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Abstract— The automated extraction of topographic objects has 
been on the research agenda in the Photogrammetry and 
Computer Vision communities for more than two decades. 
Considerable progress has been achieved, though up to now there 
are hardly any commercial products that have been accepted by 
the market. Recent developments in the field of sensor 
technology, along with advanced techniques for data processing, 
have increased the potential of automated object extraction. This 
paper gives an overview on the status and further projects of 
automated object extraction, focusing on buildings and roads and 
on the application of high-resolution optical data. 

I.  INTRODUCTION  
The automated extraction of topographic objects such as 

buildings and roads from remotely sensed data has been an 
active field of research in photogrammetry and remote sensing 
for quite some time. Initially, the research focus was on the 
automatic classification of satellite images into relative broad 
classes such as ‘settlement’ and ‘farm land’ for applications 
such as topographic mapping at a regional scale. Since the late 
1980s, progress achieved in sensor technology, especially the 
transition from analytical to digital photogrammetry and the 
advent of new sensors such as digital cameras or laser scanners, 
along with the application and adaptation of methodology 
originally developed in the computer vision community, have 
rendered possible the detection and 3-D reconstruction of 
individual objects at a relatively high level of detail. The 
demand for automated techniques for object extraction is 
driven by the urge to reduce the costs of primary data 
acquisition and continuous update of topographic data bases 
and 3-D city models, which have found wide-spread 
applications. 

It is the goal of this paper to give an overview on the 
current state and future prospects for automatic extraction of 
buildings and roads from optical sensors. The paper will be 
restricted to methods that can detect and/or reconstruct 
individual objects, which implies that the sensor resolution has 
to be in the order of 1 m or better. The presentation will be 
structured by the type of object that is to be extracted. That is, 
Section II deals with building extraction techniques, whereas 
Section III is dedicated to the extraction of roads. A summary 
is given in Section IV.  

II. BUILDING EXTRACTION 
In this paper, the term building extraction is understood as 

the automated 3-D reconstruction of CAD models that 
represent buildings. In this context, it is important to consider 
the level of detail (LOD) that is to be achieved by the 
reconstructed CAD models. The CityGML standard, which 
was recently accepted by the Open Geospatial Consortium as a 
standard for the representation, storage and exchange of virtual 
3-D city and landscape models [1], distinguishes five LODs: 

1. LOD 0 – Regional model: A 2.5-D Digital Terrain 
Model (DTM) over which an image or a map is 
draped. 

2. LOD 1 – Block model without roof structures: The 
buildings are modeled by vertical prisms with 
horizontal roof planes.  

3. LOD 2 – Model with differentiated roof structures.  

4. LOD 3 – Architectural model with detailed wall 
and roof structures, balconies, bays, etc.  

5. LOD 4 – Architectural models including interior 
structure such as rooms and furniture.  

Disregarding LOD 0 (which does not contain individual 
buildings), building extraction techniques based on aerial 
sensors can only deliver models corresponding to LOD 1 or 
LOD 2. If terrestrial sensors are used, LOD 3 can be achieved. 
LOD 4 requires primary data to be acquired in-door, which is 
not considered in this paper. 

The 3-D reconstruction of buildings requires quite complex 
operations, so that it is reasonable to restrict the search space 
before these algorithms are applied. This is the reason why 
building extraction is usually carried out in two steps, e.g. [2]:  

1. Building Detection requires the recognition of 
buildings in the sensor data. It is essentially a 
classification task and delivers regions of interest 
for building reconstruction. If building extraction 
aims at the generation of a 2-D building layer in a 
topographic data base or at 3-D models 
corresponding to LOD 1, building detection may 
include the precise location of the building 
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outlines, from which prismatic models can be 
derived easily if information of the relative heights 
of the buildings relative to the ground is available.  

2. Building Reconstruction is the generation of 3-D 
CAD models corresponding to LOD 2 or LOD 3 
from sensor data. It is carried out based on 
previously detected regions of interest, which can 
be replaced by existing building outlines from a 
topographic data base [3] or by seed structures 
provided by a user [4].   

In many industrialized countries, digital databases 
containing a building layer and / or 3-D city models do already 
exist. Keeping such a data base up-to-date has been estimated 
to require up to 40% of the costs of the initial data acquisition 
[5]. In such a situation it is not desirable having to acquire 
building data again from scratch. This is why there has been an 
additional focus on change detection for map updating [5], [6]. 
In the subsequent sections, the topics introduced here will be 
addressed in more detail.  

A. Recognition of Buildings and Building Outline Detection 
1) Data used for building detection: In the early work on 

building extraction, scanned aerial images were largely used 
for that purpose. The primary information content of such 
images is a color vector for each pixel. Scanned aerial color 
images were restricted to three components, either RGB or 
color infrared (CIR). CIR imagery was found to be better 
suited for classification due to its inherent potential for 
detecting vegetation [7]. The fact that color-based 
segmentation is influenced by illumination conditions and 
shadows [7], [8], [9], and because roofs may have a poor 
contrast with the background, alternatives to using only the 
color information were searched for at an early stage. Man-
made objects are characterized by regular structures such as 
parallel or orthogonal straight lines. As these lines can be well 
extracted in digital images, extraction and grouping of straight 
lines according to some geometrical criteria has been used for 
detecting buildings [10]. It was also noted at an early stage that 
the 3-D information implicitly contained in aerial stereo images 
gives a very important cue for detecting the locations of 
buildings, because the building parts that are most consistently 
visible to aerial sensors (i.e., the roofs) are higher than the 
terrain surrounding a building. That is, Digital Surface Models 
(DSMs) generated from stereo imagery by image matching 
techniques soon became an important [7] if not the sole [11] 
cue for building detection. If a DTM is available, the height 
differences between the DSM and the DTM give direct access 
to the heights of objects above the terrain. A DSM also 
provides information about local surface properties via an 
analysis of the derivatives of the DSM: the first derivatives 
give access to the slope of potential roof surfaces and (via local 
maxima) to building outlines [12]. The second derivatives are 
more commonly used for building detection. As they are 
closely related to the local curvature of the DSM, they can be 
used to derive measures for surface roughness. Assuming that 
roofs mostly consist of planar or at least smooth surfaces, an 
analysis of surface roughness can help to separate buildings 
from trees. Various parameters have been used in the past to 

characterize surface roughness, e.g. the output of a Laplace 
filter applied to the DSM [12], [13], local curvature [13], or the 
local variance of the surface normal vectors [14].  

The advent of Lidar brought about an improvement of the 
DSM quality compared to DSMs from matching techniques 
existing at that time. The main improvement is that by 
delivering 3-D points directly Lidar avoids the smoothing 
effects inherent to ‘traditional’ matching techniques. As a 
consequence, surface roughness can become more relevant for 
classification. Furthermore, Lidar can deliver points on the 
terrain in vegetated areas, which helps to generate better DTMs 
even in densely vegetated or built-up areas [15]. As an 
additional classification cue, the height differences between the 
first and the last pulse received by the Lidar sensor can be used 
to separate trees from buildings [16]. Finally, Lidar intensities, 
though relatively noisy compared to image data, can also be 
exploited [17]. Lidar promises a high degree of automation in 
building detection and has thus become a major data source for 
that purpose [2], [12], [13], [18], [19]. 

Comparing the two data sources used most frequently for 
automatic building detection, i.e. Lidar and aerial imagery, it 
has been noted that they have complementary properties with 
respect to the problem to be solved, which suggests that much 
can be gained from a fusion of these data sources [20], [21], 
[22]. Lidar directly delivers 3-D points, so that the 
correspondence problem needs not be solved, and it gives a 
more direct access to surface properties. Due to the smaller 
opening angles of Lidar sensors, occlusion not as big a problem 
as with aerial imagery. There are no cast shadows, because 
Lidar is an active sensor technique. Finally, its potential for 
penetrating vegetation helps in distinguishing trees from 
buildings. On the other hand, the spectral content of Lidar data 
is very limited, and it gives only a poor representation of abrupt 
height changes, which leads to a poor definition of building 
outlines in Lidar data. Edges can be extracted relatively well 
from images, so that a better representation of building outlines 
is to be expected in image data. Finally, aerial imagery usually 
has a higher resolution, potentially in the order of a few 
centimeters, than Lidar, which is usually captured with an 
average point distance in the order of 0.5 m - 1 m. It has been 
shown that the fusion of Lidar data and multi-spectral 
information from aerial images can help to improve the 
classification accuracy for buildings smaller than 100 m2 by 
10%-15% [22]. Recent developments in sensor technology, 
namely the development of digital aerial cameras and of full-
waveform Lidar systems, have improved the prospects of 
building detection from airborne sensor data considerably, 
which will be discussed below.  

In addition to aerial images, high-resolution satellite 
imagery have become available as a source for mapping 
applications. However, up to now the resolution of these 
images has not been good enough for fully automatic building 
detection. Typically, semi-automatic approaches are favored 
[23]. Fully automatic methods seem to be capable of delivering 
large building structures [24], but suffer from problems related 
to the DSM quality [25]. This situation may be improved by 
new satellites having a resolution better than 0.5 m such as 
GeoEye-1.   
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2) Classification techniques for building detection: A great 
variety of algorithms for building detection have been 
developed, making use of the data sources and classification 
cues described above. Apart from algorithms that are based on 
extracting and grouping image edges [10], building detection is 
usually carried out in two steps, namely an initial segmentation 
and a classification of the initial segments.  

If single images are used as input data, the initial 
segmentation can be based on color [9] or on adaptive multi-
scale segmenters [8]. Unsupervised classification techniques, 
e.g. the ISODATA [21] or the K-means algorithm [26] have 
been used for segmentation, too. From a DSM, segments can 
be generated in by detecting blobs [7], by applying a height 
threshold to the height difference between a DSM and an 
approximate DTM generated by morphologic filtering, [11] or 
by applying hydrological tools of a raster GIS [27]. Such 
approaches have problems separating buildings from trees that 
are very close to the buildings. In order to overcome these 
problems, many techniques apply classifiers using local 
features to obtain the initial segmentation. In this case, a great 
variety of classification techniques known from remote sensing 
and pattern recognition have been applied. These classification 
algorithms can be categorized into two main groups, namely 
model-based algorithms and probabilistic algorithms. Model-
based algorithms often apply rules derived from knowledge 
about buildings such as minimum height, minimum/maximum 
roof slope and curvature in order to successively eliminate non-
building areas by applying thresholds to the respective features 
[2], [11]. In order to obtain a solution that is not so directly 
dependent on the selection of thresholds, fuzzy rules have also 
been applied. In this case, the fuzzy membership functions are 
designed to reflect model knowledge about buildings [13], 
[18]. Among the probabilistic classification methods used for 
building detection are maximum likelihood classification [12], 
Bayesian classification [14], and classification based on the 
Dempster-Shafer theory of evidence [22], [26]. In this context, 
the statistical properties of the features can be obtained by 
training [12] or from model knowledge about buildings [14], 
[22]. Techniques from machine learning such as Support 
Vector Machines [28] also require training areas for 
classification. Training implies manual intervention, which 
restricts the degree of automation of an approach. On the other 
hand, taking decision based on training data may be more 
robust than selecting thresholds in an arbitrary way, especially 
for features related to surface roughness, where the actual 
feature values do not have an intuitive interpretation.  

The results of the initial segmentation are usually post-
processed in order to remove small errors, e.g. by 
morphological operators. After that, a classification of these 
segments is carried out, using similar features as for the initial 
segmentation. Additionally, shape features such as minimum 
size or ‘roundness’ can be applied. The techniques used for 
segment classification are essentially the same as those 
described previously in the context of initial classification. If 
single images are used, the lack of 3-D information makes it 
difficult to distinguish some roof planes from roads, because 
they may have similar radiometric properties. In this case, 
context can be used to support the classification. In aerial 
images, shadows reflect the third dimension of buildings and 

are, thus, often used for classification [8], [9]. Roads, which 
usually connect buildings or are aligned with them, can also be 
used as additional context objects [9].  

The quality of the extraction results that can be achieved 
from Lidar and image data having a resolution as described 
above (i.e., DSMs with a resolution of 0.5 m – 1 m, aerial 
imagery with a resolution of about 0.1 m) has been well 
studied, e.g. [5], [13], [22]. Using these data, buildings having 
an area larger than about 100 m2 can be extracted very reliably, 
with completeness and correctness rates [29] of 90% or better. 
The classification results deteriorate from that point; buildings 
smaller than 30 m2 are hardly detectable from such data. A 
minimum resolution of 1.5 m has been found to be necessary 
for a successful detection of buildings [22].  

3) Recent developments and future prospects: What has 
been said so far represents the current status of building 
detection from sensor data that are acquired using technology 
currently in use in many private companies and government 
agencies. However, the prospects for automated object 
extraction have been improved by recent developments in 
sensor technology, in combination with the development of 
new tools for data processing.  

Firstly, aerial film cameras are being replaced by digital 
cameras [30], so that the bottleneck caused by the scanning of 
films that hampered the productivity of digital photogrammetry 
is about to disappear. These new cameras can deliver multi-
spectral images at a dynamic range of 11 bit. The advent of 
digital aerial cameras has made the acquisition of multiple-
overlap aerial imagery economically feasible, which has had a 
considerable impact on the prospects of automated object 
extraction from aerial image data in urban areas: the traditional 
problems of aerial imagery, namely occlusions and different 
object appearance due to perspective distortions, become less 
problematic as baselines become shorter and as there is also a 
60% side lap of aerial photography. In addition, multiple views 
add redundancy to the object extraction task, which helps to 
make automated procedures more robust [28].  

The impact of the new digital aerial cameras is further 
increased by the development of improved image matching 
techniques in the computer vision community, e.g. [31]. These 
methods apply global or semi-global matching techniques that 
can provide DSMs without smoothed object edges, at a 
resolution identical to the image resolution. If multiple overlap 
images are used, these DSMs can be generated nearly without 
occluded areas, at a height accuracy in the order of magnitude 
of the image resolution [32]. 

In the field of Lidar, the progress in sensor technology has 
rendered possible the acquisition of very dense point clouds 
along with the full waveform of the reflected signal [33]. 
Features extracted from the full waveform data can support the 
discrimination of buildings and trees [34], whereas using very 
high resolution data, e.g. acquired from helicopters [35], can 
help to improve the classification accuracy.   

Thus, using new developments in the field of sensor 
technology, it should be feasible to detect small buildings 
reliably, which can help to make fully automatic building 
detection operational for areas such as the updating of cadastral 
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maps. However, this cannot simply be achieved by just 
applying the ‘old’ algorithms to better data. With the new 
sensors, it becomes more and more important to consider the  
3-D structure of the scene and the imaging process in the 
evaluation. For instance, in order to overcome the problem of 
occlusions not only in DSM generation, classification can be 
applied independently to each of the multiple-overlap images, 
and these individual classification results can be merged in 
object space together with additional cues derived from the 
DSM [28]. In the context of Lidar, very dense point clouds are 
often generated by flying over the area of interest several times. 
In this case, a 2.5-D perspective on data processing will no 
longer suffice. For instance, in multiple-overlap Lidar data, the 
sensor will collect points both on and underneath roof 
overhangs. In a 2.5-D processing environment this creates the 
impression of a high surface roughness and will affect the 
classification in a negative way. On the other hand, a strictly  
3-D view on processing may even be able to detect walls both 
in image [36] and Lidar data [35]. In this way, an old problem 
of building detection using aerial sensors may become 
solvable: in cadastral data bases, building outlines are usually 
defined as the intersections of the walls with the ground, which 
has been unobservable in a systematic way up to now.  

The fusion of data from different sensors still remains an 
important research topic, as it may especially increase the 
degree of automation of automated object detection. Whether 
this makes sense from an economical perspective still needs to 
be investigated: If the increase in productivity outweighs the 
additional costs for primary data acquisition, data fusion will 
be successful. The new developments in sensor technology 
have mitigated some of the problems of both aerial images and 
Lidar data, but very high resolution Lidar data remain more 
expensive than image data of the same resolution while still 
having advantages in scenes containing trees.  

From the point of view of data processing, it may be worth 
while to find the transition from focusing on the detection of 
one object class only to more complex scene models that also 
consider the mutual interactions of objects of a different class. 
Even though context has been considered for a while in object 
detection [8], [9], new techniques such as Conditional Random 
Fields (CRF) [37] have become valuable tools for modeling 
context in a statistically sound way. In [37], buildings are 
detected in arbitrary terrestrial images with a relatively high 
success rate given the relatively ‘complicated’ appearance of 
the buildings in these images. Combining the domain-specific 
knowledge of the photogrammetric community with these new 
and statistically sound tools could be a good way to overcome 
the problems of existing object detection techniques. 

Apart from using new data and developing new algorithms 
for building detection, research also has to investigate the 
quality of the results of such algorithms. There has not yet been 
a comparison of building extraction results using data from the 
new sensors, so that their full potential remains to be evaluated.  

B. 3-D Reconstruction of Buildings 
1) Data used for building reconstruction: Essentially, the 

same data sources that are used for building detection are also 
used for building reconstruction. In this context it has to be 

noted that algorithms that are based on images tend to favor 
processing based on the extraction, 3-D reconstruction, and 
grouping of edges, whereas algorithms based on Lidar data aim 
at a reconstruction of buildings by extracting and grouping 
planar patches corresponding to roof planes. In order to obtain 
models corresponding to LOD 3, terrestrial data sources have 
to be incorporated into the analysis, e.g. terrestrial laser scanner 
(TLS) data [38] or terrestrial imagery [39], [40].  

2) Techniques for building reconstruction: Two different 
strategies have been applied for generating CAD models of 
buildings: 

1. Top-down strategy: The ground plans of the 
building outlines are segmented into rectangles, 
and parametric models representing common 
building shapes such as saddleback roof or hip-
roof buildings are fitted to the data, whereby the 
model achieving the best fit is accepted [12], [41]. 

2. Bottom-up strategy: The model is successively 
assembled from evidence found in the data, 
following some generic rules, e.g. assuming that 
the reconstructed building has to be a polyhedron 
[42], [43], [44], [45], [46].  

Fitting primitives to data involves matching the wire-frame 
of the primitive to edges extracted from the digital images [47]. 
Since the results depend on the rectangular segmentation of the 
ground plans, such techniques are preferably applied if very 
good ground plans, e.g. from existing maps, are available [41], 
[47]. In [48], two building reconstruction techniques are 
compared, one using a bottom-up strategy and the other using 
primitives. The authors conclude that by using primitives, a 
more regular appearance of the models is achieved. However, 
it has to be noted that using primitives of a rectangular 
footprint restricts an algorithm to reconstructing rectangular 
structures, which may result in an over-regularization in areas 
that are characterized by more irregular building shapes [49]. It 
would seem that generic building models are more flexible 
with respect to modeling complex shapes.  

Building reconstruction from images has been carried out 
by matching image edges and assembling polyhedral models 
from the resulting 3-D edges [4], [45]. In this context, it is 
important not only to have images of two-fold stereo overlap, 
because this would result in a poor geometric quality of 3-D 
edges that are nearly parallel to the baseline. In [4], the 
grouping of the 3-D edges is based on Bayesian model 
selection approach. Such probabilistic models are not 
frequently used for grouping due to the problems involved in 
learning the prior distributions. An elegant method to obtain 
planar hypotheses from 3-D edges is plane sweeping, where a 
plane is allowed to sweep around the 3-D edge and a 
correlation score is used to determine the actual tilt of the plane 
[45]. Another way of obtaining plane hypotheses from images 
is based on color segmentation in image space. The 
segmentation results are projected to a DSM, and image edges 
are matched with the original segment edges to obtain the 
delineating polygons of the roof planes [44].  

Building detection from Lidar data usually starts with a 
planar segmentation of the point cloud or the DSM generated 
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from the point cloud. The algorithms involved include region 
growing based on seed regions that are detected by an analysis 
of the local curvature of the DSM [2], clustering [3], 
techniques based on the random sample consensus (RANSAC) 
[41], and the application of the Hough transformation [48]. For 
grouping these planes, decisions about the local configuration 
of the planes have to be taken. For instance, a decision has to 
be taken whether two adjacent roof planes intersect, whether 
there is a height step between them, or whether they are 
actually co-planar. This problem has been solved by computing 
all possible intersections between planes and only keeping 
those that are actually possible according to the geometric 
configuration [2] or by a local analysis involving the 
comparison of geometric entities such as distances and angles 
to thresholds [43]. In order to make these decisions more 
robust, the decisions can be taken based on statistical tests, 
which requires the rigorous modeling of the uncertainty of the 
geometrical entities involved [46].  

In [50], various techniques for building reconstruction from 
Lidar and image data were compared. The report, based on an 
international test carried out by EuroSDR (European Spatial 
Data Research – www.eurosdr.net), concluded that techniques 
based on Lidar data in general had a higher degree of 
automation and also received a better accuracy in height. On 
the other hand, the planimetric accuracy of the resulting 3-D 
models, especially at the building outlines, was found to be 
better for techniques based on aerial imagery. Again, due to the 
complementary properties of these data sources, the fusion of 
aerial imagery and Lidar data has been proposed, either to 
improve planar segmentation [51], or to improve the 
geometrical quality of the building outlines [52].  

3) Recent developments and future prospects: All the 
approaches described so far aim at a reconstruction of buildings 
at LOD 2. None of them has matured into a commercial 
product. In fact, the only commercial products that appeared on 
the market so far are semi-automatic [53]. Actually, one of 
only two such products mentioned in the survey paper [53] has 
already disappeared again. Even though some has certainly 
been achieved and despite the fact that it is certainly possible to 
reconstruct the main building structures automatically, there 
remain several reasons why there are no commercial systems 
for fully automatic building reconstruction: 

1. Many approaches are not flexible enough to 
handle a large variety of building shapes. This 
especially applies to reconstruction techniques 
relying on parametric primitives.  

2. It is very difficult to develop algorithms that are 
robust with respect to the selection of processing 
parameters. Many approaches apply ad-hoc 
methods for taking decisions in the reconstruction 
process. 

3. Due to restrictions of the sensor resolution and/or 
problems such as lack of contrast, shadows, or 
occlusions, highly complex roof structures 
consisting of many small parts do not only result 
in over-generalized models, but these structures 
might actually cause algorithms to fail completely. 

4. There is a lack of integration into digital 
workstations and, more importantly, a lack of 
efficient tools for post-processing in cases where 
the automatic procedure fails.  

Again, what has been said so far applies to methods based 
on data from of sensors that are currently in practical use. The 
changes in sensor technology described above have also had a 
significant impact on the prospects of automated building 
reconstruction. As a matter of fact, a dense DSM of a building 
can already be viewed as a 3-D building model. By applying 
thinning algorithms to such a DSM, a 3-D representation 
without too much redundancy can be achieved, even though it 
does not correspond to the kind of model one would 
traditionally use in a CAD system. Microsoft claim to be able 
to produce 3-D building models fully automatically [32], 
though the required amount of manual intervention and the 
geometrical accuracy of the resulting models are not known. In 
this sense, the 3-D reconstruction of buildings corresponding to 
LOD 2 for visualization purposes can be seen as nearly solved, 
with future work concentrating on the improvement of the 
degree of automation and an improvement on the LOD that can 
be achieved. Whether or not this can be achieved in an 
economical way by the fusion of ALS and image data remains 
to be investigated. 

In [54], a technique for building reconstruction based on 
existing maps and a dense DSM generated from imagery is 
described. Hypotheses for roof planes are generated based on 
the building outline, and a probabilistic approach is applied to 
select an appropriate model that fits the data well yet is not too 
complicated. A second technique is based on RANSAC for 
detecting planes. Using either technique, about 85%-89% of 
the buildings of a large test site in France could be 
reconstructed. The authors claim that by combining these two 
techniques in a semi-automatic environment, the methods 
could become operational, delivering 95% of correct buildings.  

Using Lidar data of a higher resolution also has increased 
the prospects for building reconstruction. As noted above, a 
fully 3-D approach is required to do so. In [35], clustering 
techniques are used to detect planes in very high-density Lidar 
point clouds (20 points / m2), which can be used to reconstruct 
very detailed building models, including a correct 
representation of the roof overhangs. Thus, structures such as 
large dormers that previously could cause an algorithm to fail 
entirely can now be correctly reconstructed. This is also the 
case for DSMs generated from images [55]. Based on a 
generalized model, rectangular regions of ‘outliers’, i.e. DSM 
points not fitting to the original model, are considered to be 
hypotheses for superstructures. The system provides parametric 
models for common types of superstructures, whose parameters 
are estimated from the DSM. Finally, in the case of competing 
hypotheses, the set of models achieving the overall best fit is 
accepted [55].   

Thus, it is clear that by making use of the new 
developments in sensor technology and DSM generation, it is 
possible to increase the LOD of the resulting models. However, 
in order to really achieve LOD 4, that is, complete architectural 
models, the façades of the buildings must be refined. This 
requires the detection and 3-D reconstruction of structures such 
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as windows, doors, and balconies, which has been investigated 
using TLS and/or image data [38], [39], [40].  

In this context, new methodologies are investigated. In 
[56], grammars that describe rules for the combination of 
primitives to obtain complete building models are combined 
with minimum description length as evaluation function to 
control and guide the search process. Façades are often 
characterized by a very systematic structure, so that grammars 
are also used to reconstruct façades, not only in order to detect 
each individual façade object, but also to understand the 
underlying structure, e.g. symmetries or structures such as rows 
of windows [39], [57]. Techniques from pattern recognition 
and machine learning such as Markov Chain Monte Carlo [39] 
that can be used to obtain a sample for a distribution based on 
an evaluation function or Conditional Random Fields that can 
model context relations between different object classes [37] 
are used for façade interpretation. At the University of Bonn, a 
test data set is being made available that consists of a large set 
of fully labeled terrestrial images of façades. This test data set 
is to be used for benchmarking of techniques for structural 
learning [58].  

For applications such as navigation, it may be helpful to 
obtain a 3-D model of the visual part of a street. There are 
efficient building reconstruction algorithms that generate 
coarse façade models from video cameras mounted on a car in 
real-time [57]. Since façades are often obstructed by cars in 
images taken at street level, the visual appearance of the 
models can be improved considerably if cars are automatically 
detected and removed in the resultant models [57]. This is yet 
another example showing how much can be gained by a more 
complex scene analysis taking into account multiple object 
types and their mutual interactions.  

C. Change Detection 
The automation of change detection requires a 

classification of existing objects in a data base according to 
whether they have remained unchanged or not, and the 
detection of new objects. This can be achieved separately, even 
using different techniques for the classification of existing 
objects and for the detection of new objects, or it can be done 
simultaneously, e.g. by first applying any of the building 
detection techniques outlined in Section II-A and then 
comparing the detection results to the existing data base. There 
has been a EuroSDR test project on automatic change detection 
for the updating of 2-D maps such as the cadastre [5]. The first 
data set consisted of Lidar data and a digital CIR orthophoto at 
a resolution of 1 m. The second data set consisted of a high-
resolution multi-spectral orthophoto and a DSM generated by 
dense matching at a resolution of 0.2 m, and the third data set 
consisted of a multi-spectral orthophoto and a DSM generated 
from high-resolution satellite imagery (0.5 m). Four different 
techniques for change detection were compared in this test. The 
test shows that there are relatively small differences between 
the results from different algorithms, but that the success of 
change detection is mainly affected by the quality of the data 
used for that purpose. The results are in no way satisfactory for 
the satellite data set, due to the relatively poor quality of the 
DSM. The situation is better with the image-based data set, 

though all techniques produced too many false positives for 
changed and new buildings to be used in a fully automatic 
context [5]. In [59] it was shown that by integrating automatic 
procedures into a semi-automatic work flow where the human 
operator only needs to inspect buildings that are flagged as 
potential changes by the system, 40% of the work required for 
map updating can be changed if very small building structures 
are to be considered. This number increases to 60% if the data 
base only considers buildings larger than 50 m2. These 
limitations arise from the problems related to the detection of 
very small buildings in Lidar data having a resolution in the 
order of 1 m. Currently, automatic tools for map updating are 
not operational, but by applying the strategies for improving 
the performance of building detection outlined in Section II-A, 
one can hope to build such systems in the future.  

With 3-D city models becoming available for many cities 
of the world, the issue of change detection for keeping such  
3-D models up-to date will arise sooner rather than later. 
However, up to now there is hardly any work on the topic of 
change detection for 3-D city models. It remains to be 
investigated whether more efficient techniques can be applied 
to check whether a building has changed both in planimetry 
and height; the alternative would be to recreate the whole 3-D 
city model from scratch every time new primary data are 
collected, which would seem to be very unsatisfactory from an 
economic point of view.   

III. ROAD EXTRACTION 
Roads have a very specific appearance in remotely sensed 

data, and this appearance is highly dependent on the resolution 
of the images that are used for road extraction, e.g. [60]:  

1. In data having a resolution of about 1 m, roads 
appear as thin dark or bright lines, which can be 
extracted by line detection techniques such as the 
Steger operator [61].  

2. In data having a higher resolution, e.g. 0.1 m, 
roads are areas of relatively homogeneous 
reflectance properties, which are, however, 
influenced by objects such as cars, shadows, and 
road markings [60], [62]. 

Accordingly, different algorithms are used depending on 
the sensor resolution. Line-based algorithms and area-based 
algorithms can be combined in a hierarchical process [60]. In 
any case, it shall already be noted here that model-based 
techniques for road extraction make use of spectral, geometric, 
topologic, and contextual properties of roads [63]. The road 
topology is especially important: it is the function of roads to 
connect human settlements, so that roads form a continuous 
network. These network characteristics can be used to improve 
a road network in case where the initial road detections are 
incomplete [64]. In many works on road extraction, context has 
been considered in terms of global context, i.e. a global 
information about whether a road is situated in a rural, forested, 
or settlement area [60], [64], and of local context, which 
explicitly models other object classes that might cause 
problems for road detection, e.g. cars, trees, buildings, and 
shadows [60]. The reason why context has been used more 
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frequently in road extraction techniques than in building 
extraction may be that roads are usually among the lowest 
objects in a scene, so that their appearance in airborne sensor 
data is more frequently disturbed by higher objects.  

As stated above, in images of a resolution of about 1 m, 
roads appear as thin bands. Reconstruction techniques based on 
lines deliver road centre lines and road edges. Disturbances 
such as cars or road markings have no or only limited influence 
on line detection algorithms such as the Steger operator [61] or 
the method described in [65]. It is a common approach to first 
extract lines and then to select promising candidates based on 
geometric criteria such as width, length and curvature [66]  
and / or spectral criteria such as the normalized difference 
vegetation index [65]. Finally, a graph-based evaluation is 
applied to complete the road network [64], [66].  

Road extraction algorithms that consider roads as areas 
more frequently consider the radiometric appearance of these 
areas in the data. There are area-based approaches that work 
with images at a resolution of about 1 m, usually based on 
multi-spectral and / or textural classification. In [67], several 
such cues are combined by the Dempster-Shafer theory of 
evidence, and initial road segments are generated based on a 
skeleton. Finally, a graph-based analysis involving two 
different scales is used to obtain roads. In [68], K-means 
clustering is applied to segment the image. Fuzzy classification 
is used to determine which of the clusters in feature space 
corresponds to roads, and a second fuzzy classification is 
applied to remove large areas that belong to the ‘road’ cluster, 
but actually correspond to buildings and parking lots. Finally, 
road segments are found from the refined clusters via a 
localized iterative Radon transform  

It is a common feature of all these methods that hypotheses 
for road crossings are generated when the road network is 
completed. It has to be noted that, line detection algorithms 
have problems in areas where the model of a thin line is not 
fulfilled and in areas where other objects interfere with the 
roads, which is both the case with road crossings. It is thus no 
surprise that the extraction of road crossings is a problem in its 
own right that has been tackled by various means, e.g. by a 
topological analysis that aims at removing cycles in the local 
network sub-graph [69] or by neural networks [70]. The 
network properties of roads are also considered in the final 
evaluation.  

Road extraction techniques are often applied for the 
updating of existing data bases or for quality control of these 
data bases [62], [64]. In this case, the roads in the existing data 
base give approximate values for the road position, which 
improves the execution speed and avoids false positive 
detections in areas that are far away from these roads.  

It is worth noting that in contrast to building extraction, 
high-resolution satellite images play an important role in 
automatic road extraction. In an international test, again 
conducted by EuroSDR, several methods for road extraction 
from Ikonos (1 m) and aerial images (0.5 m) were compared 
[71]. The results suggest that current road extraction techniques 
deliver good results for rural scenes of low to medium 
complexity. In settlement areas the results were relatively poor. 

This is caused by the fact that the model assumptions of these 
algorithms are often hurt by interfering objects such as 
buildings in the direct neighborhood of roads. Furthermore, in 
settlements there are many road crossings, which, as we have 
seen above, also cause problems for road extraction techniques. 
Ikonos images only deliver multi-spectral information at a 
resolution of 4 m. Some of these problems may be overcome 
by satellite imagery providing a resolution of about 1 m also 
for the multi-spectral bands. Similarly as with building 
extraction, the problems encountered in road extraction can be 
tackled by incorporating 3-D information from a DSM and by 
using more rigorous models of context objects than the ones 
used in common road detection approaches.  

The benefits of using 3-D data have been shown by 
approaches making use of Lidar data for extracting roads [72], 
[73], sometimes in combination with image data [74]. Such 
techniques rely on high-quality DTMs that can be generated 
from Lidar data both in forested and in densely built-up areas 
[15]. Road extraction makes use of the fact that roads have to 
be situated on the terrain. Furthermore, roads have very 
characteristic reflectance properties in the wavelength of Lidar 
systems: they appear as dark bands. Using these two cues, 
along with some local density parameters, it is possible to 
generate a binary road image. Complex convolution with a 
phase-coded disk can be used to determine the road centerlines 
and the road widths. The results presented in [72], achieved for 
Lidar data of about 1 m resolution in a suburban area, show 
that incorporating the third dimension does help in road 
extraction. It can even be used to detect bridges [75], [76]. 
Problems also occur at road crossings, especially with 
roundabouts and road crossings involving a change of the road 
widths. Furthermore, parking lots could not be separated from 
roads in [72]. It remains to be investigated whether DSMs from 
image matching can be used in a similar way to improve the 
performance of road extraction techniques.  

Road extraction algorithms working with images of a 
higher resolution (typically, 0.1-0.2 m) have to consider the 
fact that many additional objects are visible on a road surface, 
e.g. road markings. Thus, highly complex road models that 
consider the appearance of roads at different scales, objects on 
the road surface, and context objects have been elaborated. In 
[60], the model knowledge is represented by a semantic net. 
More recently there have been attempts to automatically 
predict the scale behavior of road objects depending on the 
resolution. Starting from a semantic net describing the road 
model at a fine resolution, the road model corresponding to a 
coarser resolution is automatically derived by an analysis of 
scale-space events [77].  

Algorithms for road extraction at a high resolution also use 
line detection algorithms, but in order to obtain road markings 
such as the solid and broken lines that separate individual 
lanes. If no such evidence is found, grey level edges that may 
correspond to road edges are used. From these data, hypotheses 
for road lanes are extracted in multiple images [60], and these 
hypotheses are merged in object space. Problems due to 
occlusions or poor contrast in one image may be overcome by 
information contained in other images. 3-D information in the 
form of a DSM generated by image matching is used to 
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exclude building areas from processing both in [60] and in 
[62]. The radiometric properties can be used for the evaluation 
of road lane hypotheses [60] or directly for the extraction of 
regions of interest [62]. Apart from linear road marks, zebra 
crossings also give cues for roads [62]. Finally, context is used 
to complete the road network. For instance, shadow areas are 
extracted. They can support the hypothesis of a road by giving 
an explanation for the failure of the initial extraction algorithm 
[60], [62], [78]. Trees, cars [78], or rows of cars [60] can also 
support road extraction. However, it has to be noted that 
context objects are often used in an ad-hoc manner. Statistical 
models for context objects could help to improve the situation.  

The algorithms aiming at a reconstruction of roads at a very 
high resolution have been successful in improving the 
geometric quality of roads from an existing data base [62]. In 
an urban context, the main roads could be successfully 
extracted in [60], with problems remaining with small 
suburban roads where hardly any road markings can be found, 
and, both in [60] and [62], with road crossings, which are not 
explicitly modeled in either case.  

The problem of extracting suburban roads has recently been 
tackled in [78]. Normalized cuts are used for a segmentation of 
high-resolution CIR orthophotos, initial segments are grouped, 
and road candidates are selected based on geometric criteria. 
Context objects are used to complete the suburban road 
network. A new technique for generating highly detailed 
models of road crossings based on snakes, including the 
detection of traffic islands and the reconstruction of 
roundabouts, is described in [79]. The approach does not make 
use of context, which would be necessary especially in scenes 
with many cars waiting in front of a road crossing. 

It would seem that three strategies can be applied to 
improve the prospects of automated road extraction beyond 
what has been achieved so far. They are similar to what has 
been suggested in the context of building extraction. Firstly, the 
integration of 3-D information into the classification must be 
achieved in a more systematic way. Promising results have 
been shown for Lidar, but it may also be supported by high-
resolution DSMs generated by the new image matching 
techniques. Secondly, the role of context has to be emphasized, 
and context needs to be treated in a statistically rigorous way. 
Combining the model-based techniques developed in the 
photogrammetric community with techniques from pattern 
recognition may be a way to go. Thirdly, more emphasis has to 
be laid on specific problem areas, especially on detailed models 
of road crossings. The two strategies previously mentioned 
play an important role here, too, because on the one hand, 
traffic congestion in urban areas might especially affect road 
crossings, and on the other hand, some situations of crossing 
roads, e.g. crossing motor ways, can only be resolved if 3-D 
information is considered.  

IV. SUMMARY 
This paper has given an overview on the current state and 

some future prospects of object extraction, with a focus on 
buildings and roads. It was shown that recent developments in 
the field of sensor technology have considerably improved the 
prospects of automated object extraction, and so have 

algorithmic developments in the computer vision and pattern 
recognition communities. The main trends are: 

1. Usage of more and / or better data: This adds 
redundancy to the object extraction task. With new 
digital cameras, it is economically feasible to 
generate multi-view images of the same object. 
New matching techniques have rendered possible 
the generation of high-resolution DSMs in densely 
built-up areas. Lidar data are available at higher 
resolutions, and the full waveform of the reflected 
pulse provides valuable information on the 
structure of the underlying object. Data fusion is 
another option to be considered.  

2. Systematic integration of 3-D information: The 
rich information content of new data sources 
supports the transition from 2-D or 2.5-D 
approaches, still common in building detection, to 
a really 3-D interpretation of a scene.  

3. Adoption of recent developments in the fields of 
computer vision and pattern recognition, 
especially with respect to statistical modeling of 
the data and/or of context objects.  

4. Development of more sophisticated scene models 
that do not only consider one, but multiple classes 
of interest along with their mutual interactions. 

5. Increasing the level of detail of the models that are 
to be generated. Too coarse models might not 
simply be over-generalized, but small structures 
that are not modeled may actually hinder the 
success of object reconstruction.  

6. Provision of data sets for benchmarking: 
benchmarking is important to make different 
object extraction techniques more comparable. 

Considering these trends may be the key to success in 
automated object extraction from remotely sensed data. 
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