correct road hypotheses) and 49 test samples correspond to non-
roads (incorrect road hypotheses).

Table 4.3 shows the confusion matrices of the results for the 227+49 = 276 test samples determined
by using four different values β = {0, 1, 2,∞}. Figure 4.2 shows a graphical representation of the
results.
In the first scenario shown in Table 4.3, the ν-svc is combined with the svdd using β = 0. Hence,
only the ν-svc outputs of feature vectors from inside the svdd hypersphere are considered. The
second scenario considers also samples a bit outside of the svdd hypersphere, i.e. β = 1. As expected,
the classification correctness decreases moderately compared to the first scenario (−1.1%) while the
classification completeness increases more clearly (+7.7%). This means that the majority of the
classification outputs considered in addition to those of the first test are indeed correct. The third
scenario with β = 2 shows the same trend with respect to the classification correctness (−1.1%

compared to the second scenario), but the classification completeness increases less clearly than
before (+4.4% compared to the second scenario). The last scenario considers the ν-svc result alone,
which leads to a classification correctness of 69.5% and an obvious classification completeness of
100%.

Figure 4.3 shows the classification completeness and the inverse2 of the classification correctness
for different values of β. The classification completeness increases most significantly for values
β ≤ 2, whereas the classification correctness is nearly constant. In contrast, for values β ≥ 4

2The inverse is chosen here as it better visualises the relation of both curves.
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𝛽 = 2 𝛽 = ∞

𝛽 = 0 𝛽 = 1

Figure 4.2.: Combination of two ν-svc and svdd with different values of β (training data in blue,
correct class assignments in green, incorrect assignments in red and outliers in yellow).



102 4. Experiments

proposed approach

road non-road outlier
combination of ν-svc and svdd with β = 0

re
fe
re
nc
e

road 113 (41%) 12 (4%) 102 (37%) classification correctness = 95.7%
non-road 0 2 (1%) 47 (17%) classification completeness = 46.0%

combination of ν-svc and svdd with β = 1

road 130 (47%) 16 (6%) 81 (29%) classification correctness = 94.6%
non-road 0 5 (2%) 44 (16%) classification completeness = 54.7%

combination of ν-svc and svdd with β = 2

road 138 (50%) 17 (6%) 72 (26%) classification correctness = 93.5%
non-road 1 (1%) 7 (3%) 41 (15%) classification completeness = 59.1%

only ν-svc without svdd (β =∞)

road 154 (56%) 73 (27%) - classification correctness = 69.5%
non-road 14 (5%) 35 (13%) - classification completeness = 100%

Table 4.3.: Confusion matrices and evaluation parameters for different scenarios defined in the text.

β 4 2 
0,00 

0,20 

0,40 

0,60 

0,80 

1,00 

0 5 10 15 20 

classification completeness 

(1 –  classification correctness) 

Figure 4.3.: Influence of the distance threshold βdsvdd on the inverse classification correctness and
the classification completeness.

the classification completeness merely increases slightly faster than the classification correctness
decreases.

The results for the four scenarios introduced in Table 4.3 are shown in Figure 4.2. What Figure
4.2 does not show are the states of the road hypotheses. Looking at the four depicted scenarios, it
becomes clear that the roads that have a similar appearance to the training objects in the centre
of the scene are classified as inliers, and that they largely receive the correct class assignments.
The outliers are largely found in areas where, due to different surroundings, the roads have a
different appearance than the training data, e.g. in the forest where correct road hypotheses have a
different appearance or in the redevelopment zone where incorrect road hypotheses have a different
appearance.

Discussion

First, the experiment confirms the expectation that a combination of a ν-svc with the svdd achieves
a significant reduction of misclassifications. If the svdd decision threshold is set to zero as suggested
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by Tax & Duin [2004], the classification correctness is increased from 69.5%, achieved without the
svdd, to 95.7% with the svdd.

Secondly, the expected dependency of the proportion of misclassifications on the distance fsvdd(zi)

was confirmed for the applied test dataset. For feature space distances βdsvdd with 0 ≤ β ≤ 2 it
turned out that the classification completeness increases with a decreasing fsvdd(zi), which basically
means that the closer a test sample resides to the svdd hypersurface, the larger the probability
becomes for a correct class assignment.

In contrast, for feature space distances βdsvdd with β ≥ 4 the classification completeness increases
constantly stronger than the classification correctness decreases, which basically means that the
probability for a correct class assignment does not change with the feature space distance. In
particular, approximately 25% of the samples far away from the svdd (for β ≥ 4) are correctly
classified independently of the feature space distance to the svdd hypersurface. The reason for this
observation can be seen in Table 4.3, where for β = ∞ the ν-svc classifies most of the samples as
non-roads, whereas the reference denotes the majority of these samples as roads. The predominant
assignment to the class non-roads can be explained by the fact that regions corresponding to non-
roads have more heterogeneous colour properties than those that correspond to roads, and thus
the feature vectors corresponding to non-road regions span a larger sub-space in feature space.
Consequently, the half-spaces separated by the ν-svc hypersurface do not have the same size, and
thus arbitrarily located test samples appear with higher probability in the larger half-space, i.e as
non-roads.

For the experiment a value β = 2 is a good choice to separate inliers from outliers, and thus
it is a good choice to reduce the probability of misclassifications. However, this value cannot be
transferred to another scene because the distribution of the outliers might be different. If the
distribution of the outliers (and inliers) were similar enough, the conditional probabilities P (road =

correct|xcol
v (Hi),model = n/a) = 0.75 and P (road = incorrect|xcol

v (Hi),model = n/a) = 0.25 could
be plugged into Equation 3.7 and classical Bayesian inference could be applied.

In order to conclude the discussion, it is neither a good choice to transfer the determined optimal β
from one scene to another nor it is easy to find a general heuristic for the value of β. In this thesis, the
problem is overcome with the analysis of the test data distributions introduced in Section 3.3.1 (cf.
Equations 3.45–3.47). A disadvantage of this strategy is that it disturbs the per-hypothesis strategy
because it requires fsvdd(zi) for all database hypotheses. However, it also provides a scene-specific
and optimal distance threshold, which is a considerable advantage.

4.2.2. The data fusion strategy

The proposed fusion concept of combining independent verification approaches at decision level is
one of the important contributions of this thesis. The experiments presented in this section were
conducted to answer the following three questions:

• Which verification module is most successful in which kind of scene?

• By which margin is the combined solution better than the individual solutions?

• How good is the combined solution compared to solutions of the related works?
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Configurations

The experiments are conducted using the benchmark datasets introduced in Section 4.1, i.e. Eurosdr-
Ikonos, Eurosdr-Aerial and isprs-Vaihingen. These datasets are particularly useful to evaluate the
fusion concept as they are designed to evaluate different road detection approaches. In each case,
the relatively small test scenes restrict the road detection problem to specific road types and context
areas, which makes it easier to analyse the particular strengths of the verification modules under
different circumstances.

The reference datasets from the benchmark tests alone are not useful as an input for a verification
approach. Therefore, database errors are artificially generated by rotating the reference datasets
by 180 degrees and adding these roads to the database. Consequently, the input data contain the
same number of correct and incorrect road hypotheses, and thus allow observing the capability of
detecting database errors in accordance with the experiments described in [Gerke & Heipke, 2008;
Poulain et al., 2010].

The system configurations for the three different datasets have already been given in Table 4.1.
The training data for the three datasets are depicted in Figure 4.4. The upper picture in Figure
4.4 shows the selected training samples for the Eurosdr-Ikonos dataset, which only requires road
regions (Xroads) because the verification modules that require other datasets are disabled (cf. Table
4.1). The training data are selected from an area next to Eurosdr-Ikonos1-sub1. This is possible
because the input images of the Eurosdr-Ikonos dataset are much larger than the three sub-images
used in the benchmark test. For the Eurosdr-Aerial dataset, the training samples have to be defined
inside one of the three scenes because no additional images of this set are available, which is shown
in the centre of Figure 4.4. The training data required for the pan-line detection module and the
colour classification module consist of image regions for each class (Xroads, Xbuildings, Xgrassland). As
for the Eurosdr-Aerial dataset and for the isprs-Vaihingen dataset independent training data are
not available either, and thus they are defined inside the test scene, which is shown in the lower part
of Figure 4.4.

All training datasets are chosen from geographically restricted areas in order to simulate a realistic
situation where a human operator is not able to invest much time to always select representative
training data. For the scenes Eurosdr-Aerial1 and isprs-Vaihingen, parts of the benchmark data
overlap with training data, which might corrupt the evaluation. In order to keep the results from
the proposed approach comparable to those analysed in the benchmark test, this problem is simply
ignored here. The effect of ignoring the overlap in the evaluation results is small as will be shown
at the end of this section.

Evaluation strategy

The main idea is to apply each verification module as an individual verification algorithm. Con-
sequently, the results achieved by the verification modules can be compared to each other, which
provides hints about the impact of the single road models on the combined solutions. Further-
more, these results can be compared with the results achieved in the benchmark test and the results
achieved with the overall approach including all enabled verification modules. The latter allow
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EuroSDR-Ikonos

EuroSDR-Aerial

ISPRS-Vaihingen

road reference datasets 

Ikonos1-sub1

EuroSDR-Aerial 1

Figure 4.4.: Training datasets for the benchmark datasets.
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conclusions about the performance of the fusion framework developed in this thesis.
In accordance with [Mayer et al., 2006], the verification results, provided by the individual modules

and the combined solution are analysed on the basis of a confusion matrix:

automatic approach

correct incorrect,unknown, invalid
re
fe
re
nc
e

correct true positives (TP ) false negatives (FN)

incorrect false positives (FP ) true negatives (TN)

Table 4.4.: Confusion matrix for the benchmark test.

Based on the confusion matrix (cf. Table 4.4) the evaluation parameters completeness and cor-
rectness are defined as follows:

completeness =
TP

TP + FN
(4.6)

correctness =
TP

TP + FP
(4.7)

While Table 4.5 provides a general definition for TP , FN, FP and TN, differences between road
detection and road verification approaches have to be taken into account because the evaluation
of the road detection approaches is required to define a positional tolerance for the centre axis.
This leads to slightly different definitions that are detailed in Table 4.5: The left column shows the
original definitions used in [Mayer et al., 2006], while the right column shows definitions used for
the road verification problem.

Mayer et al. [2006] consider both datasets, the reference and the detected roads, by their cen-
trelines, and thus refer their definitions to the road length (cf. Table 4.5). Usually, the proposed
approach would indicate an evaluation based on object counts similar to the evaluation presented
in Section 4.2.1 because a human operator usually works at object level, e.g. motivated in [Beyen
et al., 2008]. In order to make the results in [Mayer et al., 2006] comparable with the verification
results, the length of the road hypotheses is considered for the evaluation in this section.
For both problems (detection and verification), the resulting completeness (cf. Equation 4.6) can be
interpreted as a measure for how good a road model is capable of explaining the roads of the reference
dataset. Therefore, the completeness will be used as the basis for comparing the verification modules
with each other but also for a comparison with the results achieved by road detection approaches
that participated the benchmark test [Mayer et al., 2006].

In contrast, the correctness (cf. Equation 4.7) does not allow a comparison with the road detection
approaches because the possibilities to produce false positives (FP) are different for both problems.
A verification module might only produce false positives for road hypotheses that are part of the
rotated reference dataset, whereas a road detection approach might produce false positives (FP) in
the entire image except for the buffered reference dataset. As the rotated reference dataset is usually
far smaller than the image, the correctness is expected to be much larger for the verification modules
than for the road detection approaches. Thus, the correctness will only be used as a basis for the
comparison of the different verification modules and the combined solution, but not for a comparison
with the road detection approaches that participated at the benchmark test [Mayer et al., 2006].
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road detection road verification
[Mayer et al., 2006]

true positives (TP) length of the reference dataset that lies within a

buffer around the detected roads (the buffer

width corresponds to the road width plus the

spatial tolerance)

accumulated length of all road hypotheses

corresponding to the reference dataset that are

assigned to the state correct

false negatives (FN ) length of the reference dataset that does not lie

within a buffer around the detected roads

accumulated length of all road hypotheses

corresponding to the reference dataset that are

assigned to the states incorrect , unknown or

invalid

false positives (FP) length of the detected roads that does not lie

within a buffer around the reference dataset

accumulated length of all non-road hypotheses

(corresponding to the rotated reference dataset)

that are assigned to the state correct

true negatives (TN ) - accumulated length of all non-road hypotheses

that are assigned to the states incorrect ,

unknown or invalid

Table 4.5.: Definitions of the evaluation criteria for road detection and road verification approaches.

In a semi-automatic scenario, road verification approaches naturally prioritise a large correctness
over a large completeness because any false positives corresponds to database errors that remain
undetected, whereas false negatives just represent correct hypotheses that have to be manually
investigated without necessity. In this regard, Gerke & Heipke [2008] and Poulain et al. [2010]
presented experiments with rotated reference datasets which they called sensitivity analysis, for
which Gerke & Heipke [2008] achieved a correctness of 1.0 and Poulain et al. [2010] a correctness
of about 0.91. In contrast, road detection approaches without a concrete practical application as a
background, e.g. those described in [Mayer et al., 2006], consider completeness and correctness with
the same priority and hence, try to keep them in balance. In this thesis, the main objective is to
achieve results with a correctness larger than 0.91, whereas the second objective is to achieve results
with a large completeness, e.g. in the same order of magnitude as the best results of the benchmark
test [Mayer et al., 2006].

Results

Tables 4.6–4.8 show the results of the verification modules in decreasing order with respect to their
completeness, followed by the combined solution and the best result of the Eurosdr benchmark test.3

The column rk denotes the rank with respect to the completeness. The signed values in brackets
denote the exclusive contributions of the modules for the combined solution, i.e. the difference for
the completeness of combined solutions achieved with and without the respective module.

Figures 4.5–4.30 show the results achieved by the most successful approach of the benchmark
test, the results achieved by the combined solution, and the results achieved by the 2–4 most useful
verification modules. In all Figures 4.5–4.30, the true positives (TP) are marked in green, which
means that the green colour indicates situations where the underlying road model is capable of
explaining a road in the image. In contrast, the false negatives (FN ) marked in red emphasize
situations where the respective road model is not capable of explaining an existing road. The false

3At the time of writing (November 2013), road detection results for the isprs benchmark test are not yet available.
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rk module completeness correctness

Eurosdr-Ikonos1-sub1

1 acupuncture method 0.57 [+0.29] 0.998

2 pan-line detection 0.38 [+0.10] 0.995

3 ssh method 0.14 [+0.01] 1.000

4 ndvi-line detection 0.13 [+0.01] 0.995

5 parallel edge detection 0.07 [+0.02] 1.000

6 adjacency analysis 0.02 [+0.01] 0.841

combined solution 0.79 0.995

benchmark [Beumier & Lacroix, 2006] 0.48 0.69

Eurosdr-Ikonos3-sub1

1 ssh method 0.70 [+0.13] 1.000

2 pan-line detection 0.65 [+0.06] 1.000

3 acupuncture method 0.25 [+0.14] 1.000

4 ndvi-line detection 0.09 [+0.00] 1.000

5 parallel edge detection 0.00 [+0.00] n/d

5 adjacency analysis 0.00 [+0.00] n/d

combined solution 1.00 1.000

benchmark [Bacher & Mayer, 2005] 0.81 0.87

Eurosdr-Ikonos3-sub2

1 ssh method 0.70 [+0.25] 1.000

2 pan-line detection 0.65 [+0.13] 1.000

3 ndvi-line detection 0.45 [+0.00] 1.000

4 acupuncture method 0.09 [+0.03] 1.000

5 parallel edge detection 0.00 [+0.00] n/d

5 adjacency analysis 0.00 [+0.00] n/d

combined solution 0.95 1.000

benchmark, Hedmann and Hinz 0.86 0.89

Table 4.6.: Results, Eurosdr-Ikonos dataset.
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positives (FP), denoting the critical errors for a verification approach, are marked in blue, whereas
the rotated reference is depicted by shaded thin grey lines.

The style of the tables and figures presented in this section is in close accordance with [Mayer
et al., 2006]. In the following the results for the individual scenes will be discussed separately.

EuroSDR-Ikonos1-sub1: This is the most challenging scene of the benchmark test. The acupuncture
method, which was originally developed for an urban context and imagery with 1 m gsd, performs
best. In particular, it performs better by ∆ = 0.57 − 0.48 = 0.09 than the benchmark approach
[Beumier & Lacroix, 2006]. The benchmark approach basically relies on a line detector that is
applied to the green colour band; the detected line primitives are filtered with respect to criteria
such as minimum length, maximum curvature and maximum ndvi. Concerning the completeness,
the benchmark approach slightly outperforms the second-best module, the pan-line detection module
(∆ = 0.48−0.38 = 0.10). A reason for this result can be seen by comparing both results (cf. Figures
4.5 and 4.8); the advantage of the benchmark approach is mainly related to several short roads in
the settlement area. Indeed, some of these roads have also been detected by the pan-line detection
module but for these line primitives the second critical assumption of the line models: Only roads
correspond to the Steger line model (cf. Section 3.3.2) is violated with large probability. For that
reason, the respective road hypotheses were assigned to the state unknown and do not appear as
true positives (TP). All other modules achieve comparably low values for the completeness, which
corresponds to the results for the most approaches computed in the benchmark test [Mayer et al.,
2006].

The combined solution mainly benefits from the fusion of the results from the acupuncture module
and the pan-line detection module, and consequently outperforms the benchmark approach by ∆ =

0.79 − 0.48 = 0.31 in the completeness. In Figures 4.7–4.9, it can be seen that the acupuncture
method is most successful in the urban part of the scene, whereas the pan-line detection module is
most successful in the rural part. Four other modules achieve completeness values < 0.15, however,
they still provide considerable contributions to the combined solution.

The advantage of the proposed approach over the benchmark approach is mainly related to the
acupuncture method, which does not have a correspondence in the benchmark test (it was published
by Youn et al. [2008] two years after the test results had been published). It can be further stated
that even those modules that produce results with low completeness still provide results with high
correctness, which is interpreted as a success of the proposed concept of model-uncertainty.

In conclusion, the proposed approach provides very good results when considering the problems
of other approaches with that scene. In fact, 79% of the roads in the scene can be explained by
the combined model. However, this result also shows the limitations: The combined model is still
far away from explaining the entire scene. The missing 21% of the roads are mostly narrow roads
(< 4 m road width), either characterized by extremely low contrast (left picture in Figure 4.10) or
by changing context conditions such that none of the enabled modules alone succeed (right picture
in Figure 4.10).
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Figure 4.5.: Eurosdr-Ikonos1-sub1, [Beumier & Lacroix, 2006] (TP green, FN red, FP blue). The
picture, originating from the benchmark test was adapted for a better visualization.

Figure 4.6.: Eurosdr-Ikonos1-sub1, combined solution (TP green, FN red, FP blue).
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Figure 4.7.: Eurosdr-Ikonos1-sub1, acupuncture method (TP green, FN red, FP blue).

Figure 4.8.: Eurosdr-Ikonos1-sub1, pan-line detection (TP green, FN red, FP blue).
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Figure 4.9.: Subsets of Eurosdr-Ikonos1-sub1 showing the transition area between settlement and
open landscape (TP green, FN red) Left: Acupuncture method. Right: Pan-line detec-
tion.

Figure 4.10.: Subsets of Eurosdr-Ikonos1-sub1 showing situations where all enabled modules fail
(TP green, FN dotted red). Left: Low contrast. Right: Changing context conditions.
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EuroSDR-Ikonos3-sub1&2: The results for both image subsets turn out to be rather similar (cf.
Figures 4.11–4.14). The ssh method achieves the best result with a completeness of 0.70, followed by
the pan-line detection module with a completeness of 0.65 and the ndvi-line detection module with
completeness of 0.09 and 0.45 for the two scenes. The acupuncture method achieves a completeness
of 0.09 and of 0.25, respectively, and thus provides only solutions for the small settlements. The best
benchmark results achieve a completeness values of 0.81 and of 0.86, respectively, which is better
than any of the verification modules alone.

Both benchmark approaches, i.e. [Bacher & Mayer, 2005] for Eurosdr-Ikonos3-sub1 and Hedmann
and Hinz 4 for Eurosdr-Ikonos3-sub2, basically apply the line-based approach described in [Wiede-
mann & Ebner, 2000]. The considerable differences are due to the definition of the input data.
Whereas Wiedemann & Ebner [2000] restrict their approach to panchromatic images, both exten-
sions use the available colour bands (rgb,ir) to extract line primitives. Bacher & Mayer [2005]
artificially generate a fifth input image on the basis of fuzzy colour classification applied to the
original colour bands and Hedmann and Hinz define the ndvi image as an additional input. The
authors of the benchmark conclude that line-based models are most capable to deal with these kinds
of scenes, which basically corresponds to the observations made for the verification modules. Mayer
et al. [2006] further conclude that the different colour representations, i.e. colour bands, ndvi and
colour classification image provide complementary information, and hence make those approaches
more useful than others. This observation is not confirmed by the evaluation of the verification mod-
ules. For instance, the ndvi-line detection module did not explain any additional road hypotheses
compared to the pan-line detection module. Instead, it turned out that the ssh module, which does
not use colour information, can deal better with heterogeneous context areas than the line-based
verification modules (cf. right part of Eurosdr-Ikonos3-sub2).

While the benchmark approaches achieved better results than the individual verification modules,
the combined solution outperforms them by achieving larger completeness, for EuroSDR-Ikonos3-
sub1 by ∆ = 1.0 − 0.81 = 0.19 and for EuroSDR-Ikonos3-sub2 by ∆ = 0.95 − 0.86 = 0.09. The
improvement is mainly related to the acupuncture method, which provides results for the small set-
tlements that were most challenging for the other approaches. Finally, using the combined solution,
the best results of the whole test were achieved for these two scenes (Eurosdr-Ikonos3-sub1&2),
which also corresponds to the observation of Mayer et al. [2006], who say that six of the tested road
detection approaches achieved a completeness values of approximately 0.8. Finally, the achieved
results indicate that the proposed models sufficiently explain the road network in these scenes.

4The benchmark approach for Eurosdr-Ikonos3-sub2 was developed by Karin Hedmann and Stefan Hinz from the
Institute for Photogrammetry and Cartography, Technische Universität München, Germany. The approach is
detailed in [Mayer et al., 2006] on the basis of a questionnaire. Later publications by Karin Hedmann concentrate
on road detection in sar images, e.g. [Hedman, 2010].
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Figure 4.11.: Eurosdr-Ikonos3-sub1 (TP green, FN red, FP blue). Left: The benchmark [Bacher &
Mayer, 2005]. Right: The combined solution.

Figure 4.12.: Eurosdr-Ikonos3-sub1 (TP green, FN red, FP blue). Left: ssh method. Right:
Acupuncture method.
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Figure 4.13.: Eurosdr-Ikonos3-sub2 (TP green, FN red, FP blue). Left: The benchmark Hedmann
and Hinz. Right: The combined solution.

Figure 4.14.: Eurosdr-Ikonos3-sub2 (TP green, FN red, FP blue). Left: ssh method. Right: Pan-line
detection.
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rk module completeness correctness

Eurosdr-Aerial1

1 pan-line detection 0.39 [0.14] 0.995

2 colour classification 0.29 [0.08] 1.000 [+0.018]

3 ssh method 0.25 [0.05] 0.983

4 acupuncture method 0.22 [0.06] 0.970

5 parallel edge detection 0.21 [0.03] 1.000

6 adjacency analysis 0.03 [0.02] 1.000

combined solution 0.81 0.987

benchmark [Zhang & Couloigner, 2006] 0.51 0.49

Eurosdr-Aerial2

1 pan-line detection 0.77 [0.37] 1.000

2 parallel edge detection 0.29 [0.01] 1.000

3 colour classification 0.20 [0.02] 1.000 [+0.002]

4 ssh method 0.14 [0.00] 1.000

5 acupuncture method 0.03 [0.01] 0.982

6 adjacency analysis 0.00 [0.00] 1.000

combined solution 0.85 0.999

benchmark, Gerke and Heipke 0.65 0.82

Eurosdr-Aerial3

1 pan-line detection 0.79 [0.30] 1.000

2 parallel edge detection 0.41 [0.04] 0.998

3 ssh method 0.23 [0.01] 1.000

4 colour classification 0.04 [0.00] 1.000 [+0.002]

5 acupuncture method 0.03 [0.01] 0.969

6 adjacency analysis 0.01 [0.01] 1.000

combined solution 0.96 0.999

benchmark, Gerke and Heipke 0.72 0.77

Table 4.7.: Results, Eurosdr-Aerial dataset.
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EuroSDR-Aerial1: This scene shows different context regions such as sub-urban, rural and forest
areas and different types of roads such as major roads, minor roads and paths. Due to the vary-
ing appearance of roads, each module is able to solve parts of the scene (cf. Figures 4.16–4.20).
Consequently, no module achieves a good result on its own (cf. Figure 4.16). This conclusion
is in accordance with the Eurosdr test, where the benchmark approach published in [Zhang &
Couloigner, 2006] also considers different road properties (cf. Figure 4.15). In particular colour,
texture and shape properties are considered by different classification steps that are arranged in
a sequential fusion concept (cf. Section 1.3.2). For the proposed approach, these properties are
represented by the colour classification module and the ssh method. The larger completeness value
of the combined solution compared to the benchmark (∆ = 0.81 − 0.51 = 0.30) can be interpreted
as a success of integrating more road properties.

A difference to the results for Ikonos scenes is that the acupuncture method is not able to explain
the settlements entirely because shadow effects affect its performance in many situations (cf. Figure
4.21).

Another considerable effect is the increase in correctness by 0.018 due to the colour classification
module (cf. Table 4.7).5 As the colour classification module frequently classified road hypotheses
related to the rotated reference as background, those hypotheses are identified as incorrect.

Despite the fact that the combined solution outperforms the benchmark approach, the scene
Eurosdr-Aerial1 also reveals the limitations of the proposed approach that is only able to explain
81% of the road network. It turns out that mainly one road model is missing, namely a road model
that explains roads in the shadow that additionally show no colour-contrast to their surroundings
(cf. Figure 4.21).

5In Table 4.7 the number in brackets behind correctness values shows the difference for correctness of the combined
solution with and without the respective verification module.
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Figure 4.15.: Eurosdr-Aerial1, [Zhang & Couloigner, 2006] (TP green, FN red, FP blue).

Figure 4.16.: Eurosdr-Aerial1, combined solution (TP in green, FN in red, FP in blue).
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Figure 4.17.: Eurosdr-Aerial1, pan-line detection (TP green, FN red, FP blue).

Figure 4.18.: Eurosdr-Aerial1, colour classification (TP green, FN red, FP blue).
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Figure 4.19.: Eurosdr-Aerial1, ssh method (TP green, FN red, FP blue).

Figure 4.20.: Eurosdr-Aerial1, acupuncture method (TP green, FN red, FP blue).
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Figure 4.21.: Subsets of Eurosdr-Aerial1 (TP green, FN red, FP blue). Left: Acupuncture module.
Right: Colour classification.

EuroSDR-Aerial2&3: Both scenes, depicted in Figures 4.22–4.29, mainly show rural areas, where
the roads have good contrast to the background. Due to these conditions, the modules pan-line
detection and parallel edge detection perform best, which corresponds to the conclusions given by
Mayer et al. [2006] for the benchmark test, where the approach of Gerke and Heipke6 performed best.
Their approach combines exactly these road models, i.e. the line-based approach from [Wiedemann
& Ebner, 2000] with the approach from [Baumgartner et al., 1999]. In particular, the line-based
approaches are most effective for thin roads in grassland or crop land areas, whereas the parallel-
edge-based approaches are most effective for the wider roads.

Except for the areas, where small forests occlude parts of the road network, the combined solu-
tion turns out to be nearly perfect. This also shows that the proposed approach deals well with
simple situations, which is worth noting because in the Eurosdr benchmark test, the more complex
approaches, i.e. those that consider many different road properties, did not work that well in the
simpler scenes.

In conclusion, if one blanks out the forests, the introduced road models are mainly capable of
explaining the scenes Eurosdr-Aerial 2&3. Only a few roads in the settlements, where shadows
appear on the road surfaces and the contrast to the surroundings is low, could not be explained with
the introduced models.

6The benchmark approach for Eurosdr-Aerial2&3 was developed by Markus Gerke and Christian Heipke, Institute
for Photogrammetry and GeoInformation, Leibniz University, Hannover, Germany. The approach is detailed in
[Mayer et al., 2006] on the basis of a questionnaire table. The approach is closely related but not identical to the
work presented in [Gerke, 2006; Gerke & Heipke, 2008].
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Figure 4.22.: Eurosdr-Aerial2, Gerke and Heipke (TP green, FN red, FP blue).

Figure 4.23.: Eurosdr-Aerial2, combined solution (TP green, FN red, FP blue).
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Figure 4.24.: Eurosdr-Aerial2, pan-line detection (TP green, FN red, FP blue).

Figure 4.25.: Eurosdr-Aerial2, parallel edge detection (TP green, FN red, FP blue).
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Figure 4.26.: Eurosdr-Aerial3, Gerke and Heipke (TP green, FN red, FP blue).

Figure 4.27.: Eurosdr-Aerial3, combined solution (TP green, FN red, FP blue).
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Figure 4.28.: Eurosdr-Aerial3, pan-line detection (TP green, FN red, FP blue).

Figure 4.29.: Eurosdr-Aerial3, parallel edge detection (TP green, FN red, FP blue).
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rk module completeness correctness

1 acupuncture method 0.76 [+0.14] 0.995

2 ndsm-line detection 0.48 [+0.06] 0.977

3 ssh method 0.36 [+0.02] 0.982

4 colour classification 0.35 [+0.02] 0.961

5 parallel edge detection 0.30 [+0.01] 1.000

6 adjacency analysis 0.01 [+0.01] 1.000

7 ndvi-line detection 0.00 [+0.00] n/d

7 pan-line detection 0.00 [+0.00] n/d

7 grassland detection 0.00 [+0.00] n/d [+0.002]

7 building detection 0.00 [+0.00] n/d [+0.024]

combined solution 0.98 0.998

Table 4.8.: Results, isprs-Vaihingen.

ISPRS-Vaihingen: The isprs-Vaihingen dataset is the only benchmark dataset that allows all mod-
ules to be enabled. The best modules in this scene are the acupuncture method with a completeness
of 0.76 and the ndsm-line detection module with a completeness of 0.48. Both modules were par-
ticularly developed to deal with urban areas. The acupuncture method performs slightly better for
wider roads, whereas the ndsm-line detection method performs better for narrow roads (cf. Figure
4.30). The other modules still provide some valuable information so that the combined solution
turns out to be nearly perfect with a completeness of 0.98. The building detection module and the
grassland detection module identify most road hypotheses from the rotated reference as incorrect
because nearly all of those hypotheses intersect buildings or grassland areas. Hence, by integrating
these two modules the correctness of the combined solution increases by 0.026 from 0.972 to 0.998

(cf. Table 4.8 ), whereas their contribution with respect to the completeness is zero by design (cf.
Section 3.3.6). The evaluation of the isprs-Vaihingen dataset shows very promising results, espe-
cially as this scene is quite challenging due to shadow effects and changing colour properties of the
background.

Discussion

The experiments presented in this section have shown that the most verification modules are capable
of explaining at least some parts of the road network. It turned out that the observations concerning
these dependencies correspond mainly to those made by Mayer et al. [2006]. Exceptions to this rule
are the acupuncture method and the ssh method, which did not exist when the Eurosdr test was
carried out. In particular, exactly these two modules considerably outperform the best methods
of the benchmark in some scenes. Further significant improvements were achieved by the fusion,
i.e. by the combined solution, which always outperformed the best methods of the benchmark test.
These improvements were larger for scenes with heterogeneous properties, e.g. those that show more
than one type of context areas. For four of the seven scenes a completeness of at least 0.95 could
be achieved. For the other three scenes a completeness of at least 0.79 were achieved, which is still
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Figure 4.30.: isprs-Vaihingen (TP green, FN red, FP blue). Left: Combined solution. Right:
Acupuncture method.

Figure 4.31.: isprs-Vaihingen (TP green, FN red, FP blue). Left: ndsm-line detection. Right: ssh
method.
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relatively good when considering the results described in [Mayer et al., 2006], but which also leaves
room for further improvement. The second objective, a constantly high correctness of at least 0.987

was also achieved for the combined solutions. It turned out that the correctness of the combined
solution was mostly larger than the lowest correctness for the single solutions. This means that false
positives originating from single modules were frequently compensated by other modules.

combined solution completeness correctness

Eurosdr-Aerial1

complete (cf. Table 4.7) 0.8069 0.9869

without training data 0.8068 0.9883

isprs-Vaihingen

complete (cf. Table 4.8) 0.9821 0.9976

without training data 0.9804 0.9972

Table 4.9.: Results of the combined solution with all test data (complete) and without the test data
that overlap with the training data.

So far, not all verification modules were proven to be important for the combined solutions. In
particular, it turned out that the ndvi-line detection and the parallel edge detection did not provide
much complementary information compared to the pan-line detection. In contrast, the acupuncture
method and the pan-line detection are most important, which can be seen by the relevantly large
values in the brackets in Tables 4.7–4.8.

In two scenes (Eurosdr-Aerial1 and isprs-Vaihingen), the training data partially overlap the test
data. Table 4.9 shows the results of the combined solution with and without the overlapping test
data. As can be seen, their influence on the results is rather small (below 0, 003 in all cases).
Due to the design of the benchmark datasets, they may not be optimal for evaluating the ability of
the proposed approach to detect realistic database errors. Furthermore, the benefit of considering
the states unknown and invalid have not been demonstrated so far. Both aspects will be particularly
tackled in the next section.

4.2.3. The overall approach in a cartographic context

The final set of experiments investigates the practical impact of the proposed approach, i.e. the
human efforts potentially saved during road database verification when using the automatic compo-
nent, as well as the road database quality before and after the automated verification approach has
been applied.

Configurations and evaluation strategy

In order to check the practical impact of the proposed approach, experiments are carried out with
the three cartographic datasets mgcp-Algiers, gsi-Uraga, ngi-Zeebrugge described in Section 4.1.
Table 4.1 shows the parametrisation with respect to the three datasets. The required training data
will be shown below together with the results.

The reference road databases that were discussed in Section 4.1 can be directly compared to the
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verification outputs of the proposed approach, which leads to the confusion matrix shown in Table
4.10. The rows denote the reference, according to which a road hypothesis can be either correct
or incorrect. The columns denote the automatically assigned state of the road hypothesis correct,
incorrect, unknown and invalid. Here, the analysis refers to the number of road hypotheses and not
to the accumulated length of the roads as in the previous section.

proposed approach

correct unknown invalid incorrect

re
fe
re
nc
e

correct CC CU CV CI

incorrect IC IU IV II

Table 4.10.: Confusion matrix for the cartographic datasets.

The evaluation parameters classification correctness and classification completeness are defined on
the basis of the confusion matrix (cf. Table 4.10):

classification completeness =
CC + II + CI + IC

CC + CU + CV + CI + IC + IU + IV + II
(4.8)

classification correctness =
CC + II

CC + II + IC + CI
(4.9)

The classification completeness (cf. Equation 4.8) indicates the proportion of road hypotheses that
are assigned to the states correct or incorrect. The classification correctness (cf. Equation 4.9)
indicates the proportion of correct assignments. Both parameters have an optimum at 100% but
only the classification correctness is required to come close to this optimum to make the semi-
automatic approach practically relevant.

Furthermore, according to the reference dataset the classification correctness is considered under
two conditions: First, only correct road hypotheses are considered and secondly, only incorrect road
hypotheses are considered:

classification completeness(correct roads) =
CC

CC + CU + CV + CI
(4.10)

classification completeness(incorrect roads) =
II

IC + IU + IV + II
(4.11)

Subsequently, the two parameters (cf. Equations 4.10 and 4.11)7 will be used to show the relative
importance of the verification modules for the combined solution in a similar way as in Section 4.2.2.

Another question to be answered is how good the results of the semi-automatic approach are, i.e.
how good they are after a human operator has corrected the database according to the output of
the automatic component. Two interactive settings are subsequently analysed and compared. The
first setting (cf. Table 4.11) represents a conservative setting where a human operator checks every
unconfirmed road hypothesis, i.e. each road hypothesis that is not explicitly assigned to the state
correct. The second setting (cf. Table 4.12) represents a low-effort setting where a human operator
only checks the indicated errors, i.e. only road hypotheses that are explicitly assigned to the state
incorrect.

7Note that Equations 4.10 and 4.11 can also be interpreted as conditional probabilities
P (approach says correct|reference says correct) and P (approach says incorrect|reference says incorrect).
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proposed approach

correct unknown, invalid, incorrect

re
fe
re
nc
e

correct true positives (TP obj) false negatives (FNobj)

incorrect false positives (FP obj) true negatives (TNobj)

Table 4.11.: Conservative setting.

proposed approach

correct, unknown, invalid incorrect

re
fe
re
nc
e

correct true positives (TP obj) false negatives (FNobj)

incorrect false positives (FP obj) true negatives (TNobj)

Table 4.12.: Low-effort setting.

In the following, it is assumed that a human operator does not commit any errors, meaning: Any
erroneous road hypothesis that is forwarded to the human operator is counted as a corrected database
error. It is further assumed that the human operator only concentrates on the indicated road
hypotheses and not on adjacent road hypotheses or something else. The four matrix elements
TPobj, FNobj, FPobj, TNobj introduced in Tables 4.11 and 4.12 have a similar meaning as the evaluation
parameters TP , FN, FP , TN introduced in Table 4.5, except for the fact that they refer to numbers
of road hypotheses and not to the lengths of the roads. In order to discuss the practical relevance
of the proposed approach, the following evaluation parameters are defined on the basis of the four
matrix elements:

prior db quality =
TPobj + FNobj

TPobj + FNobj + FPobj + TNobj
(4.12)

posterior db quality =
TPobj + FNobj + TNobj

TPobj + FNobj + FPobj + TNobj
(4.13)

corrected db errors =
TNobj

FNobj + TNobj
(4.14)

automation =
TPobj + FPobj

TPobj + FNobj + FPobj + TNobj
(4.15)

The prior db quality (cf. Equation 4.12) indicates the relative amount of correct road hypotheses
before the semi-automatic verification takes place, whereas the posterior db quality (cf. Equation
4.13) indicates the relative amount of correct hypotheses after semi-automatic verification has been
carried out. Corrected db errors (cf. Equation 4.14) indicates the relative amount of incorrect road
hypotheses seen by the human operator, and automation (cf. Equation 4.15) indicates the relative
amount of road hypotheses that can be ignored by a human operator during the verification.

An optimal result is characterized by a posterior db quality of 100%, by an automation of
100% minus the prior db quality and by 100% corrected db errors (if the prior db quality is smaller
than 100%).
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Results

MGCP-Algiers: The left side in Figure 4.32 shows the rgb input image, which is superimposed by
the database errors (red) from the manual reference dataset. The training data (blue lines) consist
of road segments selected at the centre of the scene that overlap with 35 road hypotheses of the
mgcp-Algiers dataset. Training samples for the buildings and grassland are not required as the
respective modules are disabled (cf. Table 4.1). At the right hand side of Figure 4.32, the output
of the proposed approach is visualised in a traffic light system, which means that road hypotheses
assigned to the state correct are marked in green, road hypotheses assigned to the states unknown
or invalid are marked in yellow and road hypotheses assigned to the state incorrect are shown in
red. It turned out that throughout the scene most of the hypotheses were assigned to the state
correct, while a far smaller part is assigned to the state unknown or invalid and only one single road
hypothesis is assigned to the state incorrect. This single road hypothesis was misclassified by the
ndvi-line detection module. The characteristics of such misclassifications will be analysed in detail
after the results for the three cartographic datasets have been presented.

Figure 4.33 shows a subset of Figure 4.32 where most of the correct roads appearing in a challenging
urban area are assigned to the state correct. Figure 4.34 shows another subset indicating typical
database errors that appear in this scene. It becomes clear why the database errors could not be
detected by the proposed approach; the database errors do not correspond to errors concerning
orientation, shape or parallel shifts that potentially can be explained by the enabled modules (pan-
line detection, ndvi-line detection, acupuncture method, ssh method). A detection of these errors
would require the other (disabled) modules, e.g. grassland detection and colour classification module
for which the input data of the mgcp-Algiers dataset were insufficient.

Table 4.13 shows the quality of the results for the 2,254 road hypotheses of the mgcp-Algiers
dataset, excluding the 35 road hypotheses that overlap with the training data. The numbers in
brackets show the proportions of the road hypotheses and the accumulated road lengths corre-
sponding to the road hypotheses, respectively. In Table 4.13, the upper confusion matrix shows the
evaluation for the automatic component. It can be seen that except for one, all class assignments
are actually correct (classification correctness ≈ 100%), which supports the observations for the
benchmark datasets where the correctness was generally large (> 98%). However, with 69% the
classification completeness is relatively small compared to the results for the benchmark datasets.
This can be explained by the specific properties of the mgcp-Algiers dataset: The dirt roads (cf.
Section 4.1) mostly have weak contrast to the surrounding crop fields and bush land. Hence, most
of the verification modules do not perform well with these types of roads. Table 4.13 also shows
that the 33 incorrect road hypotheses are all assigned to the state unknown, which means that none
of the database errors is explicitly detected by the automatic component alone.

The two subsequent confusion matrices in Table 4.13 show the evaluation of the results achieved by
the semi-automatic approach. Most notably, in the conservative setting 100% of the database errors
are corrected because the human operator investigates all road hypotheses automatically assigned
to the state unknown. This also means that 31% of the road hypotheses have to be manually
investigated, which leads to the automation ratio of only 69%. The low-effort setting achieves an
automation ratio of nearly 100% but does not lead to any database enhancement. This fact seems
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I

II

I

II

Figure 4.32.: mgcp-Algiers dataset. Left: Database errors indicated by the reference (red) and
training data (cyan). Right: The verification results (correct in green, unknown and
invalid in yellow, incorrect in red with white circle). Box I is detailed in Figure 4.33.
Box II is detailed in Figure 4.34.

Figure 4.33.: Subsets of mgcp-Algiers showing a typical verification result in an urban area. Left:
Input image. Right: Result of the proposed approach.
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Figure 4.34.: Subsets of mgcp-Algiers showing some database entries (red arrows) that do not have
a correspondence in the image. Left: Input image. Right: Verification result.

re
fe
re
nc
e

proposed approach

automatic component: correct unknown invalid incorrect

correct
1,546 (69%) 674 (30%) 0 1 (0.04%) classification completeness ≈ 69%

[449 km] [275 km] [0 km] [0.068 km] classification correctness ≈ 100%

incorrect
0 33 (1.5%) 0 0

[0 km] [13 km] [0 km] [0 km]

conservative setting: correct unknown, invalid, incorrect

correct
1,546 (69%) 675 (30%) prior db quality ≈ 98.5%

[449 km] [275 km] posterior db quality = 100%

incorrect
0 33 (1.4%) automation ≈ 69%

[0 km] [13 km] corrected db errors = 100%

low-effort setting: correct, unknown, invalid incorrect

correct
2,220 (98.5%) 1 (0.04%) prior db quality ≈ 98.5%

[734 km] [0.068 km] posterior db quality ≈ 98.5%

incorrect
33 (1.4%) 0 automation ≈ 100%

[13 km] [0 km] corrected db errors = 0%

Table 4.13.: mgcp-Algiers dataset, confusion matrices and evaluation parameters.
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classification completeness (correct roads)

Figure 4.35.: mgcp-Algiers, success of the individual verification modules.
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to be odd, but with 98.5% the posterior db quality is relatively large, and therefore might already
be sufficient for many cartographic tasks. A general discussion of the two settings will be given at
the end of this section.

The diagram in Figure 4.35 shows the conditional classification correctness (cf. Equations 4.10
and 4.11) for each verification module applied to the mgcp-Algiers dataset in comparison with the
combined solution. It turned out that the pan-line detection, the ssh method and the ndvi-line
detection cover the largest proportions of the correct road hypotheses. In particular, the ssh method
turned out to be quite successful with the dirt roads that have weak contrast to their surroundings.
In correspondence with the observations made in Section 4.2.2, the acupuncture method is successful
in urban areas that are however, of minor relevance in the mgcp-Algiers dataset. The parallel edge
detection module is able to explain many of the larger multi lane roads that appear in this dataset.
This road type is hardly explained by any other road model, and thus the parallel edge detection
turned out to be rather relevant for the combined solution.

GSI-Uraga: Figure 4.36 shows the results for the gsi-Uraga dataset. At the left side of Figure 4.36,
the rgb input image is superimposed by the reference database errors in red. It can be seen that the
majority of the database errors is located in the vicinity of the redevelopment zone that stretches
from the north-west to the south-east of the scene. The training data, mainly important for the
colour classification module, are basically the same as those for the experiments described in Section
4.2.1 (cf. Figure 4.2). Only four image regions selected in the north-west of the scene were added to
represent the redevelopment zone as a part of the background class. The right part of Figure 4.36
shows the output of the proposed approach, i.e. hypotheses assigned to the states correct in green,
unknown or invalid in yellow and incorrect in red.

Figure 4.37 shows a subset of Figure 4.36, including a part of the redevelopment zone with the
four additional training regions. Figure 4.38 shows a subset of the centre of the scene, where despite
the considerable shadow effects, most of the correct road hypotheses are successfully assigned to the
state correct.

The confusion matrix in the upper row of Table 4.14 shows the evaluation results for the automatic
component with the gsi-Uraga dataset, excluding the 36 road hypotheses that overlap with the
training data. With 93%, the classification correctness is smaller compared to the results of the
mgcp-Algiers dataset. This is mainly related to a specific problem with the colour classification
module, which misclassified narrow road regions as background due to occlusions by buildings. The
reason for those occlusions is mostly due to an oblique viewing angle from the sensor to these roads,
which will be discussed later. The classification completeness amounts to 75%, and thus is larger
than the results of the mgcp-Algiers dataset but still smaller than those for the benchmark datasets
(cf. Section 4.2.2).

The second matrix in Table 4.14 shows the evaluation for the conservative setting that leads to a
posterior db quality of 97.5% with an automation of 66%. This also means a significant enhancement
of the database quality from 81.7% to 97.5% by correcting 86% of the database errors. The low-effort
setting achieves an automation of 91%, while posterior db quality of 88.1% is much smaller than the
case of the conservative setting. Here, only 35% of the database errors are corrected, which means
an enhancement of the database quality from 81.7% to 88.1%.
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Figure 4.36.: gsi-Uraga. Left: Database errors indicated by the reference (red) and training data
(cyan). Right: The verification results (correct in green, unknown, invalid in yellow,
incorrect in red). Box I is detailed in Figure 4.37. Box II is detailed in Figure 4.38.

Figure 4.37.: Subset of gsi-Uraga showing a redevelopment area under construction. Left: Image
with referenced errors (red) and training samples (cyan). Right: Result of the proposed
approach.
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Figure 4.38.: Subset of gsi-Uraga showing most of the road hypotheses are verified despite significant
shadow effects. Left: Input image. Right: Verification result.
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proposed approach

automatic component: correct unknown invalid incorrect

correct
229 (64%) 54 (15%) 1 (0.3%) 10 (2.8%) classification completeness ≈ 75%

[9 km] [2 km] [0.02 km] [0.3 km] classification correctness ≈ 93%

incorrect
9 (2.5%) 34 (9%) 0 23 (6.4%)

[0.2 km] [0.9 km] [0 km] [0.9 km]

conservative setting: correct unknown, invalid, incorrect

correct
229 (64%) 65 (18%) prior db quality ≈ 81.7%

[9 km] [2.3 km] posterior db quality ≈ 97.5%

incorrect
9 (2.5%) 57 (16%) automation ≈ 66%

[0.2 km] [1.9 km] corrected db errors ≈ 86%

low-effort setting: correct, unknown, invalid incorrect

correct
284 (79%) 10 (2.8%) prior db quality ≈ 81.7%

[11.0 km] [0.3 km] posterior db quality ≈ 88.1%

incorrect
43 (11.9%) 23 (5.8%) automation ≈ 91%

[1.2 km] [0.9 km] corrected db errors ≈ 35%

Table 4.14.: gsi-Uraga, confusion matrices and evaluation parameters.
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Figure 4.39.: gsi-Uraga, success of the individual verification modules.
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The diagram in Figure 4.39 shows the success of the verification modules in the gsi-Uraga scene.
The results are consistent with the evaluation for the benchmark datasets in urban context areas
(cf. Section 4.2.2). The acupuncture method is able to explain approximately 58% of the roads,
which is more than any other verification module. The colour classification module is the only
(enabled) module that is designed to deal with shadow effects on the road surface. Accordingly,
the colour classification module is also quite successful in this scene as it is able to explain 42% of
the roads. The comparably good result of the adjacency analysis is related to the relatively large
parameter Schange. Further, it can be seen that the colour classification method successfully detects
approximately 22% of the database errors in that scene. The acupuncture method and the adjacency
analysis also detect some of the database errors, so that the combined solution achieves a detection
ratio of 35%.

NGI-Zeebrugge: The image at the top of Figure 4.40 shows an rgb8 image superimposed by the
database errors indicated in the reference. Due to the large temporal discrepancy of the road
database and the imagery of 14 years, many database errors related to changes in the road network
can be found. The majority of the database errors appears inside or near the larger settlements.
The training data are derived from the existing reference database in the centre of the scene, which
is detailed in Figure 4.41. The image at the bottom of Figure 4.40 shows the verification results
of the automatic component, which is predominately green (road hypotheses assigned to the state
correct) throughout the scene.

The subsets depicted in Figures 4.42 and 4.43 show typical database errors that occur in the scene.
Thanks to the available infrared band and the ndsm, such database errors are explicitly detected by
the building detection and the grassland detection modules that could not be used for the datasets
mgcp-Algiers and gsi-Uraga.

The confusion matrix at the top of Table 4.15 shows the evaluation results for the automatic
component with the ngi-Zeebrugge dataset, accounting, for the exclusion of the 39 road hypothe-
ses that overlap with the training data. The classification completeness amounts to 82% and the
classification correctness to 96%. One reason for that good result is the high quality of the input
imagery that has relatively small gsd (0.5 m) and contains an infrared band and an ndsm, which
means that all ten verification modules could be enabled (cf. Table 4.1). Only about 3% of the road
hypotheses are misclassified (cf. CI, IC in Table 4.10), which will be discussed later on.

The second matrix in Table 4.15 shows the evaluation for the conservative setting that leads to a
posterior db quality of 99.3% with an automation of 74%. The database quality could be enhanced
from 90.2% to 99.3%, which means that 93% of the database errors could be corrected. The third
matrix in Table 4.15 shows the evaluation for the low-effort setting, which still allows correcting 55%

of the database errors with a degree of automation of 92%. This results in an improvement of the
database quality from 90.2% to 95.5%, which might be adequate for many cartographic tasks.

The diagram in Figure 4.44 shows the success rates of the individual verification modules are more
similar than for the datasets mgcp-Algiers and gsi-Uraga. The main reason for this might be the
heterogeneity of the scene that contains by far the most road hypotheses. The ngi-Zeebrugge dataset

8For a better visualisation, an rgb image mosaic from 2008 was selected instead of the irrg image from 2011 that
was used for the computation (cf. Figure A.11).
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Figure 4.40.: ngi-Zeebrugge. Top: Database errors indicated by the reference in red. Bottom: The
verification results (correct in green, unknown, invalid in yellow, incorrect in red). The
training data (Box I) are detailed in Figure 4.41, while Figure 4.42 (Box II) and Figure
4.43 (Box III) show further interesting subsets in more detail.
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Figure 4.41.: Subsets of ngi-Zeebrugge showing the training dataset (road segments in blue, build-
ings in red, grassland in green).

nDSM infrared RGB 

Figure 4.42.: A subset of ngi-Zeebrugge dataset showing a road hypothesis (red) that is incorrect
because the former road has been relocated by over 8 m from its original position.
At its former location, a centre strip (grassland) has been created. The automatic
component assigns the road hypothesis to the state invalid (yellow), because grassland
module and the ndsm-line detection module provide contradicting information. All
other road hypotheses in the subset are assigned to the state correct (green).

nDSM infrared RGB 

Figure 4.43.: Subsets of ngi-Zeebrugge showing several incorrect road hypotheses because of a re-
cently developed building area that led to a new positioning of the roads.
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proposed approach

automatic component: correct unknown invalid incorrect

correct
4,263 (74%) 782 (13%) 53 (0.9%) 129 (2.2%) classification completeness ≈ 82%

[454 km] [75 km] [7.5 km] [8.8 km] classification correctness ≈ 96%

incorrect
39 (0.7%) 168 (3%) 51 (0.9%) 312 (5.4%)

[2.3 km] [17 km] [8 km] [38 km]

conservative setting: correct unknown, invalid, incorrect

correct
4,263 (74%) 964 (16.6%) prior db quality ≈ 90.2%

[454 km] [9 km] posterior db quality ≈ 99.3%

incorrect
39 (0.7%) 531 (9.2%) automation ≈ 74%

[2.3 km] [63 km] corrected db errors ≈ 93%

low-effort setting: correct, unknown, invalid incorrect

correct
5,098 (88%) 129 (2.2%) prior db quality ≈ 90.2%

[536 km] [8.8 km] posterior db quality ≈ 95.5%

incorrect
258 (4.5%) 312 (5.4%) automation ≈ 92%

[28 km] [38 km] corrected db errors ≈ 55%

Table 4.15.: ngi-Zeebrugge, confusion matrices and evaluation parameters.
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Figure 4.44.: ngi-Zeebrugge, success of the individual verification modules.
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shows different context areas, e.g. the inner city of Zeebrugge with numerous commercial and sub-
urban areas in the surroundings, but also rural areas with smaller and larger villages. Furthermore,
many different road types can be found in the scene, e.g. narrow side roads in sub-urban areas,
main roads with a lot of road markings but also regional and inter-regional roads in the rural areas.
Three interesting aspects can be seen from the diagram in Figure 4.44: First, the importance of the
ndvi-line detection module, which is in contrast to the observations from the benchmark datasets
in Section 4.2.2, and secondly, the relative success of the adjacency analysis module even though
the parameter Schange was set to a relatively small value (Schange = 30 m; cf. Table 4.1), which can
be explained by the large number of short road objects that occur as parts of complex junctions.
Thirdly, the grassland detection module alone is able to explain more than 50% of the database
errors. This is possible because new junctions and extensions of single lane roads to multi-lane
roads are frequently related to the planting of grass in the vicinity of the new roads.

Performance of the automatic component

In this section the results achieved by automatic components will be assessed before the performance
of semi-automatic approaches (conservative and low-effort settings) will be discussed.

Matched pairs: This category encompasses all successful class assignments, i.e. correct road hy-
potheses that are automatically assigned to the state correct and incorrect road hypotheses that are
automatically assigned to the state incorrect. Considering the three test datasets, the proportion of
matched pairs increases with the number of the applied modules. It is 69% for mgcp-Algiers (six
modules), 70% for gsi-Uraga (seven modules) and 79% for ngi-Zeebrugge (ten modules).9 Some
typical examples were already shown in Figures 4.33, 4.37, 4.38, 4.42 and 4.43. All these examples
represent situations that comply with at least one of the introduced models.

Misclassifications: This category encompasses all wrong class assignments. Basically, two types
of misclassifications can be distinguished: First, type-I errors where correct road hypotheses are
assigned to the state incorrect, and secondly, type-II errors where incorrect road hypotheses are
assigned to the state correct. The effect of both types of errors is similar to the conservative and the
low-effort settings, i.e. in both settings, type-I errors decrease the automation (cf. Equation 4.15)
and type-II errors decrease the posterior db quality (cf. Equation 4.13). For this reason Gerke &
Heipke [2008], rated type-II errors to be more critical than type-I errors. However, neither Gerke &
Heipke [2008] nor the approach proposed in this thesis include a specific strategy to minimize type-II
errors in favour of type-I errors. Nevertheless, the errors are not balanced, i.e. it turned out that
more than 75% of the misclassifications correspond to type-I errors and less than 25% to type-II
errors. Both types of errors are related to particular properties of the verification modules that will
be discussed in the following.

Misclassifications – type-I errors: Figure 4.45 shows three examples for the most typical type-I errors
that were observed during the experiments. Figure 4.45a shows a situation where the acupuncture
method detects a parallel shift, because the main road, affected by a traffic jam, matches perfectly

9The proportion of matched pairs corresponds to the product of classification completeness and classification cor-
rectness.
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with its background model, whereas its side lane better matches the road model. Consequently, the
acupuncture method detects a parallel shift and assigns the correct road hypothesis to the state
incorrect. Figure 4.45b shows a situation in which the colour classification module misclassified a
narrow road region as background due to occlusions by buildings.10 This problem occurred rather
frequently in the gsi-Uraga dataset and is mainly responsible for the type-I errors shown in Table
4.14. Figure 4.45c shows a typical problem found in the ngi-Zeebrugge dataset where the building
detection module misclassified vehicles on the road surface as buildings. The problem is related to
inaccurate ndsm heights and mainly responsible for a large proportion of the type-I errors in the
ngi-Zeebrugge dataset (cf. Table 4.14).11

Misclassifications – type-II errors: Such errors can hardly be categorized as they appear for very
different reasons. Three examples of type-II errors are depicted in Figure 4.46. Figure 4.46a shows
a situation in which the adjacency analysis module incorrectly assigns a short road object to the
state correct because all adjacent road hypotheses are correct. In Figure 4.46b the acupuncture
method does not indicate the changed road direction and in Figure 4.46c an omitted road object
randomly matches with a linear structure in a carport at Zeebrugge harbour. This carport matches
with the road model of the parallel edge detection module, and hence the incorrect road hypothesis
is assigned to the state correct.

Assignment to the state unknown: This category describes situations that do not fit well to any of
the introduced road models. With respect to the conservative setting, the proportion of hypotheses
assigned to the state unknown affects the automation (cf. Equation 4.15), whereas in the low-effort
setting the proportion of hypotheses assigned to the state unknown affects the posterior db quality
(cf. Equation 4.13). Analysing the results from all three datasets, it turned out that the percentage
of hypotheses assigned to the state unknown decreases with the number of applied modules. It is
31% for mgcp-Algiers dataset (six modules), 24% for gsi-Uraga dataset (seven modules) and only
16% for ngi-Zeebrugge dataset (ten modules). Furthermore, it turned out that the percentage of
hypotheses assigned to the state unknown is relatively large for incorrect road hypotheses. One
reason for this might be that the introduced road models represent roads better than the occurring
database errors. Figure 4.47 shows some typical examples for road hypotheses assigned to the state
unknown. Figure 4.47a shows a forested area where the roads are mostly not visible. Figure 4.47b
shows a beach promenade where the abrupt transition from high buildings to an open area is not
covered by any of the introduced models. Figure 4.47c shows roads at a gas terminal with an unusual
appearances in terms of road width, curvature and contrast.

Assignments to the state invalid : A combination of largely contradicting probability mass distribu-
tions results in high conflict masses (cf. Equation 2.11). As discussed in Section 2.1.3, high conflict
masses are considered as an indicator for internal errors of the reasoning. Therefore, any verification
output achieving a conflict mass ≥ 0.9 is mapped to the decision state invalid, independent of the
probability masses (cf. Algorithm 1). This mapping was motivated by a reduction of misclassi-
fications. For the datasets mgcp-Algiers and gsi-Uraga this strategy obviously did not work, as

10This problem could be solved by using true orthophotos or by considering the viewing angle within the model or
the model-uncertainty definition.

11This problem could be solved by using als data.
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a b c
Figure 4.45.: Typical type-I errors (red).

a b c 
Figure 4.46.: Examples for type-II errors (purple).

a b c
Figure 4.47.: Examples to road hypotheses assigned to the state unknown (yellow).
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only one road hypothesis was assigned to the state invalid while misclassifications did occur indeed
(cf. Tables 4.13 and 4.14). For the ngi-Zeebrugge dataset, 1.8% (104) of the road hypotheses are
assigned to the state invalid. For these 104 road hypotheses, Table 4.16 shows an evaluation of the
results that would be achieved if the proposed strategy concerning the conflict mass was not applied.
It turns out that 43 of the 104 road hypotheses would be assigned to the wrong state. This also
means that 61 road hypotheses would be assigned to their correct states. This result principally cor-
responds to the expectations formulated in Section 2.1.3, according to which high conflict masses do
not directly infer misclassifications. Table 4.16 also shows that far more type-I errors are prevented
by the additional state invalid than type-II errors.

proposed approach

correct incorrect

re
fe
re
nc
e correct 11 42

type-I errors

incorrect 1

type-II errors

50

Table 4.16.: Confusion matrix of the results achieved without considering the state invalid. The
evaluation considers only the 104 road hypotheses of the ngi-Zeebrugge dataset that
were originally assigned to the state invalid (cf. Table 4.15).

Figure 4.48 shows some typical examples for road hypotheses assigned to the state invalid. Figure
4.48a refers to the same problem of the building detection module that was discussed above, i.e.
vehicles on the road surface are classified as buildings. If another module assigned the same road
hypothesis to the state correct, as does the parallel edge detection module in Figure 4.48a, the conflict
mass exceeds the threshold. Figure 4.48b shows a situation where a short part of a road hypothesis
is incorrect, which is detected by the grassland module. However, the pan-line detection module and
the ndvi-line detection module assign the same road hypothesis to the state correct as it is correct
for more than 80% of its length. The 80% threshold defined for the respective critical assumption
(cf. Equation 3.66) is obviously too small to correctly describe the given situation. Furthermore, the
independence of the information provided by the two line detection modules that rely on the same
problematic model-uncertainty definition (the 80% threshold) is questionable. Hence, the reasoning
is affected by at least two considerable problems, which lead to a high conflict mass. Figure 4.48c
shows a bridge that is detected as a building by the building detection module so that, consequently,
the road hypothesis is assigned to the state incorrect. The same road hypothesis is assigned to
the state correct by the colour classification module and by the parallel edge detection module.
In contrast to the other examples this situation does not represent a problem with the model-
uncertainty concept or a violation of the independence assumption, but it represents a problem of
the state space definition.12

12This problem could be solved by considering bridge as an exclusive state of a road hypotheses. In this hypothetical
scenario, the building detection module would just provide evidence for the set of states bridge∪ incorrect, which
is in accordance with the basic idea of a bridge detector described in [Clode et al., 2005].
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a b c 
Figure 4.48.: Examples for road hypotheses assigned to the state invalid (yellow).

Results of the semi-automatic approach

Conservative setting versus low-effort setting: The settings defined in Tables 4.11 and 4.12 represent
two extreme strategies for integrating a human operator into the process. The conservative setting
focuses on the posterior db quality (cf. Equation 4.13), whereas the low-effort setting focuses on
the degree of automation (cf. Equation 4.15). For the cartographic task update, one would mainly
be interested in achieving a large posterior db quality, and thus would tend to define a setting that
corresponds to the proposed conservative setting that achieved a posterior db quality of 97.5–100.0%
for the three cartographic datasets and a degree of automation of 66–74%.13 In contrast, for the
cartographic task quality control one would mainly be interested in achieving a large automation
because the quality control unit typically does not have the same human resources as the update
unit. The low-effort setting leading to a degree of automation of 91–100% for the experiments with
the three cartographic datasets seems to be reasonable. However, the low-effort setting also showed
a number of problems if the input imagery has low resolution and does not contain an ndsm or an
infrared band as is the case for the mgcp-Algiers and gsi-Uraga datasets. In this thesis, the two
interactive settings were mainly defined to show the flexibility of the proposed approach concerning
different requirements. Basically, one might think of an adaptive setting, where a human operator
starts with investigating road hypotheses that are assigned to the state incorrect and then proceeds
with investigating road hypotheses assigned to the states unknown or invalid until a maximum
working time is reached (in an update scenario) or until a critical number of database errors has
been identified (in a quality assessment scenario).

Conservative setting versus [Gerke & Heipke, 2008]: The conservative setting corresponds to the
strategy proposed by Gerke & Heipke [2008], according to which every road hypothesis that is not
classified as correct has to be inspected by a human operator. As Gerke & Heipke [2008] presented
the results of their experiments by the same type of confusion matrix as defined in this thesis (cf.
Table 4.11), their results are in principle comparable to those of the conservative setting, even if

13For the task of database update also the missing roads (newly built roads) have to be identified in addition to the
verification of existing database entries; a problem that is not considered in this thesis.
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the datasets are not the same. The experiments presented in [Gerke & Heipke, 2008] deal with
the verification of a real subset of the national German road database Authoritative Topographic
Cartographic Information System (atkis) that corresponds to a mapping scale of 1:25,000. The
imagery consist of aerial rgb images with a gsd of about 0.3 m. The test scene shows a challenging
rural area in Germany, where approximately 25% of the road objects are occluded by trees. Table
4.17 shows the results for three applied datasets mgcp-Algiers, gsi-Uraga and ngi-Zeebrugge in
contrast to results computed from the confusion matrix presented in [Gerke & Heipke, 2008]. The
results have approximately the same order of magnitude. In the category corrected db errors the
proposed approach outperforms the approach from Gerke & Heipke [2008]. However, this statement
is not significant as in case of [Gerke & Heipke, 2008] the value only relies on a small number of
database errors (≈ 10), which can be seen from the comparably large prior db quality (98%) and
the total number of road objects (530). Unlike the approach of Gerke & Heipke [2008], the main
advantage of the new approach is its general applicability as it is not restricted to rural areas.

[Gerke & Heipke, 2008] conservative setting

datasets atkis, rgb, 0.3 m gsd mgcp-Algiers gsi-Uraga ngi-Zeebrugge

number of evaluated road objects 530 2,254 360 5,797

prior db quality 98% 98.5% 81.6% 90.2%

posterior db quality 99% 100% 97.5% 99.3%

automation 66% 69% 66% 74%

corrected db errors 35% 100% 86% 93%

Table 4.17.: Comparison to the results of Gerke & Heipke [2008].

Final comments

In contrast to the results of the analysis in Section 4.2.2, it turned out that the verification modules
ndvi-line detection and parallel edge detection also provide valuable information (cf. Figures 4.35
and 4.44). Furthermore, the relevance of the verification modules building detection and grassland
detection could be shown as they are mainly responsible for detecting realistic database errors (cf.
Figure 4.44).

The experiments with cartographic datasets show that the new approach has the potential to be
used for a practical application. The key for that is the relatively large classification correctness of
93–100% for the three datasets that allows a user to trust the results of the automatic component,
even if one applies it to challenging scenes and provides partly non-representative training data.
Hence, a human operator can concentrate on investigating difficult spots and editing database errors.
The achieved degree of automation of at least 69% means that a human operator is able to screen
a database three times faster, which further means that a human operator is able to screen three
times more in a given time period or the same area three times more often.

The preceding analysis also showed some problems of the proposed approach, e.g. that the intro-
duced model-uncertainty analysis is still incomplete in some cases. Finally, it turned out that input
imagery with smaller gsd and the availability of infrared band and ndsm significantly increased the
degree of automation, which may justify the higher expenses for acquiring such data.
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5. Conclusions and outlook

In this thesis a new approach for automatic road database verification based on remote sensing data
has been presented. In contrast to existing approaches, the applicability of the proposed approach is
not restricted to specific road types, context areas or geographic regions. The general applicability
is based on a combination of several state-of-the-art road detection and road verification approaches
that are particularly useful for different situations. The performance of the approach was evaluated
on the basis of larger datasets than other state-of-the art road verification approaches. In the
following, the main aspects of the proposed approach will be discussed.

Verification modules: Ten independently operating methods have been implemented as so-called
verification modules that all represent specific road models and processing strategies. Models
and strategies are in accordance with different state-of-the-art approaches that have experimen-
tally proven to be useful in different situations. Some of the modules are based on heuristics and
some are implicitly defined on the basis of training data. The models based on heuristics mostly
rely on general properties of roads, e.g. the parallelism of the road borders or the fact that the road
surface is situated on the terrain. The statistical models mostly rely on scene-dependent properties
of roads, e.g. colour and radiometric contrast. Furthermore, each module requires specific input
data such as satellite images, high resolution aerial images, infrared bands or ndsm data.

Experiments carried out in ten scenes representing different context regions, road types and ge-
ographic regions show that the implemented road models cover 69–100% of the roads, depending
on the scene. For six of the ten scenes results from other state-of-the-art road detection approaches
are available from a benchmark test. It turned out that in all six scenes, the proposed approach
outperforms the best approaches of the benchmark test.

However, the evaluation also shows potential for further improvement, because even if all ten
verification modules are activated, up to 18% of the roads are not covered by the combination of all
road models.

Reasoning approach: Each verification module represents a probabilistic classifier that assigns each
road stored in the database to the states correct and incorrect. This is mostly realized by extracting
features from a local image region indicated by the database and then checking the correspondence
of these features with the underlying road model. However, the modules are not expected to provide
valuable classification outputs in all situations because their underlying models are based on specific
assumptions about the appearance of roads in the imagery that may be violated. Consequently, the
model-uncertainty is determined for each module, indicating the probability whether the underlying
model is applicable or not. In accordance with the Dempster-Shafer Theory, the verification result
and the model-uncertainty are mapped to a new state space that considers correct, incorrect and
unknown as the possible states of a road hypothesis. Dempster’s rule is applied to combine the
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distributions provided by the different verification modules.

The performance of the verification modules has been evaluated and compared to the performance
of the combined approach. It turned out that the combined solutions are always better than the
module-specific solutions. A considerable strength of the introduced fusion concept is its relatively
simple parametrisation because the parameters of the modules are independent. Changing a param-
eter of one module does not affect the performance of another module. Experiments have shown
that the proposed approach is transferable to different datasets with only moderate efforts.

Model-uncertainty: For each verification solution the uncertainty of the state of its model (appli-
cable, not applicable) is expressed by a probability distribution. A model is only considered being
applicable if all assumptions made for the model definition do hold for the given situation in the
data. The state of an assumption (satisfied, violated) is also expressed by a probability distribution,
which is determined by a sigmoid function. The parameters of the sigmoid function are defined on
the basis of theoretical and experimental concepts given in the original literature or in benchmark
analyses. Due to the literature, their definition includes concepts from the Bayesian and Fuzzy-Set
Theory as well.

The model-uncertainty mainly has the task to prevent the overall approach from relying on ver-
ification modules that potentially provide incorrect classification outputs. The experiments have
shown that for the ten test scenes the classification correctness is consistently large (93–100%),
and hence the new concept turned out to work rather well even for challenging scenes. However,
the evaluation have also shown that considering additional assumptions would further enhance the
achieved results.

SVDD-based uncertainty metric: Another important contribution of this thesis is the model-uncertainty
defined for an svm classifier being at the core of one of the verification modules. An svm classifier
defines the model implicitly on the basis of training samples. The question whether such a learned
model is applicable refers to the question whether the training data are representative for a test
sample. Using an svdd classifier to describe the training data, the relation of a test sample to
the set of training samples is described by a sigmoid function of its feature space distance to the
svdd hypersurface in the input feature space. The sigmoid parameters are automatically adjusted
in accordance with the input dataset.

A set of experiments validated the relation of the determined feature space distances and the
classification correctness. It could be shown that with an increasing feature space distance to the
training data, the correctness of the svm outputs decrease significantly, which supports the basic
idea that the probability for ignorance increases with the feature space distance to the training
samples.

User interaction: The statistical reasoning provides a solution in form of a probability mass distri-
bution for the states correct, incorrect and unknown. In order to make this solution interpretable for
a human operator, this distribution is mapped to a decision space consisting of four exclusive states
correct, incorrect, unknown and invalid. The state invalid signalizes problems of the reasoning, and
thus represents situations where the automatic component might be not suitable to solve the veri-
fication problem. Two interactive settings have been defined. In the conservative setting a human
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operator checks roads assigned to the states incorrect, unknown and invalid. In the low-effort setting
a human operator only checks roads assigned to the state incorrect. In any case the human operator
has the task to edit the road database if an error has been spotted.

The experiments have shown that the conservative setting leads to good database qualities: 97.5–
100% of the roads are correct after the approach has been applied. In order to achieve this result, 25–
31% of the roads had to be investigated by a human operator. For the low-effort setting, the resulting
database quality is lower; only 88.1–98.5% of the objects are correct after the approach has been
applied, but only up to 9% of the roads need to be investigated by a human operator. The differences
in the two settings show the flexibility of the proposed approach concerning different cartographic
problems that are characterized by different database qualities and degrees of automation.
Finally, it can be concluded that the main objective of this thesis has been met successfully. The ex-
periments indicate a general applicability of the new approach by showing good results for different
datasets that represent different context areas, road types, geographic regions and road databases.
In this regard, it is worth noting that the proposed approach has been realized as a prototype soft-
ware implemented in C++ that has been installed at the German Federal Agency for Geodesy and
Cartography (bkg) as a part of the wipka project [Helmholz et al., 2012].

Outlook

The incorporation of additional verification modules representing further road models seems to be
interesting as still not all potential appearances of roads (and appearances of database errors) are
covered by the implemented verification modules. In particular, additional models are required that
are suitable to explain roads that lie at the border line of different context areas. Such models could
be designed by applying existing models for each road side separately and then fuse their outputs.
Further methods that could be implemented as additional verification modules can be found in the
related literature, for instance the approach presented by Gerke & Heipke [2008] who detect rows of
trees to infer the position of occluded roads or the approach presented by Porway et al. [2010] who
detect cars to infer the position of roads. Both methods are suitable for specific situations that may
further improve the classification completeness of the combined solution.

Another promising possibility to enhance the proposed approach is to add verification modules
that use completely different information sources such as up-to-date gps-tracks recorded by standard
cars, independent vector databases or planning data for redevelopment projects. The use of such
information sources has the potential advantage that roads that are usually not visible in the images
could be classified, e.g. those that lie in forested areas.

Furthermore, it would be interesting to add modules that specifically classify road junctions.
Promising approaches to be integrated are [Auclair-Fortier et al., 1999; Ravanbakhsh et al., 2008;
Grote et al., 2012; Lin et al., 2012].

The experiments have mainly shown two aspects missing in the model-uncertainties: First, the
used ndsm turned out to have partially lower accuracy than expected. This problem can be overcome
by analysing the ndsm generation process that is based on dense matching. Secondly, it was shown
in the experiments that buildings occluding narrow roads can pose an additional problem which
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could be compensated by using the viewing angle in the respective model or in the analysis for the
uncertainty-model.

One open point with respect to a practical use of the method is the development of a flexible
interface between the automatic component and the human operator. In this regard, Becker et al.
[2012] proposed a strategy for the verification of landcover databases, where the landcover objects
are forwarded to the human operator in ascending order of their similarity to the correct landcover
objects. This idea could be transferred to the approach described in this thesis using the derived
probability masses instead of a similarity measure. However, the definition of the order is not trivial
because the three states correct, incorrect and unknown need to be taken into account.

Training samples are required to make the proposed method applicable for different scenes. Their
definition is a task of a human operator, and thus affects the automation potential of the approach.
Therefore, it is interesting to automate the training data generation. This could be realised by
using the existing database where the majority of the database entries are assumed to be correct.
In this regard, Büschenfeld & Ostermann [2012] proposed a training strategy for an svm classifier
that automatically removes support vectors that probably correspond to the wrong class.

In this thesismissing database entries are not considered. For the cartographic problem of updating
road databases, the missing roads also need to be identified. However, the review of the related work
has shown that approaches which try to detect the missing roads directly, achieve results that are
currently not good enough to be used in practice, even if the verified road network is used as the basis
for the process, e.g. [Auclair-Fortier et al., 2001; Poulain et al., 2010]. Whereas a direct detection of
the missing roads is too challenging, indirect detection methods are more promising. For instance,
Beyen et al. [2012] demonstrate that more than 50% of the missing roads can be effectively detected
by detecting new built-up areas based on a landcover classification. The underlying model of this
strategy assumes that new roads are located near or inside larger redevelopment projects involving
recently constructed buildings, parking lots and other man-made structures that are much easier
to detect than roads alone. Another possibility is to use additional information such as gps-tracks
acquired by cars or planning data of redevelopment projects that allow the definition of update-hints
to be investigated by a human operator.
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A. Appendix

A.1. The cat in the box – Bayesian inference versus
Dempster-Shafer Theory

The reasoning problem described below is intended to show the difference between Bayesian inference
and the Dempster-Shafer Theory.1

The physical experiment

Imagine that a physicist has placed a living cat and a physical experiment in a box. The experiment
has two possible outcomes, where one has catastrophic consequences for the cat. The chances for
both outcomes of the experiment are equal, and hence the cat in the box may be dead or alive after
the experiment is over. There is no possibility to look inside the box, but the physicist has equipped
the box with two sensors S1 and S2, each being connected to a control lamp outside the box. After
the critical part of the experiment is over, each lamp has two possible states, either it is green or
it is red. As the physicist is very busy, he asks a statistician to observe the experiment and report
the outcome with respect to the state of the cat. The physicist gives the statistician just three facts
about the sensors:

• If a lamp is green, the cat is alive with a probability of 0.99.

• If a lamp is red, the cat is dead with a probability of 0.99.

• The sensors may be defect though. In case of a defect sensor, the connected lamp still has the
two possible states green and red but their meaning is unknown. The probability that sensor
S1 is defect is 0.2. The probability that sensor S2 is defect is 0.4.

A while after the physicist has left the room, the experiment has reached its critical moment and
the control lamps light up. The lamp L1 connected to sensor S1 was turned to green and the lamp
L2 connected to sensor S2 was turned to red. Now the statistician is asked to describe the state of
the cat.

The problem of probably defect sensors

Due to the fact that the lamps connected to defect sensors do not remain dark, the state of the cat
(dead, alive) depends not only on the colours of the lamps (green, red) but also on the states of the
two sensors (working, defect). Furthermore, the physicist did not explicitly say that the state of the

1The given example is inspired by [Smets, 1994].
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cat is independent from the states of the sensors. For instance, imagine a scenario in which the cat
could somehow affect the functionality of the sensors.

Preliminary considerations

The frame of discernment describing the state of the cat is defined as:

Θ = {alive, dead} (A.1)

In accordance with the design of the physical experiment, the prior probability for the state of the
cat is:

P (cat = alive) = P (cat = dead) = 0.5 (A.2)

The probability distributions describing the states of the sensors S1 and S2 are:

P (S1 = working) = 1− P (S1 = defect) = 0.8 (A.3)

P (S2 = working) = 1− P (S2 = defect) = 0.6 (A.4)

According to the observed states of the lamps L1 = green and L2 = red, the statistician knows:

P (cat = alive|L1 = green, S1 = working) = 1− P (cat = dead|L1 = green, S1 = working) = 0.99 (A.5)

P (cat = alive|L2 = red , S2 = working) = 1 − P (cat = dead|L2 = red , S2 = working) = 0.01 (A.6)

However, the statistician does not know the corresponding distributions for defect sensors:

P (cat = alive|L1 = green, S1 = defect) = 1− P (cat = dead|L1 = green, S1 = defect) = ? (A.7)

P (cat = alive|L2 = red , S2 = defect) = 1 − P (cat = dead|L2 = red , S2 = defect) = ? (A.8)

The Bayesian reasoning approach

After the preconditions have been defined, a Bayesian statistician is usually looking for the prob-
ability that the cat is alive given all available evidence, which is defined by the Bayesian rule of
combination2:

P (cat = alive|L1 = green, L2 = red) =

=
P (cat = alive|L1 = green)P (cat = alive|L2 = red)

P (cat = alive|L1 = green)P (cat = alive|L2 = red) + P (cat = dead|L1 = green)P (cat = dead|L2 = red)
(A.9)

2Due to the uniform prior (cf. Equation A.2) the likelihoods could be replaced by the corresponding posteriors
without changing the meaning but it simplifies some notations below.
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The probabilities that show up in Equation A.9 are defined through Equations A.5–A.8, which
can be expressed as follows:

P (cat = a.|L1 = g.) = P (cat = a.|L1 = g., S1 = w.)︸ ︷︷ ︸
0.99

P (S1 = w.)︸ ︷︷ ︸
0.8

+ P (cat = a.|L1 = g., S1 = df.)︸ ︷︷ ︸
?

P (S1 = df.)︸ ︷︷ ︸
0.2

(A.10)
P (cat = d.|L1 = g.) = P (cat = d.|L1 = g., S1 = w.)︸ ︷︷ ︸

0.01

P (S1 = w.)︸ ︷︷ ︸
0.8

+ P (cat = d.|L1 = g., S1 = df.)︸ ︷︷ ︸
?

P (S1 = df.)︸ ︷︷ ︸
0.2

(A.11)
P (cat = a.|L2 = r.) = P (cat = a.|L2 = r., S1 = w.)︸ ︷︷ ︸

0.01

P (S2 = w.)︸ ︷︷ ︸
0.6

+ P (cat = a.|L2 = r., S2 = df.)︸ ︷︷ ︸
?

P (S2 = df.)︸ ︷︷ ︸
0.4

(A.12)
P (cat = d.|L2 = r.) = P (cat = d.|L2 = r., S2 = w.)︸ ︷︷ ︸

0.99

P (S2 = w.)︸ ︷︷ ︸
0.6

+ P (cat = d.|L2 = r., S2 = df.)︸ ︷︷ ︸
?

P (S2 = df.)︸ ︷︷ ︸
0.4

(A.13)
It turns out that the required probabilities remain partly unknown because the probabilities, em-
phasized by the question marks are unknown. Substituting the unknowns by intervals between zero
and one leads to the following solutions:

0.792 ≤ P (cat = alive|L1 = green) ≤ 0.992 (A.14)

0.008 ≤ P (cat = dead|L1 = green) ≤ 0.208 (A.15)

0.006 ≤ P (cat = alive|L2 = red) ≤ 0.406 (A.16)

0.594 ≤ P (cat = dead|L2 = red) ≤ 0.994 (A.17)

Plugging the intervals A.14–A.17 into Equation A.9 leads to:

0.022 ≤ P (cat = alive|L1 = green, L2 = red) ≤ 0.988 (A.18)

The interval A.18 represents the final solution of the Bayesian reasoning approach. This solution cov-
ers all the possibilities the physicist intentionally left open, and hence is an appropriate probabilistic
description for the state of the cat.

One possibility to overcome the problem of such broad intervals is to define four alternative
solutions, each under a specific condition:

P (cat = alive|L1 = green, L2 = red) =



0.60 |S1 = working, S2 = working

0.99 |S1 = working, S2 = defect

0.01 |S1 = defect, S2 = working

0.50 |S1 = defect, S2 = defect

(A.19)

where the probabilities for the conditions are known by:

P (S1 = working, S2 = working) = 0.48 (A.20)

P (S1 = working, S2 = defect) = 0.32 (A.21)

P (S1 = defect, S2 = working) = 0.12 (A.22)

P (S1 = defect, S2 = defect) = 0.08 (A.23)
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Another possibility to overcome the problem of broad intervals is to replace the unknowns (cf.
Equations A.7 and A.8) by a uniform distribution:

P (cat = alive|L1 = green, S1 = defect) = P (cat = dead|L1 = green, S1 = defect) = 0.5 (A.24)

P (cat = alive|L2 = red, S2 = defect) = P (cat = dead|L2 = red, S2 = defect) = 0.5 (A.25)

Plugging Equations A.24 and A.25 into Equations A.10–A.13 leads to the following distributions:

P (cat = alive|L1 = green) = 1− P (cat = dead|L1 = green) = 0.892 (A.26)

P (cat = alive|L2 = red) = 1− P (cat = dead|L2 = red) = 0.206 (A.27)

Now the Bayesian combination rule (cf. Equation A.9) leads to:

P (cat = alive|L1 = green, L2 = red) = 0.682 (A.28)

Note that the strategy of introducing uniform distributions is in accordance with the principle of
maximum entropy [Guiasu & Shenitzer, 1985], which says that an unknown probability distribution
most probably corresponds to a uniform distribution. This principle refers to the second law of
thermodynamics according to which entropy almost always increases. However, even if this physical
law represents an appropriate concept here, it also says that there is a second-most probable dis-
tribution, a third-most probable distribution and so on. Hence, introducing a uniform distribution
restricts the generality of the solution, which further means that the achieved solution is probably
wrong.

The Dempster-Shafer Theory

Dempster [1968] introduced a statistically founded reasoning approach, which he called: A gen-
eralization of Bayesian inference. With respect to the given task, the preliminary considerations,
including the frame of discernment (cf. Equation A.1), the knowns (cf. Equations A.2–A.6) and
the unknowns (cf. Equations A.7 and A.8) correspond to the standard Bayesian approach. Beyond
that, Dempster [1967] defined a calculation scheme based on lower bounds of probabilities that many
other authors denoted as probability masses m. For the given problem these probability masses m
are defined as follows:

mL1(cat = alive) = P (cat = alive|L1 = green , S1 = working)P (S1 = working) (A.29)

mL1
(cat = dead) = P (cat = dead|L1 = green , S1 = working)P (S1 = working) (A.30)

mL2(cat = alive) = P (cat = alive|L2 = red , S1 = working)P (S2 = working) (A.31)

mL2
(cat = dead) = P (cat = dead|L2 = red , S2 = working)P (S2 = working) (A.32)

The right terms in Equations A.29–A.32 equal the left terms in Equations A.14–A.17. This means
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that the probability masses m of Dempster’s approach correspond to the lower bounds of the intervals
of the Bayesian approach (cf. intervals A.14–A.17).3 4 Calculation leads to:

mL1(cat = alive) = 0.792 (A.33)

mL1
(cat = dead) = 0.008 (A.34)

mL2
(cat = alive) = 0.006 (A.35)

mL2(cat = dead) = 0.594 (A.36)

Dempster [1968] found that probability masses must be referred to a different state space than stan-
dard probabilities, i.e. a state space that contains all subsets of Θ (cf. Equation A.1). Accordingly,
the statistician defines the new state space based on Θ (cf. Equation A.1):

2Θ = {alive, dead, dead ∪ alive, ∅} (A.37)

The explicit consideration of the state {dead∪alive} remarks the prominent difference of Dempster’s
approach compared to Bayesian inference.5

Because of P (cat = dead ∪ alive) = 1.0 also the lower bound of P (cat = dead ∪ alive) must be
equal to one, in general. However, according to the new state space definition m(cat = dead∪alive)
refers to the state {dead ∪ alive} but not to the states {dead} and {alive}. In accordance with
Equations A.33–A.36, this leads to the following definitions:

mL1
(cat = d.∪a.) = 1.0−P (cat = d.|L1 = g., S1 = w.)P (S1 = w.)︸ ︷︷ ︸

0.008

−P (cat = a.|L1 = g., S1 = w.)P (S1 = w.)︸ ︷︷ ︸
0.792

(A.38)
mL2

(cat = d. ∪ a.) = 1.0− P (cat = d.|L2 = r., S2 = w.)P (S2 = w.)︸ ︷︷ ︸
0.594

− P (cat = a.|L2 = ., S1 = w.)P (S2 = w.)︸ ︷︷ ︸
0.006

(A.39)

and further calculation leads to:

mL1(cat = dead ∪ alive) = 0.2 (A.40)

mL2
(cat = dead ∪ alive) = 0.4 (A.41)

3Note that if the lower and the upper bound of a probability would be equal, Dempster’s approach would provide
the same solution as the corresponding Bayesian approach. With respect to the given example, it means that if
the interval widths (cf. intervals A.14–A.17) would be zero, i.e. both sensors are working with 1.0 probability,
Dempster’s approach would have no benefit compared to the standard Bayesian approach.

4It is further worth noting that Dempster [1967] explicitly used the notation lower probabilities P∗ which nicely
shows the relation to the lower bounds of the probability intervals. In the 1970s the notation probability masses m
has been established. The main intention of changing Dempster’s original notation was related to criticisms from
the field of Frequentist statistics, whereas from a Bayesian viewpoint Dempster’s notation is ok.

5The additional state {dead ∪ alive} means that the state of the cat is unknown; it does not mean that the state of
the cat is uncertain, which it is anyway because Equations A.5 and A.6 are considered.
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Finally, applying Dempster’s combination rule leads to:

mL1,L2
(cat = alive) =

=
mL1

(cat = a.)mL2
(cat = a.) +mL1

(cat = a.)mL2
(cat = d. ∪ a.) +mL1

(cat = d. ∪ a.)mL2
(cat = a.)

1−
[
mL1

(cat = a.)m
L2

(cat = d.) +mL1
(cat = d.)mL2

(cat = a.)
]

= 0.610 (A.42)

mL1,L2
(cat = dead) =

=
mL1

(cat = d.)mL2
(cat = d.) +mL1

(cat = d.)mL2
(cat = d. ∪ a.) +mL1

(cat = d. ∪ a.)mL2
(cat = d.)

1−
[
mL1(cat = a.)m

L2
(cat = d.) +mL1(cat = d.)mL2(cat = a.)

]
= 0.239 (A.43)

mL1,L2(cat = dead ∪ alive) =

=
mL1

(cat = d. ∪ a.)mL2
(cat = d. ∪ a.)

1−
[
mL1

(cat = a.)m
L2

(cat = d.) +mL1
(cat = d.)mL2

(cat = a.)
]

= 0.151 (A.44)

The concept of Dempster’s combination rule widely corresponds to the concept of the Bayesian
combination rule, which becomes more obvious in the matrix interpretation. In Table A.1 the entries
of the matrix correspond to the products of the row and column headings, and thus represent the
intersections of the corresponding sets. The main difference of both combination rules lies in the
normalization: The Bayesian combination rule normalizes over the bold entries (cf. denominator in
Equation A.9), whereas Dempster’s combination rule also normalizes over the bottom-right entry
(cf. denominator in Equations A.42–A.44).6

Discussion

Table A.2 summarizes the alternative representations discussed above. Each Bayesian approach
has particular disadvantages: The first solution, i.e. the broad interval is nearly meaningless, the
solution based on 4-fold conditioning is confusing7, while the solution which is based on the uniform
distribution is probably wrong. The dst-solution reads: The cat is alive with a probability mass of
0.61, dead with a probability mass of 0.24 and its state is unknown with a probability mass of 0.15.
Hence, the dst approach overcomes the disadvantages of the three Bayesian solutions by expressing
uncertainty and ignorance in a single distribution.

6Another difference is that for the Bayesian combination rule always some of row and column headings have to be
equal to zero.

7This statement would be more convincing for a larger number of sensors to be combined.
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mL1
(cat = alive) = 0.792 0.0048 ∅ 0.3168

mL1(cat = dead) = 0.008 ∅ 0.0047 0.0032
mL1(cat = dead ∪ alive) = 0.2 0.0012 0,1188 0.0800

Table A.1.: The orthogonal sum.

The Bayesian reasoning approach:

the broad interval : 0.022 ≤ P (cat = alive|L1 = green, L2 = red) ≤ 0.988

4-fold conditioning : P (cat = alive|L1 = green, L2 = red) =



0.60 |S1 = working, S2 = working

0.99 |S1 = working, S2 = defect

0.01 |S1 = defect, S2 = working

0.50 |S1 = defect, S2 = defect

P (S1 = working, S2 = working) = 0.48

P (S1 = working, S2 = defect) = 0.32

P (S1 = defect, S2 = working) = 0.12

P (S1 = defect, S2 = defect) = 0.08

uniform distribution: P (cat = alive|L1 = green, L2 = red) = 0.682

The Dempster-Shafer Theory:

mL1=green,L2=red(cat = alive) = 0.610

mL1=green,L2=red(cat = dead) = 0.239

mL1=green,L2=red(cat = dead ∪ alive) = 0.151

Table A.2.: Comparison of the alternative reasoning approaches described in the text.
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A.2. Gaussian Mixture Models for colour-based road verification

The goal of the method described below is to find one or two Gaussian components that represent
the road surface in the marginal distributions of an rgb colour space. Therefore, a Gaussian Mixture
Model (gmm) is defined for each colour band using the Expectation-Maximization algorithm (em)
described in [Dempster et al., 1977]. In the following, gmm and em will be described according to
[Bishop, 2006], and their parametrisation will be motivated with respect to the colour classification
problem dealt with in Section 3.3.1.

Gaussian Mixture Model

A gmm is defined as a linear combination of Gaussians given a grey value g as an argument:

fgmm(g) =
∑

1≤q≤Q
wqN (g|µq, σq) s.t.

∑
1≤q≤Q

wq = 1 (A.45)

where Q denotes the number of Gaussian components and N (g|µq, σq) denotes the q-th Gaussian
component with the two parameters µq and σq. The parameters wq ∈ R with wq ≥ 0 are the
mixing coefficients of gmm, modelling the contributions of the individual components to the joint
distribution. As the marginal distributions of the colour space are one-dimensional, the considered
Gaussian components are also one-dimensional, and thus have the form:

N (g|µq, σq) =
1

σq
√

2π
· exp

(
−(g − µq)2

2σ2
q

)
(A.46)

The optimization problem: The goal is to find a function fgmm (cf. Equation A.45) that optimally
describes the grey values gj of the pixels pj ∈ RH• , where RH• denotes the set of pixels corresponding
to the road hypothesis. As Dempster et al. [1977] point out, the function fgmm(g) in Equation A.45
can be interpreted as a probability function similar to a single Gaussian. Hence, Dempster et al.
[1977] apply Maximum Likelihood Estimation (mle) to find the gmm parameters that maximize
the probability of the data. Accordingly, the log likelihood of the gmm is defined for the set gj with
1 ≤ j ≤ n and n =

∣∣RH•
∣∣:

max
µ,σ,w

L(µ, σ, w) (A.47)

with

L(µ, σ, w) =
∑

1≤j≤n
ln

 ∑
1≤q≤Q

[wqN (gj |µq, σq)]

 (A.48)

s.t.
∑

1≤q≤Q
wq = 1

In order to solve the maximum likelihood problem the constraint in Equation A.48 needs to be
included using Lagrange multipliers λ:
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max
λ,µ,σ,w

L(λ, µ, σ, w) (A.49)

with

L(λ, µ, σ, w) =
∑

1≤j≤n
ln

 ∑
1≤q≤Q

[wqN (gj |µq, σq)]

+ λ

 ∑
1≤q≤Q

wq − 1

 (A.50)

The partial derivatives of the log likelihood L(λ, µ, σ, w) with respect to the unknown gmm param-
eters µq, σq and wq read:

∂L(λ, µ, σ, w)

∂µq
=

∑
1≤j≤n


wqN (gj |µq, σq)∑

1≤k≤Q
wkN (gj |µk, σk)

· µq − gj
σ2
q

 (A.51)

∂L(λ, µ, σ, w)

∂σq
=

∑
1≤j≤n


wqN (gj |µq, σq)∑

1≤k≤Q
wkN (gj |µk, σk)

·
(gj − µq)2 − σ2

q

σ3
q

 (A.52)

∂L(λ, µ, σ, w)

∂wq
=

∑
1≤j≤n


N (gj |µq, σq)∑

1≤k≤Q
wkN (gj |µk, σk)

+ λ (A.53)

Usually, setting the partial derivatives of the log likelihood with respect to the unknowns to zero
provides a solution for unknowns. Unfortunately, neither of the partial derivatives in Equations
A.51–A.53 have a closed form as is the case for mle with a single Gaussian. The reason is that the
logarithm in Equation A.50 appears in front of the sum and not in front of the product. Hence,
the logarithm does not lead to an elimination of the remaining variables. To overcome the problem,
Dempster et al. [1977] introduced so-called latent variables γ(zjq) that assign a grey value with index
1 ≤ j ≤ n to a Gaussian component with index 1 ≤ q ≤ Q:

γ(zjq) =
wqN (gj |µq, σq)∑

1≤k≤Q
[wkN (gj |µk, σk)]

∀j, q (A.54)

Based on the definition in Equation A.54 the effective number of grey values assigned to a Gaussian
component q is defined by:

Nq =
∑

1≤j≤n
γ(zjq) ∀q (A.55)
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Plugging Equations A.54 and A.55 into Equations A.51 and A.52 and rearrangement after setting
the partial derivatives to zero gives:

µq =
1

Nq
·
∑

1≤j≤n
[γ(zjq)gj ] (A.56)

σ2
q =

1

Nq
·
∑

1≤j≤n

[
γ(zjq)(gj − µq)2

]
(A.57)

Setting the left term in Equation A.53 to zero gives:

0 =
∑

1≤j≤n


N (gj |µq, σq)∑

1≤k≤Q
[wkN (gj |µk, σk)]

+ λ (A.58)

If both sides in Equation A.58 are multiplied by wq and summed over q, the constraint
∑
wq = 1

provides the relation λ = −n. Using this relation and plugging Equation A.55 into Equation A.58
gives after some rearrangement:

wq =
Nq

n
(A.59)

Imagine that if the latent variables γ(zjq) were known, then the optimal gmm parameters could be
determined, because then Equations A.56, A.61 and A.59 would have a closed form. However, for
the definition of the latent variables γ(zjq), the gmm parameters need to be known (cf. Equation
A.54).

Expectation and maximization

To overcome the described problem Dempster et al. [1977] introduced the em algorithm that follows
an iterative strategy, i.e. it alternatively adjusts the gmm parameters or the latent variables. The
algorithm is subdivided into the three steps: Initialization, expectation and maximization.

Initialization: The first step requires an approximate solution for the gmm parameters. Usually,
this is realized as the output of another method such as K-means [Bishop, 2006]. However, in the
context of the colour module the task is rather simple, because the data gj are one-dimensional, and
hence a simple heuristic is sufficient. This is realized by four equally spaced Gaussian components
that have equal mixing coefficients and a low overlap (cf. top row in Figure A.1). In particular, the
initial parameters are defined with respect to a marginal distribution of an 8 bit band of a colour
image (gj = {1, . . . , 256}∀j) such that for all q = {1, 2, 3, 4}:

µq = 32 + 32q (A.60)

σq = 16 (A.61)

wq =
1

4
(A.62)

The definition Q = 4 is in contradiction with the initially formulated goal of determining just one or
two Gaussian components. However, more components have to be taken into account at the start
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because vehicles, trees or road markings might also appear as rather small Gaussian components.
These components will finally be ignored but their consideration in the em algorithm is important
as they bias the components to be determined if they are not considered. Empirical tests with
different image resolutions and road types indicated an initialization with Q = 4 components to be
appropriate for standard road segments.

Expectation: According to Equation A.54 the latent variables γ(zjq) are computed from the previ-
ously defined gmm parameters.

Maximization: According to Equations A.56, A.61 and A.59 the optimal gmm parameters are com-
puted from the previously defined latent variables.

Iteration: Beginning with the initialization, the algorithm alternates between expectation and max-
imization until a maximum number of iterations Tit has been reached or the changes to the pa-
rameters are smaller than Tδ. These thresholds, representing a trade off between performance and
computation time are set to:

Tit = 50 (A.63)

Tδ = 0.1 (A.64)

It is worth noting that the maximization step alone provides an optimal solution given the data but
the em algorithm does not, because it might get stuck at a local minimum. Figure A.1 illustrates
iterative parameter adaptation with an example derived from the red band of the image depicted
in Figure 3.7d. Superfluous components, such as the component q = 3 in Figure A.1, are often
characterized by large standard deviations σq or small mixing coefficients wq.
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after 1 iteration 
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Figure A.1.: Iterative approximation of a Gaussian Mixture Model using the Expectation Maximiza-
tion algorithm with the parameters described in the text.
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A.3. Images used for the experiments described in the thesis

Figure A.2.: Eurosdr-Ikonos1sub1: 1.6× 1.6 km, 1 m gsd, Kosovo.
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Figure A.3.: Eurosdr-Ikonos3sub1: 1.6× 1.6 km, 1 m gsd, Kosovo.

Figure A.4.: Eurosdr-Ikonos3sub2: 1.6× 1.6 km, 1 m gsd, Kosovo.
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Figure A.5.: Eurosdr-Aerial1: 2.0× 2.0 km, 0.5 m gsd, Switzerland.

Figure A.6.: Eurosdr-Aerial2: 2.0× 2.0 km, 0.5 m gsd, Switzerland.
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Figure A.7.: Eurosdr-Aerial3: 2.0× 2.0 km, 0.5 m gsd, Switzerland.
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Figure A.8.: isprs-Vaihingen: 0.88× 1.18 km, 0.2 m gsd, Germany.
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Figure A.9.: mgcp-Algiers: 12.0× 24.0 km, 1.0 m gsd, Algeria.
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Figure A.10.: gsi-Uraga: 0.76× 0.92 km, 0.2 m gsd, Japan.
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Figure A.11.: ngi-Zeebrugge: 12.0× 16.0 km, 0.5 m gsd, Belgium.
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