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Abstract

Conditional Random Fields (CRF) are among the most
popular techniques for image labelling because of their flex-
ibility in modelling dependencies between the labels and
the image features. This paper proposes a novel CRF-
framework for image labeling problems which is capable to
classify partially occluded objects. Our approach is eval-
uated on aerial near-vertical images as well as on urban
street-view images and compared with another methods.

1. Introduction

Labeling of image pixels is a classical problem in pat-
tern recognition. Probabilistic models of context such as
Markov Random Fields (MRF) [15] or Conditional Random
Fields (CRF) [13] have been increasingly used to model de-
pendencies between labels and/or data at neighbouring im-
age sites. This results in smoothed label images compared
to local classifiers. A recent comparison of smooth labelling
techniques [22] has shown that smoothing is essential in this
context, with CRF performing best among the compared
techniqes.

Labelling techniques usually determine a class label for
each pixel of an image. This causes problems if the ob-
jects to be detected are partially occluded. For instance, the
appearance of streets, sidewalks and buildings may not be
clear for a computer if they are largerly occluded by objects
such as cars or trees. In remote sensing images, charac-
terized by near-vertical views, this has been known to be a
problem for a long time, in particular in the context of auto-
mated road extraction. Model-based techniques have tried
to overcome this problem by treating such objects as con-
text objects in an ad-hoc manner [8, 6], but a systematic
statistical model for dealing with occlusions is still missing.
Whereas CRF have been applied successfully to many la-
belling tasks in computer vision, pattern recognition and re-

mote sensing [13, 22, 23, 27], they also have problems with
proper labelling of partially occluded objects, in particular
if the occluded objects are those one is actually interested in.
In this paper we introduce a two-layered Conditional Ran-
dom Field (tCRF), which can handle this problem by explic-
itly modelling two class labels for each image site, one for
the occluded object and one for the occluding one; in this
way, the 3D structure of the scene is explicitly considered in
the structure of the CRF. Labelling might also be supported
by depth information obtained from image matching.

Previous work on the recognition of partially occluded
objects includes [14], where the objects in the scene are
represented as an assembly of parts. The method is ro-
bust to the cases where some parts are occluded and, thus,
can predict labels for occluded parts from neighbouring un-
occluded sites. However, it can only handle small occlu-
sions, and it does not consider the relations between the oc-
cluded and the occlusion objects. There have been a few
attempts to include multiple layers of class labels in CRFs
[12, 23, 27]. However, all these papers also use part-based
models where the additional layer does not explicitly re-
fer to occlusions, but encodes another label structure. In
[12] and [23], multiple layers represent a hierachical object
structure, i.e. each object on higher level interacts with its
smaller parts on lower level. In [27], the part-based model
is motivated by the method’s potential to incorporate in-
formation about the relative alignment of object parts and
to model longe-range interactions. However, occluded ob-
jects are not explicitly reconstructed. Such a part-based ap-
proach is not applicable to objects such as roads in near-
vertical views. Roads do not consist of parts having a spe-
cific appearance and appearing in a fixed spatial structure.
Besides, the spatial structure of such part-based models is
not rotation-invariant and, thus, requires the availability of a
reference direction (the vertical in images with a horizontal
viewing direction), which is not available in remote sens-
ing imagery. As a consequence, methods relying on such
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a reference direction are not applicable to this class of im-
ages. In this respect, the method described in this paper is
more general and can be applied to both near-vertical im-
ages and images with a horizontal viewing direction. Infor-
mation about the vertical structure of a scene can be incor-
porated in scenarios where it makes sense to do so, but it is
not a preriquisite for our method to work.

In [29], MRFs are also expanded by additional layers in
the temporal domain, related to the previous and subsequent
frames in a video sequence. The interactions between these
temporal layers are designed for the detection of moving
objects. Occlusions are not dealt within this publication.
In [7], occluded areas are recovered by fitting geometrical
primitives to large background objects using their visible
parts, so the whole classification process is supported with
additional frameworks, namely contextual prediction [24],
and non-parametric label transfer [16]. This work directly
adresses the problem of recovering the occluded areas and
we show that our method, which consists of only one CRF
framework can outperform the reported in [7] method by
accuracy of classification for some classes. It is worth noth-
ing that none of the cited publications use depth information
as an additional cue to deal with occlusions.

We solve the problem of labelling partially occluded ob-
jects by explicitly considering the 3D structure of the scene.
For each image site we have two class labels, one corre-
sponding to an occluded object and the other to the oc-
cluding one, using a specific class label to encode that no
occlusion occurs. The relations between the two class la-
bels per site and the mutual dependencies between class
labels at neighbouring sites in each of the two layers are
explicitly modelled. Thus, the information from neighbour-
ing unoccluded objects as well as information from the oc-
cluding layer will contribute to an improved labelling of oc-
cluded objects. Two layers are sufficient for applications
which we focus on, though the principle may be expanded
to models with multiple layers. To our knowledge, such a
two-layered model has not been applied yet. The interac-
tion model between neighbouring image sites is a contrast-
sensitive model which considers the relative frequency of
class transitions [19]. The data-dependent terms of our CRF
are based on the Random Forest approach [3]. Our method
is demonstrated on the task of correctly labelling urban
scenes containing crossroads, one of the major problems in
road extraction [20], with the main goal of correctly predict-
ing the class labels of image sites corresponding to the road
surface. We also evaluate our method on urban street-view
images and compare the results with those achieved in [7],
though we will also evaluate the quality of detection for the
occluding objects.

2. Conditional Random Fields (CRF)

We assume an image y to consist of M image sites
(pixels or segments) i ∈ S with observed data yi, i.e.,
y = (y1, y2, . . . , yM )T , where S is the set of all sites. With
each site iwe associate a discrete class label xi from a given
set of classes C. Collecting the class labels xi in a vector
x = (x1, x2, . . . , xM )T , we can formulate the problem of
image classification as finding the label configuration x̂ that
maximises the posterior probability of the labels given the
observations, p(x|y), thus x̂ = arg maxx p(x|y). A CRF is
a model of p(x | y) with an associated graph whose nodes
are linked to the image sites and whose edges model interac-
tions between neighbouring sites. Restricting ourselves to
CRFs where only pairs of nodes interact, the joint posterior
p(x|y) can be modelled by [13]:

p(x | y) =
1

Z

∏
i∈S

ϕi(xi, y)
∏
i∈S

∏
j∈Ni

ψij(xi, xj , y). (1)

In Eq. 1, ϕi(xi, y) are the association potentials linking the
observations to the class label at site i, ψij(xi, xj , y) are the
interaction potentials modelling the dependencies between
the class labels at two neighbouring sites i and j and the
data y, Ni is the set of neighbours of site i, and Z is a nor-
malizing constant. Applications of the CRF model differ
in the way they define the graph structure, in the observed
features, and in the models used for the potentials.

3. Method

3.1. Two-Level Conditional Random Fields

In order to classify partially occluded regions we distin-
guish objects corresponding to the base level, i.e. the most
distant objects that cannot occlude other objects but could
be occluded, from objects corresponding to the occlusion
level, i.e. all other objects. We separate the objects ac-
cording to the background-foreground principle: the base
level consists of objects such as roads, buildings or grass,
whereas the occlusion level includes objects such as cars
and pedestrians. Consequently, we build a two-level CRF.
Rather than having one label xi per image site, we deter-
mine two such labels xbi and xoi , corresponding to the base
and occlusion levels, respectively. In general, one occlu-
sion level is sufficient for separating foreground from back-
ground. Accordingly, we have two sets of classes, namely
Cb and Co, corresponding to objects at the base and oc-
clusion levels, respectively, with xbi ∈ Cb and xoi ∈ Co.
Currently, we model Cb and Co to be mutually exclusive,
thus Cb

⋂
Co = ∅. Co includes a special class void ∈ Co

to model situations where the base level is not occluded
(Fig. 1). The goal of classification is to determine the most
probable values for both xbi and xoi given the data y. We



model the posterior probability p(xb, xo|y) directly, expand-
ing the model in Eq. 1:

p(xb, xo|y, θ) =
1

Z

∏
i∈S

ϕbi (x
b
i , y)θ1 · ϕoi (xoi , y)

θ2 ·∏
i∈S

∏
j∈Ni

ψbij(x
b
i , x

b
j , y, θ6, θ7)θ3 · ψoij(xoi , xoj , y, θ6, θ7)θ4 · (2)

∏
i∈S

ξi(x
b
i , x

o
i , y)θ5 .

Figure 1. Two-level set of classes, where labels are represented by
colours. Base level: black - street; grey - sidewalk; yellow - grass;
Occlusion level: green - tree; red - car; blue - void. The visibility
level depicts the classes as seen for the sensor (aerial view).

In Eq. 2, θ are model parameters: θ1, θ2, . . . , θ5 ∈ θ are
weights modulating the influence of the individual terms in
the classification and θ6, θ7 ∈ θ are parameters of the po-
tentials ψbij and ψoij . Ni is the neighbourhood of site i (thus,
j is a neighbour of i). The association potentials ϕbi and ϕoi
link the data y with the class labels xbi , x

o
i of image site i.

The association potential can be considered as a measure of
how likely a site i will take labels xbi or xoi given all image
data y and ignoring the effects of other sites in the image.
The within-level interaction potentials ψbij and ψoij model
the dependencies between the data y and the labels at two
neighbouring sites i and j at the base and occlusion levels,
respectively; these potentials correspond to the interaction
potentials in Eq. 1. They are related to the probability of
how likely the labels of neighbouring sites from one layer
xli and xlj , l ∈ {o, b} are to occur at neighbouring sites given
the image data y. Finally, in order to link the base and occlu-
sion levels, we define a new inter-level interaction potential
ξ(xbi , x

o
i , y), which models the dependencies between labels

from different layers, xbi and xoi , and the data y. It is a mea-
sure of how likely an occlusion of an object at the base level

with class label xbi by an object from the occlusion level
with class label xoi is to occur, considering the data y.

Fig. 2 shows the structure of our tCRF model. The dark
data nodes represent the input information from sites with
occlusion, i.e. where only the occluding object is visible.
The reason why we have split the levels is to increase the
accuracy of the labelling of occluded regions, i.e. to reveal
the labels of the dark label nodes in Fig. 2, where the asso-
ciation potentials could not provide the corresponding base
level nodes with reliable information because the data cor-
responding to the base level are not observable.

xo1 xo2 xo3 xo4 xo5

xb1 xb2 xb3 xb4 xb5

y1 y2 y3 y4 y5

occlusion level

base level

data

xo

xb

y

Figure 2. Structure of the tCRF model. The second dimension and
additional links between data and labels are omitted for simplicity.
Squares and circles correspond to observations and labels, respec-
tively. The dark nodes correspond to a region with occlusion. The
graph edges represent dependencies between the nodes.

In a training phase we determine the parameters of the
potentials in Eq. 2, which requires fully labelled training
images. The classification of new images is carried out by
maximizing the posterior probability in Eq. 2. The model
is very general in terms of the definition of the potentials
ϕi, ψij and ξi. Our definitions of the potentials as well as
the techniques used for training and inference are described
in the subsequent sections. For the sake of simplicity, we
will omit the indices o or b in the discussion of the associ-
ation and the within-layer interaction potentials, assuming
the same functional model to be valid for both layers.

3.2. Association Potential

Omitting the superscript indicating the level of the
model, the association potentials ϕi(xi, y) are related to the
probability of a label xi taking a value c given the data y
by ϕi(xi, y) = p(xi = c|fi(y)) [13], where the image data
are represented by site-wise feature vectors fi(y) that may
depend on all the observations y. Note that both the defini-
tion of the features and the dimension of the feature vectors
fi(y) may vary with the dataset. We use a Random Forest
(RF) [3] for the association potentials both of the base and
for the occlusion levels, i.e. ϕbi (x

b
i , y) and ϕoi (x

o
i , y). A RF

consists of NT decision trees that are generated in the train-
ing phase. In the classification, each tree casts a vote for the
most likely class. If the number of votes cast for a class c is
Nc, the probability underlying our definition of the associa-
tion potentials is p(xi = c | fi(y)) = Nc/NT .



3.3. Within-Level Interaction Potential

The within-level interaction potential ψij(xi, xj , y) de-
scribes how likely the pair of neighbouring sites i and j
is to take the labels (xi, xj) = (c, c′) given the data:
ψij(xi, xj , y) = p(xi = c, xj = c′|y) [13]. We generate
a 2D histogram h′(xi, xj) of the co-occurrence of labels at
neighbouring image sites from the training data, i.e. h′(xi =
c, xj = c′) is the number of occurrences of the classes
(c, c′) at neighbouring sites i and j. We scale the rows of
h′(xi, xj) so that the largest value in a row will be one to
avoid a bias for classes covering a large area in the training
data, which results in a matrix h(xi, xj). Our contrast-
sensitive definition of ψij(xi, xj , y) ≡ ψij(xi, xj , dij) is
obtained by applying a penalization depending on the Eu-
clidean distance dij = ‖fi(y)− fj(y)‖ of the node feature
vectors fi and fj to the diagonal elements of h(xi, xj):

ψij(xi, xj , y) =

{
θ6 · e−θ7·d

2
ij · h(xi, xj) if xi = xj

h(xi, xj) otherwise
(3)

In Eq. 3, the parameter θ6 ∈ θ modulates the degree to
which the within-level interaction potential favours identi-
cal classes at neighbouring sites, whereas θ7 ∈ θ modulates
the contrast-sensitive term. The parameters θ6 and θ7 are
shared by both inter-level potential functions (base and oc-
clusion levels). As the largest entries of hψ(xi, xj) are
usually found in the diagonals, a model without the data-
dependent term in Eq. 3 would favour identical class labels
at neighbouring image sites and, thus, result in a smoothed
label image. This will still be the case if the feature vectors
fi and fj are identical, but large differences between the fea-
tures will reduce the impact of this smoothness assumption
and make a class change between neighbouring image sites
more likely. This model differs from the contrast-sensitive
Potts model [2] by the use of the normalised histograms
hψ(xi, xj) in Eq. 3. As a consequence, class transitions be-
come more likely, depending on the frequency with which
they occur in the training data. Again, the training of the
models for the base and the occlusion levels, ψbij(x

b
i , x

b
j , y)

and ψoij(x
o
i , x

o
j , y), respectively, are carried out indepen-

dently from each other using fully labelled training data.

3.4. Inter-Level Interaction Potential

The inter-level interaction potential ξi(xbi , x
o
i , y) de-

scribes how likely two variables of site i are to take the
labels (xbi , x

o
i ) = (c, c′) given the data: ξi(x

b
i , x

o
i , y) =

p(xbi = c, xoi = c′|y). Here c ∈ Cb and c′ ∈ Co. We
introduce a new set of class labels Ci = Cb × Co, which
encodes all the possible combinations of two labels c ∈ Cb
and c′ ∈ Co by one label c′′ ∈ Ci. Thus, the potential
function becomes ξi(xbi , x

o
i , y) = p(

{
xbi ;x

o
i

}
= c′′ | fi(y)),

which is modelled by the RF approach in the same way as
described in Sec. 3.2.

3.5. Training and Inference

Exact probabilistic methods for training of a CRF are
computationally intractable [13, 25]. Thus, approximate so-
lutions have to be used. We determine the parameters of the
association, within-level interaction and inter-level interac-
tion potentials separately, using only a part of the training
data. The association potentials and inter-level interaction
potential are trained using the OpenCV implementation of
the RF approach [18]. For the each class we use the same
amount of training samples Nsamples, which are chosen
randomly from the training dataset. This results in a total
of Nsamples × Nclasses samples that is used for training
of both the association and the inter-level interaction poten-
tial. The within-level interaction potentials are derived from
scaled versions of the 2D histograms of the co-occurrence
of class labels at neighbouring image sites in the way de-
scribed in Sec. 3.3, taking into account all image sites in
the training data. It is a preriquisite of our method that the
training data also have two separate layers of labels, one for
the base and one for the occlusion layers, respectively. The
parameters θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7} are trained using
the Powell search method [11], an iterative optimisation al-
gortihm that does not require an estimate for the gradient
of the objective function. We determine θ by maximising
the sum Ω of the diagonal elements of the confusion matrix
obtained by classifying the part of the training data that was
not used for training the potentials. Exact inference is also
computationally intractable for CRFs. We use max-product
Loopy Belief Propagation, a standard technique for proba-
bility propagation in graphs with cycles [9].

4. Evaluation

4.1. Experiment Setup

As our method requires test data to consist of two sep-
arate layers of class labels for the base and occlusion lev-
els, respectively, we only can use datasets providing this
information for evaluation. We used the Vaihingen1 and the
StreetScene [1] datasets for that purpose. The Vaihingen
dataset consists of 1440 scenes with a size of 250×250 pix-
els. Each scene is a colour-infrared (CIR) true orthophoto
and a height grid (digital surface model; DSM) generated
from wide baseline multiple overlapping airbourne images
with a ground sampling distance (GSD) of 8 cm [10]. Both
the CIR image and the DSM are geo-coded, and they are
defined on the same grid. The reference labels were gener-
ated by manually labelling these data in two separate layers.
The StreetScene dataset consists of 3547 colour images of
1280 × 960 pixels and contains a reference in the form of
polygons that also consider hidden object parts and hence

1The Vaihingen data set was provided by the German Society for Pho-
togrammetry, Remote Sensing and Geoinformation (DGPF) [4].



could be used to define the two-layered reference required
by our method. The Vaihingen data, based on aerial views,
are available in a reference frame aligned with the North di-
rection, which is not helpful to structure the scene because
roads and buildings (the dominant objects in these data) are
not necessarily aligned in North-South or East-West direc-
tions. As the original images were taken at the same flying
height, all objects appear at a similar scale. On the other
hand, for the StreetScenes data, the vertical (y coordinate
axis) provides a physically defined reference direction that
is clearly related to the scene structure. Furthermore, the
distances at which objects are observed vary considerably,
so that the scale of objects varies both within and between
different scenes.

For the Vaihingen data we chose the nodes of the graph-
ical model to correspond to single pixels, whereas for the
StreetScenes data we used image patches of 5 × 5 pixels.
Thus, each graphical model consisted of 250 × 250 and
256 × 192 nodes for the two datasets, respectively. The
neighbourhoodNi of an image site i in Eq. 2 (which defines
the red edges of the graphical model in Fig. 2) is chosen to
consist of the direct neighbours of site i in the data grid.
The reference of the Vaihingen dataset has six classes: as-
phalt (asp.), building (bld.), tree, grass, agricultural (agr.)
and car, so that Cb = {asp., bld., grass, agr.} and Co =
{tree, car, void}. The reference of the StreetScenes dataset
has 9 classes: road, sidewalk, (sdw.) bld., store (str.), tree,
sky, car, pedestrian (ped.) and bicycle (bic.). Since the ref-
erence for this dataset is given by polygons, it occures that
some image areas are not covered by any polygon. In or-
der to keep our model consistant, we introduce here class
unknown (unk.) and mark with it all the uncovered areas at
the base level. At the occlusion level, such areas are marked
as void, So that Cb = {road, sdw., bld., str., tree, sky, unk.}
and Co = {ped., car, bic., void}.

In each test run, 50% of the images were used for RF
training. Our RFs consist of NT = 100 trees of maximal
depth 25. For the training our RF-based potential functions
we usedNsamples = 105 samples. We used 8.3% of the im-
ages for learning the model parameters θ, and the remaining
41.7% of images for testing. The classification results were
compared with the reference; we report the completeness
and the correctness (recall and precision) of the results per
class as well as the overall classification accuracy [21].

4.2. Features

The site-wise feature vectors fi(y) representing the data
in the association potentials and inter-level interaction po-
tential depend on the dataset. For the Vaihingen dataset the
original data consist of the three colour values of the CIR or-
thophoto and the associated DSM height for each pixel. The
StreetScenes dataset offers only 3-channel colour images.
From these original data, we derive the site-wise feature

vectors fi(y), each consisting of Nf features. For numer-
ical reasons, all features are scaled linearly into the range
[0; 255] and then quantized by 8 bit.

The features used for both datasets comprise the im-
age intensity (int), calculated as the average of non-infrared
channels and the saturation (sat) component after trans-
forming the image to the LHS colour space. We also make
use of the variance of intensity (varint), the variance of sat-
uration (varsat) and the variance of gradient (vargrad) de-
termined from a local neighbourhood of each site i (7 × 7
pixels for varint, 13×13 pixels for varsat and vargrad, in both
cased evaluated at the original resolution).

For the Vaihingen dataset includes CIR images, we make
use of the normalized difference vegetation index (NDVI),
derived from the near infrared and the red band of the CIR
orthophoto [17]. For Vaihingen we also determine a digital
terrain model (DTM) by applying a morphological open-
ing filter to the DSM with a structural element size corre-
sponding to the size of the largest off-terrain structure in the
scene, followed by a median filter with the same kernel size.
The DTM is used to derive a normalised DSM (nDSM) [26],
i.e. a model of the height differences between the DSM and
DTM. The nDSM describes the relative elevation of objects
above ground and its value at image site i is directly used as
a feature. Finally, the feature dist models the fact that road
pixels are usually found in a certain distance either from
road edges or road markings. We generate an edge image
by thresholding the intensity gradient of the input image.
The dist feature is the distance of an image site to its near-
est edge pixel. The last feature used for the Vaihingen data
is the gradient strength of the DSM (||∇DSM ||).

The StreetScenes dataset has no infra-red channel and
no DSM. Nevertheless the classes in images of this dataset
have a strong dependency on the y image coordiante that
reflects the vertical structure of the scenes. For instance, the
sky is usually above road and buildings have vertical struc-
ture [28]. Consequently, we use the y coordinate of a node
as a feature. This shows that we can incorporate this in-
formation when it is helpful (horizontal viewing direction,
street scenes), but do not rely on it when it is not available
(remote sensing imagery). For similar reasons we make use
of histogram of oriented gradients (HOG) features [5] only
for the StreetScenes dataset. We calculate the HOG descrip-
tors for cells consisting of 7×7 pixels, using blocks of 2×2
cells for normalization. Each histogram consists of 9 orien-
tation bins (20◦ per bin). The gradient directions are de-
termined relative to the vertical image axis (which would
correspond to a model relative to the North direction in the
aerial image case). We extract nine features from the HOG
descriptor, namely the value corresponding to each direc-
tion bin (HOG0, HOG1, . . . ,HOG9).

For both datasets we make use of multiscale features.
That is, the features described above are derived at three



different scales. The first scale corresponds to the individual
sites, the second and the third are calculated as the average
in a local neighbourhoods. For int, sat, NDVI and nDSM,
these neighbourhoods were chosen to be 45× 45 and 91×
91 pixels for the second and the third scales, respectively.
For varint, varsat, vargrad, dist, ||∇DSM || and the HOG
features the neighbourhoods were chosen to be 10× 10 and
100× 100 pixels for scales two and three, respectively.

4.3. Results and Discussion

To assess the tCRF model we carried out a number of dif-
ferent experiments. At the first stage we used the Vaihingen
dataset and performed two experiments: in the first experi-
ment (CRF), each layer was processed independently, thus
the inter-level interaction potentials were not considered. In
the second experiment (tCRF) we use the tCRF model with
the inter-level interaction potentials. Fig. 3 shows the con-
vergence behaviour of the Powell method for training the
parameters θ in Eq. 2 for both cases. It shows that originally
the procedure converges more slowly for the tCRF method,
probably due to a relatively poor initialisation of some pa-
rameters, but in the end-iterated state, a larger value of the
objective function Ω can be achieved.

Figure 3. Convergence of the Powell search method: Red curve:
CRF ; blue curve: tCRF .

Fig. 4 and 5 show the results of the experiments for two
Vaihingen scenes. In both figures we can observe that our
two-level model considerable improves the road classifica-
tion in comparison to the state-of-the-art one-layer model.
For example, in the right part of the scene in Fig. 4, the
tCRF model successfully extracts a road part that is com-
pletely occluded with a tree, while CRF wrongly labels this
area as grass. This improvement is possible because the
tCRF models explicitly considers occlusion, the results of
the base level receiving information from spatially neigh-
bouring image sites, multi-scale features, and the second
layer of labels. Fig. 5 also shows how an occluded road can
be correctly classified by the tCRF. In addition, the grass
area in the right lower part of the scene is labelled as agri-
cultural by the CRF model, in spite of the occlusion level
saying that this region is covered by trees. Agricultural re-
gions are rarely covered by a forest, and the tCRF model

can use this knowledge (derived from the training data) in
order to classify this area correctly. For both scenes we can
observe many false positives for the class car. Their num-
ber is reduced considerably by the tCRF model, though at
the cost of a few false negative cars (Fig 4). This is also
reflected in the quality numbers in Tab. 1.

(a) (b)
Figure 4. Vaihingen (scene 22). First row: reference, second row:
CRF , third row: tCRF . (a) Base level; (b) Occlusion level.
Gray: asp.; orange: bld.; green: grass; beige: agr.; white: void;
darkgreen: tree; red: car.

The completeness and the correctness as well as the over-
all accuracy of the results achieved in these two experiments
are shown in Tab. 1. Using the CRF model, the overall ac-
curacy of the classification was 82.6% for the base level and
80.4% for the occlusion level. In the second (tCRF) exper-
iment the overall accuracy for the base level was 86.6%.
The improvement can be attributed by more accurate clas-
sification in the occlusion areas (cf. Fig. 4 and 5). From the
Tab. 1, we can also observe that both the completeness and
correctness of car class are still very low. We think that this
is due to the fact that cars are relatively small regions and so



(a) (b)
Figure 5. Vaihingen: scene 43. First row: groundtruth, second
row: CRF , third row: tCRF . (a) Base level; (b) Occlusion level.
Gray: asp.; orange: bld.; green: grass; beige: agr.; white: void;
darkgreen: tree; red: car.

are described with our features not well enough. The out-
come of additional car-detector may correct this situation.
Nevertheless our tCRF model has almost double correct-
ness value for cars, then CRF model, while having smaller
completeness value. As far as completeness and correctness
are concerned, the major improvement is an increased cor-
rectness for asp. and an improved completeness for grass.
The class agr. has a rather low correctness in the model
CRF. For the occlusion level, we observe the best perfor-
mance when using tCRF.

At the second stage of experiments we used the
StreetScene dataset and also performed two experiments:
CRF and tCRF but this time we compare our method with
those, reported in [7], namely Most Confident (MC) and
Method of Guo and Hoiem (GH). The results are presented
in Tab. 2 and some classification examples are depicted in
Fig. 6.

CRF tCRF
Cm. Cr. Cm. Cr.

asp. 80.2 % 90.3 % 85.0 % 87.7 %
bld. 86.5 % 78.3 % 85.9 % 82.5 %
grass 82.7 % 85.5 % 88.3 % 87.8 %
agr. 84.1 % 64.4 % 85.4 % 84.2 %
OAbase 82.6 % 86.6 %
void 78.1 % 96.9 % 86.8 % 95.7 %
tree 90.4 58.0 % 86.3 % 65.4 %
car 72.7 11.5 % 47.7 % 19.4 %
OAoccl 80.4 % 86.3 %

Table 1. Completeness (Cm.), Correctness (Cr.) and overall accu-
racy (OA) of the results for Vaihingen dataset.

CRF MC GH tCRF
road 90.9 % 92.5 % 93.0 % 94.5 %
sdw. 0.5 % 28.5 % 52.5 % 0.3 %
bld. 54.3 % 90.5 % 90.0 % 46.6 %
str. 0.0 % 0.5 % 11.0 % 0.1 %
tree 92.3 % 69.5 % 73.5 % 92.9 %
sky 77.6 % 68.0 % 79.0 % 80.4 %

Table 2. Completeness of the results for StreetScene dataset.
CRF : state-of-the-art 1-layer CRF; MC: Most Confident method
and GH: method of Guo and Hoiem, both reported in [7]; tCRF
our method.

As we can see from Tab. 2 neighter CRF nor tCRF
can distinguish sidewalk and store classes. Newertheless,
our tCRF method beats the baseline GH method in terms
of classification accuracy for 3 of 6 classes: road, tree, sky.

5. Conclusion
In this paper we have presented a novel approach for con-

sidering occlusions in classification based on CRF, the two-
level CRF model. Due to its two-level structure it is capa-
ble to improve the accuracy of object detection for partially
occluded objects. The method was evaluated on the set of
airborne- as well as on street-view images and showed a
considerable improvement of the overall accuracy in com-
parison to the classical CRF approach. In the future we
want to extend our two-level architecture to n-level archi-
tecture and apply it to different classes of data. This will
include the removal of the restriction that the sets of Classes
corresponding to different layer have an empty intersection
(Cb

⋂
Co = ∅). Furthermore, we want to include additional

cues to obtain a better classification accuracy for the occlu-
sion level, in particular for the class car.
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