
SPATIAL-TEMPORAL CONDITIONAL RANDOM FIELD BASED MODEL FOR CROP 

RECOGNITION IN TROPICAL REGIONS 

 

P. Achanccaray1, R. Q. Feitosa 1,2, F. Rottensteiner3, I. D. Sanches4, C. Heipke3 

 
1Department of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro, Brazil 

2Department of Computer Engineering, Rio de Janeiro State University, Brazil 
3Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany 

4Remote Sensing Division, National Institute for Space Research, Brazil 
 

ABSTRACT 

 

This work presents a spatio-temporal Conditional Random 

Field (CRF) based model for crop recognition from multi-

temporal remote sensing image sequences. The association 

potential at each image site is based on the class posterior 

probabilities computed by a Random Forest (RF) classifier 

given the features at the corresponding site. A contrast-

sensitive Potts model is used as a label smoothing method in 

the spatial domain, whereas the interactions in the temporal 

domain are modeled based on expert knowledge about the 

possible transitions between adjacent epochs. The CRF based 

model was tested for crop mapping in two subtropical areas 

based on a sequences of 9 Landsat and 14 Sentinel-1 images 

from Ipuã, São Paulo and Campo Verde, Mato Grosso, 

respectively, two municipalities in Brazil. The experiments 

showed significant improvements of the accumulated F1 

score per class against a mono-temporal CRF approach of up 

to 50% and 75% for a total of 8 and 11 classes using Optical 

and SAR images respectively. 

 

Index Terms— remote sensing, probabilistic graphical 

models, crop recognition, Landsat images, Sentinel-1 

 

1. INTRODUCTION 

  

Food security is a major concern worldwide. In order to 

assure that the food production meets the world population 

demands at all times, it is important to monitor agriculture 

activities at a regular basis. Such information can be derived 

from remote sensing data. With the use of multi-temporal 

image sequences, it is possible to deal with the data changes 

that occur as crops evolve through their phenological stages. 

Indeed, in recent years there has been an increasing interest 

in novel methods for agricultural land-cover mapping from 

multitemporal remote sensing image sequences (e.g., [1]). 

Conditional Random Field (CRF) approaches are 

particularly attractive for crop recognition due to their ability 

to model contextual information, both in the spatial and in the 

temporal domains. In spite of these benefits, just a few CRF-

based approaches have been proposed so far. Hoberg & 

Müller [2] used CRFs for spatio-temporal crop classification 

using site wise feature differences in two epochs to model 

temporal dynamics. In [3], a Dynamic Conditional Random 

Fields (DCRFs) approach is proposed to learn the 

phenological information from SAR images. However, all 

these works refer to agriculture in temperate regions. In the 

tropics, crop dynamics are more complicated: there are 

multiple agricultural practices (e.g. irrigation, non-tillage, 

crop rotation), multiple harvests per year are not uncommon, 

and phenological cycles of different crops are less coupled to 

each other than in temperate regions. 

This work aims at filling this gap and proposes a CRF 

based approach for crop recognition in sub-tropical areas. 

The proposed model is validated upon a sequence of Landsat 

and SAR images. We analyze how the classification results 

vary depending on the number and acquisition dates of 

available images. 

 

2. CONDITIONAL RANDOM FIELDS 

 

2.1. CRF for multitemporal image sequences 

 

CRF can be used to model a sequence of 𝑇 georeferenced 

multitemporal images as a graph  𝐺 = {𝑉, 𝐸} consisting of a 

set of nodes 𝑉 and edges 𝐸. Nodes correspond to sites (pixels 

or segments) of the images. Nodes and their spatial and 

temporal neighborhoods are illustrated in Figure 1. 

 

 

Figure 1. Graph structure comprising an image sequence of 

𝑇 = 3 epochs; a site (red) interacts with neighbors in the 

spatial domain (orange) and in the temporal domain (green). 

 



Let 𝒙 = {𝒙𝑖,𝑡}
(𝑖,𝑡)∈𝑉

 be the feature vectors extracted 

from the images, where 𝒙𝑖,𝑡 corresponds to the 𝑖-th 

geographical site in epoch 𝑡, for 𝑡 = 1, … 𝑇, and  𝑖 ∈ 𝑆, where 

𝑆 is the set of imaged geographical sites. Thus, nodes in 𝑉 are 

indexed by the geographical site 𝑖 and by the time 𝑡. Their 

corresponding labels are given by 𝒚 = {𝑦𝑖,𝑡}
(𝑖,𝑡)∈𝑉

, where 𝒚 

is similarly indexed by the nodes of 𝑉 and 𝑦𝑖,𝑡 belongs to a 

set of classes 𝐿 = [𝑙1, … , 𝑙𝑚].  
For conciseness, we avoid describing CRF in its full 

generality and choose a formulation closer to our final model. 

The posterior probability 𝑃(𝒚|𝒙) of the labels given the 

observations is modelled by a CRF that takes the form: 

 

𝑃(𝒚|𝒙) =
1

𝑍
[𝑒𝑥𝑝 (∑ ∑ 𝐴𝑡(𝑦𝑖,𝑡 , 𝒙𝑖,𝑡)

𝑖∈𝑆

𝑇

𝑡=1

+ 

(1) + ∑ ∑ ∑ 𝐼𝑆𝑡(𝑦𝑖,𝑡, 𝑦𝑗,𝑡, 𝒙𝑖,𝑡, 𝒙𝑗,𝑡)

𝑗∈𝑁𝑖𝑖∈𝑆

𝑇

𝑡=1

 

+ ∑ ∑ ∑ 𝐼𝑇𝑡𝑘(𝑦𝑖,𝑡, 𝑦𝑖,𝑘 , 𝒙𝑖,𝑡 , 𝒙𝑖,𝑘)

𝑘∈𝐶𝑡𝑖∈𝑆

𝑇−1

𝑡=1

)] 

 

where 𝑍, is a normalizing constant called the partition 

function, 𝐴𝑡(∙), 𝐼𝑆𝑡(∙) and 𝐼𝑇𝑡𝑘(∙) are the association, spatial 

interaction and the temporal interaction potentials, 

respectively. The association potential 𝐴𝑡(∙) measures how 

likely an image site (𝑖, 𝑡) ∈ 𝑉 takes a label 𝑦𝑖,𝑡 given the 

feature vector 𝒙𝑖,𝑡. The spatial interaction potential 𝐼𝑆𝑡(∙) 

determines how labels 𝑦𝑖,𝑡 and 𝑦𝑗,𝑡 at spatially neighboring 

sites 𝑖 and 𝑗 should interact given the features 𝒙𝑖,𝑡 and 𝒙𝑗,𝑡 at 

both sites in epoch 𝑡. 𝑁𝑖 is the spatial neighborhood of site 𝑖. 
The temporal interaction potential 𝐼𝑇𝑡𝑘(∙) models the 

interaction at one site 𝑖 in two adjacent epochs, namely 𝑡 and 

𝑘. 𝐶𝑡 denotes the set of epochs adjacent to 𝑡.  

 

2.2. Models for the Potentials 

 

The CRF model outlined in the previous section admits many 

variants depending on the functions chosen for the potentials. 

In the present work, the association potential is given by 

𝐴𝑡(𝑦𝑖,𝑡 , 𝒙𝑖,𝑡) = 𝑙𝑜𝑔𝑃(𝑦𝑖,𝑡|𝒙𝑖,𝑡), where 𝑃(𝑦𝑖,𝑡|𝒙𝑖,𝑡) is a local 

class conditional probability at image site (𝑖, 𝑡) given 𝒙𝑖,𝑡.  

The spatial interaction potential 𝐼𝑆𝑡(∙) , which measures 

the interaction between labels at spatially neighboring image 

sites, is modeled by the contrast-sensitive Potts model 

proposed in [4] and formulated in Equation 2.  

 

𝐼𝑆𝑡(𝑦𝑖,𝑡 , 𝑦𝑗,𝑡 , 𝒙𝑖,𝑡, 𝒙𝑗,𝑡) = 𝛿(𝑦𝑖
𝑡 = 𝑦𝑗

𝑡) [𝑝 + (1 − 𝑝)𝑒
−

𝑑𝑖𝑗
2

2𝜎2] (2) 

It is based on the dissimilarity given by the Euclidian 

distance 𝑑𝑖𝑗 = ‖𝒙𝑖,𝑡 − 𝒙𝑗,𝑡‖ of the feature vectors in the same 

epoch at spatially adjacent sites (𝑗 ∈ 𝑁𝑖), 𝜎2 refers to the 

mean value of squared feature distances 𝑑𝑖𝑗
2  computed during 

training, and 𝛿(∙) is an indicator function that returns 1 or 0 

if its argument is true or false, respectively. The relative 

influence of the data-dependent and data-independent terms 

is controlled by parameter 𝑝 ∈ [0,1] in Equation 2.  

The temporal interaction potential was modeled by 

Equation 3, where we dropped the dependency on the data by 

considering a transition matrix 𝑇𝑀𝑡𝑘 which is constant 

between epochs 𝑡 and 𝑘. This transition matrix could be 

estimated by training data; however, it would be necessary to 

have many samples of each possible transitions, which is not 

our case. Thus, 𝑇𝑀𝑡𝑘 is based on expert knowledge 

containing “1” for possible class transitions between adjacent 

epochs and “0” otherwise. 

 

𝐼𝑇𝑡𝑘(𝑦𝑖,𝑡 , 𝑦𝑖,𝑘 , 𝒙𝑖,𝑡, 𝒙𝑖,𝑘) = 𝐼𝑇𝑡𝑘(𝑦𝑖,𝑡 , 𝑦𝑖,𝑘) = 𝑇𝑀𝑡𝑘 (3) 

 

3. EXPERIMENTAL ANALYSIS 

 
3.1. Datasets 

 

3.1.1. Ipuã 

 

Ipuã municipality in the state of São Paulo, Brazil has an 

extension of 465 km2 approximately (see Figure 2a). A 

sequence of 9 Landsat scenes, from August 2000 to July 

2001, was taken, from either Landsat-5 (TM) or Landsat-7 

(ETM+) with 30 m spatial resolution, each image having 

approximately 500K pixels. The reference for each epoch 

was produced manually by a human expert.  

The most common crops are Sugarcane, Soybeans and 

Maize. In our study, we also included two classes related to 

no crops:  Prepared Soil, which corresponds to ploughing and 

soil grooming phases, and Post-Harvest, characterized by 

vegetation residues lying on the ground. To complete the set 

of classes, Pasture, Riparian Forest and Others were also 

included in our model. The last one represents minor crops as 

well as rivers and urban areas. Distribution of samples per 

class could be found in Figure 3a. 

 

3.1.2. Campo Verde 

 

Campo Verde municipality in the state of Mato Grosso, 

Brazil has an extension of 4782 km2 approximately (see 

Figure 2b). A total of 27 Level 1 Interferometric Wide Swath 

(IWS) mode Ground Range Detected (GRD) Sentinel-1 

products in VV and VH polarizations were used to cover all 

the Campo Verde municipality from October 2015 to July 

2016 resulting in a sequence of 14 images, with almost two 

images per month. These images were geometrically 

corrected using a Range Doppler terrain correction with a 

Digital Elevation Model from SRTM, radiometrically 

calibrated to a backscatter coefficient (sigma nought (𝜎0) in 

our case), converted to db, co-registered using a RapidEye 

mosaic (5 m spatial resolution) and georeferenced to UTM 

projection Zone 21S and Datum WGS84. Distribution of 

samples per class could be found in Figure 3b. 



 

The main crops found in this area are: Soybean, Maize 

and Cotton. Also, there are some minor crops as Beans, 

Sorghum and non-commercial crops (NCC) such as Millet, 

Brachiaria and Crotalaria. Other classes considered are 

Pasture, Eucalyptus, Soil, Turfgrass and Cerrado. 

 

3.2. Experimental Protocol 

 

The pixel-wise feature vectors 𝒙𝑖,𝑡 consisted of the spectral 

values directly observed at the image site 𝒙𝑖,𝑡 and the NDVI 

derived from the spectral values for the Landsat Images. For 

the Sentinel-1 images, texture attributes (mean, variance, 

correlation and homogeneity) were extracted from the Gray 

Level Co-occurrence Matrix (GLCM) in 3 × 3 windows in 4 

directions (0, 45, 90 and 135 degrees). 

The optimal label configuration 𝒚, the one that 

maximizes the posterior probability in Equation 1, was 

computed using Loopy Belief Propagation (LBP) [5], which 

produces approximate solutions for graphs with cycles. 

For each dataset, we used approximately 20% of the data 

for training and 80% for testing. Two sequences were 

extracted from each dataset. For Ipuã, a sequence from 

February to April 2001 and another one from August 2000 to 

July 2001 were analyzed due to the presence of Maize and 

Sugarcane, respectively. In Campo Verde, sequences from 

November 2015 to February 2016 and from March 2016 to 

July 2016 were considered to analyze the accuracy obtained 

for Soybean and Maize & Cotton respectively. In each 

sequence, we measured the accuracy on the last epoch of the 

sequence, which was increased by adding successively 

images of earlier epochs.  For a sequence length equal to one, 

only the association and spatial interaction potentials are 

considered, which corresponds to a mono-temporal CRF. As 

accuracy metric, the F1 score was selected, which is the 

harmonic mean between Precision and Recall. 

 

4. RESULTS AND DISCUSSION 

 

The results obtained in our experiments are summarized in 

Figure 3, which shows the accumulated F1 score per class for 

each sequence in both datasets, Ipuã (Figure 3c and 3e) and 

Campo Verde (Figure 3d and 3f), always classifying the last 

image in the sequence. 

In both sequences for Ipuã, there were improvements in 

the accumulated F1 score, approximately 30% in the first 

sequence and 50% in the second one, as more images were 

considered, especially for Maize in the first sequence and for 

Sugarcane in both sequences. Sugarcane´s F1 score 

increases regularly until a sequence length of 6. After that, 

there was no significant improvement. This is related to the 

gap in the acquisition dates in the sequence (from October 

2000 to February 2001) and the decrease in the number of 

Sugarcane samples according to the class distribution per 

epoch (see Figure 3a). 

Similarly, in both sequences for Campo Verde, there 

were improvements of 50% and 90% in the accumulated F1 

score for the first and second sequence respectively. Some 

classes present a very low F1 score, mainly because same 

classes are under-presented in the dataset. Though over- and 

under-sampling has been applied to compensate for this 

problem, the accuracies for these classes remained low. 

 

5. CONCLUSIONS 

 

This work presented a spatio-temporal Conditional Random 

Field approach for crop recognition. The model was 

evaluated on two datasets comprising 9 Landsat images and 

14 Sentinel-1 images of sub-tropical regions in Brazil. The 

inclusion of the temporal interaction led to an increase of up 

to 50% and 90% in accumulated F1 score compared to mono-

temporal spatial context-based classification for Optical and 

SAR images respectively, demonstrating the effectiveness of 

considering the temporal context. 

 

  
(a) (b) 

Figure 2. (a) Ipuã municipality in São Paulo state and (b) Campo Verde municipality in Mato Grosso state. 
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Figure 3. Distribution of samples per class per epoch for both datasets, Ipuã (a) and Campo Verde (b), F1 score accumulated 

per class obtained for sequences considered in Ipuã (c) and (e) and for Campo Verde (d) and (f). 


