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Abstract 

The most commonly used topographic vector data are currently two-
dimensional. The topography is modelled by different objects; in contrast, 
a digital terrain model (DTM) is a continuous representation of the Earth 
surface. The integration of the two data sets leads to an augmentation of 
the dimension of the topographic objects, which is useful in many applica-
tions. However, the integration process may lead to inconsistent and se-
mantically incorrect results. 

In this paper we describe recent work on consistent and semantically 
correct integration of 2D GIS vector data and a DTM. In contrast to our 
prior work in this area, the presented algorithm takes into account geomet-
ric inaccuracies of both, planimetric and height data, and thus achieves 
more realistic results. Height information, implicitly contained in our un-
derstanding of certain topographic objects, is explicitly formulated and in-
troduced into an optimisation procedure together with the height data from 
the DTM. Results using real data demonstrate the applicability of the ap-
proach.  

1. Introduction 

Applications of geographic information systems (GIS) increasingly need 
consistent topographic data containing planimetric and height information. 
Examples include visualisation in terms of true orthophotos and photoreal-
istic perspective views, e. g. for navigation purposes, environmental simu-
lations and traffic safety applications, in which a road must be adequately 
modelled in three dimensions in order to predict the forces acting on a car 
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during turns. Checking the consistency between planimetric and height 
data is also useful to assess data quality. 

Historically, planimetric and height data do not share many similarities: 
they have been modelled differently, they have been acquired using differ-
ent techniques, at different times and resolutions, and for different pur-
poses, and they are stored using different data structures. Therefore, based 
on existing topographic data bases the required consistency can in general 
not be guaranteed. Since it is neither desirable nor economically feasible to 
acquire a completely new, consistent data set, data integration techniques 
must be developed that meet the described requirements using existing 
data, i. e. two-dimensional topographic vector data and digital terrain mod-
els (DTMs). In many countries such data are being or will be provided by 
the respective National Mapping Agencies as part of the reference geoin-
formation. As a side note, we recall, that data integration techniques were 
also applied in topographic paper maps, of course in a manual fashion: for 
example, height contour lines cross roads perpendicular to the driving di-
rection, and river beds are usually visible in the contour lines. 

Besides consistency, also correctness with respect to gravity and con-
struction principles and manuals must be ensured, the latter is relevant for 
man-made objects only. This correctness, which depends on the object 
class label, is termed semantic correctness in this paper. To give a few ex-
amples, (a) inland water bodies can be considered to be horizontal, if we 
neglect wind, water currents and local gravitational differences; (b) rivers 
have a monotonous slope, since water flows downhill only; and (c) roads 
have constant width, and limited curvature and slope, since otherwise they 
could not fulfil their function, namely to ensure safe traffic movement. 

The integration of two-dimensional topographic GIS data and DTMs 
has been dealt with to some extent in the literature over the last decade or 
so. First suggestions go back to Fritsch (1991) and Weibel (1993). Pilouk 
(1996), Lenk (2001), and Stoter (2004) derive a TIN (triangular irregular 
network) data structure, in which the triangulation is constrained by using 
the existing vector data as edges, in addition Lenk (2001) makes sure that 
the surface shape of the original DTM is preserved. This geometric inte-
gration, however, does not pay attention to semantic aspects of the objects 
to be integrated. These are mentioned by Rousseaux, Bonin (2003), who 
focus on the integration of 2D linear data such as roads, dikes and em-
bankments into a DTM. The linear objects are transformed into 2.5D sur-
faces by using attributes (e. g. road width) of the GIS data base and the 
height information of the DTM. Slopes and regularization constraints are 
used to check semantic correctness of the objects. However, in case of in-
correct results the correctness is not established or re-established. 
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In this paper we propose an approach for integrating 2D topographic 
GIS vector data and a DTM in a consistent and semantically correct way. 
The approach captures the semantics in mathematical equations and in-
equations, the data integration problem is solved through an optimisation 
approach based on least squares adjustment. We build upon earlier work 
(Koch, Heipke 2004), the extension presented in this paper consists in a 
formulation where not only DTM heights are subject to change to fulfil the 
formulated condition, but also the planimetric coordinates of the vector 
data are adjusted accordingly. In the next section we present the back-
ground and the mathematical description of the new algorithm, before pre-
senting some results using real data sets from the State Surveying Author-
ity of Lower Saxony. 

2. An algorithm for consistent and semantically correct 
integration 

Overview 

Inconsistency and semantic incorrectness between topographic GIS vector 
data and a DTM can in principle have two reasons: either the planimetric 
coordinates of the vector data or the DTM heights are incorrect. Of course, 
a combination of the two effects is also possible. In contrast to earlier work 
where we only dealt with incorrect DTM heights, we now present an ap-
proach which can deal with both types of errors. 

As in the earlier work we have chosen lakes, rivers, and roads as exam-
ples for topographic objects, because all of them contain implicit height in-
formation. The objects are modelled with the help of horizontal planes 
(lakes, road intersection areas) and tilted planes (roads, rivers). Details 
about object modelling are contained in Koch, Heipke (2004) and in Koch 
(2006). 

The data structure we use for the integrated data set is a TIN. In a first 
step we convert linear objects to area objects through a buffering process, 
where the buffer width either comes from available attributes, or a default 
value is used. This conversion is necessary, since in the considered resolu-
tion the topographic objects we deal with all have a certain width in the 
landscape and thus are considered to be area objects. 

The emphasize of our current work lies on the formulation of certain 
condition equations and inequations for the vector data and the DTM in 
order to enforce consistency and semantic correctness. These constraints 
are taken into account in an optimisation process based on least squares 
adjustment. The following assumptions have guided the selection of the 
constraints: 



4      Andreas Koch, Christian Heipke  

• The height information contained implicitly in the topographic objects 
must be captured explicitly in order to be introduced into the optimisa-
tion process. 

• The data sets to be integrated can contain random and systematic errors, 
but they do not contain any gross errors (gross errors can and should be 
eliminated in a pre-processing step). 

• The topographic vector data is separated into man-made and natural 
vector data: 
− The shape of the man-made vector data (e. g. roads) is considered to be 

generally correct, because it follows construction principles. Therefore, 
their position can only be changed as a whole. We use a 2D similarity 
transformation for this task. 

− The border of natural vector data (e. g. lakes, rivers) can vary also locally, 
we therefore consider the individual border coordinates as unknowns in 
the adjustment. 

• The shape of the terrain should be preserved as much as possible. 
• Neighbourhood consistency must be taken into account. 

In most cases, an integration process involves a kind of compromise. 
We model the fact that some of the mentioned conditions can contradict 
each other by assigning weights to the individual equations. It is clear that 
a careful selection of the weights based on the quality of the input data is 
of major importance for obtaining meaningful results. 

After the optimisation we perform the actual integration using a triangu-
lation based on Lenk’s algorithm (Lenk 2001). 

The optimization process 

In the optimisation process, the heights of the topographic objects as de-
rived from the DTM, and the DTM heights in the neighbourhood are con-
sidered as unknowns, together with the transformation parameters of the 
man-made topographic objects (4 per object) and all the planimetric coor-
dinates of the natural topographic objects. These unknowns are estimated 
from a set of basic observation equations in a least squares adjustment, tak-
ing into account additional equation and inequation constraints.  

The basic observation equations preserve the general position of the to-
pographic objects, the shape of the terrain, and they ensure a smooth tran-
sition between changed and non-changed areas of the data set. The con-
straints capture consistency and semantic correctness. Equation constraints 
are formulated as observation equations with corresponding weights, thus 
the amount to which an equation constraint is actually fulfilled can be con-
trolled by an adequate weight selection. The inequation constraints, on the 
other hand, are always fulfilled after the optimisation process. 
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Observation equations and constraints for planimetric 
coordinates of vector data 

Man-made objects: For man-made objects such as roads the coordinates 
ii YX , of the border polygon are improved through a two-dimensional 

similarity transformation resulting in a set of new coordinates t
i

t
i YX , . The 

unknowns are the translation 00
ˆ,ˆ YX  and the rotation and scale parameters 

â  und b̂ , S SX ,Y  represent the centre of gravity of the object: 

 
( ) ( )

( ) ( )

ˆˆ ˆ
ˆˆ ˆ

t
i 0 i S i S S

t
i 0 i S i S S

X = X + a X - X +b Y -Y + X

Y = Y - b X - X + a Y -Y +Y
 (2.1) 

 
Points, which represent road intersections, are considered to be part of 

more than one road. Since for each road a separate set of equations of type 
(2.1) is used, this common point is lost without any further precautions. In 
order to preserve the topologic relationship between the roads, one con-
straint, formulated as an observation equation, is set up for each road end-
ing in the intersection, where ˆ ˆ

int intX ,Y  denotes the unknown intersection 
point, and (as in all formulae throughout this paper) v stands for the resid-
ual of the observation equation: 

 
ˆ

ˆ

t
int int

t
int int

0+v = X - X

0+v = Y -Y
 (2.2) 

 
For the remaining border polygon points ii YX ,  of man-made objects 

basic observation equations to maintain the overall position are set up in 
the following way:  

 
i

t
ii

i
t
ii

YYv
XXv

−=+

−=+

0

0
 (2.3) 

 
Natural objects: As mentioned above, for natural objects equations of 

type (2.1) are not used. Rather, individual border points can move sepa-
rately, as shown in the basic observation equations (2.4). ii YX ,  denote the 
original, ii YX ˆ,ˆ  the unknown coordinates of the border polygon. 
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0

0
 (2.4) 

 
It must be ensured that despite movements of individual points of the 

border polygon remains an area without loops. This constraint is formu-
lated by allowing the polygon angle αj, which is a function of the sequence 
of polygon points Pj-1, Pj, and Pj+1, to change only by a small predefined 
amountΔα to form the resulting polygon angle *

jα . *
jα is a function of the 

unknown coordinates of Pj-1, Pj, and Pj+1, which are estimated in the opti-
misation procedure. 

 *
j jα −α ⏐≤ Δα  (2.5) 

 
This constraint can be formulated as a set of two inequations: 

 

*
j j

*
j j

α −α ≤ Δα

α −α ≥ −Δα
 (2.6) 

 
Topological aspects valid for all vector objects: Point movements can 

lead to different objects overlapping each other in an undesired way. We 
require the topology of objects to remain unchanged during the optimisa-
tion process. Fig. 1 shows an example, two objects A and B change their 
outline after the optimization. Fig. 1a depicts the original situation, Fig. 1b 
and 1c show two results, which change the topology of the objects and 
must therefore be avoided. Fig. 1d shows a possible point movement. 

 

a) 
A B

 b)  
 

c)  

 

d)  
  
Fig. 1: Topologic relation between two objects A and B: (a) situation before 
optimisation, (b) and (c) invalid point movements, (d) valid point movement 
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If the GIS vector data are triangulated without considering the DTM 
points, possible and impossible situations can be separated based on an in-
spection of the individual triangles. In order to preserve topology the sense 
of orientation of the triangles connecting different objects must be main-
tained. This sense of orientation can be expressed by the triangle determi-
nant D and its change dD (O’Rourke 1998). Assuming the determinant of a 
triangle with points Pi, Pj, Pk to be negative, the following inequation cap-
tures the constraint:  

 
( ) ( )
( ) ( )ikij

ikij

YYYY
XXXX

dD ˆˆˆˆ
ˆˆˆˆ

−−

−−
≥−  (2.7) 

 
For man-made objects the transformed coordinates t tX ,Y  take the 

place of the unknown coordinates ˆ ˆX , Y .  

Observation equations and constraints for height data 

Observation equations, equation and inequation constraints for the heights 
of DTM points and the coordinates of the topographic objects were pre-
sented in detail in (Koch, Heipke 2004). Therefore, only, a short summary 
of these equations will be given here. The difference to our new formula-
tion is that heights, which need to be interpolated from neighbouring 
points, e. g. heights for the road centre axis, are now a function of the un-
known planimetric position of the point under consideration.  

DTM heights are introduced as: 

 ˆ
i i i0+v = Z - Z  (2.8) 

Zi refers to the original height of the DTM, iẐ  denotes the unknown 
height, vi is again the residual. If the considered point is part of the border 
polygon of a topographic object, Zi has to be interpolated using neighbour-
ing height information of the DTM. 

In order to be able to preserve the slope of an edge connecting two 
neighbouring points Pj and Pk of the DTM TIN where one is part of the 
polygon describing the object, and the other one is a neighbouring point 
outside the object (and thus to control the general shape of the integrated 
DTM TIN) additional equations are formulated: 

 ˆ ˆ
j k jk j kZ - Z +v = Z - Z  (2.9) 
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The constraints used for horizontal and tilted planes are shortly de-
scribed next. Heights Zl of all points Pl lying in the area of a horizontal 
plane all have the same value HPẐ . This fact is captured through the ob-
servation equation 

 ˆ
HPl l0+v = Z - Z  (2.10) 

Heights Zm for points Pm (Xm,Ym) of the border polygon of the horizon-
tal topographic objects are interpolated from the neighbouring DTM TIN 
points Pu, Pv, Pw, and the height difference between the unknown object 
height and the interpolated height is used to formulate the constraint: 

 ( )ˆ ˆ ˆ
m m u v wm mHP0+v = Z - Z X ,Y ,Z ,Z ,Z  (2.11) 

A further constraint expresses the fact that for lakes, surrounding terrain 
points must have a larger height Zi than the lake: 

 ˆ ˆ
HP i0 < Z - Z  (2.12) 

As mentioned, roads and rivers are modelled with tilted planes. Points Pr 
on such planes must fulfil the following constraint, where 0 1 2ˆ ˆ ˆa ,a ,a  are 
the unknown plane parameters: 

 ˆ ˆ ˆˆ ˆ ˆr 0 1 r 2 r r0+v = a + a X + a Y - Z  (2.13) 

Roads and rivers are further constrained by requiring the slope along the 
object to be smaller than a certain predefined threshold. Also, roads are as-
sumed to have horizontal cross sections, for further details see Koch, 
Heipke (2004). 

  
The optimisation problem including the inequation constraints is formu-

lated as the linear complementary problem (LCP) and solved using the 
Lemke algorithm (Lemke, 1968; Schaffrin, 1981; Lawson & Hanson, 
1995). Since the unknowns appear in a nonlinear form, the solution can 
only be found iteratively. It should be noted that the number of equations 
may change from iteration to iteration, because due to the changes of the 
planimetric coordinates of the topographic objects, it may be necessary to 
consider different points of the neighbourhood from iteration to iteration.  

As mentioned above, adequate weights must be selected for all observa-
tion equations to obtain a meaningful result: the position and height coor-
dinates have a certain geometric accuracy, and weights should be chosen 
accordingly. The weights of the equation constraints must be selected ac-
cording to experience. Since the inequality constraints are automatically 
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satisfied within the algorithm, the weights for the equality constraints to-
gether with the predefined thresholds (see above) determine the degree to 
which consistency and semantic correctness of the integrated data set is 
achieved. 

3. Results 

In this section we present results of a consistent and semantically correct 
integration of real topographic vector data and a DTM. We use the German 
ATKIS Basis-DLM1 together with the DTM ATKIS DGM5. The geometric 
accuracy of the Basis-DLM is approximately ±3 m, the DTM heights have 
a standard deviation of about ±0,5 m. 
 

The first data sets, called 3 lakes, consists of three lake objects with 294 
planimetric polygon points, covering a relatively flat area of 450 x 650 m². 
The corresponding DTM contains 1.961 grid points, and in addition addi-
tional 118 points representing geomorphologic information (break lines 
etc.). In a pre-processing step both groups were merged using a con-
strained Delaunay triangulation to form a TIN. Prior to the integration, at 
the border to the lakes inconsistencies were clearly visible. 
The results for 3 lakes data set are indeed consistent and semantically cor-
rect. They are shown in Tab. 1 and in Fig. 2. For the main types of equa-
tions the table contains the standard deviation of the observations as well 
as the number and size of the resulting residuals. It can be seen that major 
position changes occur in planimetry. Although the shape of the objects 
remains more or less the same, the minimum and the maximum values of 
the residuals amount to three times the introduced standard deviation. 
From Fig. 2 it is visible that these changes occur mainly at the border 
polygon points. Apparently the original border points of the lake polygons 
lie outside the actual lake and are now moved into the water, since the wa-
ter height is mainly dictated by large number of points inside the lake, 
which were considered to be rather accurate. While this result is consistent 
and semantically correct, a somewhat smaller weight for the heights inside 
the lakes would have probably resulted in smaller and more realistic 
planimetric point movements. 

                                                      
1 ATKIS stands for Authoritative Topographic Cartographic Information system 

and represents the German national reference geoinformation database. The 
Basis-DLM (basic digital landscape model) contains the highest resolution and 
is approximately equivalent to a topographic map 1:25.000; the DGM5 is a hy-
brid data set containing regularly distributed points with a grid size of 12,5 m 
and additional geomorphologic information. 
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Residuals  
Type of equation 

Standard 
deviation 

[m] 
No. Mean 

[m] 
Min. 
[m] 

Max. 
[m] 

Planimetric position (2.4)      X 3.0 690 -0.47 -9.69 7.24 
                                               Y 3.0 690 -0.28 -8.37 8.79 

Heights of border polygon (2.11) 0.5 690 -0.24 -1.90 0.75 
Heights outside the border (2.8) 0.5 531 -0.05 -0.35 0.95 

Height differences (2.9) 2.0 3279 -0.19 -1.72 0.59 

Tab. 1: Results for real data set 3 lakes. For the main types of equations the table 
contains the standard deviations of the observations as well as the number and size 
of the residuals. 
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Fig. 2: Results of integration of 3 lakes data set. White circles denote heights 
which became lower, black circles those, which became higher, arrows depict 
planimetric point movement 
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The lake no. 1 to the upper right of Fig. 2 shows a somewhat different 
behaviour than the other two. Some heights in the middle of the lake be-
come significantly lower. The reason was found to be a break line running 
through the lake, which constitutes a gross error in the data set. 

 
The second data set, called roads, consists of a network of 13 small 

roads. Most of them are connected at both ends, some are dead end roads. 
The data set consists of rolling terrain with height differences of about 50 
m and covers an area of 575 x 400 m², it consists of 1.551 DTM grid 
points and 27 break lines. Before the integration, inconsistencies are 
clearly visible. The weights were again chosen according to the geometric 
accuracy of the input data, the constraints were introduced with high 
weights. 

The results for the roads data set are similar to those for 3 lakes. Again, 
a consistent and semantically correct result was achieved. The main 
changes could be observed in the planimetric position of the topographic 
objects, and in particular in the dead end roads in the rougher terrain. One 
of the points in steep terrain was moved by more than 10 m. In contrast to 
those roads ending in intersections, the position of the dead end roads is 
obviously not stabilised through equation (2.2).  

4. Conclusions and outlook 

This paper presents an approach for the consistent and semantically correct 
integration of a DTM and 2D topographic GIS data. The algorithm is 
based on a Delaunay triangulation and a least squares adjustment including 
inequality constraints derived from the implicitly available height informa-
tion of topographic objects, and is solved by converting the approach into a 
linear complementary problem (LCP). In contrast to our earlier work, we 
not only adjust DTM heights, but also the planimetric position of topog-
raphic objects. Thus, vector and height data can be introduced with their 
respective geometric accuracy. 

The approach was tested using a number of real data sets, taken from the 
German ATKIS. The results of two of these data sets have been presented 
in this paper. In all cases, a consistent and semantically correct result was 
achieved, which is not self understood as such, because the equation con-
straints are introduced as observations equations and are controlled via 
weight selection.  

While the results are very promising, the proper selection of weights 
remains a difficult problem which requires some experience. Another open 
question is whether our approach can be transferred from the aggregation 
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level we currently work at (ATKIS Basis-DLM) to other scales, e. g. a 
more detailed scale, in which e. g. consistency plays a very important role 
for visualisation. In addition, the geomorphologic information available in 
the DTM should be considered explicitly in an extended version of the al-
gorithm. Finally, if a complete GIS data set is to be integrated with a 
DTM, aspects such as the propagation of planimetric changes from objects 
with implicit height information to neighbouring objects also need to be 
dealt with. These are the issues we currently work on. 
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