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Abstract.  The classification and mapping of habitats in Wadden Sea areas is an important issue of 

marine monitoring. In the framework of a German research project, we investigate different mod-

ern remote sensing data for this task. In this paper, our focus is on the potential of airborne laser 

scanning data for the classification. Therefore, we use Conditional Random Fields (CRF), a prob-

abilistic supervised classification approach capable of modelling context. We classify the laser 

scanning point cloud into the three object classes water, mudflat, and mussel bed. For the distinc-

tion of different surface types we analyse crucial classification features based on the geometry and 

the intensity of the backscatter. We then learn typical structures in a training step and combine lo-

cal descriptors with context information in a CRF framework. We evaluate our approach on a test 

site of the German part of the Wadden Sea and show classification results of multispectral and 

SAR data which we intend to combine for a marine monitoring concept.  
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1. Introduction 

The Wadden Sea is a unique habitat in the southeastern part of the North Sea. Due to its bio-

logical diversity, in 2009 the German and the Dutch part of the Wadden Sea were inscribed on 

UNESCO's World Heritage List. However, it is influenced by climate change and human activities. 

For these reasons a recurrent monitoring of these areas becomes necessary. Therefore, new ap-

proaches for a sustainable monitoring are investigated in a German research project called Scientific 

Monitoring Concepts for the German Bight [1]. In this framework, we investigate the habitat map-

ping and classification of Wadden Sea areas in regard to a deeper understanding of the habitat com-

position. For the eulittoral zone, which is covered with seawater during high tide, but falls dry dur-

ing low tide, the different habitats can be classified from remote sensing data. Thereby, we use three 

types of remote sensing data: SAR data, optical images, and airborne laser scanning data, also 

called LiDAR (Light Detection and Ranging). We classify the data separately so far, but aim at a 

combined classification approach. In this paper, our focus is on the classification of LiDAR data, 

which is necessary for two reasons.  

Firstly, tidal flows, storms, climate change, and human activities cause morphological changes 

of various kinds. The morphology of the terrain can be represented by digital terrain models (DTM). 

The acquisition of highly accurate height data by laser scanning, however, is limited to the water 

surface because the near-infrared laser pulses cannot penetrate water. The generation of a DTM thus 

requires the detection of water surfaces within tidal channels, where residual water can remain even 
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during low tide. An additional data source, e.g. sonar, can be used to complete the DTM in these 

areas. This leads to the first crucial classification of LiDAR data into land and water areas. 

Secondly, we are interested in the contribution of LiDAR data for the habitat mapping. This in-

volves a separation of the class land into different subclasses. This has been shown to be possible 

with spectral information from remote sensing image data [2]. For classification based on mono-

chromatic LiDAR, the distinction between the habitats is a difficult task due to the lack of spectral 

features. On the other hand, besides the purely geometric measurement of 3D coordinates, modern 

LiDAR systems record also the intensity of the backscatter, which can provide information about 

additional target characteristics like roughness. In regard to the properties of LiDAR, only habitats 

characterised by their surface roughness, e.g. mussel beds, can be expected to be distinguished. 

Thus, we differentiate two subclasses of land, namely mudflat and mussel bed.  

 

Figure 1 shows a high-resolution orthoimage and the LiDAR point cloud of our test site, a typi-

cal scene in the German Wadden Sea.  It contains several mussel beds, which are characterised by a 

dark colour in the orthoimage (e.g. in the middle of the scene) and high elevation in the point cloud. 

In some parts of the water areas, e.g. the big water-filled tideway from west to east, no backscatter 

are recorded due to specular reflection of the laser pulse. In these regions lots of gaps in the point 

cloud occur.  

 

In this paper, we present a supervised classification approach for LiDAR data in Wadden Sea 

areas. We distinguish the three classes water, mudflat, and mussel bed. Those objects, their typical 

structures, and interrelations are integrated in the classification process. Therefore, we use a Condi-

tional Random Fields (CRF) framework. We focus on the extraction of optimal features for the 

classification of Wadden Sea areas and on the implementation of a CRF framework for LiDAR 

point cloud.   

 

 
 

 
Figure 1: Orthoimage and point cloud (coloured by height from low (blue) to high (red)) of the test site in the German 

Wadden Sea. Because of specular reflection the number of laser pulses without any received return can be significantly 

higher in water surfaces (black). 
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2. Method 

Our aim is to classify the LiDAR data by assigning a class label to each point in the point cloud. 

Because of the rather homogeneous appearance of the Wadden Sea, which mainly consists of flat 

areas with hardly any discriminative objects, the classification becomes challenging. Therefore, the 

classification task results in two crucial aspects. On the one hand, we need appropriate classification 

features for the distinction of different classes in this special test data. The feature extraction is in-

vestigated in Section 2.1. On the other hand, the CRF framework has to be implemented for the ir-

regular point cloud. The structuring of the graph as well as the choice of parameters and functions 

for the training and inference are described in Section 2.2.  

2.1. Feature extraction 

For each laser pulse, information about 3D coordinates and intensity are available for the back-

scattered signal. We do not use full waveform laser scanner data and, thus, do not have additional 

signal waveform information. Nevertheless, several features can be calculated from the point cloud. 

We test different features based on the intensity, the average height and the curvatures and identify 

a representative set for our classification task by a correlation-based approach out of the WEKA 

data mining software [3]. Thus, eight features are indicated to be essential for the distinction of the 

classes water, mudflat, and mussel bed. The intensity and the point density have been found to be 

well-suited for separating water from dry mud areas in the Wadden Sea [4]. On water surfaces, the 

intensity may be low due to a lower reflectance (Fig. 2). Because of specular reflection (dependent 

on the incidence angle) the number of laser pulses without any received return can be significantly 

higher in water surfaces, which leads to a decreasing point density.  

 

  
 

Figure 2: Intensity data of the backscattered signals which may be low (black) on water areas and high (white)  

on land surfaces.  

 

For mussel bed detection, different features are derived from the local geometry of point distri-

bution. Therefore, we use a volumetric approach and define a vertical cylinder with a predefined 

radius   to find adjacent points. The radii for the neighbourhood definition are set to        and 

         depending on the features. The difference of a point and the lowest point elevation value 

within the cylinder, depicted as distance to ground, characterises the greater elevation of this class. 

Further height-based features are the average height of all adjacent points in a neighbourhood as 

well as the difference of average heights for various radii. Moreover, we calculate the maximum 

and minimum of the normal curvature at a point on this plane, denoted as principal curvatures 
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   and   . The product of the principal curvatures is called the Gaussian curvature        , the 

mean curvature   
 

 
        can be determined by the mean arithmetic curvature. The deviation 

of points from a plane is derived from the three eigenvalues (           ) within the cylindrical 

neighbourhood based on the covariance matrix of the 3D coordinates set up for each point. The 

lowest eigenvalue    serves as classification feature. All the eight features are introduced in our 

classification approach. 

2.2. Classification of LiDAR data using Conditional Random Fields 

CRFs are a flexible tool for classification tasks and belong to the group of graphical models. For 

image labelling, they were introduced in [5]. In comparison to image data, the labelling of point 

clouds is even more challenging due to the irregular distribution of points in 3D space. Several ap-

proaches for the classification of point clouds based on CRFs have been developed in the past. For 

instance, [6] propose a method for the classification of terrestrial laser scanning data. The potential 

of CRFs for airborne laser scanning data was shown in [7] (segment-based) and in [8] (point-wise). 

 

In the CRF framework, the data are converted to a graphical model which considers relations 

between data through a network of nodes and edges. The nodes are represented by the data set, in 

our case the points of the LiDAR point cloud. In order to preserve small objects, especially small 

mussel bed areas, we classify point-based without a preceding segmentation. Each node and point, 

respectively, is linked to its adjacent nodes by an edge. In contrast to common classification ap-

proaches, the data points are not modelled to be conditionally independent. Thus, a class label    to 

each node i in the graph is assigned based on its feature vector    as well as on those obtained for 

all points in the defined neighbourhood   . The posterior distribution        of the class   given 

the observed data   is derived in a discriminative model. Following [3] the posterior distribution 

       can be written as 

       
 

    
                            

          

                                          

                                                                                                  

where the partition function Z(x) acts as normalization constant. It is needed for the transforma-

tion of potentials to probabilities. The energy term can be expressed as the sum of association po-

tentials           and interaction potentials              over the neighbourhood N and the data set 

S. The association potential    indicates how likely a node i belongs to a class C given the observa-

tions x (Eq. 2). The interaction potential     is a function of all data x and measures how the classes 

of neighbouring points interact (Eq.3). Closely related to [3] we consider a log-linear formulation to 

model both potentials 

 

                                          
       ,                                                               (2) 

 

                                      
                                                                             (3) 

 

Vector    contains the weights of node features       of each node i. In our case we use the 

features described in Section 2.2 which are normalised to unit one to get a robust inference. The 

feature vector        is calculated for each point by the absolute difference of feature vectors for 

each point of neighbouring nodes   and    The weight vector       is learnt in a training process de-

pending on the combination of classes   and  . 
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The best discrimination of the classes is obtained iteratively in an optimization framework by 

minimising a cost function which depends on both of the weight factors. The optimal label configu-

ration is determined in an inference step. Thereby,        is maximized for given parameters based 

on an iterative message passing algorithm. For the training and inference, we apply the optimization 

method Limited Memory Broyden-Fletcher-Goldfarb-Shanno [9] and the Loopy Belief Propagation 

[10] as message passing algorithm as implemented in M. Schmidt’s Matlab Toolbox [11]. The re-

sult of training and inference is a probability value per class for each data point. The optimal label 

configuration based on maximising        is provided via maximum a posterior (MAP) probability 

estimate.  

3. Results 

We evaluate our classification approach with LiDAR data from the German Wadden Sea. The 

test site covers an area of about 0.3 km x 1.1 km in the south of the islands Spiekeroog and 

Langeoog (Fig. 1). It contains a big water-filled tideway, some smaller tideways as well as mussel 

bed. The data were acquired at low tide during a Wadden Sea monitoring using a RIEGL LMS-

Q560 LiDAR system. Information about 3D coordinates and intensity are available for the back-

scattered signal of each laser pulse. We compare the classification results to a reference that was 

generated by delineating water and mussel bed considering ground truth data and an orthoimage. 

For the necessary training step, we divided the test data set into two parts. Thereby, the parameters 

are learnt on one half of a test site and tested on the other one.  

 

Tables 1 and 2 show the classification results for completeness and correctness of the three 

classes. Since we are interested in the investigation of influence of contextual knowledge for the 

classification, we modify the value of the neighbourhood N. For mudflat areas, we achieve good 

results with more than 90% completeness and more than 98% correctness in both tests. The rates for 

correctness of water areas detection are not on the same level (between 66% and 71%). In particular 

the discrimination of water and mudflat leads to a certain rate of misclassification. Figure 3 shows a 

part of the test site where the water filled tideway is mostly correctly classified. However, the clas-

sification of water areas often fails in the transition zone between water and mudflat where eleva-

tion differences are low. The results of different neighbourhood demonstrate that the increased 

neighbourhood for the CRF approach helps increasing the results due to a strong smoothing. This 

effect is caused by the interaction potential, which is basically a smoothing term. For the mussel bed 

detection a low correctness and, in particular, completeness rate is obtained. The main reasons are 

that only few mussel bed regions are presented in the test site in comparison to the mudflat areas. 

 

Table 1. Results for classification with neighbourhood N = 2 

 Mudflat Water Mussel bed 

Completeness 98.5 % 51.6 % 46.8 % 

Correctness 97.7 % 70.7 % 42.6% 

Table 2. Results for classification with neighbourhood N = 4 

 Mudflat Water Mussel bed 

Completeness 90.8 % 82.4 % 56.6 % 

Correctness 98.8 % 66.3 % 8.5 % 
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Figure 3: Labelled point cloud with water areas (blue) and mudflat areas (yellow). 

 

       
Figure 4: The Colour Infrared Orthoimage (left) of the test site clearly shows the mussel bed (red).  

In the labelled point cloud (right) most of them are detected (mussel bed: red, mudflat: yellow). 

 

Therefore, the numbers of samples of available data for training and testing is limited. Moreover, 

mussel bed and mudflat are characterised by similar features in some parts of the test site. Most of 

the significant features for the mussel bed detection rely on the relative elevation differences as well 

as on the curvatures of the surface. These features occur very similar near to tideways and lead to 

misclassification in these parts (Fig. 4). Nonetheless, the incorporation of context leads to partially 

high detection rates which can be seen in Figure 4 where the labelled point cloud is compared to the 

clearly recognisable mussel bed in the orthoimage.    

4. Conclusions and Outlook 

In this paper we have shown a classification approach for remote sensing data in Wadden Sea 

areas. In regard to a habitat mapping we use LiDAR data, SAR data, and optical images. The focus 

of this paper was on the classification method of LiDAR data. Therefore, we used a context-based 

approach in a CRF framework. We presented suitable classification features for a habitat mapping 

in Wadden Sea areas. As result of the supervised classification process, each point of the 3D point 

cloud is assigned to one of the three object classes water, mudflat, and mussel bed. A test on data of 

the German Wadden Sea showed that the detection of water and mussel bed in LiDAR data is a 

challenging task. For water areas, the best results were obtained for the contextual classification by 

increasing the neighbourhood which leads to a stronger smoothing effect. In regard to the mussel 

bed detection, similar feature values, in particular based on relative height differences and curva-

tures, leads to some misclassification of mudflat and mussel bed on the border of tideways.  
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In the future we intend to integrate full waveform laser scanning data as well as some texture 

features in the classification process. Moreover, we plan to combine these data with classification 

results of optical images (Fig. 5) and SAR images (Fig. 6) to obtain a reliable concept for the ma-

rine monitoring. Visual interpretation of TerraSAR-X data in combination with profound ground-

truth knowledge gained from extensive fieldworks or monitoring programmes allows the reliable 

identification of different surface structures like f. e. mussel bed, mudflats or water covered surfaces 

(Fig. 6).   
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Figure 5: Classified RapidEye image 

 

 
 

Figure 6: Detail from TerraSAR-X High Resolution Spotlight (©DLR, 2011) showing typical mussel bed structure 

verified by digital mapping from orthoimages (red contours) and ground-truth. The direct surroundings of the mussel 

bed are predominantly covered with water roughened by strong wind of 6 Beaufort. The image shows “Swinnplate” 

south of the island of Spiekeroog on 26.12.2011. 
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