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Abstract 
 

The GESTALT-System is a stratified architecture 
for challenging computer vision tasks. This 
contribution focuses on the 3rd and 4th layer of it – 
the grouping and decision layers. As example 
application building recognition from high resolution 
SAR-Data is presented. The 3rd layer contains an 
assessment driven perceptual grouping process with 
any-time capability and flexible control. Important 
grouping principles such as good continuation and 
symmetry are utilized. A dynamic programming 
optimization is used in the final decision and post-
processing layer to find closed polygons that describe 
the outlines of buildings. Further post processing 
includes polygon editing and consistency enforcement.  
 
 
1. Introduction 
 

Modern SAR-sensors provide spatial resolutions at 
least one order of magnitude better than only one 
decade ago. Airborne systems can achieve geometric 
resolutions in the decimeter scale. Figure 1 shows an 
example picture. New opportunities such as looking 
for buildings in urban environments are given. In this 
contributuion a complex structural methodology - the 
GESTALT-system (Grouping Evidence System for 
Treatment of Alternatives within a Layered Task-
solver) - is utilized. It emphasizes free combinatorial 
yet robust search for perceptual Gestalts in one of its 
intermediate layers, while postponing decisions as far 
as can be afforded.  

Automatic “image understanding” has been a major 
issue in the pattern recognition and computer vision 
community for some decades [3]. A much elaborated 
example for rule-based reasoning systems has been the 
well known SIGMA-system [10]. The SCHEMA-

system [6] was a well known example with still lasting 
impact on the computer vision community. 

A comprehensive overview on reliable building 
extraction can be found in the Ascona workshops [8]. 
Urban regions were regarded as being particularly 
difficult. A very interesting and recent example is [12] 
where buildings are extracted from colored aerial 
imagery. For these data color and texture attributes of 
2d segments can be utilized. Building recognition 
from SAR-data is considered e.g. in [1, 2, 9, 13]. Own 
previous work can be found in [11]. 

 

 
Fig. 1. Example of a high resolution SAR-image 

 
Building recognition on standard SAR data was in 

general restricted to very big buildings. Most evidence 
was drawn from backscatter caused by roof structures 
or from the strong shadows appearing opposite to the 
illumination direction. In urban areas these features 
often cannot be applied, because of preferred smooth 
building facades and shortened shadow areas due to 



mutual signal interference with other buildings. In 
very high resolution SAR-images the appearance is 
dominated by salient edge and point scatterers. They 
are usually quite dark almost anywhere else. Fig. 1 
shows an example of such an image. Some of the 
presented modules and methods – such as the use of 
morphological filtering in the preprocessing layer – 
may profit from particular SAR phenomena (only 
bright objects are of interest) but most of them are 
burdened from the specific SAR-phenomena – such as 
the high dependence of the appearance on the 
illumination direction and strong non-Gaussian noise. 
Most of the methods that are combined in the 
GESTALT system (Sects. 2 to 4) rely on properties 
not of the sensor but on general object features such as 
symmetry and repetitive structure.  
 
2. The Overall Architecture of the 
GESTALT System 
 

GESTALT has the following four layers:  
Preprocessing: The data remain in iconic form. 

For the presented building recognition application two 
branches are present. In one branch the image is scaled 
down by factor 5 and than a morphological opening 
operator is applied to enhance and isolate spot 
structures. In the other branch the image is tiled into 
25 over-lapping sub-images and on each of these a 
morphological closing is applied in order to close gaps 
and enhance thin line structures [14]. 

Feature extraction: Here the data are transformed 
into symbolic descriptions, i.e. a set of primitive 
objects. These get positions, orientations etc. attached 
as attributes. From the reduced image pixels that are 
brighter than the surrounding are obtained by a spot 
filter [own citation]. In the example there are 4275 
such primitive components of type P. 

From the 25 sub-images short line segments are 
extracted using the squared averaged gradient filter [7] 
and a threshold. Preliminarily, these are located at 
individual pixels. A first grouping according to co-
linearity is performed in each sub-image separately. 
For the example the resulting set of primitive objects 
of type L contains 18842 elements from all 25 sub 
images. 

Grouping: The mid-level grouping layer is 
described in more detail in Chapter 3. The mid level 
avoids decisions. Consistence enforcement is delayed 
to the next level of the system.  

Decision and post-processing:  This layer of the 
system is meant to produce the desired output. This 
layer is described in more detail in Chapter 4. 
 

3. The Grouping Layer 
 

In this example application the system operates on 
a DB consisting of objects of the following types: P, 
L, LL, Sc, A, R, Sy and C – i.e. pixels, short lines, 
long lines, scatterers, angles, rows of scatterers, 
symmetries and symmetry clusters. For these objects 
the productions are defined as given in Table 1. 

 
Tab. 1. Production rules for grouping 

LL regression collinearity L … L 
A intersection proximity LL,LL 
Sy axis & location symmetry A,A 
C centre proximity Sy…Sy 
Sc centre proximity P…P 
R initialization proximity Sc,LL 
R append continuation Sc,R 

 
While the grouping layer is active evidence is 

accumulated. There are no decisions and there is no 
enforcement of consistency. For each newly 
constructed object a hypothesis is formed. 
Preliminarily a nil is assigned to it. When such a nil-
hypothesis triggers search it will be cloned using the 
knowledge given in Table 1 in the rightmost column. 
E.g. an object A will get the hypothesis assigned to be 
part of an object Sy. A non-nil hypothesis will trigger 
a query to the DB using the constraints given in the 
third column of Table 1. This will lead to a set of 

admissible partner objects. With 
these the construction (given in 
the second column) will be 
performed – resulting in new 
objects which again get nil- 
hypotheses attached. The 
administration of the set of 
current hypotheses is the core of 
the grouping process. Details 
are given in [11]. It is 
assessment driven. Sorting is 

not done after every hypothesis processing. Instead N 
cycles are processed en block before the next 
reorganization of the queue (e.g. N=100). Processing 
can also be performed parallel. For the experiments 
documented here 100.000 hypotheses were performed. 
Table 2 shows the numbers of objects reached after 
that.. 
 
4. The High-level Layer 
 

The task of building recognition demands a specific 
result format. Buildings are outlined by closed 
polygons in GIS-systems. And there are constraints 

Tab. 2: No of 
Objects 

P 4275 
L 18842 
Sc 218 
LL 8957 
R 7511 
A 13669 
Sy 30845



demanding that building polygons cannot intersect 
each other or overlap. The last layer of the system 
transforms the objects resulting from the grouping 
layer into such format while enforcing the constraints. 
This is achieved by the following sub-steps. 

1. Filtering the accumulated set: Only 
components C and R are of further interest. 
Components C are evaluated according to the number 
of components Sy in them and the consistency of the 
symmetry axis with the two preference orientations. 
For each orientation the one with the best evaluation is 
kept and all others are removed. For the example these 
two components C are displayed in black in Fig. 4) on 
the left side with the axis shown as dashed line and the 
preceding components LL as solid lines. These are 
regarded as contour objects. Objects R are evaluated 
according to the number of scatterers in them. Only 
those with more than three members are kept. 
Furthermore, all such objects that have a successor 
with more members are re-moved as well. The 
remaining rows are regarded as contours as well. They 
are displayed in Fig. 2a in white color. Among the set 
of contours again another grouping is performed. 
Basically, this uses the same co-linearity production 
that also applied in the grouping layer and even in the 
feature extraction layer on each sub-image. But 
decisions are not avoided anymore. In the example 
only 32 contours survive this filtering step. They are 
shown Fig. 2b. 

2. Searching for polygon candidates: Given a set 
of contour line objects S={s1,…,sn} the cyclic 
polygons are k-tuples taken from S with no repetition 
(where k≤n) and an equivalence ~ allowing cyclic 
permutation and  reversion. Each contour object si has 
two end points xi,0 and xi,1 and indices p, q are 
understood modulo 2 such that p+1=0 iff p=1. A 
function on pairs of consecutive contour objects in a 
polygon and p=0,1 is given as 

( )( )p i j(i, j, p) C s ,s ,q , 

where the cost function is defined as 

 ( ) ( )p i j i,p j,q i,p 1 j,q 1q {0,1}
C s ,s min x x / x x+ +∈

= − −  

and q=Π(p) is the argument of the minimization. Such 
functions punish large distances between end points 
xi,p and xi+1,q (close to each other) and rewards large 
distances between the other end points xi,p+1 and 
xi+1,q+1 (far from each other). The cost for a polygon is 
than given as sum 

( ) ( )1 k 1

k

i i p i i
1

s ,...,s C s ,s
ν ν ν+

ν=

= ∑S , 

where pv=Π(qv-1)+1; i.e. if in a particular step the 
minimum was found for q=0 then in the next step p=1 
and vice versa. Of course ν is understood modulo k 
here. Such cost function can be minimized by dynamic 
programming approach with an additional binary 
matrix that records the choices qν for each step and 
each contour object. Dividing the cost by the number 
of contour objects k gives the mean cost for a polygon. 
It is not guaranteed that the global minimum will be 
found for two reasons: 1) the starting index i1 may 
actually refer to a clutter contour object that does not 
participate in any sensible polygon; 2) there is a 
greedy decision in the minimum at the definition of 
Cp. To alleviate this the search is repeated with 
iν=1,…,n and start value p1=0,1.    

From the maximally 2n resulting optimal polygon 
candidates many can be equivalent with respect to ~. 
Only one representative of each of these equivalence 
classes must be kept and is subject to the following 
editing and decision procedures. 

3. Editing polygons: Let (s1,…,sk) denote a 
candidate found by the dynamic programming search. 
The building recognition tasks demands closed 
polygons where the end point of each segment is the 
starting point of the next. These new vertices are 
calculated from each pair of successive line contour 
objects (sl,sl+1).  There are three cases: 1) there is a 
significant difference in the orientation; then the 
corresponding vertex is calculated as intersection of 
lines; 2) (sl,sl+1) are almost collinear; then the vertex is 

a)  b)  c)  
Fig. 2: a)best grouping objects, b)selected contours c) final poygons 



found by averaging the closer ends; 3) (sl,sl+1) are 
almost parallel and not collinear; then a new segment 
is inserted between sl and sl+1. I.e. closeness is 
enforced by construction of new not observed virtual 
segments.  

4. Enforcing constraints: Some of the edited 
polygons may not be contradictive: If they are 
completely detached they will indicate separate 
independent building entities. If they are completely 
inside each other the inner one may be a yard inside 
the outer one. However, some of them may be 
mutually contradictive. If two polygons intersect each 
other a decision will be needed, because two buildings 
cannot cover partially the same space. In some GIS 
formats buildings are allowed to touch each other, i.e. 
have common segments. We cannot tolerate this for 
the automatically constructed results at the present 
state of our research. Instead among a set of polygons 
that have common segments the one that covers the 
biggest area is chosen. Fig. 2c displays the two 
remaining polygons after these decisions. The outer 
big one roughly fits the true outline of the building. 
The smaller inner one fits to a true sub-structure on 
top of the roof of the building. The two inner yards are 
not instantiated. 
 
5. Discussion and Conclusion 
 

A very diverse set of image processing and 
recognition modules is organized in a systematical 
way so that their overall cooperation and competition 
leads to a preliminarily acceptable result on a difficult 
task. Early decisions are avoided and in the 
intermediate grouping layer the system is allowed to 
freely group many things together and even produce 
illusions. Success is owed much to sorting according 
to well balanced assessments. This concentrates the 
given computational resources on relevant work. Only 
in the grouping layer 3 with its intelligent control 
combinatorial complexity can be accepted. This can be 
run as long as is affordable. It has any-time capability. 
All other layers contain methods of low polynomial 
complexity at most. Their computational needs can be 
estimated in advance.   

On the other hand the result is not yet really 
satisfactory – e.g. the two salient inner yards are 
missing. But, no knowledge about the specific nature 
of SAR images has yet been used – unlike almost all 
other work on buildings in SAR data such as [1, 2, 9, 
12]. That is a very promising topic for future work. 

Another important issue is top-down evidence: For 
example if in the decision layer high cost arise at a 
particular contour segment in order to enforce 
closeness it may be a good idea to query the mid-level 

DB again for the presence of components at the 
corresponding position or to start the feature 
extraction – differently parameterized – again in such 
a focus of interest area.  We also expect major 
improvements from such feedback.  
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