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ABSTRACT: 
 
The spatial resolution of available image data plays an important role at the creation of object models for road extraction. The type 
and perceptibility of roads changes with increasing ground pixel size. The design of the model for the extraction of roads therefore 
has to be influenced by the resolution of the available imagery.  
In this paper we present a concept to automatically adapt road models for high resolution images to models suitable for images of 
lower resolution with similar spectral characteristics. The road model is formulated as a semantic net. Starting from the manually 
created semantic net for high resolution images and the given target scale, the road model is first automatically decomposed into 
groups of object parts. The representation of the object part groups in the coarser scale is then automatically predicted by scale 
change models, which are generated by deploying analytical as well as simulation procedures. The adapted object parts are at last 
fused back to a complete road model, which is suitable for road extraction in images of the lower target resolution. 
The automatic adaptation of a semantic net to a coarser scale is demonstrated for a given model for road extraction. The presented 
adaptation methodology facilitates the creation of new models for automatic object extraction in lower resolution images. 
 
 

1. INTRODUCTION 

Landscape objects appear differently in images of varying 
spatial resolution. In high resolution aerial images a road might 
be distinguishable as an area with visible road markings, while 
in a satellite image of low resolution, roads appear as lines and 
their network character becomes important. The same applies to 
the reduction of the resolution of an object of the same size – 
with increasing ground pixel size of the image the object will 
appear simplified with less detail until it disappears. Due to the 
varying appearance of the same object in different resolution 
the model for the object extraction must be modified to fit to 
each spatial resolution. Thus, various models for the object 
extraction have to be created for the same object. Generally, the 
information needed for the description of the object in low 
resolution is already contained in the object models1 for high 
resolution, as in the process of scale reduction no new details 
appear. Hence, redundant work for the creation of low 
resolution object models can be avoided, if there already exist 
an object model for high resolution images.  
 
In this paper an approach to derive automatically models for 
object extraction for low resolution images from models created 
for high resolution images is presented. The object model for 
high resolution is here formulated manually as a semantic net, 
which ensures an explicit representation of objects and an 
intuitive creation process also for complex scenes. The focus 
for the investigated objects lies on line-type features, such as 
roads. The developed methodologies are presented here and 

                                                                 
1 According to [Förstner93] different types of models in the image 

analysis process can be distinguished. The type of models we 
present and adapt here can be seen as an integration of both - 
object model and image model. The models not only describe 
the object in the real world with its object part hierarchies, but 
simultaneously contain the description for the appearance of the 
object parts in an image. In the remainder of this paper, these 
models are called ‘object models’. 

tested exemplarily in this paper on a model describing a dual 
carriage highway.  
 
As roads are dominant landscape features, they are subject to 
ongoing research in the field of image analysis. Object models 
were developed for various road types, contexts and spatial 
resolutions [Wiedemann02, Baumgartner03, Hinz04]. Extensive 
research has also been carried out on the fundamentals of linear 
scale-space theory [Witkin86, Lindeberg94, Florack94] and its 
application, e.g. on feature detection [Lindeberg98]. Also 
investigated has been the scale behaviour of line-type features 
[Steger98b, Mayer98]. By combining scale-space theory with 
object modelling in [Baumgartner03, Hinz04], object models 
integrating different image resolution levels in a single model 
were proposed. In [Mayer&Steger98] scale events in linear 
scale-space for roads and for buildings in morphological scale-
space [Mayer00] were analyzed and predicted. But, so far, the 
analysis of complete object models in scale-space and the 
adaptation to another scale is missing. The general strategy for 
the adaptation of semantic nets to a coarser scale was presented 
in [Pakzad&Heller04], incorporating first examinations 
concerning the scale behaviour of feature extraction operators 
and demonstrating the strategy using an example in an 
adaptation process carried out manually. Necessary constraints 
for the creation of the initial object models in order to ensure 
the models’ automatic adaptability were also stated. 
 
In section 2 a short summary is given concerning the general 
strategy of the procedure. The relevant concepts of linear scale-
space theory are briefly summarized in section 3. The 
characteristics of line-type objects in scale-space and the 
thereof derived methodologies used in the automatic adaptation 
algorithm are explained in section 4. Section 5 contains an 
example for the adaptation of a particular road model to a 
coarser scale. The last section gives a summary and draws 
conclusions from the presented work for future tasks. 
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2. STRATEGY FOR SCALE ADAPTATION 

The general strategy for the automatic adaptation of object 
models can be divided into three main steps that enable the 
separate scale-space analysis of object parts for the prediction 
of their scale behaviour while scale changes (cf. Fig.1).  
 
With knowledge of the target scale, the original object model 
for high spatial resolution is at first decomposed into object 
parts with similar scale change behaviour and in neighbouring 
object parts that interfere each other’s appearance in the coarser 
scale. 
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Figure 1. Strategy for Scale Adaptation 

 
These groups of object parts are then analyzed separately 
regarding their scale behaviour. Their appearance in the lower 
target resolution is predicted by scale change models. At last, 
all predicted objects are composed back to a complete object 
model, suitable for the extraction of that object in images of the 
lower target resolution. 
 
 

3. LINEAR SCALE-SPACE 

The reduction of spatial resolution is a matter of scale change. 
Due to the direct relationship between scale and spatial 
resolution in aerial images, the analysis may be undertaken in 
scale-space to examine a change in resolution. The scale-space 
analysis regarding the object parts of the semantic net is carried 
out deploying the concepts of linear scale-space theory, first 
introduced by [Witkin86]. A family of signals serves as multi-
scale representation which can be generated from the original 
signal dependent on only the scale parameter . With this 
single parameter any other level of scale can be described, 
while the original signal corresponds to σ=0. For the creation of 
another scale level, the original signal is convolved with the 
Gaussian kernel generated with the respective scale parameter 
σ. The one-dimensional Gaussian kernel is defined as follows: 
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The signal family derived from the Gaussian kernel fulfils the 
diffusion equation and has some unique characteristics: it is 
isotropic and homogeneous, i.e. no direction or location is 
preferred during scale change. Moreover, the causality criterion 
guarantees the non-enhancement of extrema and thus, every 
structure in larger scale must be invoked by a structure in the 
original signal. 
   
Objects may interfere with each other as scale becomes coarser. 
According to [Lindeberg94] there are four events in two-
dimensional discrete scale-space to be distinguished:  
 

- Annihilation : an object disappears 
- Merging : several objects merge into a single object 
- Creation : a new object is created 
- Split : a single object splits into two or more objects 
 

Creation and Split events are extremely rare and not relevant to 
parallel line-type objects. However, possible scale events of 
Annihilation and Merging may take place while scale changes 
from the original to the coarser target scale and therefore need 
to be considered in the scale change models, as these events 
influence the remaining number of object parts.  
The line-type objects (lines and stripes) subject to our analysis 
are exclusively elongated and parallel. The examination of the 
lines’ profiles is therefore sufficient and reduces the problem to 
one dimension. The object type “Stripe” can be regarded as a 
broad line and its behaviour in scale-space is comparable to that 
of lines. Therefore, in the remainder of this paper we will solely 
refer to lines. 
 
 

4. METHODOLOGY 

4.1 Decomposition of the Object Model 

All object parts are separated regarding their object type and 
interference with each other as scale changes to the target scale. 
For the lines appearing in road models, as a realistic profile a 
bar-shaped line with width w and contrast c is assumed, given 
by the following definition: 
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In the two-dimensional discrete space (which applies to digital 
images) the likely existence of interaction in the target scale 
between two adjacent objects can be determined by their 
distance and the width of the filter that is used for the 
generation of the image in coarser scale. As long as the filter 
width is smaller than the distance of the objects, no interaction 
will take place. When the filter width becomes larger than the 
object distance, the objects might influence each other’s 
appearance and therefore need to be grouped to be analyzed 
together regarding their scale behaviour. Hence, the case of 
interaction can easily be handled by a comparison of the filter 
width wF and the object distance d1/2. The geometric relation is 
depicted in Fig.2. 

wFwF

d1/2d1/2
Figure 2. Dependency of Interaction between two Objects from 

the Filter Width and Object Distance 
 
Based on these relations, all object parts of the original object 
model are sorted into single lines or groups of lines in the 
decomposition process (cf. Fig. 3). A decomposition module 
undertakes this task. 
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Figure 3. Decomposition of the Initial Object Model 
 

4.2 Scale Change Models 

For all object parts or groups that were sorted in the previous 
decomposition step, their appearance in the target scale is to be 
predicted by the scale change models. This task can in principal 
be solved in an analytical or empirical way. The scale change 
models we propose use a combination of these two possible 
solutions due to practical reasons. 
 
The decomposed object parts are at first investigated for 
possible scale events of Merging and Annihilation, as these 
events affect the type and number of the resulting object parts 
in the target scale.  
 
Merging 
 
In the case of a group of lines, the adjacent lines start at a 
certain scale, which is finer than the target scale, interacting 
with each other depending on their distance, as described 
above. Only interacting objects can be subject to the scale-space 
event Merging. Therefore, the possible case of Merging is only 
investigated for groups of lines. For a certain scale parameter 
σ there will be two distinct maxima enclosing a single 
minimum in the profile of the lines (cf. Fig.4). With larger σ the 
minimum will eventually disappear and there will remain only 
one single maximum, signalling the Merging of the adjacent 
lines. The evolution of Merging levels over scale space can be 
divided into three zones. In the first zone the objects are clearly 
distinctive and apart from each other. Between the point, where 
interaction between the objects starts, and the point of definite 
Merging with only a single maximum in the profile left, lies the 
“Domain of Uncertainty”. In this zone the adjacent lines have 
started influencing each other’s appearance, but did not merge 
completely yet. In the third and last zone, the Merging of both 
objects has entirely finished and the merged objects will behave 
from there on in scale space like a single object. The 
corresponding zones with their different Merging levels are also 
depicted in Fig.4 with an example for a line group profile and 
image for each zone. Although Fig. 4 depicts two adjacent lines 
with the same width and the same intensity, the algorithm 
developed for the scale change models is able to handle 
arbitrary width and contrast of the analyzed objects. 
 
The extraction of objects of the semantic net in images is 
carried out by feature extraction operators attached to the nodes 
of the object parts. The characteristics of the operator determine 
the separability of objects and therefore the number of 
remaining object parts in the lower scale net. In the first zone 
before interaction takes place, the operator will surely detect 
two separate lines, while in the last zone, after the definite 
Merging, any operator can only extract one single line. In the 
“Domain of Uncertainty”, the number of objects that are 
extracted is uncertain, but is dependent on the characteristics of 
the feature extraction operator. The operator will have its own 
usability threshold in scale space for the case of Merging (cf. 

Fig.4). This threshold can be found well by empirical analysis. 
The feature extraction operator, which is attached to the 
semantic net in order to extract the object of the particular 
object type, is applied to a synthetic image simulating the line 
group with its attributes in the target scale. The result of the 
operator applied to that synthetic image will express the 
operators’ ability to extract the lines of this particular group 
separately and therefore determine the number of objects in the 
resulting semantic net in the target scale. If no feature 
extraction operator is specified, the number of resulting objects 
in target scale will stay uncertain. Due to the empirical analysis, 
the algorithm is very flexible, since the user’s choice of the 
operator is free. The algorithm is also practicable, as there exist 
quite a few different line extraction operators and an analytical 
modelling of the scale behaviour of all relevant operators would 
exceed the realizable amount of work.  
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σ
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Figure 4. Merging Zones and Usability Threshold of the Feature 

Extraction Operator 
 
To determine whether the target scale falls into the “Domain of 
Uncertainty” the line profile in the target scale is tested using 
differential geometry. By calculating the point of interaction 
and testing for definite Merging by searching for the existence 
of a minimum, the zone, in which the target scale is located, can 
be found.  
 
For the case of interaction, a shift in line position of the 
resulting object can occur, if the Merging level is advanced 
enough. For the determination of the modified line position the 
result of the feature extraction operator, which is applied to the 
synthetic image simulating the target scale, is used. 
 
Annihilation 
 
According to [Steger98a] the responses of the convolution of 
the bar-shaped line profile fb(x) with width w and contrast c 
(notations as in section 4.1) with the Gaussian function g(x,σ) 
can be calculated by: 
 
 ),(*)(),,,( σσ xgxfcwxr bb =   (3) 

                        c( (x w) (x w))σ σ= Φ + − Φ −  (4) 
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In continuous space a single line will become wider and flatter 
when convolved with the Gaussian function, but the centre of 
the line will not disappear entirely as long as the scale 
parameter σ is less than infinity. 
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In discrete space, however, by convolving the line profile with 
increasingly large Gaussian kernels the line will become flatter 
and wider until the line disappears at a certain size of the 
Gaussian kernel. Annihilations in discrete space can be 
calculated numerically with the convolution integral of the 
function describing the bar shaped line profile and the Gaussian 
function with the corresponding scale parameter of the target 
scale σt . The normalised value of the convolution integral 
determines the grey value of the line centre displayed in a 
discrete pixel matrix of the resulting image: 
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As long as the response value stays larger than the smallest 
quantisation step of the displayed image, the object will still 
exist. Only when the grey value falls below that threshold, the 
object has disappeared. Thus, Annihilation has certainly 
occurred during scale reduction, if the following statement is 
true: 
 
 Qt rcwxr <= ),,,0( σ    (7)
   
where  smallest quantisation step (grey value of 1) :Qr
 
In this case, no feature extraction operator will be able to 
extract a line. But an operator can possibly fail to extract a line 
as well for small grey values depending on its parameters, 
mainly on the threshold values. For a small contrast the 
occurrence of Annihilation depends on the operator. A realistic 
threshold for a grey value from which a reliable feature 
extraction operator should be able to detect a line can be set 
according to the individual character of the operator extracting 
the objects. Here again, if the calculated response of the 
convolution integral is below this grey value limit, the operator 
is applied to a simulating synthetic image and the result of the 
operator is used to determine the scale event.  
 
The influence of noise may increase the grey value in the 
image. The threshold has therefore to be selected larger 
according to the expected amplitude of noise, if the influence of 
noise is to be included.  
 
Attributes 
 
The attributes for the nodes in the semantic net of the target 
scale can also be found analytically. The attribute “Grey Value” 
is given by the grey value of the hierarchically higher node plus 
the contrast of the line centre, which can be calculated by 
solving the convolution integrals for the object in the target 
scale.  
 
The attribute “Extent” is expressed by the width of the line, 
which is the distance of the edges delineating the line. The 
edges could be found by the inflection points of the line profile 
in the target scale. The gradient in the direction perpendicular to 
the line has its largest absolute value at the position of the edge. 
However, the analytical examination with differential geometry 
for this problem cannot be solved straight forward [Steger98b]. 
Therefore, the edge positions are in the adaptation algorithm 
determined by using the gradient image with the corresponding 
target scale smoothing factor σt of the simulated line or line 
group with its attributes.  

The value of the attribute “Periodicity” can only change for 
periodic lines (p<1). The periodicity can change, if the gap 
between the line parts is subject to interaction, which can be 
determined by a similar comparison of filter width and gap 
length as already used in the decomposition module. In the case 
of interaction, the change of gap length between the line parts is 
determined by a similar procedure like the line width from the 
gradient image. From this value, the proportion of the line 
length and the gap, i.e. the periodicity of the line, can be 
derived.  
 
4.3 Fusion of the Object Model 

At last, all the object parts, whose appearance in the target scale 
was predicted, have to be fused back to a complete semantic net 
describing the object in the target scale (cf. Fig.5) considering 
the scale events and new attributes. In the case of Annihilation, 
the affected nodes do not reappear in the target scale net, and all 
relations to other nodes will be deleted. For a Merging event the 
remaining number of objects is also reduced. 
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Figure 5. Fusion of the Object Model for Target Scale 
 
The hierarchical and spatial relations of the other nodes do not 
change to the original net. Only the distances of the objects 
dδLi,Lj in the target scale need to be adapted, if the object’s width 
has changed and the line position has shifted due to Merging: 
 

21211,12,1 2
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2
1 ttwwdd LLLLLL ttt

++Δ−Δ−= σσσ  (8) 

 
where    
 

:,LjLit
dσ  distance of line i and line j in target scale 

    distance of line i and line j in initial scale :,LjLid
:Lit

wσΔ   change of width (extent) of line i 

           translation of position of line i  :it
 
 

5. EXAMPLE FOR SCALE ADAPTATION 

In this section, results of the automatic adaptation process 
described in section 4 for a created object model for roads are 
presented exemplarily. The methodology is applied to the 
slightly simplified object model for a dual carriageway 
introduced in [Pakzad&Heller04] suitable for images of high 
resolution (~5cm), fulfilling the developed constraints for the 
creation of automatically adaptable semantic nets. The 
simplification is done due to representation reasons. The road 
model used in this example is depicted in (Fig.6). Note, that 
there is no extraction strategy explicitly contained in the model. 
 
To demonstrate the capability of the developed methodology, 
the automatic adaptation is carried out for one target scale. As 
target scale σt=25, corresponding to a spatial resolution of about 
2.6m, was chosen. The methods were implemented using the 
image processing system HALCON 7.0. 

CMRT05: Object Extraction for 3D City Models, Road Databases, and Traffic Monitoring - Concepts, Algorithms, and Evaluation
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

26



 

A synthetic image for the simulation of the object parts with its 
attributes and spatial relations in the original scale was created 
for the empirical analysis of the scale events and determination 
of the attributes (Fig.7). For the creation of this image 
information from the attributes of the nodes of the original 
semantic net were used. The contrast of the lines was deduced 
from the difference of the grey values of the road markings and 
the hierarchically higher node “Roadway” representing the road 
pavement. 
 

 
 

Figure 7. The Simulated Object Parts in the Original Scale 
 
In the decomposition phase every pair of adjacent line-type 
object parts in the lowest hierarchy level is investigated 
concerning interaction in the target scale. In case of interaction, 
the respective pair of lines is combined to a group of lines and 
those neighbouring lines are handled simultaneously and jointly 
in the scale change models. Otherwise, the object part is 
handled as a single line in the scale behaviour prediction phase.  
 

 
 

Figure 8. The Simulated Object Parts in the Target Scale σt=25 

For the scale parameter σt=25 
there is interaction between all 
neighbouring road markings in 
the target scale. Therefore, all 
object parts need to be 
combined to a group of lines 
formed by the 6 lines for the 
example net. The image 
depicting the object parts in 
target scale as illustrated in 
Fig.8 is derived from the 
synthetic image in Fig.7. 
 
For this scale, Merging can 
possibly take place. Although 
interaction occurs for all line 
pairs, only for one line pair 
Merging can definitely be 
approved. The two central road 
markings are so close to each 
other that they exhibit a 
Merging in zone 3, as described 
in section 4.2, for this scale 

change. There is only a single maximum in the smoothed 
profile of this line pair left. For all other objects the test for 
Merging yields the “Domain of Uncertainty” (zone 2). For all 
these line pairs there are still two maxima isolating a single 
minimum detectable in the synthetic image of the target scale. 
Here, the operator is applied to the image to determine whether 
the other lines can be extracted separately in the target scale. In 
our example, for the extraction of all object parts the same 
feature extraction operator, the Steger operator [Steger98a], is 
used, as all object parts are of line-type. We chose this operator 
because of its good performance and adaptability. The result 
shows no Merging of any of these line pairs with exception of 
the central line pair, since the operator is still able to detect all 
other lines separately. Note that the result depends strongly on 
the parameters set for the implementation of the operator, 
mainly on the hysteresis threshold values.  
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Figure 6. Concept Net for Dual Carriageway at Largest Scale, Generated for Images with 
Ground Pixel Sizes of ~5 cm/pel 

 
The possibility of Annihilations is detected by the calculation of 
the contrast in the target scale and if this result is in a range of 1 
and 15, i.e. in the Uncertainty Zone for Annihilations, which 
was set by us with the upper value of 15, the feature extraction 
operator is applied to the synthetic image of the target scale. 
Definite Annihilations predicted by the calculated contrast 
below the smallest quantisation step were not found by the 
analytical analysis, but some of the predicted grey values fall in 
the interval for possible Annihilations depending on the feature 
extraction operator assigned in the initial net. Hence, the line 
extraction operator is to be applied again to the target scale 
image with the respective combination of lines. From the result 
of the operator for this example, it can be derived that no 
Annihilations for the object parts have occurred.  

 
The extent of the resulting line and the contrast is determined 
according to section 4.2. The attribute “Extent” is calculated 
from the positions of the edges, which are determined 
empirically by searching for the maximal value of the line 
cross-section in the gradient image. For the merged object pair a 
shift of position has appeared in direction to each other. 
Generally, for two parallel lines with the same width and same 
contrast, the value of this shift equals half the distance of those 
two objects in the original scale. The periodicity stays 
unchanged, because the proportion of the gap and the line for 
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the lane markings of periodic type, determined from the 
position of the edges of the line parts, stays the same in this 
example. The gradient image for the synthetic image in target 
scale σt=25 is depicted in Fig.9. 
 

 
 

Figure 9. The Gradient Image of the Simulated Object Parts in 
Target Scale σt=25 

 
In the phase of the fusion to a new semantic net, the spatial 
relations with their attributes concerning the lines’ distances 
need to be adapted under consideration of the shift of position 
for the Merging pair. But the hierarchical relations and the 
spatial relations keep their type. The complete adapted semantic 
net for target scale σt = 25 is shown in Fig.9. 
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Figure 10. Adapted Semantic Net for the Target Scale σt = 25 
 
 

6. CONCLUSIONS 

In this paper a methodology for the automatic adaptation of 
semantic nets composed of line-type object parts to a coarser 
scale was presented. The method enables the prediction of the 
appearance of object parts in small scale using means of 
differential geometry, while following the principles of linear 
scale-space theory. In one example to coarser scale reduction 
the capability of the approach for the adaptation of a road 
model for a dual carriageway was demonstrated.  
 
The presented object model describes only a special type of 
roads. But, in future, the methodology is to be augmented to 
variable road models in order to be able to represent different 
road types with the same model. The methodology, so far, does 
incorporate parallel line-type features (lines and stripes) only. 
Intended is also the modelling of other objects on the road, such 
as vehicles, but also other types of road markings, such as zebra 
crossings and symbols. For these objects the scale-space 
behaviour of area-type objects and their interaction with line-
type features need to be examined. In addition, the 
implementation of this road model in the knowledge-based 
interpretation system GeoAIDA [Bückner02] is currently under 
progress and is expected to be finished soon. The developed 
methods for automatic scale-dependent adaptation are then to 

be verified by comparing the extraction results of the object 
models for high and low spatial resolution images. 
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