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ABSTRACT: 
 
Agricultural activities affect strongly their environment. Therefore and because of their other economic, industrial and political effects, 
monitoring agricultural areas is increasingly demanded. Space borne remote sensing is a very cost effective and beneficial means for 
monitoring and mapping of earth’s surface. Due to independence from weather conditions, radar data are regularly available and 
facilitate a continuous monitoring of almost any area on the earth. In the framework of an ESA pilot project (AO335), methods are 
investigated aiming at reliable, cost efficient, and continuous monitoring of cultivation activities. A time series of doal polarization 
(VV/VH) of ENVISAT is used for the analysis. In addition, ground truth data are gathered by field acquisitions. The methodological 
approach for the monitoring task consists of supervised classification based on field data. For classification, some conventional 
methods and support vector machine (SVM) are applied and evaluated. In addition, the influence of some conventional despeckle 
filters on the classification accuracy is investigated. Results show that despeckling images by some filters before classification 
improves accuracy of multi temporal classification.. Matching of time series data to phenological period of crops is evaluated and 
compared with results of classification based on the entire data set. The results show that applying proper sets of data results in an 
exterior accuracy of over 80% on control fields. Overall accuracy of Maximum Likelihood and SVM are close to each other but their 
accuracy over control fields changes diversely. On the other hand, Maximum Likelihood is efficiently more accurate if data are 
matched to crop calendar. This is not the case for SVM. 
 

1. INTRODUCTION 

Monitoring agricultural activities is strongly demanded because 
of close relations between agriculture and other fields such as 
economy, environment, industry, and politics. Classical 
surveying methods are very expensive and time consuming. A 
possible solution to this bottleneck is remote sensing. In 
contrast to optical sensors in regions of frequent cloud cover, 
space borne SAR systems like ENVISAT ASAR are capable 
to provide data for monitoring on a regular basis. Airborne 
remote sensing techniques are in general not suitable for 
monitoring of large areas because of the associated high data 
acquisition costs [20] in comparison to satellite data. 
Therefore, ENVISAT dual polarized ASAR data are used for 
this project, which are provided free of charge by ESA within a 
pilot project. However, information extraction of agricultural 
activities from radar images is a challenging field because of a 
variety of reasons. Active SAR sensors may provide either 
elements of or the entire polarimetric scattering matrix, even in 
the case of fully polarimetric SAR data the dimensionality of 
the feature space is in general smaller than for electro optical 
(EO) data because SAR is a narrow band technique, whereas 
EO sensors cover wide spectral rang. Furthermore, for some 
crop-types the polarimetric SAR imagery is highly correlated. 
In addition, the speckle phenomenon may result in high intra-
class variance leading to unsatisfactory classification results. 
Finally, SAR is sensitive to incidence angle, soil moisture, and 
the physical properties of soil, such as roughness. These 
parameters often affect signatures more than vegetation. 
Despite these limitations the mentioned all-weather capability 
enabling high temporal resolution and data acquisition on a 

regular basis, SAR is an important means for monitoring 
purposes. In addition, SAR images have proven to be better 
suited for certain classification tasks than optical images [5], [27]. 
A vast body of literature deals with image processing of SAR data 
and land cover classification. Numerous filters are offered [18] 
and evaluated [6], [14] to reduce speckle of radar images in 
homogeneous areas, while preserving point targets and edges. In 
general, multi-look, and multi-temporal filters try to eliminate 
noise and speckle in images using statistical models. Filters affect 
SAR image in different manner, some of theme preserve statistical 
characteristics of data and are suitable for classification purposes, 
and some others keep borders and small objects. For the 
classification of crops, attempts are made to use all available 
polarizations [12], [18]. Fully polarimetric data (i.e., HH, VV, 
and one of the cross polarization channels in mono static radar) 
provide larger feature space with more dimensions. 
Unfortunately, only fully polarimetric airborne data are available, 
while this data from space platforms is not yet available. Dual 
polarization space borne data provide only a subset of the full 
feature space and two polarizations are often correlated with each 
other. Using multi-temporal data [11], [23], a larger feature space 
is available and temporal change of agricultural fields due to plants 
growing and farming activities can be considered to recognize crop 
types. In addition, radar data can be acquired more frequently 
than optical data. Hence multi-temporal radar data are used vastly 
for monitoring of agricultural activities.  
Some methods are applied to improve information extraction from 
SAR data. Object based classification techniques[11], 
combination of SAR and passive data [11], knowledge driven 
classification [9], and investigating the effects of local 



 

characteristics on radar images [16] are used by different 
researchers. Using these methods, an overall accuracy (i.e., 
accuracy as compared to reference field maps) of 70% to 90% 
is achievable. However, the accuracy differs significantly for 
different crop types. Some crops can not be classified 
satisfactory others do [9]. As reported in [15] the tests using 
single radar images (VV/VH amplitude images) show an 
unsatisfactory interior accuracy (as to classification based on 
training areas) of only 25% to 35% using raw data and about 
30% to 45% for filtered data.  
Because of seasonal changes, the appearance of certain crop 
types may vary considerably in SAR images at different 
growing phases. Using images from specific periods crop 
separation can be enhanced, e.g., winter grains are easier 
classified by images from winter while for Sugar beets images 
from end of summer should be preferred. Therefore, this 
progress can be considered as a special character of a crop and 
it improves accuracy of classification if multi-temporal data are 
processed. This paper is organized as follows. In Section 2, the 
test site and the data are briefly described. The different 
investigated approaches for multi-temporal classification are 
presented in Section 3 together with individual classification 
results for each method. Finally, in the last Section the 
conclusions are drawn.  
 
2. TEST AREA, GROUND TRUTH MEASUREMENTS 

AND SATELLITE DATA 

The test site called “Fuhrberger Feld” is situated north of 
Hanover, the capital of state Lower Saxony in Germany. 
Within this area, a total of about 50 fields around the villages 
Brelingen and Mellendorf and the city of Fuhrberg have been 
selected as ground truth samples. For these fields, topographic 
maps, base maps and digital orthophotos in color are available. 
Furthermore, ground surveys were conducted at or close to the 
time of satellite overpass. Initially a monthly coverage by 
ENVISAT satellite images was planned to get a time-series as 
dense as possible over the whole growing season of the 
different vegetation types for a period of three subsequent 
years. Despite some data takes could not be performed as 
scheduled, due to priority programming of the satellite for 
other projects, during a period of one year 11 pairs of dual 
polarization SAR data have been acquired from November 
2003 until November 2004 (Table 1.).  
The images have been processed into geocoded products using 
a pixel spacing of 12.5 m in range and azimuth direction. 
However, the spatial resolution of the data is about 30 m. 
Only look angles between 35.8 – 45.2 degree (corresponding to 
Image Swath IS5 to IS7) and VV/VH polarization have been 
used. During ground surveys, relevant features of the status of 
the fields were observed and collected such as usage and 
treatment pattern. Additionally, information on the kind of 
mechanical treatment of the soil and the plants, vegetation 
coverage, color, observable fertilizers, irrigation etc. have been 
stored into a GIS. In addition, digital ground photographs have 
been taken. It is important to note that for some different crop 
types, the coverage periods on the one hand coincide 
significantly, but on the other hand, even for the same crop on 

neighboring fields the dates of start and end can vary. The reason 
for this behavior is not known for sure, but probably economic 
considerations of individual farmers cause this effect, which for 
example result in different choice of subsequent use of the field 
after harvest.  
 

Nr
. 

Image Date Date of Ground Truth 

1 17.11.2003 26.11.2003 
2 17.03.2004 19.03.2004 
3 05.04.2004 05.04.2004 
4 21.04.2004 21.04.2004 
5 10.05.2004 10.05.2004 
6 26.05.2004 10.05.2004 
7 30.06.2004 14.06.2004 
8 07.08.2004 07.08.2004 
9 11.09.2004 08.09.2004 
10 13.10.2004 13.10.2004 
11 01.11.2004 01.11.2004 

Table 1. Data takes of ENVISAT ASAR APG images, 
polarization VV/VH, IS 5-7 of agricultural season 2004 

 
3. MULTI-TEMPORAL CLASSIFICATION  

Because of the independency from weather conditions, multi-
temporal SAR data sets can be applied more frequently and 
reliable in comparison to optical images. Multi-temporal 
classification is assumed to be beneficial due to the changeable 
nature of agricultural fields. Each crop has its specific growth 
period and therefore it can be separated from other crops. This 
means that changes of fields due to the phenology of one crop can 
be used to discriminate this crop from others. Such methods have 
been vastly used and tested over different areas and for different 
crops e.g. Tröltzsch, K. 2002 in Mali [23], Hochschild, V. 2005 
in Germany [11], Baronti, S. 1995 in Italy [1], Foody, G.M. 1988 
in England [7], Schieche, B. 1999 in Germany[21], Davidson, G. 
2002 in Japan [4] . In this paper, the advantages of applying 
multi-temporal classification are presented.  
 
3.1. Data and parameters of multi-temporal classification 
Images from different dates can be used as bands of an image in a 
multi-dimensional classification approach The crops in the study 
area are Lea, Fallow, Peas, Strawberry, Willow, Asparagus, 
Pasture, Potato, Sugar beet, Rape, Phacelia, Winter barley, Winter 
rye, Winter wheat, Summer barley, Summer rye, Wild grain and 
None (bare soil). This paper focuses on crop types with regular 
planting cycle. Therefore, the results for lea, fallow, and willow 
are not evaluated and presented here, because these types are 
usually not cultivated according to predictable schemes, but 
follow instead often considerations and constraints of individual 
farmers. Hence results from multi-temporal classification for 
these types would be only valid for the applied training samples 
and could hardly be transferred to other fields of same type. Rape 
and phacelia are sometimes planted as fertilizer between two 
cultivation seasons and therefore have no fixed cultivation 
calendar in this case. Such fields are considered to have only the 
main crop neglecting the intermediate fertilizer coverage. 



 

However, training samples of all types even from fields 
without any plantation are used in the classification process. 
There is only one field for some crops in the study area. The 
field can be used as signature and it is not possible to have a 
control field for them. These crops are used in classification, 
but because of lack in control field, an evaluation of 
classification accuracy is not possible. Influence of despeckling 
and some filters on classification is investigated in this research 
project. In addition, data are matched to phenological calendar 
of crops and accuracy of Maximum Likelihood and SVM  
methods are evaluated and compared. Tests showed that 
despeckling,  the set of time series data, and classification rule 
affect the results of classification [22]. Therefore, decisions 
must be made about pre-processing and time series data. 
 
3.2.1 Despeckling 
Speckle of SAR images increases interior variety between pixel 
values in each class (crop type) and decrease separability 
between different classes resulting in low accuracy. However, 
speckle is highly dependent on surface properties and can not 
be easily counted as noise. Therefore, the speckle in SAR data 
carries information which may be useful for separation 
between classes. Different filter settings of some speckle filters 
have been tested to investigate, how despeckling and the type 
of filter affect the classification accuracy. Interior accuracy 
(i.e., auto classification of the set of training fields) and the 
average of producer accuracy (correctly classified area of 
control fields) computed from three control fields per crop are 
presented in Table 2, which shows the influence of despeckle 
filters on the accuracy of multi-temporal classification. The 
average of producer accuracy of classification using images 
filtered by Gamma Map, Lee-Sigma, Lee and Median filters 
varies between 84.3% and 86.5%, which shows beside a good 
accuracy also a small variation between these four filters. 
Images filtered by median filter gave the best value of accuracy 
(86.5%), although it is not significantly higher than Lee 
(86.1%) filter.  
 

Filter Interior Acc. % Producer  Acc. % 
None 91 70 
Lee 98 86.1 
Frost 96 81.7 
Gamma Map 97 84.3 
Local Region 91 75.1 
Lee-Sigma 98 85 
Median 98 86.5 

Table 2. Influence of despeckle filters on accuracy of multi-
temporal classification. 

 
3.1.2. Time series data 
The phenological periods of different crops are not equal. For 
example, Winter grains are planted in autumn and harvested in 
summer, Potatoes and Sugar beets are planted in spring and 
harvested in autumn. Therefore, as reported in [15], each crop 
can be classified by some images (of different dates) better 
than others. This is because of temporal separation between 
crops in different seasons. A good separation between grains 

and Sugar beets can be achieved using images of June, when Sugar 
beets are small but grains are close to the harvesting. On the other 
hand, Winter and Summer grains may be separated better from 
winter images, when Winter grains are planted and even grew up 
to some centimeters but Summer grains are not yet planted. 
Hence it is very important to use proper images for classification 
of crops.  
Based on information from field visits, following series are used 
for classification of crops: 

- All images for Lea, Fallows, Strawberry, Willow, 
Pasture and Bare land 

- Images from November till June for Winter grains 
- Images from March till June for Summer grains 
- Images from March till August for Peas and Asparagus 
- Images from May till September for Potatoes and Sugar 

beets 
Besides the considerations, tests showed that classification of 
images in the mentioned order was about 10% more accurate than 
the case if all images were used for classification of all crops [22]. 
 
3.1.3. Classification rule 
For the previous classifications, the Maximum Likelihood 
classifier was used. Classification rules in pixel based approaches 
evaluate the similarity of each pixel with respect to the desired 
classes and assign the pixel to the most similar class. 
Classification rules vary in the method of evaluation and therefore 
give diverse results. Three classical classification rules (Minimum 
Distance, Mahalanobis distance and Maximum Likelihood) and a 
support vector machine classifier are tested in order to 
investigate, which rule classifies multi-temporal SAR data best. 
Minimum distance and Mahalanobis distance classifiers assign 
each pixel to the closest class in multi dimensional feature space. 
Maximum Likelihood considers covariance matrix of classes 
besides distance to classes and therefore includes the 
probabilities.  
Support vector machines (SVMs) are a set of related supervised 
learning methods used for classification. A special property of 
SVMs is that they simultaneously minimize classification error 
and maximize the margin between classes. Although, proposed 
already in the late seventies [24], it only now receives increasing 
attention in the remote sensing community [3], [25]. SVMs are 
especially beneficial if many dimensions (e.g. bands of 
hyperspectral scanners or images of multi-temporal data) are 
available [2]. In this study, we used the program ImageSVM 
provided by S. Van der Linden et.al (2006) for classification. 
ImageSVM performs a grid search to optimize parameters of 
SVM for each class in the training phase.  
 
Classification. Rule Interior Control A Control B 
Max. Likelihood  98 80 89 
SVM 100 79 90 
Euclidean distance 77 48 52 
Mahalanobis Distance 95 75 88 

Table 3. Accuracy of four classification rules (%)  
A series of tests are performed using one data set but different 
classifiers. Table 3 shows the accuracy of the classification rules. 
The evaluation is done using 2 control fields per crop. The 



 

Maximum Likelihood and SVM  perform best in the 
classification of these multi-temporal SAR data sets. 
Although the values of accuracy for SVM and Maximum 
Likelihood(ML) are close to each other, obvious differences 
between SVM and ML can be seen in calculated accuracy of 
control fields. Table 4 (see appendix) is the error matrix of 
classification by ML using three control fields for each crop. 
Table 5 (see appendix) is the error matrix of classification by 
SVM using three control fields for each crop. Following, table 
6  presents detailed accuracy of classification for ML and 
SVM over control fields in percent. Time series data used in 
these tests are matched to crop calendar. On tables 4 and 5 can 
be seen that overall accuracy of ML is higher than SVM but it 
is not the case for all crops. Some crops are classified by SVM 
better than by ML. Considering table 6 a high variation 
between calculated accuracies for different control fields 
classified by SVM can be observed. Even control fields of one 
crop are diversely classified. E.g. control field A of Summer 
barley is 87% correct classified by Maximum Likelihood but 
only 11% by SVM. On the other hand, field C of the same 
crop is much better classified by SVM than by Maximum 
Likelihood.  
It is known that SVM is more accurate than other classifiers if 
large number of variables is available[2]. In the case of this 
study, we can not refer the variations to the number of 
variables. E.g. Pasture with the greatest number of images(as 
variables) is classified less accurate by SVM than by ML and 
Summer barley with the least number of images is better 
classified by SVM than by ML on two of three control fields. 

Field A Field B Field C 
Images Class 

ML SVM ML SVM ML SVM 

3-9 Potato 98 90 90 86 99 92 
2-7 Summer barley 87 11 86 100 69 91 
2-8 Asparagus 50 100 100 100 78 67 
1-11 pasture 98 94 94 73 100 100 
1-7 Winter barley 100 100 79 88 89 94 
1-7 Winter rye 54 70 77 83 91 83 
3-9 Sugar beet 76 87 100 100 93 61 

 Mean 80 79 89 90 88 84 
Table 6. Accuracy of classification(%) for control fields in 

detail. Data is the same as table 4 and 5. 
Diverse noticeable results are driven from the classification of 
crops without considering the phenological periods. In this 
case, all images are used for classification of all crops (common 
set of images). Tables 7, 8 (see appendix) and 9 show result of 
same classifications as tables 4, 5 and 6 respectively without 
considering the crop calendar e.g. all images are used in only 
one classification process for all crops. As can be seen, overall 
accuracy of SVM (83%)(not matched to crop calendar) is 
higher than ML (79%)(not matched to crop calendar) by 4%, 
but overall accuracy of SVM (84%)(matched to crop calendar) 
presented in table 5 (see appendix) is five percent less than 
ML(89%)(matched to crop calendar). It means, classification 
by ML is significantly more accurate if time series data is 
matched to crop calendar. On the other hand, matching to crop 
calendar does not seem to be beneficial for classification by 

SVM. Considering the details presented in tables 6 and 9, 
calculated accuracy of classification by SVM for many control 
fields in table 9(not matched to crop calendar) is better than table 
6(matched to crop calendar) and the high variations in accuracy of 
classification by SVM can be observed in the table 9 too.  

 
Field A Field B Field C 

Images Class 
ML SVM ML SVM ML SVM

1-11 Potato 96 93 93 99 100 100 
1-11 Summer barley 84 74 86 100 82 53 
1-11 Asparagus 25 82 97 100 70 55 
1-11 pasture 98 94 94 73 81 100 
1-11 Winter barley 100 100 18 92 2 0 
1-11 Winter rye 20 76 99 97 100 100 
1-11 Sugar beet 88 98 100 100 100 22 

 Mean 73 88 84 94 76 61 
Table 9. Accuracy of classification(%) for control fields in detail. 

Data is the same as table 7 and 8. 
 

The insignificant improvement in accuracy of SVM by matching 
data to crop calendar may be explained as a result of reducing the 
number of used images. While overall accuracy of maximum 
likelihood is about 10% better if time series data are matched to 
crop calendar the one percent increment in accuracy of SVM is 
not significant. These results show, that if crop calendar is not 
known or a fast classification using all available data is aimed, 
SVM is more accurate than ML. On the other hand, ML performs 
the best classification if crop calendar is available and 
classification of different crops is done by individual classification 
processes. 
 
3.1.4. Combining the results 
If different sets of images are classified, several classifications are 
carried out independently. Results for one or more crops are 
accepted from a classification if the set of processed images fits to 
the phenological period of that crop(s). For example, Peas can be 
extracted from classification of images obtained between March 
and September and Sugar beets from classification of images 
between April and September. 
It is necessary to combine the different independent classification 
results to derive a land use map for the study area. As can be seen 
in Figure 1, one or several other crops are classified separately 
and the rest is labeled as “Others” (unknown plants). In a perfect 
condition, one might expect completely separated areas to be 
classified with each set of images. But this is not the case in the 
reality. Results from one set of images can be accepted as final 
result when no contradicting other classification exists for the 
same area. If the same area is classified twice, the area remains 
undefined. Therefore three types of fields remain during 
combination: 

- Classified: areas classified as crops with known 
phenological period. 

- Unclassified: areas are not identified as crops having a 
fixed phenological period. 

- Undefined: areas of competing classification (known 
crops with fixed phenological period for more than one 
crop).  



 

About 12% of the agricultural areas have been labeled as 
undefined during combination. 
Undefined areas are most probably covered by one of the 
competing classes (12% of agricultural extent). Distance images 
obtained as by-products of classification, representing the 
likelihood of each classified pixel to belong to its class and/or 
other classes, can be used for decision. Since distances are 
strongly dependent on the number of images used in a 
classification process and fewer number of images results in 
smaller distances, each distance image must be divided by the 
number of images, which are used for the related classification, 
in order to make it comparable with other distance images 
(normalizing). After normalizing, undefined areas which are 
classified by more than one known class are concentrated. In 
this phase, the normalized distance of each undefined pixel is 
compared with different conflicting classes and the pixel is 
labeled by the class of smallest normalized distance. The 
accuracy after this combination is not significantly altered from 
values of table 4 and the combination process keeps the overall 
accuracy acceptable. Only about 0.5 percent of the agricultural 
area is misclassified by the combination process, and most of 
the 12 percent of the undefined area is well classified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Classification and combination Process of different 
sets of images. 

 
4. CONCLUSION 

 
The practicality of a multi-temporal approach for classifying 
SAR images in agricultural areas is proved and some possible 
options are evaluated to approach an optimal method for 

multi-temporal classification in the study area. It could be 
demonstrated that classifying separated sets of despeckled images 
(dates) by Maximum likelihood classifier and with consideration 
of crop calendar results in highest accuracy under investigated 
methods. On the other hand SVM classifier is more accurate than 
Maximum Likelihood if time series data is not matched to crop 
calendar. Classification by SVM is not significantly improved 
using time series matched to crop calendar. A combination 
method is applied at the end as a decision tool to solve 
overlapping.  
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Appendix 
    Reference Data (Pixel)   

  Class names Potato Summer Barley Asparagus Pasture 
Winter 
Barley 

Winter 
Rye 

Sugar 
beets Sum User accuracy 

Potato 1967 0 0 0 0 0 0 1967 1.00 

Summer Barley 0 896 3 22 0 78 0 999 0.90 

Asparagus 0 0 516 0 0 0 0 516 1.00 

Pasture 0 0 0 440 0 29 0 469 0.94 

Winter Barley 0 0 0 0 881 32 51 964 0.91 

Winter Rye 0 118 0 2 69 533 0 723 0.74 

Sugar beets 97 0 207 0 47 2 628 981 0.64 C
la

ss
if

ie
d 

D
at

a 
(P

ix
el

) 

Sum 2064 1015 726 464 998 674 679 6620   

Producer  accuracy 0.95 0.88 0.71 0.95 0.88 0.79 0.93 Overall accuracy= 0.89 

Table 4. Error Matrix for classification by Maximum likelihood. input data is matched to crop calendar. 
    Reference Data (Pixel)   

  Class names Potato Summer Barley Asparagus Pasture 
Winter 
Barley 

Winter 
Rye 

Sugar 
beets Sum User accuracy 

Potato 1848 0 29 0 0 0 203 2080 0.89 

Summer Barley 40 664 9 40 0 82 0 835 0.80 

Asparagus 0 247 688 0 0 0 0 936 0.74 

Pasture 0 38 0 409 0 8 0 455 0.90 

Winter Barley 0 28 0 0 927 52 6 1013 0.92 

Winter Rye 5 34 0 15 56 530 0 639 0.83 

Sugar beets 172 5 0 0 14 2 470 663 0.71 C
la

ss
if

ie
d 

D
at

a 
(P

ix
el

) 

Sum 2064 1015 726 464 998 674 679 6620   

Producer  accuracy 0.90 0.65 0.95 0.88 0.93 0.79 0.69 Overall accuracy= 0.84 

Table 5. Error Matrix for classification by SVM. input data is matched to crop calendar. 
    Reference Data (Pixel)   

  Class names Potato Summer Barley Asparagus Pasture 
Winter 
Barley 

Winter 
Rye 

Sugar 
beets Sum User accuracy 

Potato 1984 0 44 0 0 0 0 2027 0.98 

Summer Barley 0 852 10 24 0 0 0 887 0.96 

Asparagus 0 0 412 0 0 0 0 412 1.00 

Pasture 0 0 0 440 0 11 0 450 0.98 

Winter Barley 0 0 0 0 354 10 15 379 0.93 

Winter Rye 0 0 0 0 5 537 0 541 0.99 

Sugar beets 80 163 260 0 639 117 664 1923 0.35 C
la

ss
if

ie
d 

D
at

a 
(P

ix
el

) 

Sum 2064 1015 726 464 998 674 679 6620   

Producer accuracy 0.96 0.84 0.57 0.95 0.36 0.80 0.98 Overall accuracy= 0.79 

Table 7. Error Matrix for classification by Maximum likelihood. input data is not matched to crop calendar. 
    Reference Data (Pixel)   

  Class names Potato Summer Barley Asparagus Pasture 
Winter 
Barley 

Winter 
Rye 

Sugar 
beets Sum User accuracy 

Potato 2021 0 31 0 0 0 398 2450 0.82 

Summer Barley 0 795 36 13 10 0 0 854 0.93 

Asparagus 0 0 611 0 0 0 0 611 1.00 

Pasture 0 19 0 409 0 0 0 428 0.96 

Winter Barley 0 28 23 23 706 15 3 797 0.89 

Winter Rye 1 173 24 20 9 660 0 885 0.75 

Sugar beets 42 0 0 0 273 0 281 596 0.47 C
la

ss
if

ie
d 

D
at

a 
(P

ix
el

) 

Sum 2064 1015 725 464 998 674 682 6622   

Producer accuracy 0.98 0.78 0.84 0.88 0.71 0.98 0.41 Overall accuracy= 0.83 

Table 8. Error Matrix for classification by SVM. input data is not matched to crop calendar. 


