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Abstract In this paper, we present a novel approach
for the automatic extraction of trees and the delineation
of the tree crowns from remote sensing data, and report
and evaluate the results obtained with different test data
sets. The approach is scale-invariant and is based on
co-registered colour-infrared aerial imagery and a dig-
ital surface model (DSM). Our primary assumption is
that the coarse structure of the crown, if represented
at the appropriate level in scale-space, can be approxi-
mated with the help of an ellipsoid. The fine structure
of the crown is suppressed at this scale level and can
be ignored. Our approach is based on a tree model
with three geometric parameters (size, circularity and
convexity of the tree crown) and one radiometric param-
eter for the tree vitality. The processing strategy com-
prises three steps. First, we segment a wide range of
scale levels of a pre-processed version of the DSM.
In the second step, we select the best hypothesis for a
crown from the overlapping segments of all levels based
on the tree model. The selection is achieved with the
help of fuzzy functions for the tree model parameters.
Finally, the crown boundary is refined using active con-
tour models (snakes). The approach was tested with four
data sets from different sensors and exhibiting different
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1 Introduction

Trees are important topographic objects in different
fields of applications. Obviously, trees play an essential
role in forestry, and forest inventories regularly capture
tree data all over the world. In addition, ecological and
social aspects are increasingly important: forests provide
shelter for many different species of the Earth’s flora and
fauna. They are a major reservoir for CO2 storage and
green areas including parks and single trees are con-
sidered important factors for making a city attractive.
Information about the position and size of trees in cities
is also beginning to be used in computer graphics aimed
at producing more realistic views of the environment.

The first trial of the use of aerial images for forest pur-
poses was performed in 1897 according to Hildebrandt
[11]. Since that time the forest scientific community has
been working on improving methods for the extraction
of tree parameters from aerial images such as the tree
type and health status, the height and crown size, the
stem diameter at breast height, and the stem volume
[12]. Early work concentrated on the manual interpre-
tation of images for forest inventory [17,24]. Since then a
number of attempts to automate this task have appeared
in the literature (see Sect. 2).

In this paper, we present a new approach for the
automatic extraction of individual trees using a
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geo-referenced colour-infrared aerial image1 and a dig-
ital surface model (DSM)2 as input data (see also [26]).
The approach is based on a geometric and radiomet-
ric model of a tree, a segmentation at multiple scales
followed by scale selection and a refinement step using
active contour models (snakes). The mathematical rea-
soning is mainly based on differential geometry. The
main data source in our approach is the DSM. Addi-
tional colour information from the image is used to
differentiate between vegetation and other objects in
the scene. Our aim is to detect every tree in the observed
part of the real world and to determine the boundary of
their crowns.

This paper is organised as follows: in the next section
an overview is given of related work in automatic tree
extraction from remote sensing data in forest and settle-
ment areas. In the main section of the paper we describe
our approach. The description is divided into two sub-
sections: in the first subsection the object model for trees
is presented, and in the second the processing strategy
is elaborated. In the last section, we show results from
four different data sets including a quantitative evalu-
ation based on independently obtained reference data.
We close with a short summary and an outlook.

2 Related work

The first approaches to automatic extraction of indi-
vidual trees from images were proposed by pioneers in
the field almost two decades ago [9,10,20]. More recent
work in the field is reported in Gougeon [8], Pollock
[20,21], Brandtberg and Walter [4], Andersen et al. [1],
and Persson et al. [19]. A good overview of the field is
contained in [13]. Some of the important publications
are described in detail in this section.

A common element of most approaches is the geo-
metric model of a tree, which was proposed by Pollock
[21,22]. Pollock describes the tree geometry by means of
a generalised ellipsoid of revolution, see Eq. (1). In the
following, this model is termed Pollock-Model,3 and the
corresponding synthetic trees are termed Pollock-Trees.

zn

an +
(
x2 + y2) n

2

bn = 1 (1)

1 In a georeferenced aerial image for each pixel world coordi-
nates are available in planimetry. Such an image is also called an
“orthoimage” or “orthophoto”.
2 We use a gridded version which was obtained either by image
matching or by aerial laser scanning.
3 Note that the Pollock-Model is introduced here due to its sig-
nificance in the field. Although we do not explicitly use this model
in our approach, our ideas have been influenced by the work of
Pollock, see also Sect. 3.

In Eq. (1) (x, y, z) are point co-ordinates on the crown
surface. a corresponds to the tree height, and b to the
crown radius. n is a shape parameter. According to Gong
et al. [7], a typically ranges from 15 to 40 m, and b from
2.5 to 15 m. Form parameters n for deciduous trees lie
in the range of 1.0–1.8 with a typical value of 1.2, and
for coniferous trees in the range of 1.5–2.5 with a typ-
ical value of 2.0. Two different surfaces, which can be
described with Eq. (1), are depicted in Fig. 1: the left
one is an example for a deciduous tree, and the right for
a coniferous tree.

The surface of a real tree is of course more complex
than the one described by the Pollock-Model, because
a tree may not exhibit circular growth due to neigh-
bouring obstacles or wind. Individual branches have
different length and a tree crown may be split into
smaller sub-crowns. This fine structure is not captured
in the Pollock-Model. Nevertheless, the main shape of
the upper part of the crown is reasonably well repre-
sented. The Pollock-Model has been the basis of a num-
ber of algorithms developed in recent years, partly in
a refined form. Examples include Larsen and Rudemo
[16], Straub and Heipke [27], Andersen et al. [1], Gong
et al. [7], Weinacker et al. [29], and Wulder et al. [31].

In general, there are two possibilities for building a
strategy for the automatic extraction of trees from image
or surface data. The first possibility is to model the crown
in detail: one could try to detect and group the fine struc-
ture in order to reconstruct the individual crowns. The
second possibility is to remove the fine structures from
the data with the aim of creating a surface, which has the
character of the Pollock-Model. Both strategies can be
found in the literature: Brandtberg [3] proposed the use
of the typically fine structure of deciduous trees in opti-
cal images for the detection of individual trees. The other
strategy, removal of the fine structure, was proposed in
Schardt et al. [23] and in Persson et al. [19]. In Andersen
et al. [1] the fine structure of the crown is modelled as a
stochastic process with the aim of detecting the underly-
ing coarse structure of the crown. The main problem of
this type of approach is the determination of an optimal
low pass filter for every single tree in the image. This
is analogous to a “chicken-and-egg” problem, because
the optimal low pass filter depends mainly on the diam-
eter of the individual tree being sought, which is not
known in advance. Brandtberg and Walter [4] proposed
a solution to this problem by using a linear scale space
representation of the image.

The basic idea of linear scale space is to construct
a multi scale representation of an image, which only
depends on one parameter and has the property of cau-
sality: features at a coarse scale must have a cause at fine
scale [15]. The scale space transformation itself should
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Fig. 1 3D visualisation of the
Pollock-Model. Left surface
model of a typical deciduous
tree: a = 7, b = 3.5, n = 2.0
right coniferous tree
a = 20.0; b = 5.0; n = 1.2

not lead to new features. One can show that a multi-scale
representation based on a Gaussian function as low pass
filter fulfils this requirement.4 In practice, the original
signal is convolved with a Gaussian with different scale
parameters σ . Small values of σ correspond to a fine
scale, large values to a coarse scale. An extensive inves-
tigation on linear scale space transformations of images,
mathematical reasoning and technical instructions can
be found in [18].

Quantitative results have been reported for some of
the discussed approaches. In Persson et al. [19] 71% of
the trees were extracted, and all extracted objects were
trees (71% completeness, 100% correctness). Pollock
[22] achieved a completeness of 61% and a correctness
of 85%. Better results are reported in Brandtberg and
Walter [4] with a completeness of 85% and a correctness
of 100%, and in Andersen et al. [1] with a completeness
of 83% and a correctness of 89%. While these percent-
ages give a first indication of the quality of the approach,
and some of them are rather impressive, it should be
noted that they are hard to compare, since they relate
to different test sites with different scene complexity,
different input data, different image resolutions, differ-
ent numbers of trees per data set and different evalua-
tion strategies.

3 Description of the approach

A critical point in object extraction from images is the
selection of the appropriate scale level. The reasons are:
(1) the correct scale level mainly depends on the size of

4 Strictly speaking this is only true in 1D. In 2D there are excep-
tions such as the “dumbbell image”, which, however, do not have
a noticeable impact for our application.

the object one is looking for. The size of trees depends on
the age, the habitat, the species and many more param-
eters, which in general cannot be modelled in advance.
Therefore, the tree size and thus the correct scale level
can neither be assumed to be known a priori nor is it
constant for all trees in one image. (2) The correct scale
is of crucial importance for image segmentation. The
fine structure of a tree crown is very difficult to model
but—apart from this fine structure—the crown has a
relatively simple shape.

In our approach the image is segmented in a wide
range of scales across the linear scale space, just bounded
by reasonable values for the minimum and the maximum
radius of a tree crown (see also Sect. 2). The opera-
tor we use for segmentation is essentially a Laplacian-
of-Gaussian and thus the bandwidth of this operator is
1.2 octaves. We increase the scale parameter in steps
starting from 20.5i m with i = 1, 2, 3, 4, 5, 6, and not
in a power-of-two series, which may seem to be need-
lessly inefficient. However, we later select the best tree
hypothesis based on overlapping segments (see below),
which requires redundant information between the
different levels.

In Sect. 3.1 a detailed description of the model of indi-
vidual trees is given. In Sect. 3.2 the processing strategy
for the extraction of these trees from the image and
height data is described.

3.1 Tree model

3.1.1 Geometric properties

The coarse structure of the crown is implicitly mod-
elled using the Pollock-Model. For all possible shapes,
which can be represented with this model, the projec-
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tion into the xy-plane is a circle with a diameter in a
pre-defined range, furthermore the 3D shape of the sur-
face is convex.

Convexity is measured as the mean value of the
Laplacian inside a segment. The justification for this
is explained as follows. We start with investigating the
DSM of four synthetic Pollock-Trees, denoted H(x, y).
In the left part of Fig. 2 these four Pollock-Trees com-
puted with a = 6 (m), b = 2 (m), and n = 2.0 are
depicted. As is often the case the trees stand relatively
close together and increasingly so from top to bottom. In
the right part of Fig. 2 various profiles are shown, which
were taken along the white line visible in the left part of
the figure. The leftmost profile point is the uppermost
point of the white line.

The profile of the DSM is plotted in dark grey. One
can see that the value of the local minima between the
trees increases from left to right, and the gradient mag-
nitude (black line in Fig. 2) decreases. Obviously, this is
a consequence of the decreasing distance between the
trees, and of the crown’s shape. The surface at the tree-
tops has a convex shape in both directions, along and
across the profile. Therefore the Laplacian (see Eq. 2),
which is depicted in light grey in Fig. 2, is negative for
the whole crown.

∂2H(x, y)

∂x2 < 0 ∧ ∂2H(x, y)

∂y2 < 0 ⇒
(2)

∂2H(x, y)

∂x2 + ∂2H(x, y)

∂y2 < 0

At the points on the profile between two trees the
second partial derivative is less than zero along the
profile and greater than zero perpendicular to the pro-
file. Therefore, the Laplacian is generally larger than at
points within the crown. These characteristics lead to
local maxima of the Laplacian between the crowns.

In the case of real data this model is only valid in
some scale levels. A height profile from real data is used
to explain this statement. Two different scale space rep-
resentations of the surface model H(x, y) are depicted
in Fig. 3. One can see that more and more of the fine
structures disappear and the coarse structure is revealed
when the scale parameterσ is increased.

The height profile along the treetops is determined
along the dotted line, which is superimposed on the sur-
face model in Fig. 3. The left height profile, which was
taken from the original surface model, contains more
high frequency information compared to the profile of
the synthetic trees. As a result the Laplacian oscillates
close to zero. At the coarser scale level the mean con-
vexity can be used as geometric feature for the decision,
if a segment is a crown or not. Similar to the profile of

the synthetic Pollock-Trees the Laplacian is negative for
tree crowns, and borders between the trees represent
local maxima.

3.1.2 Radiometric properties

Vegetation exhibits a typical response in the red and
the near infrared band of the electromagnetic spectrum.
The reflection of the near infrared band is higher for
vegetation than for areas without vegetation and in the
red band it is lower. Vegetation indices make use of this
property. We use the normalized difference vegetation
index (NDVI, see for example [17]) to differentiate veg-
etation and non-vegetation areas in the images (Eq. (3).
NIR is the grey value in the near infrared band, and red
the grey value in the red band. Refer to Fig. 4 for an
example.

NDVI = NIR − red
NIR + red

(3)

Various improvements for computing the NDVI were
suggested over the years. A particularly interesting one
was described by Ünsalan and Boyer [28], in which the
authors address the effect of saturation by linearising
the vegetation index based on a statistical framework.
Since we combine the NDVI with a membership func-
tion in the evaluation step (see below), we can in prin-
ciple achieve the same effect by properly defining the
membership function.

3.2 Processing strategy

Our processing strategy comprises three steps: first, we
segment a wide range of scale levels of a pre-processed
version of the DSM. The segmentation is achieved by
applying the watershed transformation [2,25]. In a sub-
sequent step, we evaluate the segments and select the
best hypothesis for a crown in case various segments
from different scale levels overlap. The evaluation and
the selection of the best hypotheses are achieved using
fuzzy functions [32] for the tree model parameters.
Finally, the crown boundary is refined using snakes [14].
In the following, we describe how to combine these tools
with the aim of detecting individual trees and recon-
structing the outline of the crown.

3.2.1 Segmentation of the surface model

As mentioned above, we perform a segmentation of the
surface model in a wide range of scales. The segmenta-
tion itself should be free of parameters and work only in
the image space and not in the feature space, because the
feature space is not independent of the scale level. The
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Fig. 2 Height values (left)
and various profiles (right) of
the surface model of four
Pollock-Trees. The dark grey
line represents the height
values, the black line shows
the gradient magnitude, and
the light grey line depicts the
values of the Laplacian
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Fig. 3 Representation of the
surface model H(x, y) at two
different scale levels (left).
The height profiles to the
right were determined along
the dotted line in the images.
Dark grey height profile;
black gradient magnitude,
light grey Laplacian

Fig. 4 Example of a
colour-infrared image of trees
(left) and the NDVI of the
same area (bright areas
correspond to positive NDVI
values)

watershed transformation fulfils these requirements. In
addition it is well suited for the segmentation of height
data. One reason is that the key idea of the watershed
transformation is the segmentation by means of a flood-
ing simulation [25]. Basins are the domains of the image,
which fill up first if a “water level” increases starting
from the lowest grey value in the image. Watersheds are
embankments between the basins. It is known that the

watershed transformation has a tendency for over-seg-
menting the images, but since we use a variety of differ-
ent scales, i.e. differently smoothed DSMs, this fact is
compensated for through the choice of the degree of
smoothing.

If the watershed transformation is to be applied to
extract trees from height data the surface model has to
be pre-processed in such a way that the trees themselves
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form basins. The easiest way to do this is to invert the
DSM, since trees can be considered as blobs. In for-
est areas this approach works rather well because trees
stand very close to each other. In other areas, however,
parts of the ground are also visible. Since the distance
between the trees can be larger in non-forest areas, the
outlines of the basins derived from the inverted sur-
face model are only poor approximations of the crown
boundaries (Fig. 5, left).

Better results are achieved, if derivatives of the image
function are used (see also Figs. 2, 3). In a number of
experiments we have found that first squaring and then
inverting the Laplacian constitutes an appropriate pre-
processing procedure. While this choice must be char-
acterised as rather heuristic, we have adopted it on the
basis of the experimental results.

An example is shown in Fig. 5. The watersheds of the
inverted surface model are superimposed on the surface
model in the left part of the figure, and the watersheds
of the squared and inverted Laplacian in the right part.
Note that the basins in the right part of the figure fit much
better to the individual tree crowns than the basins in
the left part.

3.2.2 Evaluation of segments and selection of best
hypothesis

Definition of membership functions In this section, we
describe the evaluation of the derived segments and the
selection of the best hypothesis in case of overlapping
segments. Both procedures are based on the tree model
parameters size, circularity, convexity, and vitality. Mem-
bership functions for the four parameters transform the
parameter values into membership values, upon which
the evaluation and the selection are based. As explained
below, the selection of the membership functions is gov-
erned by general knowledge about trees. In order not to
introduce additional interpolation effects, we are using
piecewise linear functions.

The segment size can be derived from the number of
pixels in the segment and the ground sample distance
of the surface model. The membership function of the
tree crown is depicted in the left part of Fig. 6. The lower
border is 20 m2 corresponding to a crown radius of 2.5 m
and the upper border is 700 m2 corresponding to a radius
of 15 m. Both size values result in a membership value
of 0.75. For smaller and for larger sizes the membership
value decreases linearly. The largest possible radius is
assumed to be 35 m corresponding to 3,850 m2. These
values for the crown radius cover all tree species [7].
The circularity of a segment is computed according to
Eq. (4)

circularity = Size
/ (

πr2
max

)
(4)

rmax is the largest distance between the centre of gravity
and the border of the segment. A suitable lower border
is close to the value of 0.7, which is the circularity value
of a square. According to our experience, typical values
lie above 0.85, and the upper border is equal to 1. The
resulting membership function is depicted in the right
part of Fig. 6.
Convexity is captured by investigating the mean
value of the Laplacian of the segment. For trees this
value must be negative (see also Sect. 3.1.1). Other
objects such as buildings and roads consist of many pla-
nar patches, and the Laplacian of the resulting segments
is close to zero. A negative mean value of the Laplacian
of a segment leads to a membership value of 1 and in
the case of a positive mean value the membership value
is 0 (see left part of Fig. 7).

The tree vitality is derived from the optical image. It
is used to discriminate vegetation and non-vegetation
areas. As mentioned above we use the NDVI value as
indicator for the vitality (see right part of Fig. 7). In gen-
eral, trees have relatively high NDVI values. Therefore,
we use a membership function with increasing member-
ship value for positive NDVI values.
Evaluation and selection of hypothesis The evaluation
of the segments is subdivided into two steps. First, valid
tree hypotheses are selected according to the member-
ship values of the segments. A tree is an object with a
defined size, circularity, convexity and vitality. Conse-
quently, the minimum of the four membership values
of a segment is defined as the final membership value
of a segment. This value is tested against a threshold to
decide whether or not we consider a segment to be a
tree hypothesis. The value for the threshold was found
experimentally. Segments with a final membership value
higher then 0.5 are considered tree hypotheses.

In a number of cases the tree hypotheses from differ-
ent scale levels overlap (see Fig. 8). The left image shows
the tree hypotheses at a scale level of σ = 1.9 m and the
right one at σ = 3.7 m. One can see that many hypoth-
eses occur at more than one scale. In some cases the
segments are quite similar in both depicted scale levels.
In other cases the hypotheses are subdivided at the finer
scale level.

In the second step these different situations for every
hypotheses are analysed. In accordance with the work of
Winter [30] we postulate that two hypotheses Bσ from
different scale levels for which the overlap parameter
ov > 0.5 (see Eq. 5), are hypotheses for the same tree in
the real world.

ov = size (Bσ1 ∩ Bσ2) / MIN(size(Bσ1,Bσ2)) (5)
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Fig. 5 A subset of the
surface model showing three
trees with superimposed
watersheds resulting from the
inverted DSM (left) and the
squared and inverted
Laplacian (right)

Fig. 6 Membership functions
for size (left) and circularity
(right)

Fig. 7 Membership functions
for convexity (left) and
vitality (right)

For overlapping hypotheses the best one is assumed to
be the one with the highest final membership value.
These finally selected hypotheses are depicted in Fig. 9.
The white lines correspond to the outlines of the seg-
ments, which are selected as valid trees. Most of the
trees in the scene were detected correctly, but many
of the boundaries are not very precise approximations
for the outline of the individual crowns. This observa-
tion leads to the last processing step: the outlines of the
crowns are refined using snakes.

3.2.3 Refinement of the tree crown boundary

Whereas the outlines of the segments were extracted
at different scale levels, the outline of the crown is an
object without a changing scale. We use snakes for this
task. A snake [14] is a deformable geometric model with
physical properties like elasticity. It can also be thought
of as a virtual rubber cord, which can be used to detect
valleys in a hilly landscape with the help of gravity. If the
snake is initialised close to the valley of the landscape,
the gravity drags the snake into the valley. The virtual
landscape may be represented by a DSM, a grey value
image or an edge image. The movement originates from

a field of gradients. Such a situation is shown in Fig. 10.
In the background one can see the edge of a circular
object. The enlargement in the foreground shows the
field of gradient vectors.

In general, there are two main drawbacks for the
application of snakes as a measurement tool. The first
one is that the snake has to be initialised very close to
the features one is looking for. Otherwise the behaviour
of the snake is nearly impossible to predict. The sec-
ond one is the tuning of the parameters, primarily the
weighting between internal and external energy and the
selection of the external energy field itself.

In our approach the snake is only used only for fine
measurement in the last stage. The coarse shape of the
crown is already known. Furthermore, we have observed
that the approximation is often too small. Smaller
regions often receive a better evaluation, which seems
to be a result of the membership value for the circularity.
Based on these constraints we have built a snake which
is rather stable under these special conditions: the geom-
etry of the snake is initialised for every tree hypothesis
as a closed polygon at the centre of gravity of the cor-
responding Basin. This initialisation stage is depicted in
Fig. 10 as a circle in the right image. The parameters for
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Fig. 8 Valid tree segments at
two different scale levels. Left
σ=1.9 m, Right σ=3.7 m

Fig. 9 Finally selected hypotheses superimposed on the surface
model. White lines depict the best hypotheses over all investigated
scales

the internal energies were tuned such that the length of
the contour has a low weight and the curvature obtains
a high weight. Without external energy a snake which
is tuned in such a way converges to a circle with a ten-
dency to shrink. As mentioned, the approximation is
often too small. Therefore, an additional energy term
is added, which makes the snake behave like a balloon
[5]. With this additional term the contour moves towards
the outline of the crown even if no external energy influ-
ences the movement. The external energy itself is pro-
portional to the gradient magnitude (Fig. 10). In order
to enlarge the radius of convergence we smooth the gra-
dient image with a Gaussian kernel before computing
the external energy. For illustration purposes the exter-
nal energy before smoothing is depicted in the left part
of Fig. 11 and the one we use in the right part of Fig. 11.
The smoothing effect resulting in an enlarged radius of
convergence is clearly visible.

Finally, the final membership values of every tree
were recomputed because its outline has changed. Also,
the overlap computations were repeated. Based on the
updated membership values, some hypotheses were

rejected because they no longer met the minimum
requirements for a tree.

4 Performance evaluation

4.1 Test data and evaluation procedure

In order to investigate the potential of the approach
we applied it to four different test data sets. The first
one is a high resolution data set depicting the village of
Grangemouth in Scotland. The images were taken using
a conventional aerial camera with a colour-infrared film
and were converted into digital images in a separate step
using a high quality photogrammetric scanner. We had
an orthophoto with a ground sampling distance (GSD)
of 0.1 m and a DSM with a grid width of 0.2 m avail-
able to us. The DSM was derived from available stereo
images using an automatic image matching algorithm
including manual editing to remove any blunders [6].
The scene is composed of a total of 160 trees, a number
of them single trees, some touching each other slightly,
and a few standing in a compact group. This data set
can be regarded as the optimal information for the task,
both in terms of geometric resolution and DSM quality.
Therefore, we expect the data set to produce the best
results.

The other three data sets were selected to test the
performance of the algorithm in somewhat less ideal
situations. In two of the three cases, the GSD of the col-
our-infrared image was 0.5 m, while one data set did not
contain brightness images. The DSM grid width was 1 m
in all three cases.

The Hohentauern test site lies in a forest in the Aus-
trian Alps. 94% of the trees in the test site are spruce.
The surface model was derived from first-pulse laser
scanning data. For this data set brightness images were
not available. However, since the scene only contained
trees (a total of 87), a separation of trees and other
objects was not necessary. Thus, we could disregard the
vitality parameter. Besides some single trees, the scene
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Fig. 10 Left External energy
for a snake (background) and
the resulting field of gradients
which controls the movement
of a snake (foreground). Right
Example for the outline
determination with a snake.
The inner circle shows the
initial snake position; the
other closed lines represent
five different optimisation
steps

Fig. 11 Examples for
different external energy
fields: without smoothing
(left) and with smoothing
(right). The grey values code
the amount of external
energy: black parts represent
high values. In the white areas
the external energy has no
influence

contained a few trees touching each other slightly and
a number of trees standing in a compact group, as is
the usual case in a forest. The Paris data set with 62
trees shows parts of the centre of the French capital
and was acquired with a digital aerial three-line camera.
The DSM was derived by image matching using the
same algorithm as for Grangemouth. Besides some trees
standing in rows, there were a considerable number
of compact groups and trees standing rather closely
together. Some trees stand close to buildings and thus do
not show a crown as circular as in the first two data sets.
Furthermore, some of the trees had a few sub-crowns
rather than just a single crown. Finally, the Ravensburg
data set shows a part of this town in the South of Ger-
many. The data were captured using a laser scanner
(again using first pulse) with an integrated digital line
camera. Since data acquisition occurred in early spring,
some of the deciduous trees do not carry leaves, making
it impossible to extract them with the described algo-
rithm. The scene contains 108 trees.

The described approach could therefore be tested
under a variety of different conditions with respect to
scene content, type of depicted trees, data acquisition
and ground resolution. The test was carried out with
one and the same set of membership functions for size,
circularity and convexity. Only the vitality membership
function had to be adapted to the different brightness of

the image data, since the latter were not radiometrically
calibrated.

In order to provide quantitative results, reference
data were generated for all four data sets by manu-
ally capturing the position and the crown radius of all
visible trees. Manual data acquisition was generally per-
formed using the DSM, the image being consulted only
in ambiguous cases. The comparison of a manually and
an automatically extracted tree was carried out accord-
ing to the same principle as the overlap determination
described in Sect. 3.2.2: both instances were considered
as identical if the overlap factor ov was greater than
0.5.5 It should be noted, that these reference data are
a type of optimal result of what the approach should
deliver from the developers point of view. The relation-
ship between the manually captured reference and the
trees in the real world is not discussed here.

An extracted tree is termed True Positive (TP) if an
overlapping reference tree can be found, otherwise it is
termed False Positive (FP). Trees in the reference data
set without correspondence are termed False Negatives
(FN). Based on these conventions, the completeness Com

5 We assumed a 1:1 relationship between extracted and reference
trees. Thus, if more than one extracted tree was found to corre-
spond to a reference tree, only one extraction result was consid-
ered. The inverse case (multiple reference trees corresponding to
one extracted tree) did not occur in the test.
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and the correctness Corr of the extraction result is com-
puted from (Eq. 6)

Com = TP/
TP + FN Corr = TP/

TP + FP (6)

In order to characterize the geometric accuracy of the
correctly extracted trees, the mean and standard devia-
tion of the distance between the corresponding centres
of gravity and the radii were also computed.

4.2 Results

4.2.1 Grangemouth

We first examine two sections of the data set. The results
of the first section are depicted in Fig. 12. In the left part
we see the DSM and in the middle the automatically
extracted results. To the right the reference data are
depicted, the latter two superimposed on the intensity
channel of the colour-infrared image. Extracted trees are
marked by thick white lines. Segments, classified as trees
in the selection process but rejected after the refine-
ments using snakes, are depicted as thin white lines.
Overall, a completeness of 78% and a correctness of
85% were achieved. In the area marked 01 one can see
that while the size of the extracted trees differs some-
what from that of the reference data, the algorithm was
able to extract all five of them. In the 02 area two tree
hypotheses were initially extracted, but the smaller one,
which is partly occluded by the neighbouring larger tree,
was rejected in the refinement. The reason is that our
object model only consists of single trees and relations
between them such as (partly) overlapping are not con-
sidered. The area 03 shows a tree hypothesis, which was
correctly rejected during the refinement—the depicted
object is actually a hedge, not a tree. Area 04 shows an
example of a false positive result while area 05 contains
correct, but geometrically imprecise results.

The results of the second window are depicted in a
similar way in Fig. 13. The obtained completeness was
81% and the correctness 100%. The trees standing in
a row with a decreasing distance between the objects
(from top to bottom) are of particular interest. The trees
depicted in area 01 are well separated, but the extraction
results somewhat overlap, which is a consequence of the
difficult snake parameter tuning. The partly occluded
tree in area 02 is missed in the extraction process because
it is barely visible in the DSM (the manual reference
extraction relied on the image in this case). Area 03
again exhibits problems during the refinement stage. The
snakes expand too much and thus, a correct tree hypoth-
esis is rejected and the geometric accuracy of the results
is rather low.

The results for the complete Grangemouth data set
are shown in Fig. 14. The extraction results are shown
in the left part of the figure and the reference data in
the right part. The overall completeness of 72% and the
correctness of 78% are somewhat lower than the val-
ues reported in the two image sections, but can still be
considered useful for many applications.

4.2.2 Hohentauern

As expected the results of the Hohentauern data set were
not as good as the Grangemouth results. We achieved a
completeness of only 52%, but a correctness of 94%. The
results are depicted in Fig. 15. The left part of the fig-
ure shows the DSM, the right part the extraction results.
The main problems occurred in the upper left part of the
scene. Due to the poor DSM resolution, many trees are
barely visible and were not extracted. In the right part
of the scene the results are significantly better because
the trees are larger (in this part they have a radius of
approximately 3 m). Thus, although the algorithm was
primarily designed for urban areas, it is in principle also
able to extract trees in forests. The main limitation is
given by the required high resolution for the DSM—the
grid width of 1 m proved to be too coarse for many trees.

4.2.3 Paris

The results for Paris are a little worse than those for
Hohentauern. The achieved completeness was 44% and
the correctness amounted to 75%. Figure 16 shows (from
left to right) the DSM, the intensity channel of the col-
our-infrared image, and the extraction results. Again,
many of the smaller trees could not be extracted due to
the low DSM resolution. In addition, trees near build-
ings did not exhibit a circular shape and a number of
trees had more than one crown. These trees were not
extracted.

4.2.4 Ravensburg

The Ravensburg data set delivered comparable results
to the Paris one (41% completeness, 66% correctness—
see Fig. 17). Besides the low DSM resolution the reason
for the rather poor result is the fact that data acquisition
occurred in April and, thus, the deciduous trees did not
yet carry leaves. Although they are clearly visible in the
DSM, they have a relatively small NDVI value and were,
thus, not extracted. As can be seen in the right part of
the figure, the coniferous trees in the upper right part of
the scene were extracted satisfactorily. Disregarding the
image data altogether may have delivered better results,
but this test was not carried out.
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Fig. 12 Project Grangemouth, first section. The DSM is shown in the left part, automatically extracted results in the middle, and
reference data in the right part

Fig. 13 Project Grangemouth, second section. The DSM is shown in the left part, automatically extracted results in the middle, and
reference data in the right part

Fig. 14 Project Grangemouth, complete data set: automatically extracted results (left), reference data (right)

4.3 Discussion of the results

As has been demonstrated the developed algorithm is
capable of automatically extracting trees from high reso-
lution remote sensing data in urban areas and in forests.

In the latter case, images do not need to be available
as the extraction can rely completely on a DSM. For
the Grangemouth data set with a ground resolution of
0.1 m for the image and 0.2 m for the DSM we achieved
a completeness of 72% and a correctness of 78%. For
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Fig. 15 Hohentauern data
set. Left DSM. Right
Extraction results

Fig. 16 Paris data set. Left DSM. Middle Intensity channel of the colour-infrared image. Right Extraction results

Fig. 17 Ravensburg data set. Left DSM. Middle Intensity channel of the colour-infrared image. Right Extraction results

many applications such as visualization, these results
are acceptable. The geometric accuracy of the correctly
extracted tree position was between 1 and 2 m for all four
data sets. For the crown radius the values were between
0.1 and 0.7 m. It is interesting to note that the higher res-

olution of the Grangemouth data did not lead to a bet-
ter geometric accuracy. This fact can be interpreted such
that the definition of a tree position and crown radius,
and their extraction from remote sensing data inher-
ently contains an inaccuracy in the range of the reported
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values. Thus, the geometric accuracy of the algorithm
can be considered to be rather good, which is no surprise
given the general state-of-the-art in image analysis: the
more difficult problem is to extract the objects, not to
accurately delineate them.

The DSM resolution has proved to be the main lim-
iting factor of the approach, a resolution of 1 m signifi-
cantly deteriorating the results. Other factors influencing
the results are the distance of a tree to be extracted from
neighbouring objects such as other trees or buildings.
A short distance results in violations of our tree model
due to partial occlusion or non-circular crowns. Further-
more, trees exhibiting more than one large crown can
cause erroneous results, as will deciduous trees carrying
no leaves due to the low NDVI.

While the refinement of the results using snakes was
successful in a number of cases, we also found some
instances where the results became worse. The main rea-
son was a lack of pronounced height differences between
the treetop and the borders between the tree and its sur-
roundings. The snakes increase the correctness of the
results. At the same time, however, the completeness
disimproves somewhat since some of the hypotheses
rejected during refinement are in fact correct.

5 Conclusions and Outlook

In this paper, a novel approach for the automatic
extraction of trees from co-registered DSMs and
colour-infrared imagery is presented. The approach is
scale-invariant, i.e. it is free from assumptions about
the size of trees to be extracted. Furthermore, we do
not make any assumptions about the terrain or the tree
heights. This aspect is important because it can be a very
difficult task to automatically extract the ground surface
and thus the tree height in forest areas. The classifica-
tion of the hypotheses is based on only four parameters:
size, circularity, convexity, and vitality. From these four
parameters only the vitality depends on the image mate-
rial used, the others are object properties.

The approach was applied on four different data sets
with the same set of parameters, except for the vitality,
in order to demonstrate its general applicability and to
investigate its limitations. The results are promising as
long as the ground resolution of the DSM is high enough,
while coarser input data leads to a deterioration of the
quality.

Further developments will focus on the evaluation
of the tree hypotheses. The highest potential improve-
ment is expected through a refinement of the member-
ship functions with the help of statistical investigations
on large data sets. The mentioned linearization of the

NDVI [28] will also be investigated. We will also strive
to extend the tree model by including trees with multiple
crowns and relationships between trees and neighbour-
ing objects, and to improve the refinement stage of the
algorithm. Finally, we wish to investigate possibilities for
determining the tree type by extracting more detailed
information about the 3D shape of the crown, the fine
structure, and the radiometric appearance. Radiometri-
cally calibrated image data will potentially be of signifi-
cant benefit for this task.
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