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Abstract—In this paper, a road extraction approach for suburban 
areas from high resolution CIR images is presented. The 
approach is region-based: the image is first segmented using the 
normalized cuts algorithm, then the initial segments are grouped 
to form segments, and road parts are extracted from these 
segments. Ideally roads in the image correspond to only one 
extracted road part, but they are often covered by several road 
parts with gaps between them. In order to combine these road 
parts, neighbouring road parts are connected to a road subgraph 
if there is evidence that they belong to the same road, such as 
similar direction and smooth continuation. This process allows 
several branches in the subgraph which is why another step 
follows to evaluate the subgraphs and divide them at gaps which 
show weak connections. The subgraph evaluation step is the 
focus of this paper. Linear programming is used for the subgraph 
evaluation after gap weights are determined. Two ways of 
determining gap weights are discussed, one using criteria which 
describe the properties of the road parts and their interrelations, 
and one using context objects (vehicles, trees, vegetation) in the 
gaps. The determination of the gap weights and the division of 
the road subgraphs is shown with an example. 

I.  INTRODUCTION  
Roads are an important part of infrastructure, especially in 

an urban context. Road data are needed in many applications, 
and the information must be up-to-date and correct if it is to be 
useful. In order to keep road databases up-to-date and accurate, 
aerial and satellite images are often used to gather information 
about changes, because the images are relatively cheap and 
often much more accessible compared to field measurements. 
In order to further reduce the costs and the time required for 
map updating, it is desirable to use automatic procedures for 
the extraction of roads from the images. Today, especially in 
urban areas roads are to a large degree still extracted manually. 
This is due to the considerable complexity of urban 
environments compared to open landscapes, for which road 
extraction algorithms that are reasonably reliable already exist, 
e.g. [1], [2]. 

There are many different approaches for road extraction 
from optical imagery, and in recent years the number of those 
that deal with urban areas has increased. For urban areas, high 
resolution images (1 m and better) are used almost exclusively.  
The only exceptions are approaches where only main roads are 
extracted, e.g. [3]. Most approaches are based on images with 1 

m resolution, but there are also some examples where images 
with 0.1-0.2 m resolution are used, most notably [4], [5]. This 
is also one of the rare examples for road extraction in urban 
areas where context objects, namely buildings, vehicles, and 
shadow areas, are explicitly used.  This can prevent gaps in the 
road network that are caused by the influence of these objects. 

The high complexity of urban and suburban areas makes 
road extraction from greyscale aerial images without further 
information difficult because many different structures in urban 
areas have an appearance similar to that of roads. Therefore, 
most approaches use additional information, for example 
colour [6], [7], digital surface models [4] or both [8]. 
Information about the position of roads from an existing road 
database is also included sometimes [9]. Very few approaches 
use only greyscale images, for example [10], which is a 
tracking approach that can use automatic as well as manual 
seeds. 

Most road extraction algorithms are either line-based or 
region-based. Line-based approaches for high resolution 
images mostly extract edges of roads and group them to form 
road lanes [4]. In region-based algorithms, colour images are 
often classified and the road regions found by classification are 
refined by morphological operators and/or selected according 
to shape criteria [6], [9]. 

Our goal is the extraction of roads in suburban areas. We 
use a region-based approach in which the image is first 
segmented and then road parts are extracted from the segments. 
These road parts are assembled into road subgraphs which can 
contain different branches. The branches represent different 
hypotheses for the course of the roads, from which the correct 
one has to be picked in order to obtain a consistent road 
network in the next step. This paper focuses on the evaluation 
of the road subgraphs to find the most likely course of the road 
from different hypotheses, using either relations between road 
parts or relations to context objects. In section II of this paper 
the approach is explained. The segmentation, road part 
extraction and subgraph generation, which are explained in 
detail in [11], [12], are only reviewed briefly, the road 
subgraph evaluation is discussed in more detail. In section III 
some results of the road subgraph evaluation are presented. 
Section IV gives conclusions and pointers for further work. 
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II. APPROACH 

A. Overview 
The goal of this approach is the extraction of roads from 

high resolution aerial images in suburban areas. We use colour 
infrared images with a resolution of approximately 10 cm on 
the ground. 

The approach consists of three steps, namely segmentation, 
road part extraction and subgraph generation (see [11] and [12] 
for more details). In the segmentation step, the image is first 
divided into many small segments, which are then grouped into 
larger segments having meaningful shapes. From the grouped 
segments, potential road parts are extracted using shape 
criteria. The road parts are then assembled to road subgraphs if 
they potentially belong to the same road; junctions are not 
considered. This step allows several branches to be present in 
one subgraph. In the next step, these ambiguities are resolved 
by optimizing the graph in a way that finds the best possibility 
for the course of the road without branches.  

The use of the terms road part and road subgraph is 
explained in Fig. 1. An extracted road part is a segment which 
was classified as a road. It can correspond to a whole actual 
road between two junctions or only a part of the road, or it can 
be a false positive. A road subgraph consists of several 
assembled road parts. Each subgraph extends only as far as 
there are road parts to be found in a more or less straight 
continuation; in this way, each subgraph usually represents 
only one road. In the subgraph, each road part has two nodes 
which are connected via an edge called road edge. Each node 
can also maintain connections to nodes of other road parts via 
edges called gap edges. If more than one such connection 
exists, the node has several branches. The term subgraph is 
used in order to indicate that it does not represent a complete, 
interconnected road network.  

 

Figure 1.  Definition of terms.  Dashed line: real road network; grey 
rectangles: extracted road parts; black lines between road parts: edges of road 

subgraphs. 

B. Segmentation, Road Part Extraction and Road Subgraphs 
The first stage of the road extraction is the segmentation of 

the image, which is carried out in two steps, namely initial 
segmentation and grouping. The goal of the initial 
segmentation is to divide the image into small regions whose 

borders coincide with the road borders as completely as 
possible. The normalized cuts algorithm [13] is used for this 
initial segmentation, in which connections between pixels are 
weighted according to their similarities. The similarities of 
pixel pairs are determined using colour and edge criteria. 

As the normalized cuts algorithm results in a considerable 
oversegmentation in order to preserve most road borders, the 
initial segments are grouped. The grouping is done iteratively 
using colour and edge criteria, this time considering the 
properties of the regions as opposed to those of the pixels. 
Segments with irregular forms that cover roads across junctions 
can occur in this step. Therefore, the skeletons of the segments 
are examined and if they have several long branches, the 
segments are split. 

Road parts are extracted from the grouped segments in the 
next step. For the extraction, geometric and radiometric criteria 
are used. The geometric criteria are elongation, width 
constancy and difference to average road width. As radiometric 
criteria, the NDVI (normalized difference vegetation index) 
and the standard deviation of colour are used, dark areas are 
excluded because shadow areas often have similar geometric 
properties to road parts. The elongation, width constancy, 
compliance with average road width and the NDVI are used to 
determine a quality measure for each road part. For each road 
part an evaluation score is computed, further details of the road 
part extraction are explained in [12]. 

In many cases, a road is not completely covered by one 
road part but by several different road parts because 
disturbances in the appearance of the road interfered with the 
extraction. Therefore, road parts that could belong to the same 
road are assembled into road subgraphs (Fig. 1) by checking if 
the road parts have neighbours to which they can be connected. 
The subgraphs are assembled iteratively, starting with the road 
part with the best evaluation result from the road extraction. 
The criteria used to decide whether two road parts belong to the 
same road are distance between segments, direction difference 
and continuation smoothness. The reference points for the 
measurement of the direction difference and the continuation 
smoothness are the intersection points between the center line 
and the road part borders. The continuation smoothness is 
measured by calculating the direction differences between the 
directions of the road parts to the direction of their connection 
(Fig. 2). The continuation smoothness is high if both 
smoothness angles are small. 

 

Figure 2.  Continuation smoothness 
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If the distance between the segments is short, the 
continuation smoothness criterion is disregarded because at 
close distances the angles depend too much on the exact 
positions from which the angles are measured.  

Two road parts are linked if empirically determined 
thresholds for the distance, the direction difference and the 
continuation smoothness are met. The distance and the 
direction difference must be low and the continuation 
smoothness must be high; all three conditions must be fulfilled 
for the road parts to be linked. One road part can be attached to 
more than one other road part in the same direction, such that 
branches in the subgraphs can occur (Fig. 1). The search for 
neighbouring road parts continues until no more road parts can 
be added. Then, the search is resumed with the road part which 
has the best evaluation result among the remaining road parts 
until all road parts have been examined. 

C. Subgraph Evaluation by Linear Programming 
As described in the previous section, the road subgraphs 

can contain branches. However, in most cases these branches 
do not represent actual branches in the road network but rather 
indicate false extractions of road parts that are nearly parallel to 
the real road. Therefore, road subgraphs containing branches 
are treated as including different hypotheses for the course of 
the road. In this step, the best hypotheses are searched for via 
the formulation and solution of a linear programming problem.  

In linear programming a linear function (objective function) 
whose variables are subject to linear constraints is maximized 
or minimized [14]. The constraints define a set of feasible 
vectors; the vector for which the constraint set is maximal or 
minimal is the optimal solution for the problem.  

Linear programming can be used when the variables of the 
linear function to be optimized are restricted by hard 
constraints, which can be equations or inequalities. The 
constraints in our case are inequalities which result from the 
condition that no node of a subgraph should be connected to 
more than one gap edge after the optimization. 

The problem to be solved is finding the best partition of a 
road subgraph. Each gap edge has a weight which reflects the 
plausibility that the two road parts belong to the same road (see 
below). In order to keep good gap edges, the sum of the edge 
weights should be maximized for the edges which are kept. 
Thus, the objective function is  

 w1 x1 + ... + wn xn → max (1) 

with n as the number of gap edges, w1 … wn as the 
respective weights for the gap edges and x1 … xn as the 
variables that indicate whether the respective edge should be 
kept or discarded. A value of 1 indicates that the edge is kept; a 
value of 0 indicates that it is discarded. These values are 
determined by solving the maximization under the constraints 
that each node i can only be associated to one gap edge: 

 ∑
∈

≤
iEj

jx 1.  (2) 

Here, Ei is the set of gap edges belonging to node i. The 
optimization is carried out using the simplex method [14]. 

The edge weights are determined using the following 
criteria: 

• distance: a shorter distance between the two 
connected road parts gives a higher edge weight; 

• road part quality: the sum of the quality measures 
of both road parts from the extraction, a higher 
value gives a higher edge weight; 

• colour: a smaller difference between the mean 
colour values of both road parts gives a higher 
edge weight;  

• width: a smaller width difference between both 
road parts gives a higher edge weight; 

• continuation smoothness:  smaller smoothness 
angles (cf. subsection B) give a higher edge 
weight; 

• direction: a smaller direction difference between 
both road parts gives a higher edge weight. 

The weights for the different criteria are obtained after 
calculating all criteria by mapping the respective values 
linearly onto an interval between 0 and 1. For example, the 
maximum possible distance between two connected road parts 
is equivalent to a distance weight of 0, and a distance of 0 is 
equivalent to a distance weight of 1. The other weights are 
obtained accordingly.  All weights are multiplied to obtain the 
total weight for one edge. The edge weights that belong to the 
same subgraph are normalized such that their sum equals 1. 

D. Additional Use of Context Objects 
Context objects can be used to assist the determination of 

the gap weights. Some experiments have been carried out using 
an evaluation of the context objects for the determination of 
gap weights [15]. 

For the evaluation of a gap between two road parts the 
context objects vehicle, tree, shadow, vegetated area and 
asphalt area are used. Asphalt areas are areas that were not 
extracted as road parts but have the radiometric properties of 
roads. They are treated as context objects that support a road 
hypothesis. The context objects are extracted automatically as 
follows: 

• Vehicles are extracted by filtering small dark or 
bright regions for rectangles with vehicle size or 
smaller; regions that represent hood, roof and rear 
are composed if they together form a vehicle. 

• Trees are extracted as regions with high NDVI and 
associated shadows. Shadow areas are found by 
extracting dark areas. 

• Vegetated areas are extracted as regions with high 
NDVI that are not classified as trees. 

• Asphalt areas are extracted as areas with the 
average grey values of asphalt.  

Details about the extraction of context objects can be found 
in [15]. 
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 To evaluate the gap, a road part hypothesis with the 
average width of the connected road parts is assumed in the 
gap. Two aspects of context objects are considered:  

1. how much the existent context objects support or 
contradict the road part hypothesis in the gap, and 

2. how much the existent context objects hinder the 
algorithm for the road extraction by occlusion. 

For the first aspect the different relations between context 
objects and the road part hypothesis in the gap are classified 
into different categories. The relation categories for vehicles 
are vehicle parallel on road, vehicle perpendicular to road, 
vehicle parallel next to road and vehicle perpendicular next to 
road. A vehicle is counted as parallel if its direction differs less 
than 45° from the road direction; else it is counted as 
perpendicular. Parallel vehicles give higher evidence to support 
the road hypothesis than perpendicular vehicles; a parallel 
vehicle on the road gives higher evidence than one next to the 
road. The relation categories for trees are tree on road, tree 
next to road and row of trees parallel next to road. Trees on the 
road give evidence against a road hypothesis, single trees next 
to the road hypothesis gives a weak support which is stronger 
for a row of trees. The relation categories for vegetated areas 
are vegetated area on road and vegetated area next to road. 
Vegetated areas next to a road hypothesis give weak evidence 
to support the road hypothesis; if they are found on a road 
hypothesis, they give strong evidence against the hypothesis. 
The relation categories for asphalt areas are asphalt area on 
road and asphalt area next to road. Both give evidence to 
support a road hypothesis.  

All context objects are grouped into these categories 
(shadows are only used in conjunction with the tree extraction). 
A relation value between -0.5 and 0.5 is assigned to each 
relation category; negative values indicate contradicting 
evidence while positive values indicate supporting evidence. 
These values are derived from the observed frequency of the 
respective relation in the global context of suburban areas and a 
weight for the importance of the relation in contradicting or 
supporting road hypotheses. If two or more relations of one 
category appear, the value for the second appearance is divided 
by two, the third by three and so on. The total evaluation for 
the first aspect is the sum of all single evaluations for the 
relations. If the relation tree on road or vegetated area on road 
appears, the road hypothesis receives a high negative value. 

For the second aspect the occlusion of the road hypothesis 
by context objects is analysed. An occlusion can cause the road 
extraction algorithm to fail to extract the road part. So a high 
degree of occlusion by the context objects vehicle, tree and 
shadow supports a road hypothesis more than a low degree of 
occlusion. The estimation for the second aspect is the 
percentage of the area covered by the context objects in the 
road part hypothesis. 

The final value of the context evaluation for the gap is the 
sum of the values from the two aspects. 

III. RESULTS 
Experiments were made on subsets of a colour infrared 

orthoimage with 10 cm resolution depicting a suburban scene 
from Grangemouth, Scotland. 

Segmentation, grouping, road extraction and road subgraph 
formation were conducted as described in section II.B and [11, 
12]. Fig. 3 shows a result on one subset after road subgraphs 
are assembled. 

 

Figure 3.  Road subgraphs. Different colours show different subgraphs. 

At the bottom of the image, a road subgraph with branches 
can be seen: the left road part is connected to both the center 
road part and the bottom road part. The right road part is not 
connected to the bottom road part because the continuation 
smoothness is not good enough. This subgraph is now 
examined further with the linear programming optimization in 
order to remove the branching. Fig. 4 shows the subgraph with 
numbered gap edges, and Fig. 5 shows the subgraph with 
numbered nodes; the numbers will be used in the following 
description. 

 

Figure 4.  Road subgraph with numbered edges. 

 

Figure 5.  Road subgraph with numbered nodes. 

The total weights for each edge are calculated and 
normalized (cf. II.C); they are:  

 w1 = 0.03 
 w2 = 0.85 
 w3 = 0.11. 
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The weight for edge 1 is low because of a high distance 
between the road parts, low continuation smoothness and high 
difference in colour. Edge 2 has the highest weight because of 
the short distance, small colour difference and good quality 
measures for both road parts. At edge 3 the distance is longer 
and the quality measure for the right road part is not as good. 

The objective function for the linear program with these 
weights is 

 w1 x1 + w2 x2 + w3 x3 → max. 

The constraints indicate which nodes are connected to 
which edges (the numbers before the inequalities refer to the 
nodes): 

 1: x1 + x2            ≤ 1 
 2: x1                    ≤ 1 
 3:          x2           ≤ 1 
 4:                    x3 ≤ 1 
 5:                    x3 ≤ 1 

The linear program is then solved and yields the following 
results: 

 x1 = 0,  x2 = 1,  x3 = 1. 

Thus, the result of the optimization is that edge 1 should be 
removed, leaving one road string consisting of three road parts 
and one separate road part (which is actually a false positive). 
Fig. 6 shows the road subgraph with the separated edge 
highlighted. 

 

Figure 6.  Road subgraph with separated edge. 

As described in subsection II.D, context objects can be used 
to evaluate the gaps. An example for this is shown with the 
same road subgraph as above. The extracted context objects are 
shown in Fig. 7. 

 

Figure 7.  Context objects. Blue: vehicles, light green: trees, yellow: tree 
shadow, dark green: vegetated area. 

For edge 1 (numbering as shown in Fig. 4), two vegetated 
areas are found next to the road hypothesis as well as asphalt 
(not displayed) near the branching node. The context 
evaluation result for this edge is c1 = 0.606. The evaluation 
suffers from missing one vegetated area in the extracted 
context objects such that the evaluation result is relatively high 
for a false road hypothesis. 

The context objects for edge 2 also are vegetated areas and 
asphalt area. The evaluation result is c2 = 0.567. The gap here 
is quite short, which does not allow for many context objects, 
so the evaluation result is relatively low. 

Edge 3 represents a gap which is caused by a tree standing 
next to the road. Consequently, the most prominent context 
object is the tree with its shadow. Vegetated areas and asphalt 
areas are also found. The evaluation result is c3 = 0.659. The 
largest contribution to this value comes from the occlusion by 
the tree shadow. 

If the evaluation results from the context objects alone are 
used as gap weights for the linear program, edge 2 is removed, 
which is not a desirable result. The reasons for this result are, 
as stated, the missing vegetated area at edge 1 and the few 
context objects at edge 2. On the other hand, the gap weight for 
edge 2 according to the criteria of subsection II.C is the highest 
of all three edges.  This indicates that context objects should 
not be used alone without other criteria, especially the length of 
the gap. 

IV.  CONCLUSIONS 
In this paper, an approach for the extraction of roads in 

suburban areas was presented, with the focus on resolving 
competing road hypotheses in a road subgraph. The task was 
formulated as a linear programming problem, and the 
application of the linear program was shown with one example 
of a road graph with one branch. 

For the determination of the gap weights, two approaches 
were shown: the first using several criteria concerning 
properties of the road parts and their relations to each other 
(section II.C), the second using context objects in the gap 
(section II.D). In the example used here the first approach gave 
a better result, but this should not be generalized without 
further investigation. It is also planned to combine the context 
object evaluation with the other criteria as, for example, the 
context object evaluation for edge 2 (see section III) shows that 
context should not be used alone without regard for the length 
of the gap. 

Two further ways for improving the determination of the 
gap weights are planned to be examined. The first is to improve 
combination of the criteria described in subsection II.D, 
especially the relative importance of the criteria and their 
relations to each other. The second is to include a digital 
surface model which allows to extract buildings automatically 
and use them as additional context objects. Preliminary 
experiments with manually extracted buildings show that this 
improves the context object evaluation significantly. A digital 
surface model can also be of use in the previous steps, 
especially the road part extraction. 

The next steps also include the formation of a road network 
by searching for junction hypotheses between road strings and 
removing isolated (mainly false) road parts. 
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