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ABSTRACT:  

Within a current research project remote sensing imagery in the range of 5m spatial resolution 
like SPOT and IKONOS are used to derive a Land Use – Land Cover (LULC) database, which is 
regularily updated. The revision process includes a concept for an object-based change detection 
attempt to efficiently update existing geo-spatial data which is described in this paper. The 
change information needed is derived from recent satellite images using automatic image proc-
essing and analysis. The conceptual idea includes both, manual (applying visual interpretation) 
and automatic image analysis steps resulting in a change layer, which highlights those areas or 
objects which are suspect for change and gives an indication of the direction of change.  

Different preprocessing steps have been implemented in order to avoid seasonal effects or 
changes due to different imaging conditions, such as atmospheric conditions, different sun an-
gles, etc.. However not always ideal imaging conditions can be found which result in change in-
dications, like shadows which becomes more dominant with increasing image resolution. Further 
pre-processing includes an automatic haze reduction and a shade correction using an appropriate 
DTM. Image coregistration and automatic cloud and shade-of-clouds detection is performed in 
the standard processing and thus will not be discussed here. However the attept presented uses 
additionally a priori knowledge of potential change for the specific object classes as input to con-
trol the subsequent image processing. 

The concept of the change detection starts by setting up a focusing step to selectively initiate the 
following steps only for those objects which are considered as changed. Thereafter all changed 
objects are classified either visually (manually) or by an automatic procedure depending on the 
type of change detected. The decision which classification procedure is used depends on a transi-
tion-probability-matrix which indicates for each class the degree of likelihood of possible and 
impossible class-transitions respectively in combination with a table of available classification 
operators which can be applied to validate the predicted change. The transition-probability-
matrix is generated manually and contains assumed possible changes from one class to another. 
If an automatic classification is indicated, the procedure then consists of two parts: First it is 
evaluated if the object’s geometry is changed or if the object is changed as a whole. If a change 
in geometry is detected, the object of concern has to be re-segmented and re-classified. If not, the 
object has to be re-classified only. If a manual classification is indicated, changes will be mapped 
respectively. At the end the results of the visual/manual classification and the automatic classifi-
cation are joined into one change layer, which holds for each changed object besides its change 



indication information, the objects’ historical classification and its new classification. This layer 
can then be directly used as input for updating existing GIS databases.  

This paper concentrates on the first part of the process chain, namely the focusing module. The 
focusing module has two tasks: First, objects have to be found in the GIS data which are affected 
by change. Second, the focusing module has to decide, whether the changed objects subse-
quently can be processed automatically or must be processed manually. 
Different pixel based change indicators are implemented based on a comparison of the input sat-
ellite data of two different dates. The decision if a change is apparent in many cases is dependant 
on the threshold or threshold function used. Approaches avoiding crisp thresholding and using 
fuzzy membership indicators at the desired object level will be discussed in this paper. The ob-
tained results of the proposed object-based change detection process chain are compared to 
change detection results obtained by completely visual interpretation. Finally all results are as-
sembled to a resultant change indication map. 

 
1 DECOVER BACKGROUND AND CONTEXT 

In the context of GMES (Global Monitoring for Environment and Security), a joint initiative of 
European Commission and European Space Agency, several services are developed to provide 
spatial information in support of the monitoring and reporting obligations of European directives 
(Overview at www.gmes.info, Example Water Framework Directive Dworak et al 2005). These 
implementations take place with strong participation of German authorities, researchers and service 
providers. Current developments at the European level support a new European-wide land cover 
data set (Core Service Land Monitoring). This data set must be seen as a European consensus and 
will solely contain thematic land cover data information supporting European reporting obligations. 
Its geometric and thematic resolution will only partly support national and regional needs. 
DeCOVER (Büscher, et al., 2007) will complement and extend these developments at the national 
and regional level for German users.  
A set of geo-information services has been designed to support national and regional users in their 
monitoring and reporting obligations. The DeCOVER service concept is divided into core and ad-
ditional services. The DeCOVER core service has two main focal points. First, the provision of na-
tional harmonized land cover data supports the German spatial data infrastructure (GDI-DE) in 
providing selected and validated geo-information and second, the development and application of 
change detection and interoperability methods to sustain existing data bases (namely ATKIS, CLC 
and BNTK). The project is co-funded by the Federal Ministry of Economics and Technology 
(BMWI) via the German Aerospace Center (DLR) and implemented by a consortium of 11 partners 
(see Table 1) each using its own expertise and specialized skills.  

 
Partner Expertise 

EFTAS GmbH Coordination, Agriculture 
GAF AG Validation, Forestry 
DELPHI IMM GmbH Interoperability, Link to INSPIRE 
IPI, LUH Innovation, Quality Control 
Infoterra GmbH Spec. Core Service, Economics, Link GMES 
RapidEye AG Implement. Process. Chain 
GDS GmbH Change Detection, SAR-Appl., Urban Areas 
Definiens AG SW support, Object Based Image Analysis. & Classific. of Water Areas 
RSS RemoteSensing Solutions GmbH Nature Landscape conservation 
Jena.Optronik GmbH SAR-Optical Co-Registration  
DLR Assoc. Partner Support. Urban, SAR-Proc. 



Table 1: Consortial Partners, Expertises and Skills. 
 
The overall structure of the project is shown in Fig. 1. In a coordinated attempt the processing (seg-
mentation & classification of the satellite data is being done according to rules and directives as 
demanded by European and National directives and policies. Much effort has been put into the con-
sideration of user requirements, which directly influence the service definition and design of the 
DeCOVER database and its production chain which has a strong feedback to user demands. The 
methods developed and strategies used are being implemented for the creation of the core service 
and have direct impact to the processing chain, quality control and data revision, considering at 
each stage the specification and standards as demanded by the interoperability task. An initial user 
requirement analysis has shown real synergies between (thematically) different user needs. Parallel 
to the user requirement analysis, potential of interoperability between the identified land cover 
classes has been analyzed in order to optimize synergies between existing data sets and newly col-
lected information. The currently tested object catalogue of the core-service includes 39 land cover 
(LC)/land use (LU) classes arranged in a hierarchical order. The detailed object catalogue and 
mapping guide can be found in the user portal of the DeCover homepage (see DeCOVER, 2008). 

 

 
Figure 1: DeCOVER Organisation 

There are three major areas of innovative research and development in the project, where method-
ologies are developed, namely 

- the area of semantic interoperability 
- change detection  
- data fusion of optical and SAR images 

In the following this paper will focus only to the second part, the change detection. 
 

2 THE CONCEPT OF DECOVER CHANGE DETECTION 
 

Change detection (CD) algorithms can be classified either into the comparison of classes following 
an interpretation at different dates (post-classification) or to image differencing (Singh, 1989). The 
former focuses on the comparative analyses of independently produced interpretations from differ-
ent times, the latter comprises simultaneous analysis of multi-temporal data. Because a second 
classification of the whole area results in costs, far too expensive for most of the users another pro-
cedure is envisaged here. CD in this case is regarded not as a change mapping but rather as a “noti-
fication/indication” of change with a possibility to indicate geometric and attributive change occur-
rences (i.e. class transition(s)). Therefore, the output of the DeCOVER change-detection procedure 
is a GIS-data-layer (change-layer), which holds the geometry of detected changes (change-objects) 
plus information about the assumed changes together with indications for the plausibility of these 
assumptions. Thus, it relates to objects as part of an existing database but compares two images at 
different dates on a per-pixel level, giving a pixel- and segment-based indication of LU/LC change. 
Methods for the comparison of images from different dates may be grouped into those which use 



univariate image differencing alone (Singh, 1989, Fung, 1990), methods to compare vegetation 
properties like NDVI or Tasseled Cap Tranformations (Richards, 1993), or change vector analysis 
(Lambin, 1994, Bruzzone et al, 2002). A comprehensive overview of existing pixel based tech-
niques, their advantages, disadvantages and resulting accuracies is given by Lu et al, 2004.  

 
Relating pixel-based indications to objects means developing an approach for integrating these in-
dications into an object based analysis. There are several ways to implement such a procedure as 
has been shown by different authors (Schöpfer, 2005, Busch et al., 2005 and Gerke et al., 2004). 
Because users of DeCOVER prefer some type of a “change notification”, which might also be use-
ful for their specific application, like updating of user operated databases (i.e. ATKIS) by proprie-
tary techniques an attempt as described in the following chapters has been made to set up and real-
ize a prototypical framework for CD. The framework is split into two main modules: a focusing 
module and a classification module. Both have been designed and realized in close cooperation be-
tween the company GeoData Solutions (GDS) and IPI. 

 
2.1 FOCUSING MODULE 

 
Within the CD-concept this module plays an important role, since it outlines potential changes by 
generating change-segments based upon per-pixel change indicators. Steps of pre-processing, nec-
essary to render the two images comparable in both the spatial and spectral domains are included 
(co-registration, radiometric normalization). Fig. 2 shows an outline of the focusing module. 

With respect to the spatial domain miss-
indications by displaced pixels in both im-
ages should be avoided. However, due to 
differences in illumination and view angles 
some  “change noise” is still unavoidable.  
In order to outline changes indicated by a 
per-pixel comparison of the images within 
the focusing module, an image segmenta-
tion based upon one or more pixel-based 
change-indicators is applied. This way, not 
the changes themselves, but borders be-
tween different change indication-values 
are generated, which consequently leads to 
a spatial differentiation of change- (high 
indicator values) and no- 
change-areas (low indicator values) in 
terms of changes in signal. These segments 
can be subsequently handled as image ob-
jects (of change) which consequently of-
fers the whole palette of object based im 
age analysis (see Blaschke, T. et al, 2008; 

Schöpfer, E., 2005). Although all of these advantages of segmenting indicated changes, the typical 
drawbacks of this approach cannot be denied: the generated image objects should ideally represent 
true change-objects, which means: each change should be represented by only one image-object 
(no over- or under-segmentation). This in turn leads to the problem of finding suitable segmenta-
tion algorithms and parameterizations.Last but not least, comparing for each change-object its class 
assignment in the mapping of the GIS-database (DeCOVER t0), the a-priori probabilities (Pt) of 
change for this class and the statistics of the underlying (indicator-) images leads for each segment 
to an estimation, whether the segment outlines a change and if so whether the type of change, i.e. 
the new class can be determined automatically or manually. Vice-versa, each object of the De-
COVER-t0-mapping can be marked as changed as soon as it covers or overlaps a change-object. 

 

 
Figure 2: The Focusing Module. 



2.2 SEGMENTATION AND CLASSIFICATION MODULE 
 

Within the classification module in principle the last step of the focusing module is recursively ap-
plied for each change-object until the most plausible change, i.e. the most plausible class at the  

second point of time (t1) can be determined. 
In the worst case no such evidence can be 
given except that a change in signal has been 
detected, but its class-assignment in t1 re-
mains unclear. In all other cases each 
change-object can be assigned to one or 
more classes with a certain degree of a-priori 
probability and an indicated type of change 
(e.g. increase or decrease of vegetation).  
Thereby, the a-priori probability is taken 
from a so-called transition-probability-
matrix (Pt-matrix), which will be explained 
in chapter 3.1 in more detail, whereas the in-
dicated type of change is given by the fuzzy-
combination and -analysis of indicators (ob-
ject-based statistics) and derived indicator-
classes (see chapter 3.3). Thus, the combined 
analysis of a-priori probabilities of transition 
(Pt) together with fuzzy-membership-
degrees (µ) to indicator-classes can be seen 
as a plausibility check of change, whereas 
the most plausible change (Pt’) can be un-

derstood as the most likely change. Referring to the envisaged content of the change-layer, for each 
change-object its most plausible change (Pt’), together with its indications (membership-degrees to 
indication-classes) can be determined (see Fig. 3). Thus, after applying some generalization rules to 
the outlined change-objects the output of the classification module is exactly the desired change-
layer. 
 
Regarding the three-level-hierarchy of the DeCOVER-nomenclature (see DeCOVER, 2008) it is 
obvious that some changes can only be assigned in the first or second class-level automatically, 
while others are even assignable in the third level. Therefore, as soon as for a detected change no 
clear assignment can be given, it has to be determined manually or left as not assignable. 

 
3. IMPLEMENTING THE CONCEPT 

 
As described in chapter 2, besides the delineation of changes, each object of the change layer shall 
be given one or more likely classes for t1 and some tangible terms of expressing the plausibility for 
each assumed t1-class. A very central point in determining the plausibility of a detected change is 
the consideration of the a-priori probability of a class to exchange from the current (t0) class as-
signment to another in t1. 

 
3.1 SETTING-UP THE PT-MATRIX 

 
Assuming that the DeCOVER class-hierarchy and its nomenclature applies at the point of time t1 
the same way, as it did in t0 and assuming that a change indicated by the comparison of the image 
data of t0 and t1 indicates a change of class assignment, then in principle such an indicated change 
simultaneously indicates a change from the class t0 to another out of the 38 possible classes at t1 at 
the indicated position. Since we know a-priori that some transitions or changes of an object are 
very unlikely or even impossible within a given time, e.g. such as from dense urban area to glacier 

 
Figure 3: Illustration of determining plausible changes 
(Pt’) for a segmented change-object by combining 
fuzzy-assignments to indication-classes (indication A to 
C) using different statistical parameters on a per-object 
basis for each indicator with a-priori probabilities of 
change (Pt). The segmentation is based upon one or 
more pixel-based change-indicators (I1 to In) 



within a period of two years, while others are relatively likely, e.g. from arable land to sparse ur-
ban area or construction site within the same period1, we can assume that for an indicated change 
if there was arable land before the probability of being sparse urban area or construction site at 
the indicated position now is higher than being a glacier there. Thus, in all subsequent processes of 
analysis we can skip such procedures, which tend to verify unlikely transitions and focus on those 
which verify the most probable ones. For the given example: if at the indicated position or for the 
indicated (change-) object a decrease of vegetation is indicated and there was arable land in t0, it is 
more likely that in t1 there is construction site or sparse urban area to be found than glacier. The 
likelihood or probability of transitions within classes can be recorded in an n x n matrix whereas n 
is the number of classes. However, for some transitions reliable values are hard to determine with-
out expert knowledge or analyzing historic mappings and statistics in detail. Thus, we decided to 
fill the Pt-matrix in collaboration with the experts of the DeCOVER consortium, whereas each Pt-
value has to be below 1.0 and greater than 0.0. Additionally, the sum of each Pt-vector has to give 
1.0 (normalization). Nevertheless, each Pt-value has to be seen as a heuristic value and does not 
claim to be 100% true. 

 
In order to make the Pt-matrix and its values more usable in the change analysis, first all Pt-vectors 
are sorted according to the highest Pt-value. Then the sorted matrix is split into one table contain-
ing the sorted t1-classes for each t0-class and another table containing the appropriate (sorted) Pt-
values. This way, each t0-class obtains an indexed vector of t1-classes, whereas index 1 indicates 
the most probable t1-class and index 38 indicates the less probable t1-class. This way, for each ob-
ject of the DeCOVER-t0-mapping its sorted Pt-vector and the indexed t1-classes can be assigned. 
 
3.2. CREATING CHANGE-OBJECTS BY SEGMENTING PER-PIXEL INDICATORS 
 
In order to keep the results based on the IKONOS- and SPOT5-data comparable, for all further in-
vestigations the IKONOS-1 (blue) and SPOT5-4 (swir) channels were skipped. As reported in Loh-
mann, P. et al., 2008 several pixel-based change indicators have been investigated regarding their 
suitability for a focusing module as described here. Therefore a comparison between the indicators 
and a manual change classification regarding the categories Urban and Vegetation has been under-
taken. The results were relatively poor due to several reasons. One of them is the “change-noise” 
which is mostly caused by different illumination situations. However, it turned out in this investiga-
tion, that the principal components (PC) generated out of the channels of t0 and t1 and the (normal-
ized) difference of corresponding channels (Diff_norm) show the best results. As the authors note, 
one of the reasons for the relative poor results lies in the reference used, which was a manual digi-
tizing of recognizable changes. Respectively, objects were compared to pixels. This means changes 
and “change-noise” was compared to a noise-free reference, which leads to an overestimation of 
false-positives and false-negatives on a per-pixel-comparison. 
 
In order to suppress “change-noise” and to obtain contiguous areas of change and no change re-
spectively, an image segmentation based upon the per-pixel change indicators appears to be rea-
sonable for the following reasons: 

• The border of each change-object is generated along steep changes of change-indication 
depending on the thresholds of the used algorithms. 

• Thus, the generated objects can be regarded as more or less homogeneous areas of change 
or no change given by the indicators used for delineation. 

• Shape, texture and pixel statistics of each object can be used to analyze and classify it at 
least as change- or no-change-object. 

 

                                                      
1 in Germany 



Since the so called multi-resolution segmentation (MRS) described by Baatz & Schäpe, 2000 uses 
criteria of homogeneity in color (here in change-indication) and shape it seams to be adequate to 
generate reasonable change-objects based on the per-pixel indicators. This means the criterion of 
color-homogeneity of the MRS is generated by the per-pixel-indicator values, which finally leads 
to objects of homogeneous change-indication. As reported by several authors (Meinel, G., et al, 
2001a; Meinel, G., et al, 2001b; Neubert & Meinel 2002a; Neubert & Meinel 2002b), a critical 
point of the MRS is its parameterization, i.e. to find a well balancing between over- and under-
segmentation of the desired objects. To overcome this drawback, an over-segmentation - i.e. too 
small neighboring objects with similar indication values - can be merged according to their mutual 
difference of indication values if the difference is below a defined threshold. Thus, the resulting 
change-objects are generated in a first step according to their homogeneity of indication values and 
shape and in a second step according to their similarity of indication values. 
 
Because of the results in Lohmann, P. et al., 2008 as a first mind it seams to be convincing to use 
the difference channels based upon the (normalized) green-, red- and nir-channel (Diff_norm) and 
the principal components of the t0 and t1 channels (PC) as input for the segmentation. However, 
regarding the information content in terms of change or no-change both indicators are relatively re-
dundant - especially PC2 und PC4 are highly correlated to the differences of the three spectral 
channels (see Table 2). Additionally, the interpretation of PCs – especially of temporal PCs is rela-
tively ambiguous so that the information content of each single PC is quite unclear. In the data pre-
sent, regarding table 2 and table 3 in conjunction, it is quite unclear, whether PC4 reflects the dif-
ference in the red and green channels or just the content of the red and green channel at t0 and t1, 
which are highly correlated at each point of time. Consequently, when using the PCs as input for an 
image-segmentation, the results are hardly comprehensible in contrast to those generated by the 
Diff_norm-channels only. 

Table 2: Correlation-coefficients between spectral differences and PCs of t0- and t1-channels for 
the test area Herne. 

Table 3: Correlation-coefficients between spectral channels of t0- and t1-channels for the test area 
Herne. 
 
A further aspect that has to be taken into account for the parameterization of segmentation algo-
rithms is their transferability to image data of different sensors. The main aspects which have to be 
considered here is the influence of spatial resolution and radiometry to the generated segments. For 
radiometrically comparable sensors the influence of the spatial resolution can be handled to a cer-
tain degree as demonstrated in Hofmann 2005. Although the IKONOS data used in this investiga-



tion has been resampled to a resolution of 5m the radiometry of IKONOS- and SPOT-data is dif-
ferent. Considering that for the segmentation of change-objects indicators are used, which are de-
rivatives of the original channels, the influence of different sensor characteristics to the segmenta-
tion is hardly predictable. Thus, we decided to parameterize the MRS and Spectral Difference 
Segmentation individually for each scene and having in mind, that for an operational change layer 
generation data of the to-be-come Rapid Eye sensor will be used. For both scenes we applied a se-
quence of MRS and Spectral Difference Segmentation as outlined in chapter 2. The principle algo-
rithm underlying the MRS are well described in Baatz & Schäpe, 2000 whereas the Spectral Dif-
ference Segmentation merges neighboring objects if the difference between their mean intensities 
(here: the channel differences of t0 and t1) is below a given threshold. In the context of temporal 
spectral differences, in accordance with Definiens, 2004 the formalism for the MRS is given as fol-
lows: let the homogeneity of shape for an object be defined by: 

 
whereas hcmpct (homogeneity in compactness) is defined by: 

 
and hsmooth (homogeneity in smoothness) is defined by: 

 
with:  

 
The indices Merge, Obj1 and Obj2 represent the resulting segment (Merge) and the segments to be 
merged (Obj1 and Obj2), whereas single pixels can be regarded as segments as well. The homoge-
neity of channel differences of t0 and t1 is explained by: 

 

 
with cdi as temporal difference of channel i analogous to the homogeneity of color as described in 
Definiens, 2004. 
Then, change-objects are generated, if their fusion value f is below the so-called Scale Parameter 
(Definiens, 2004) SP: 
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In our research we have 
weighted each channel differ-
ence equally, i.e. by 1.0 and 
the homogeneity of shape was 
in both scenes weighted by 
0.2 with a weighting of 
smoothness to compactness of 
0.5 each in each scene. How-
ever, due to the different ra-
diometric properties of IKO-
NOS and SPOT 5 the Scale 
Parameters were different 
(100 for IKONOS and 10 for 
SPOT 5). In both scenes the 
DeCOVER-t0-mapping was 
integrated in the segmentation 
as limiting factor, i.e.: exis-
tent DeCOVER-t0-borders 
must not be destroyed by any 
subsequent segmentation. 
Since for the IKONOS-data 
these parameters already led 

to well describable change-objects, at this stage no further merges using a Spectral Difference 
Segmentation were necessary. The SPOT-5 data however was at this stage already over-segmented 
(see Fig. 4). Therefore, the segments of the initial MRS were merged by applying a Spectral Dif-
ference Segmentation with a maximum spectral difference value of 10. This means neighboring 
segments with a mean difference of the temporal differences of the channels is below 10 are 
merged. 
 
In accordance to Definiens, 2007, the spectral difference between two segments is calculated as fol-
lows: the normalized weight wcd of channel i (here: a temporal channel difference cdi) of a segment 
is defined as: 

 
then, the spectral difference between two segments is defined as the sum of the weighted differ-
ences of the segments’ mean values in each channel: 

 
In order to be capable to describe the homogeneity of changes on the basis of properties of sub-
segments in each scene, a further segmentation level holding clearly smaller segments (over-
segmentation) was generated. Therefore, the IKONOS scene was sub-segmented applying the MRS 
with a scale parameter of 33 followed by a Spectral Difference Segmentation with a threshold of 
75. In the SPOT5-scene the segments of the MRS were aggregated by a Spectral Difference Seg-
mentation with a maximum allowed difference of 10 (see Fig. 4). 

 
3.3 DEFINING CLASSES OF CHANGE 

 

( )1 2
1

i Obj Obj

n

cd i i
i

sd wn abs cd cd
=

= ⋅ −∑

Figure 4: Different segmen-
tation results for the SPOT-
5data with MRS and Spectral 
Difference Segmentation su-
perimposed to the Diff_norm-
channels (R=nir, G=red, 
B=green). Bottom: De-
COVER t0 mapping outlines. 



 
After having generated segments on the basis of per-pixel indicators, it has to be determined 
whether a segment represents a change or not. Therefore, either further per-pixel indicators with 
their respective statistics within the generated segments (change-objects) can be used or new indi-
cators on a per-object basis can be generated. Whichever indicators are used, either absolute 
thresholds or clear expressions for a degree of change have to be found. The latter has its advantage 
in determine changes by expressions of like: “the more/less [indicator value(s)], the more/less an 
object is a change/no change”. This means in conjunction with the Pt-matrix the more/less certain 
indications are given, the more/less probable the given a-priori change is. 

 
3.3.1 DEFINITION OF CHANGE, NO-CHANGE AND DIFFERENT TYPES OF CHANGE 

 
As Table 2 and Table 3 (see chapter 2) already show, most of the changes indicated by the per-
pixel indicators are changes in vegetation, i.e. either an increase or decrease of the vegetations vi-
tality. Therefore, a change in vegetation is given, if a segment, which has been segmented on the 
basis of the Diff_norm-channels, shows discrepancies in the NDVIs calculated for t0 and t1. By 
calculating the ratio between the mean NDVIt1 and mean NDVIt0 of an object no change is given if 
the ratio is at 1.0. In terms of indicating a gradual change the more the ratio between the mean 
NDVIt1 and mean NDVIt0 of an object is unequal to 1.0 the more a change in vegetation is given. 
This expression can be depicted by a fuzzy membership function as displayed in Fig. 5, whereas 
here each NDVI has been normalized to a range of 0.0 to 1.0 before and as upper and lower bound 
for absolute membership (i.e. a definite change) 0.9 and 1.1 respectively were set. 

In terms of expressing gradual changes, the mem-
bership function in Fig. 5 can be interpreted as fol-
lows: if the ratio between NDVIt1 and NDVIt0 of 
an object is exactly 1.0 no change in vegetation is 
given. If it is below 0.9 or above 1.1 there is defi-
nitely a change in vegetation given. If the ratio is 
between 1.0 and 1.1 or 0.9 and 1.0 a gradual 
change of vegetation according to the degree of 
membership (µ) is given. This way, an increase or 
decrease in vegetation vitality can be described 
analogous so that a definite decrease is given with 
a ratio below 0.9 and vice versa for an increase. 
However, as demonstrated in Fig. 6, increases or 
decreases of the NDVI are given in agricultural ar-
eas the same way as for example changes from 
vegetated to non-vegetated areas and vice versa. 
As shown in Fig. 6 due to the relatively high dy-

namic of agricultural areas in the NDVI (or any other measurers sensitive for vegetation vitality), 
increases or decreases of the NDVI mostly occur in such areas. However, in the most cases these 
increases or decrease cannot be interpreted as changes of land use. On the other side, changes of 
vegetation in agricultural areas typically occur steadily and more or less equally distributed within 
a field2. Thus, in many cases such changes can be discriminated from other changes by regarding 
the homogeneity of change within a change area. To describe the  homogeneity of a changes re-
lated to its area, e.g. the differences of the standard deviations (Δσ) for each channel at t0 and t1 
within the change area can be analyzed. However, a disadvantage of this approach is to find suit-
able thresholds to determine whether a change is homogeneous or not, since the standard deviation  

                                                      
2 field in this context are areas with equal cultivation and not of equal land tenure are meant. 

 
Figure 5: Fuzzy membership function to 
express changes in the vitality of vegetation 
by the ratio of the NDVIs of t0 an t1. 
 



depends on the size of a segment. Thus, in order to evaluate the usability of Δσ we determined the 
thresholds of -20 respectively +20 empirically. Besides, these values approximately coincide with 
the overall σ/2 of the per object Δσ. 
When working with object hierarchies, as like with Definiens™ Developer, another approach to de-
fine the homogeneity or heterogeneity of change within an area is to analyze the relationship of the 
size of a change area to the number of sub-segments generated by an over-segmentation as de-
scribed in chapter 3.2. For this approach an indication can be given by the ratio of sub-segments to 
the number of pixels within the segment itself: assuming a segment containing k pixels and n sub-
segments whereas the segmentation to generate the sub-segments aggregates pixels, so that for the 
segment itself k ≥ n ≥ 1 is true. Then by dividing n by k a maximum of homogeneity is given if n = 
1 and k > 1. Since n / k converges to 0 if n ≠ k ≠ 1, a minimum of homogeneity is given if n = k and 
n > 1 and k > 1. Therefore, a linear membership function can be defined which expresses the de-
gree of homogeneity in change respectively. (see Table. 4). 

 
An approach, that it capable to combine an arbitrary number of properties to determine a degree of 
change is given by a modification of a procedure which has been used by Earth Satellite Corpora-
tion, named Cross-Correlation-Analysis (Koeln et al., 2000). In this method, class boundaries from 
the older thematic map separate image pixels into distinct class zones. Within these boundaries the 
pixels as of a new unsupervised classification are validated using a multivariate z-statistic. This 
idea has been adopted and slightly adjusted within this project using the DeCOVER_t0 mapping as 
reference (super-objects within the object-hierarchy) and computing the Z-Value for each sub-
object within the boundaries of a t0 mapping object: 

 
with: 

=
1tiv mean of property i of the sub-object at point of time t1. 

  
Figure 6: Classified change segments by 
decrease or increase of the NDVI 
superimposed to Diff_norm-channels 
(R=Diff_norm nir, G=Diff_norm red, 
B=Diff_norm green.) 

Figure 7: Z-values of sub-objects based upon 
the segments’ channel mean values of t0 and t1. 
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=
0tiμ mean of property i of the super-object at point of time t0. 
=

0tiσ standard deviation of property i of the super-object at point of time t0. 
 

In our research we have calculated the Z-values based upon the spectral channel mean values of 
sub- and super-segments (see Fig. 7) . 

With the described properties, which can be 
understood as object based indicators, it is 
possible to determine for each segment that 
has been created on the basis of per-pixel 
indicators (see chapter 3.2) whether it out-
lines a change at all and if so, its type of 
change. By defining each type of change as 
a fuzzy set, each object is a gradual member 
of one or more type-of-change classes (indi-
cation-classes).By defining sensible classes 
which reflect the type or kind of change 
comprehensible, it is then possible for each 
object to couple the degrees of membership 
µ to these classes with the class assignment 
of the t0-mapping and the Pt-values of the 
Pt-matrix to express the most likely (plausi-
ble) change. In our research, we defined the 
indication-classes as described in table 4. 

 
 
 

3.3.2 DEFINING PLAUSIBLE CHANGES ACCORDING TO THE DECOVER TERMINOLOGY 
 

For each change-object that is a fuzzy-member of at least one of the before defined change-
indication classes, its class-assignment to a DeCOVER class at t0 and its sorted and indexed Pt- 

  
Table 5a: Possible transitions from vegetated to non-
vegetated classes according to the DeCOVER 
nomenclature and respective indication-classes 
which indicate an appropriate change by µ of an 
object to these classes. 

Table 5b: Possible transitions from non-vegetated 
to vegetated classes according to the DeCOVER 
nomenclature and respective indication-classes 
which indicate an appropriate change by µ of an 
object to these classes. 

vector is given (see chapter 3.1). Hence, it is possible for each object, to determine a graduate plau-
sibility of change by combining the DeCOVER t0 class assignment, the a-priori Pt-values, the in-
dexed Pt-classes and the degree(s) of membership to one or more change-indication classes. There-
fore, we have defined classes in accordance to the DeCOVER nomenclature with possible 
transitions as illustrated in Table 5a and Table 5b. 
This way, for each object its change indication and possible transition can be evaluated (see Fig. 8 
and 9). 

 
Table 4: Descriptions of change-indication 
classes. 



As Fig. 8 shows, an object is only marked as changed if for none of the indication classes a degree 
of membership of µ = 0.0 is given. Additionally, it demonstrates the reliability of an indicated 
change by the overall membership degree given through the fuzzy-and operator. In the examples 
given, the result (left of Fig. 8) indicates a clear change, since µ to almost each of the indicator-
classes is 1.0. The other result demonstrates a slight change indication but to be a change from ag-
ricultural (VL) to a not vegetated class (BS, BI, BV, FA, FN), the indication n / k (not homogene-
ous by area and SO3 = 1.30) is very low. 

 
A reasonable way to combine the a-priori Pt-values with the degrees of membership in order to ob-
tain one value to indicate the plausibility of an indicated change is to calculate the mean of the 
product of the Pt-value of an indicated transition and the µ-values to the indicator-classes: 

with n = number of indication-classes and µi = degree of membership to indication class i. Fig. 9 
outlines the conjunction of a-priori Pt-values with membership-values to describe the transition of 
an object from agriculture (VL) to non-vegetated  (BS, BI, BV, FA, FN). The marked object in  

  
Fig. 8: Evaluation of change-indication for objects to be marked as change (left) (here from agriculture to 
not vegetated) and no change (right). 

Fig. 9 is the same as in Fig. 8 (left). Although the highest a-priori transition probabilities are given 
to VLg, VLs and VLk (grassland, other permanent crop and complex agricultural) the indication-
classes indicate a transition to non-vegetated. Thus, not the agricultural classes are given as the 
most probable (most plausible) classes but the most probable class out of the non-vegetation cate-
gory, in the example BSg (low density urban area).  
 
3.   CONCLUSIONS AND OUTLOOK 
 
The paper demonstrates the current stage of the development of automated procedures to outline 
potential changes and to evaluate them automatically as far as possible within the context of the 
DeCOVER project. Methods were outlined which are capable to detect and outline changes in 
multi-temporal image data on the basis of per-pixel and per-object change indications. These out-
lined changes are analyzed by means of methods of object based image analysis and fuzzy class as-
signments. It has been demonstrated, how the fuzzy-membership of a detected change to defined 
indication classes in conjunction with a-priori knowledge about transition probabilities can be 
combined in order to give evidence about a change in terms of the DeCOVER nomenclature.  
The current stage of  

                                                      
3 SO = sub-objects. 



these developments has to be seen as still pro-
totypical. Expected aspects that emerge to be-
come objects of further research in this field 
are: improving the reliability of a-priori transi-
tion probabilities by taking sound analyses of 
historic information and spatial context into 
account. Especially within an operative envi-
ronment it seems to be reasonable to adapt the 
current probabilities in accordance with 
changes already detected (“self-learning Pt-
matrix”). Spatial context has not been consid-
ered yet, although its influence on the prob-
ability of a transition cannot be denied. How-
ever, in order to focus on potential change-
areas and to give indications about what could 
have happened, the current status seams to be 
capable to reduce manual effort. Within the 
context of change segmentation on the basis of 
indicators, there is still demand about optimiz-
ing algorithms and their parameterization.  
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