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ABSTRACT:

In this paper we present a new global image orientation approach for a set of multiple overlapping images with given homologous
point tuples which is based on a two-step procedure. The approach is independent on initial values, robust with respect to outliers
and yields the global minimum solution under relatively mild constraints. The first step of the approach consists of the estimation of
global rotation parameters by averaging relative rotation estimates for image pairs (these are determined from the homologous points
via the essential matrix in a pre-processing step). For the averaging we make use of algebraic group theory in which rotations, as part
of the special orthogonal group SO(3), form a Lie group with a Riemannian manifold structure. This allows for a mapping to the local
Euclidean tangent space of SO(3), the Lie algebra. In this space the redundancy of relative orientations is used to compute an average
of the absolute rotation for each image and furthermore to detect and eliminate outliers. In the second step translation parameters and
the object coordinates of the homologous points are estimated within a convex L∞ optimisation, in which the rotation parameters are
kept fixed. As an optional third step the results can be used as initial values for a final bundle adjustment that does not suffer from
bad initialisation and quickly converges to a globally optimal solution. We investigate our approach for global image orientation based
on synthetic data. The results are compared to a robust least squares bundle adjustment. In this way we show that our approach is
independent of initial values and more robust against outliers than a conventional bundle adjustment.

1. INTRODUCTION

One basic task in photogrammetry is to derive three-dimensional
object information and orientation parameters from a set of two-
dimensional overlapping images. Most approaches in image ori-
entation are based on a simultaneous estimation of object infor-
mation and the orientation parameters of the imagery (e. g. bun-
dle adjustment, simultaneous localization and mapping (SLAM)
or structure from motion (SfM)). Though in postprocessing all
the imagery is available at once, in particular for applications in-
volving image sequences, it is rather common to proceed in a
sequential manner: In this case the estimation starts with a cer-
tain minimum number of images (often only two or three) and
additional images are added iteratively to determine initial values
for an overall bundle adjustment. In this process errors are accu-
mulated and hence the final result may suffer from only locally
optimised parameters and vary by changing that initial configura-
tion.

An alternative to the sequential procedure is a global two-fold
approach: In the first step absolute rotation parameters of each
image are estimated from relative rotation estimates. For a set of
n overlapping images there are at least n− 1 and at most n(n−1)

2
different image pairs. In most cases the actual number lies some-
where in between these bounds providing redundant observations
for the relative rotations and therefore allowing for an adequate
averaging scheme. The second step consists of the estimation of
the unknown translation parameters and the object coordinates of
homologous points while the rotation parameters are kept con-
stant. Each of the two steps can be simultaneously performed for
the whole set of images.

In this paper, we present a new two-step approach for the orienta-
tion of a set of overlapping images. Our approach is robust with
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respect to outliers and independent of initial values for the un-
knowns, only the datum has to be fixed. In the first step, absolute
rotations Rj are computed using estimates for the relative orien-
tations between two images Rij that have been derived from tie
points (homologous points) via the essential matrices. To take ad-
vantage of the redundancy we use all relative estimates available
in an iterative block type averaging algorithm in which only one
absolute rotation is computed at a time.

In the second step the remaining unknowns, namely the transla-
tion parameters of the images and the object coordinates of the
homologous points are estimated within a global and convex op-
timisation. This optimisation is performed by means of an L∞
minimisation in a second order cone program.

The remainder of this paper is organised as follows: In section 2
some related work is presented primarily in the field of rotation
averaging and global orientation. Section 3, after giving a short
introduction into the mathematical field of groups and manifolds,
describes single rotation averaging and our algorithm for multi-
ple rotation averaging. The estimation of translation parameters
and object coordinates is discussed in section 4. In section 5 we
present some results. We summarise and conclude this paper in
section 6.

2. RELATED WORK

Rotation matrices obey some specific properties, they have a de-
terminant of one and orthogonal columns with unit length. Hence,
taking an element-wise average of two rotation matrices most
likely will not lead to a valid rotation matrix. Valid averaging of
rotations requires some knowledge in mathematical group theory
and calculation on manifolds. Rotations as part of the special or-
thogonal group SO(3) form a Lie group with a Riemannian man-
ifold structure. This implies that there exists a local Euclidean
tangent space, the Lie algebra so(3), a direct mapping between



SO(3) and so(3) and a certain metric to perform a proper aver-
aging.

One of the first works exploring the idea of averaging rotations
for image orientation is given by Govindu (2001). This paper
describes rotation averaging as a least squares estimation using
quaternions for representing rotations with residuals being mod-
elled as rotations about an arbitrary axis. The fact that only unit
quaternions (quaternions of length one) represent valid rotations
is neglected. In a later work the author extends his approach to
include Lie group theory (Govindu, 2004). Both, global rotations
and translations, derived from essential matrices, are estimated in
a single algorithm using a first-order approximation. The struc-
ture of the scene is omitted. Fredriksson and Olsson (2013) show
how to check whether the estimation of Govindu (2001) reaches
the global minimum by analysing the duality gap derived from
the Lagrangian dual function.

A fundamental algorithm for our work is the Weiszfeld algo-
rithm, which finds the L1 mean of a set of points in Rn and was
published more than 70 years ago (Weiszfeld, 1937) (an English
translation is given by Weiszfeld and Plastria (2009)). Hartley et
al. (2011) transfer this algorithm to the field of rotation averaging
in the Lie algebra. In case of single rotation averaging, meaning
the estimation of one absolute rotation from several relative ones,
this algorithm is proven to converge to the global optimum. A de-
tailed proof, a broad collection of related work and a mathemat-
ical review about rotation averaging and convexity on manifolds
is given in Hartley et al. (2013). For multiple rotation averaging
they propose a block type algorithm, that estimates only one ab-
solute rotation at the same time and then iterates in the manner of
a distributed consensus until convergence. Although the convex-
ity of this optimisation was not proven the authors state that the
results demonstrate good performance.

The work of Martinec and Pajdla (2007) proposes to determine
rotation averaging by solving a linear system in R3×3 which will
not result in a valid rotation matrix, meaning that the solution is
not part of SO(3). This is resolved by taking the closest mem-
ber of SO(3) with respect to the Frobenius norm. The unknown
translation parameters are estimated by means of an L∞ minimi-
sation. Hartley et al. (2013) mention that the rotation solution, in
general, is not the optimal one. Finally, Chatterjee and Govindu
(2013) present a two-fold algorithm. First, a robust initial guess
for the global rotations is derived using L1 optimisation. The re-
sult is then improved in a robust least squares estimation with a
Huber loss function1.

Convex optimisation techniques for geometric imaging problems
have become quite popular in recent years. One of the first works
is given by Hartley and Schaffalitzky (2004) who analyseL∞ op-
timisation for geometric reconstruction problems. Several works
picked up the idea and extended the scope for more geomet-
ric problems (Kahl, 2005), several types of convexity (Olsson
and Kahl, 2010) and different minimisation algorithms (Ke and
Kanade, 2007). A good introduction and an extensive overview
to convex optimisation in general can be found in (Boyd and Van-
denberghe, 2004).

3. ROTATION AVERAGING

In this section we first give an introductory overview about group
theory and manifolds. More information on this topic and its
relation to image orientation can be found in (Kanatani, 1990).
Afterwards we present the single rotation averaging problem and
our algorithm for multiple rotation averaging.

1the authors call it iterative reweighted least squares

3.1 Group theory and manifolds

In the following we will give a brief introduction and a basic defi-
nition for the mathematical terms group and manifold. In algebra
a group is defined by a set of elements and an operation that al-
lows to combine elements of the set. Suppose A,B and C are
elements of a set G. In order for this set to form a group (G, ◦),
with operation ◦, four group axioms must be valid:

1. Closure under operation; every combination of two elements
of the group with the associated operation has to result in an
element of the group: A ◦B = C.

2. Associativity: A ◦ (B ◦ C) = (A ◦B) ◦ C.

3. Identity element; there exist an element E in G that does
not change other elements of the group when both are com-
bined: E ◦A = A ◦ E = A.

4. Inverse element; for each element in G there exist an ele-
ment I inG so that the combination of the two results in the
identity element: I ◦A = A ◦ I = E.

Rotations R can amongst others be represented as matrices with
orthogonal columns of unit length and determinant det(R) = 1
(orthonormal matrix). They form a group when considering mul-
tiplication as operation and E and I being the three dimensional
identity matrix and the transposed RT , respectively. The name
of the group is related to the main characteristics of rotations:
special orthogonal group, SO(3). Orthogonal is related to the
matrix being orthogonal, special stands for the determinant equal
to one, 3 specifies the matrix dimension.

A manifold is a topological space, hence a set with a topological
structure that allows the formulation of a metric. Manifolds obey
Euclidean geometry only locally, but not necessarily also glob-
ally. A manifold is a Riemannian manifold if it is differentiable
(allows the computation of a tangent space) and induces a metric
tensor2 (allows the definition of lengths and angles in the tangent
space). Basically, the latter follows from the former. Each point
of a Riemannian manifold has a certain neighbourhood in which
the Euclidean geometry is approximately valid.

An intuitive example is the surface of a 2-sphere (one can think of
the earth’s surface). Globally the surface is not Euclidean, for in-
stance the sum of the three angles of a spherical triangle exceeds
180◦ and the shortest path between two points is not a straight
line but a geodesic. The surface can be mapped to Euclidean R2

but the larger the mapped region, the larger the distortion.

Both mathematical concepts, group and Riemannian manifold,
are connected in a Lie group. A group is a Lie group if its oper-
ation and the computation of the inverse element are compatible
with the structure of the manifold, hence both lead to continu-
ous and differentiable functions. Consequently, we can state that
SO(3) is a Lie group, since the multiplication of rotation ma-
trices is continuous and differentiable. Every Lie group is con-
nected to a Lie algebra, the tangent space at the identity element
(we will write so(3) for the Lie algebra of SO(3)). The Lie al-
gebra obeys the Euclidean geometry and hence allows for an ad-
equate averaging. The matrix logarithm3 log : SO(3) → so(3)
connects the Lie group and the Lie Algebra. An inverse mapping
is given by the exponential map exp : so(3)→ SO(3).

2A generalisation of the dot product in Euclidean space
3The matrix logarithm is computed by taking the logarithm of the

eigenvalues of the matrix and re-assembling.



3.2 Single rotation averaging

The single rotation averaging problem comprises computing a
valid rotation given several estimates which are assumed to be
affected by noise. We have seen that rotations form an SO(3), a
Lie group with a Riemannian manifold structure. Normally, when
we speak about averaging, this is meant to be done in Euclidean
geometry. Hence, in the following we make use of the fact, that
rotations can be mapped to their local Euclidean tangent space
and vice versa. Hartley et al. (2011) and Hartley et al. (2013)
name three different metrics for defining distances between ele-
ments of SO(3): The geodesic, the chordal and the quaternion
metric which basically differ in scale. In our approach we make
use of the geodesic metric, which is also called angular metric
since it defines the angle between two rotations R1 and R2 and
appears to be the most intuitive one:

d(R1,R2) = ‖ log(RT
1 R2)‖2. (1)

Note that the matrix logarithm in (1) maps the combined rotation
from SO(3) to so(3) and that the norm is the standard Euclidean
norm in R3. With the distance measure defined in (1) we are in-
terested in finding a rotation R with a minimum distance to every
estimate Ri with respect to some norm. The Lp cost function for
a set of n rotations reads as

D(R) =

n∑
i

d(Ri,R)p. (2)

In our work we analyse both, the L1 and the L2 optimisation.
For the L1 optimisation we use the adapted Weiszfeld algorithm
presented in Hartley et al. (2011). Both the L1 and the L2 al-
gorithms are gradient descent algorithms. The L2 optimisation
can start with an arbitrary rotation, for instance one of the ini-
tial estimates to be averaged, whereas the gradient of the L1 cost
function is not defined at any of the estimates. Therefore, we use
the L2 solution after only one iteration providing a rotation dif-
ferent from any of the estimates as initial value for the Weiszfeld
algorithm.

The L1 minimisation, also known as the geometric median, has a
breakdown point of 0.5 and offers a higher robustness than theL2

optimisation. In L2 high residuals lead to a much higher cost and
hence to a stronger influence of outliers. On the other hand L2

optimisation leads to the best unbiased estimation in Euclidean
space. In order to achieve a high robustness in an L2 optimisation
we use a reweighted averaging algorithm based on the weighting
function

w(i) =

{
2

z(i)2
if z(i) ≤ k

1
k·z(i) −

2
k2

else,
(3)

with z(i) =
d(Ri, R̂)

D(R̂)

i = 1, . . . , n,

which is the inverse Huber loss function (Huber et al., 1964)
with tuning constant k4 and R̂ being the current rotation aver-
age. Thus, while good estimates have a quadratic influence on
the results, bad estimates only have a linear one.

4k is selected by means of a proper quantile of the normal distribution.

3.3 Multiple rotation averaging

In the last section we have seen how one rotation can be aver-
aged from several estimates using different cost functions. In this
section we want to extend this problem to a network of m esti-
mated relative rotations that is to be solved for n ≤ m absolute
rotations. According to (Chatterjee and Govindu, 2013) one can
imagine this network as a graph with nodes being absolute ro-
tations connected by edges depicting relative estimates. Rotation
matrices are composed by multiplication and they can be chained.
Hence our functional model reads as:

Rj = RijRi, ∀(i, j) ∈ N = 1, . . . , n; i 6= j. (4)

In general this equation does not hold, since every estimate most
likely is affected by noise. Hence, we formulate the Lp cost func-
tion for the multiple rotation averaging problem in the manner of
equation (2) and according to Hartley et al. (2011), Chatterjee and
Govindu (2013):

D(R1, . . . ,Rn) =
∑

(i,j)∈N

d(Ri,jRi,Rj)
p. (5)

Again, d(Ri,jRi,Rj)
p stands for the geodesic metric defined in

(1). Equation (4) implies the need of one fixed absolute rotation.
Without loss of generality we set the rotation of the first image to
the identity matrix to fix the datum.

In the following we will describe our procedure, which is similar
in style to the one outlined in Hartley et al. (2011) but in addition
contains a scheme for outlier detection. Basically, the algorithm
can be divided into two stages:

1. initialisation and outlier detection

2. iterative averaging.

The first stage deals with all n absolute rotations, for which an
average has to be computed, separately. This step serves the ini-
tialisation of the graph, thus one can think of assigning a rotation
to each node of the graph. The principle is outlined in figure
1. Starting from the first image i1 we select each edge corre-
sponding to a relative rotation from or to another absolute rota-
tion and propagate the rotation of all the involved nodes i2, i3
and i4 according to (4). In the beginning this is quite intuitive
since only for the first node a rotation has been assigned. Prop-
agation becomes more challenging when a node already exhibits
an assigned rotation (figure 1b). Before these two estimates are
averaged (e. g. R3 and R23R2), we check them for similarity
using the distance measure defined in (1). Based on this measure
we decide whether or not one of the estimates is an outlier. If
so, of course, we cannot yet decide which of the two is the bad
one. Therefore, we defer our decision, keeping both estimates for
the specific node and proceed with the following relative rotation
estimate, if available. Since relative rotations are estimated in-
dependently, we argue that, if another relative rotation from this
particular node (i2) leads to a high discrepancy in the estimates
(e. g. R4 and R24R2), the rotation of this node, R2, can be con-
sidered an outlier. In this case the current solution for this node is
discarded and, redundancy provided, computed with another rel-
ative estimate at a later stage. This also means, that propagation



from this node is no longer possible since it exhibits no valid rota-
tion. Propagation from this node is only repeated after it has been
assigned another rotation. All the involved nodes (in this case i3
and i4) keep their assigned rotation without taking the relative es-
timates from the discarded node (i2) into account. If there is no
further evidence for R2 being an outlier (e. g. d(R4,R24R2) is
small) we keep the estimates for the rotation that could not yet be
averaged and decide when a third estimate comes from another
node.

(a)

(b)

Figure 1: Graph structure during multiple rotation averaging de-
picted for two phases of the first stage. (1a) shows propagation
from image i1 (black) in which all other nodes receive a rota-
tion (orange). In (1b) propagation starts from image i2. i1 does
not receive a rotation since it is fixed (grey). i3 and i4 exhibit
an assigned value and underlie outlier detection and averaging
(turquoise).

If we do not qualify one estimate as an outlier the two estimates
are averaged using the cost function described in (2). This pro-
cedure is repeated for every node of the graph. With each rep-
etition our outlier detection becomes more stable because more
and more estimates are involved in propagation supporting the
rotation of each node.

In the first stage for all n rotations to be averaged initial values
are determined. The second stage is carried out for a certain num-
ber of iterations steadily improving the overall solution. For each
node every connected neighbour is consulted to propagate a ro-
tation. Again, these estimates are averaged using (2). Within the
iteration the overall solution is found in a manner similar to re-
laxation labelling (Kittler and Illingworth, 1985). This algorithm
is not convex and may lead to local minima (Hartley et al., 2011).
Nevertheless, the authors state that it gives excellent results even
on large datasets.

4. TRANSLATION AND STRUCTURE ESTIMATION

In section 3 we examined how to compute global rotations using
the redundancy provided bym ≥ n relative rotations. In this sec-
tion we show the convex estimation of translation parameters and
the 3D coordinates of the tie points. The convex formulation of
the multiview reconstruction problem with known rotations has
been studied in many publications in recent years (Hartley and
Schaffalitzky, 2004), (Ke and Kanade, 2007), (Olsson and Kahl,
2010), (Kahl, 2005). All these works examine the quasiconvexity

of an L∞ cost function for several multivision problems like spa-
tial intersection (sometimes also called triangulation), spatial re-
section and homography estimation in addition to our problem. A
quasiconvex function has only one global minimum but, contrary
to a convex function, may have negative curvature and more than
one stationary point (Boyd and Vandenberghe, 2004). Hence a
gradient5f(x) = 0 does not necessarily stand for a global min-
imum. Therefore, a quasiconvex problem cannot be solved by a
gradient descent method. However, there exist methods to solve
quasiconvex problems, for instance bisection algorithms (Ke and
Kanade, 2007) that subdivide the quasiconvex problem into sev-
eral convex problems.

Hartley and Schaffalitzky (2004) show that the reprojection error
in image space is a quasiconvex function with respect to the point
movement in object space. Generally in image orientation one is
interested in simultaneously minimising all reprojection errors of
the involved tie points, but quasiconvexity is not preserved under
summation. Instead using the L∞ norm ‖f(x)‖∞ = max f(x),
thus minimising the maximum residual, preserves quasiconvexity
allowing for a convex estimation of the unknowns. It should be
noted that sinceL∞ optimisation is sensitive to outliers using this
norm assumes outlier-free data.

We can write the Euclidean reprojection error as:

ri,j(Xj ,X0,i) =

∥∥∥∥∥∥∥
−c r

T
i,1(Xj−X0,i)

rTi,3(Xj−X0,i)
+ x0 − xi,j

−c r
T
i,2(Xj−X0,i)

rTi,3(Xj−X0,i)
+ y0 − yi,j


∥∥∥∥∥∥∥
2

, (6)

i = 1 . . . n, j = 1 . . . p,

with Xj and X0,i being the unknown object coordinate of the jth
tie point and the projection centre of the ith image. [xi,j ; yi,j ] are
the observed image coordinates of point j in image i. The interior
orientation elements (c, x0, y0) and the columns of the rotation
matrix of image i, Ri = [ri,1, ri,2, ri,3] are constant. We can
extend (6) to

ri,j(Xj ,X0,i) =

∥∥∥∥∥∥∥
 (−c·rTi,1+(x0−xi,j)rTi,3)(Xj−X0,i)

rTi,3(Xj−X0,i)
(−c·rTi,2+(y0−yi,j)rTi,3)(Xj−X0,i)

rTi,3(Xj−X0,i)


∥∥∥∥∥∥∥
2

,

(7)

and further to

ri,j(Xj ,X0,i) =

∥∥∥∥Ai,j

(
Xj

X0,i

)∥∥∥∥
2

cTi

(
Xj

X0,i

) , (8)

stacking the two unknown vectors and with

Ai,j
2×6

=
(
−ai,j ai,j

)
,

ai,j
2×3

=

(
c · rTi,1 + (x0 − xi,j)rTi,3
c · rTi,2 + (y0 − yi,j)rTi,3

)
,

cTi
1×6

=
(
rTi,3 −rTi,3

)
.



(8) is a quasiconvex function on the convex set cT
(

Xj

X0,i

)
� 0

requiring the points to lie in front of the cameras (cheirality con-
straint). The resulting L∞ cost function then reads as:

D(X,X0) = max
i,j

ri,j(X,X0). (9)

In minimising (9) we follow Ke and Kanade (2007) and formulate
the following convex minimisation problem:

minimise ε

subject to
∥∥∥∥Ai,j

(
Xj

X0,i

)∥∥∥∥
2

− µ
(
cTi

(
Xj

X0,i

))
≤ ε,

cTi

(
Xj

X0,i

)
� 0,

i = 1 . . . n, j = 1 . . . p. (10)

The parameter µ is the reprojection error ri,j(Xj ,X0,i) that is
kept fixed and set to a reasonable value. For each image i and
each point j the first constraint defines a second order cone, which
is why (10) is called a second order cone program (Boyd and Van-
denberghe, 2004). µ can geometrically be thought of as defining
the diameter in image space of each convex cone of feasible solu-
tions. The objective function ε is an affine function with respect
to the reprojection error and ε ≤ 0 holds if a solution inside the
feasible set defined by all cones is found. The datum has to be
fixed, which means that three translational parameters and the
scale have to be defined. An intuitive way is to locate the origin
of the coordinate system in the projection centre of the first im-
age and to fix the X-coordinate of the second projection centre.
Hence, (10) extends to

minimise ε

subject to
∥∥∥∥Ai,j

(
Xj

X0,i

)∥∥∥∥
2

− µ
(
cTi

(
Xj

X0,i

))
≤ ε,

cTi

(
Xj

X0,i

)
� 0,

X0,1 = 0
3×1

,

X0,2,(1) = 1,

i = 1 . . . n, j = 1 . . . p. (11)

Note that in (11) X0,2,(1) is set equal to 1 but in general can be
set to an arbitrary value.

5. EXPERIMENTAL RESULTS

In this section we present some of our experimental results based
on synthetic data. First we analyse our robust L2 single rota-
tion averaging algorithm. Whereas in an outlier free dataset L2

optimisation generally performs best, this is not the case in the
presence of gross errors. Out of one rotation matrix we generated
five estimates by adding random noise to the Euler angles. In a
Monte-Carlo simulation we computed 1000 solutions averaging
the five rotation estimates using (2) for L1 and robust L2 optimi-
sation based on (3). We successively increased the noise level and
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Figure 2: Distance according to (1) between the true rotation and
an averaged solution (L1, L2 and weighted L2) out of five inde-
pendent rotation estimates with 10% outlier rate.

assumed every tenth rotation estimate to be an outlier with noise
being 5 times higher than the current noise level. The results are
shown in figure 2. As one can see the L2 solution is affected by
the outliers more significantly and thus produces worse results
than both, L1 and robust L2 optimisation which perform equally
well.

Because the L1 optimisation has to be initialised and is computa-
tionally is more expensive in the following experiments we make
use of our robust L2 algorithm.

The second experiment serves as an illustration of the quality
of our combined approach using multiple rotation averaging and
convex estimation of translations and structure5. We created a
setting with a circular arrangement of images. Twelve images lo-
cated in the XZ-plane are rotated through n · π

6
about the Y -axis

(n = 0 . . . 11); 100 object points are uniformly distributed within
a cuboid in the centre. Each point is observed in all images and
we assume error-free matches. We argue that gross errors within
matching most likely are detected during the subsequent estima-
tion of the relative orientation parameters via essential matrices
for instance by means of a robust RANSAC algorithm. All the
observations are affected by random noise, normally distributed
with σ = 5 pixels. The graph that depicts the distribution of rel-
ative estimates for multiple rotation averaging (see section 3.3) is
fully connected.

Figure 3 shows the configuration of images (green image planes)
and object points (green squares). The coloured dots and the red
image planes depict the results using different algorithms. We de-
rived initial values by computing the essential matrix of the first
image pair (the topmost image and the one to its right at (4, 0, 2)),
spatial intersection of the tie points and the computation and de-
composition of projection matrices for the rest of the images. In
figure 3a, that shows the initial configuration, one can see, that the
first image pair is approximated quite accurately whereas the im-
ages at the opposite side of the circle differ significantly from the
ground truth. The reason is that the projection matrices are com-
puted using the initial object coordinates intersected from the first
image pair. Due to the small base length the points exhibit a com-
paratively large uncertainty in depth. The results of our algorithm
can be seen in figure 3c. Note that no initial values are needed.
In comparison with figure 3b which shows results achieved with-
out multiple rotation averaging using only the first initial guess

5We used CVX, a Matlab package for specifying and solving convex
programs (Grant and Boyd, 2014), (Grant and Boyd, 2008)
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Figure 3: Circular arrangement of images and randomly distributed object points. The green images and the green squares depict the
ground truth. The red images and the coloured points show the results of the following stages: initial values from projective geometry
(3a), solution of convex estimation of translations and object points without rotation averaging (3b), solution after multiple rotation
averaging and convex estimation of translations and object points (3c) and solution of a robust bundle adjustment (3d) using the initial
values depicted in (3a). The points are coloured with respect to their distance to the ground truth. Note that the color scale is different
in every stage.

for absolute rotations and hence neglecting the redundancy of the
relative estimates, one can see a large improvement. Because the
rotations are kept fixed during the estimation of the translations
and object coordinates, there exist one globally optimal solution
for each set of rotations. In figure 3d one can see the results of
the bundle adjustment. Clearly, since an L2 minimisation is per-
formed, this method achieves the best results with respect to the
Euclidean distance to the ground truth.

Numerical results for the RMS-values of the unknowns are given
in table 1. Performing rotation averaging leads to a significant
improvement of nearly 300% of the RMS of the projection cen-
tres and the object coordinates with respect to the ground truth.
The improvement of the rotational parameters amounts to a fac-
tor of 2. Still, the accuracy of our algorithm is far away from the
accuracy of the robust bundle adjustment. However, the result of
our approach can serve as a good initialisation for a final bundle
adjustment.

In another experiment we demonstrate the robustness of our meth-
od. We generated initial values for the orientation parameters
and object coordinates by adding several combinations of ran-
dom noise to the ground truth. In a Monte-Carlo simulation we
ran the robust bundle adjustment 20 times for each combination
of initial value accuracy. We then took the median from the 20

RMS-values of the object coordinates, the translation and the ro-
tation parameters, respectively. Exemplary results for the RMS
of the translation parameters are depicted in figure 4. We draw
samples with an accuracy from 0.025 to 0.125 base lengths [BL]
for initial translations and object coordinates and from 0.5 to 5
[grad] 6 for initial rotations. One can see clearly that the worse
the accuracy of the initial values the worse the result of the bun-
dle adjustment. Note that we did not change the noise of the ob-
servations nor the observations during the simulation. This fact
also manifests itself in the constant standard deviation of our ap-
proach (green and orange planes). Thus, due to poor initialisation
the bundle adjustment may converge into only locally optimal so-
lutions.

6. CONCLUSION

In this paper we have described a new robust two-step approach
for image orientation that is independent of initial values for the
unknown parameters and most likely converges to a global op-
timum with respect to the L∞ norm. In the first step we make
use of the redundant overlap of the images and compute absolute
rotations from relative estimates. Our robust algorithm for multi-
ple rotation averaging is able to detect outliers in terms of gross

6noise on the Euler angles



initial convex opt. convex opt. robust
values no rotation av. rotation av. bundle adj.

RMSX0 1.4816 0.9726 0.2512 0.0765
RMSR[grad] 7.4064 2.3305 1.2728 0.4484
RMSX 0.8376 0.8259 0.1867 0.0456

Table 1: RMS-values of the translation parameters X0, the rotations R (using (1)) and the object coordinates X for the three methods
with respect to the ground truth.
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Figure 4: Median of the RMS of the translation parameters after
a Monte-Carlo simulation of an incremental robust bundle ad-
justment using different combinations of initial value accuracies
(dots, coloured with respect to the distance to the ground truth).
The planes depict the standard deviation of the translation pa-
rameters of our approach (orange) and our approach plus a final
bundle adjustment (green).

errors in the relative rotation estimates, given that redundant in-
formation exist. Translation parameters and object coordinates
are estimated using a convex L∞ minimisation providing a glob-
ally optimal solution for a certain set of constant rotations. A
subsequent and quickly converging bundle adjustment, that does
not suffer from poor initialisation, is then able to compute a glob-
ally optimal L2 solution. In our rather simple experiments we
could show that poor initialisation may lead to only locally op-
timal results in bundle adjustment. This stresses the need for a
highly robust method such as the one we presented in this paper.

There are some aspects that are not dealt with in this work and
need further examination. First, we only experimented with syn-
thetic data, thus we need to evaluate our approach based on real
data and more complex image configurations. Second, we could
not yet define a proper stopping criterion for our multiple rotation
averaging algorithm, thus we used a fixed number of iterations.
This comes along with a rather slow convergence rate, so in fu-
ture work we will investigate improvements. Furthermore, we
want to find a better way to detect relative rotation outliers, for
instance based on the overall standard deviation of the relative
estimates which depends on image overlap and the distribution
of homologous points in the images. In order to provide good
relative estimates, a more robust way for generating the relative
rotations by means of the trifocal tensor instead of essential matri-
ces can be analysed. We also want to further evaluate the level of
redundancy needed for rotation averaging to provide results not
affected by outliers for the subsequent convex L∞ optimisation.

What we did not mention so far, because it is not the focus of
this paper, is the high computational effort of the L∞ minimisa-
tion. This can be a problem especially for large image blocks. A

solution might be to reformulate the minimisation problem as a
linear program as proposed by Ke and Kanade (2007) which can
be solved faster. A difference in the quality of the results also has
to be analysed in future work.

References

Boyd, S. P. and Vandenberghe, L., 2004. Convex Optimization.
Cambridge University Press.

Chatterjee, A. and Govindu, V. M., 2013. Efficient and robust
large-scale rotation averaging. In: IEEE International Confer-
ence on Computer Vision, 2013. ICCV 2013., pp. 521–528.

Fredriksson, J. and Olsson, C., 2013. Simultaneous multiple ro-
tation averaging using lagrangian duality. In: ACCV 2012,
Springer, pp. 245–258.

Govindu, V. M., 2001. Combining two-view constraints for mo-
tion estimation. In: IEEE Conference on Computer Vision and
Pattern Recognition, 2001. CVPR 2001., Vol. 2, IEEE, pp. II–
218.

Govindu, V. M., 2004. Lie-algebraic averaging for globally con-
sistent motion estimation. In: IEEE Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., Vol. 1,
IEEE, pp. I–684.

Grant, M. and Boyd, S., 2008. Graph implementations for
nonsmooth convex programs. In: V. Blondel, S. Boyd and
H. Kimura (eds), Recent Advances in Learning and Con-
trol, Lecture Notes in Control and Information Sciences,
Springer-Verlag Limited, pp. 95–110. http://stanford.
edu/~boyd/graph_dcp.html.

Grant, M. and Boyd, S., 2014. CVX: Matlab software for disci-
plined convex programming, version 2.1. http://cvxr.com/
cvx.

Hartley, R., Aftab, K. and Trumpf, J., 2011. L1 rotation averag-
ing using the Weiszfeld algorithm. In: IEEE Conference on
Computer Vision and Pattern Recognition. CVPR 2011, IEEE,
pp. 3041–3048.

Hartley, R. and Schaffalitzky, F., 2004. L∞ minimization in
geometric reconstruction problems. In: IEEE Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004.,
Vol. 1, pp. I–504–I–509 Vol.1.

Hartley, R., Trumpf, J., Dai, Y. and Li, H., 2013. Rotation averag-
ing. International Journal of Computer Vision 103(3), pp. 267–
305.

Huber, P. J. et al., 1964. Robust estimation of a location parame-
ter. The Annals of Mathematical Statistics 35(1), pp. 73–101.

Kahl, F., 2005. Multiple view geometry and the L∞-norm.
In: IEEE International Conference on Computer Vision, 2005.
ICCV 2005., Vol. 2, IEEE, pp. 1002–1009.

Kanatani, K., 1990. Group-theoretical methods in image under-
standing. Vol. 2, Springer-Verlag Berlin.



Ke, Q. and Kanade, T., 2007. Quasiconvex optimization for ro-
bust geometric reconstruction. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29(10), pp. 1834–1847.

Kittler, J. and Illingworth, J., 1985. Relaxation labelling algo-
rithms - a review. Image and Vision Computing 3(4), pp. 206–
216.

Martinec, D. and Pajdla, T., 2007. Robust rotation and transla-
tion estimation in multiview reconstruction. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, 2007.
CVPR 2007., IEEE, pp. 1–8.

Olsson, C. and Kahl, F., 2010. Generalized convexity in multiple
view geometry. Journal of Mathematical Imaging and Vision
38(1), pp. 35–51.

Weiszfeld, E., 1937. Sur le point pour lequel la somme des
distances de n points donnés est minimum. Tohoku Math. J
43(355-386), pp. 2.

Weiszfeld, E. and Plastria, F., 2009. On the point for which the
sum of the distances to n given points is minimum. Annals of
Operations Research 167(1), pp. 7–41.


