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ABSTRACT: 

 

Urban terrain reconstruction has many applications in areas of civil engineering, urban planning, surveillance and defense research. 

Therefore the needs of covering ad-hoc demand and performing a close-range urban terrain reconstruction with miniaturized and 

relatively inexpensive sensor platforms are constantly growing. Using (miniaturized) unmanned aerial vehicles, (M)UAVs, represents 

one of the most attractive alternatives to conventional large-scale aerial imagery. We cover in this paper a four-step procedure of 

obtaining georeferenced 3D urban models from video sequences. The four steps of the procedure – orientation, dense reconstruction, 

urban terrain modeling and geo-referencing – are robust, straight-forward, and nearly fully-automatic. The two last steps – namely, 

urban terrain modeling from almost-nadir videos and co-registration of models  –  represent the main contribution of this work and 

will therefore be covered with more detail. The essential substeps of the third step include digital terrain model (DTM) extraction, 

segregation of buildings from vegetation, as well as instantiation of building and tree models. The last step is subdivided into quasi-

intrasensorial registration of Euclidean reconstructions and intersensorial registration with a geo-referenced orthophoto. Finally, we 

present reconstruction results from a real data-set and outline ideas for future work. 
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1. INTRODUCTION AND PREVIOUS WORK 

1.1 Motivation and problem statement 

The technical equipment of the miniaturized unmanned aerial 

vehicles (MUAVs) has experienced a tremendous progress in 

recent years: historically, UAVs were simple remotely piloted 

drones, but autonomous control and capability to carry out pre-

programmed flight plans is increasingly being employed in 

UAVs. In the same measure, the quality and diversity of the 

optical sensors such UAVs may carry onboard is becoming 

higher and more competitive to the conventional kinds of pas-

sive sensors, such as large-scale aerial imagery. The main 

advantages of small, cheap, easily usable aerial vehicles lie in 

cases of either time-critical or local, but rather detailed explora-

tion of scenes. In the first case, UAVs are more suitable than the 

aerial imagery because of a significantly lower time needed to 

launch a mission, while in the second case, the mission can be 

performed on a lower cost.  

Several possible applications of UAVs reach from civil engine-

ering and urban planning over surveillance and rescue tasks to 

reconnaissance missions for defense research. In our previous 

work, (Solbrig et al. 2008), we discussed only 2D applications 

on local area exploration from UAV-based videos. These appli-

cations included mosaicing, detection of moving objects as well 

as annotation of objects of interest in a video. The core of the 

procedure was a real-time oriented geo-referencing of a video 

stream on an orthophoto. A 2D transformation that links a pixel 

of a video frame and the orthophoto is called homography. 

However, in the case of a relatively low sensor altitude and a 

moderate focal length – needed in order to achieve a satisfactory 

resolution of the acquired images and videos – the presence of 

buildings and vegetation cannot be interpreted as a disturbing 

factor any longer. As a consequence, it is important for urban 

terrain modeling, to extend the existing concepts by 3D or, at 

least, 2.5D component. The counter-part of homography in 

scenes with spatial depth is called depth map, and it will be a 

very important intermediate result for our applications.  

It is known (Bulatov 2011, Nistér 2001) that a detailed generic 

3D modeling of urban terrain is a very challenging task because 

of a large topological variety of objects, that is, not only 

buildings with vertical walls, but also trees, bridges, under-

passes, etc. Therefore we will consider in this paper a 2.5D 

urban terrain representation z(x, y), in which we will search for 

two kinds of elevated objects, namely buildings and trees. In 

other words, it can be assumed that typical 3D aspects like 

balconies or objects below the tree crowns can be neglected 

because of sufficient altitude of the sensor platform. Finally, 

image-based georeferenciation can be used to fix the short-

comings of small and miniaturized UAVs regarding onboard 

navigation systems by registration of images or videos to 

referenced images such as orthophotos. Here we propose a real-

time oriented approach, adjusted for agile UAVs equipped with 

video cameras. 

 

1.2   Organization of the paper 

The four steps of the procedure for geo-referenced urban terrain 

modeling after image acquisition are: extraction of camera 

orientation parameters, computation of depth maps, reconstruc-

tion of buildings and vegetation and, finally, geo-referencing 

(see Figure 1). Since the two last steps represent the main con-

tributions of this work, they will be explained in more detail in 

Section 2. The results from a real data set are presented in Secti-

on 3, while conclusions and ideas for future research are sum-

marized in Section 4. 
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Figure 1: Overview of the algorithm. 

 

1.3 Previous work 

Numerous references exist about the first step of the procedure, 

namely computation of orientations. The structure-from-motion 

approaches (Bulatov 2008, Hartley and Zisserman 2002, Nistér 

2001) do not use any additional information except the video 

stream itself and the fact of constant camera intrinsic parame-

ters; the sensor trajectory is retrieved by means of algorithms of 

computer vision, (Hartley and Zisserman 2002). 

The second step concerns depth map extraction. Here, an excel-

lent survey (Scharstein and Szeliski 2002) can be recommend-

ed. We, however, will give a brief description of our approach 

for obtaining multi-view depth maps supported by triangular 

networks from already available points.  

The third step contains building and vegetation modeling from 

depth maps. Most work has been elaborated for LIDAR point 

clouds (Gross et al. 2005, Rottensteiner 2010, Vosselman and 

Dijkman 2001), and so it is important to generalize different 

features of these algorithms for dense point clouds obtained by 

means of passive sensors. For example, the work of (Rotten-

steiner 2010) presupposes a color segmentation of pair of ima-

ges and uses LIDAR points (sparse, but homogeneously distri-

buted in the images) to determine initial orientation of planes. It 

is, however, not straight forward to generalize this approach to 

video sequences with hundreds of frames. The algorithm of 

(Vosselman and Dijkman 2001) is a generalization of the 

Hough-Transform for 3D dense point cloud. The image-based 

approach (Fischer et al. 1998) is a combination of bottom-up 

(data-driven) and top-down (model-driven) processes that can 

be significantly simplified if precise and accurate 3D informa-

tion for a dense set of pixels is available. In this present work, 

we are inspired by the simple and reliable method (Gross et al. 

2005) whose modifications for our applications are covered in 

the next sections.  

Finally, with respect to geo-referencing, we mention a group of 

methods for a real-time-oriented matching of video streams and 

orthophotos (Lin et al. 2007 and Solbrig et al. 2008). Both 

authors use a 2D homography as a transformation function and 

differentiate between intrasensorial registration of different fra-

mes of the video sequence and intersensorial registration, i.e. 

matching of video frames and the orthophoto. For example, in 

(Solbrig et al., 2008), after the first frame of the video sequence 

is registered to the orthophoto, interest points in videos frames 

are tracked by the relatively fast KLT-tracking algorithm (Lukas 

and Kanade 1981) so that the homography between a frame and 

the orthophoto can be computed incrementally. This process is 

called intrasensorial registration. At the same time, by monito-

ring back-projection errors, a failed intrasensorial estimation of 

the homography can be detected and replaced by an inter-

sensorial registration, i.e. matching SIFT points (Lowe 2004) of 

the frame and orthophoto. Since a homography is clearly insuf-

ficient for scenes with a non-negligible spatial depth, we deci-

ded to extend this approach for 2.5D situations, see Section 2.4.   

 

 

2. PROPOSED ALGORITHM 

 

2.1 Computation of camera orientation parameters 

Reconstruction of the camera trajectory and a sparse point cloud 

from a moving sensor can be performed by a structure-from-

motion algorithm. Characteristic points in the images of the 

sequence are tracked (Lukas and Kanade 1981) from frame to 

frame. From these correspondences, a projective reconstruction 

is carried out by methods of (Hartley and Zisserman 2002). 

Euclidean reconstruction by means of a self-calibration 

algorithm (Bulatov 2008) followed by bundle adjustment 

complete this step.  

 

2.2 Depth maps computation 

The output of the previous step includes the camera trajectory 

and a sparse point cloud. What we need is the depth information 

for every pixel of the so-called reference image. We take a short 

subsequence of 3 to 7 images; the reference image is typically 

the one in the middle of the subsequence. The core of the 

algorithm, which is described in more detail in (Bulatov 2011, 

Bulatov et al. 2011), consists of minimization, by means of the 

well-known semi-global method (Hirschmüller 2008), an ener-

gy function that is computed for every pixel and every label of 

the discretized depth scale.  

The energy function consists of three terms. The first term is the 

aggregated value of the data terms (for examples, gray values 

differences), whereby the aggregation function should be robust 

against occlusions. The second term is a smoothness term that 

penalizes depth discontinuities of neighboring pixels. Contrary 

to most of the previous work, a triangulation-based smoothness 

term is introduced that biases the depth of the pixel in the 

direction of the value given by the triangular interpolation of 

depth values from already available points. Also, evaluation of 

triangles consistent or inconsistent with the surface is perfor-

med. This makes sense because many parts of the urban scenes 

consist of piecewise planar structures that can be modeled by 

triangles. Other advantages of this method include a robust 

treatment of textureless areas and disentanglement of discretiza-

tion artifacts in triangles consistent with the surface.  

 

2.3 Urban terrain reconstruction 

Generation of DTM and DSM:  There are plenty of algorithms 

for depth map fusion (Pock et al. 2011). For sake of simplicity, 
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the 3D points orthogonally projected in one cell of a rastered 

fragment of the xy-plane and the median z-value of these points 

is assigned to be the altitude of the cell in our DSM (digital sur-

face model). To compute the digital terrain model, we incur the 

approach of (Gross et al. 2005) into our algorithm. First cells 

corresponding to the ground – those with minimum altitude 

within a circular filter – are fixed; whereby the circle radius 

corresponds to the smaller dimension of the largest building. 

Then, a modification of the Neumann differential equation  

  

∆b = 0 for all non-fixed pixels b 

∂b/∂n = 0 for non-fixed pixels at the image boundary 

is solved to obtain the DTM values for the remaining, unfixed 

pixels b. Here n is the outer normal vector at the boundary. 

Now the methods described in the following section are appli-

cable to the difference image between DSM and DTM, denoted 

by B. The synthetic color/intensity image obtained by projecting 

the color/intensity values from frames of true video sequence 

into the rasterized xy-plane is denoted by J for later processing.  

 

Building Modeling:  The thresholded segmentation of B is 

used to extract elevated labeled regions which, by our assump-

tion, correspond either to buildings or to vegetation (trees). We 

describe here the process of building reconstruction from these 

regions and leave the question of building identification until 

the next paragraph. The building outlines are extracted by fit-

ting rectangular polygons in B. If there are small convexities or 

indentations in the building contour, short edges are removed 

by modifying the object contour through generalization. The 

area is changed as little as possible by adding to or removing 

from the object rectangular subparts. The generalization repeats 

until all short edges are removed. As a result of this first sub-

step, building outlines are created.  

The second substep consists of modeling roof planes with a 

slightly modified algorithm (Geibel and Stilla 2000). The nor-

mal vector of every internal building pixel x is determined by 

computing a local adaptive operator in a small window around 

x. Extraction of roof planes is performed by clustering these 

normal vectors and grouping connected pixels into regions. We 

use morphological operations to eliminate small holes caused 

by outliers and describe the roof surfaces by polygons. Finally, 

the walls of the buildings are constructed through the outer 

polygon edges of the roof surfaces (upper edge) and through the 

terrain height (lower edge) available from the DTM.  

The last substep is texturing of building roofs and surrounding 

terrain by means of J. The question of texturing building walls 

with possibly available side views is left for future work.   

 

Identifying and Modeling Vegetation: In order to classify 

elevated regions of B into building and trees in the absence of a 

short-wave infrared channel, we make use of two assumptions. 

First, it can be expected that at the moment of video rendering 

all trees have several characteristic colors; for example, during 

summer, the dominant color is green while during autumn, leav-

es of the trees often also take on red, yellow and orange color, 

see Figure 2. Second, regions corresponding to buildings usual-

ly contain many straight line structures. In our approach, 

straight line segments are determined in the reference frames of 

the video sequence with the method of (Burns et al. 1986) and 

projected into J and B. The lineness measure λ of an elevated 

region R of B is the sum of the length of all line segments enti-

rely lying in R divided by the perimeter of R. Here R denotes a 

morphological dilatation of R. Of course, it is not enough to 

associate the regions with a high value of λ with buildings, be-

cause the most challenging kind of regions – namely, buildings 

parts of which are occluded by trees – falls into this category 

and identification of contours of such a region with rectangular 

polygons will then suffer from severe artifacts. Instead we pro-

pose to associate the regions with a quite low value of λ with 

isolated (groups of) trees, calculate the mean value and standard 

deviation of color values within this regions for each band (red, 

green and blue) and declare all cells with color values of a sma-

ller deviation from the mean value than the standard deviation 

for each band as tree-like cells. The corresponding cells of the 

height map B are not included in the building reconstruction. 

In the areas where several treelike pixels form a large enough 

region, 3D tree models are included in the visualization.  

While the height of the tree is obtained from the height map, its 

appearance can be visualized at different resolutions and levels 

of detail. Real time image generation algorithm make extensive 

use of texture mapping functions of computer graphics boards. 

For such applications, a 3D tree model is built only by a few 

polygons whose transparency is modulated by images of trunks, 

branches and tree crowns. Different seasonal appearances can 

be easily extracted from image sets like those shown in Figure 2 

(Godet 1986) and applied to the tree model in accordance with 

simulation time (time of the year). Applying random generators 

for tree placements and tree scales even large forest areas can be 

rendered in real time. 

 

    
Figure 2: Seasonal variations of a pear tree. 

 

More advanced modelling of natural objects like trees, bushes 

etc. is based on Lindenmayer systems, also termed L-Systems, 

(Prusinkiewicz 1980). These are production systems whose 

grammar describe e.g. how a plant grows (mainly the branching 

topology) by string-rewriting methods. Such a tree needs many 

polygons for an accurate 3D model representation (e.g. up to 

100.000 polygons). In other words, the complexity of a whole 

urban model of a city, in terms of polygons, is comparable to 

the complexity of a single tree model. Currently, this high 

complexity prohibits them for use in real time scene generation, 

despite their advantageous 3D geometry. The number of 

polygons has to be reduced for real time visualization e.g. by 

dynamic polygonal representations (LOD) (Rossignac 1993) 

and by application of dynamic billboards. 

 

2.4 Registration and Geo-referencing 

Registration of workspaces: Three previous steps of the algo-

rithm can be performed, independently from each other, by dif-

ferent UAVs with different kinds of sensors onboard and also in 

different areas of the region to be explored. In this case, a Eucli-

dean reconstruction of different workspaces (by workspace, we 

denote the meta-data including camera trajectory, point cloud, 

and all other available information) is carried out in different 

coordinate systems in the course of the algorithm described in 

Sec. 2.1.  

An obvious method of registration, namely, to use the navigati-

on equipment onboard of the UAV, becomes less reliable for in-

expensive and miniaturized UAVs. The reason is the low accu-

racy of data delivered by such a lightweight, inexpensive navi-

gation unit. Therefore, an alternative, image-based approach 
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was developed to fuse pairs of workspaces into a common 

coordinate system. In other words, our task is to determine a 

spatial homography H connecting these workspaces. Such a 

homography is given by a regular 4×4 matrix in homogeneous 

coordinates. For two workspaces with sets of camera matrices 

P1 (= P1,1, ..., P1,K) and P2 (= P2,1, ..., P2,L) , we assume, without 

loss of generalization, that two images corresponding to camera 

matrices P1,K and P2,1 cover an overlapping area of the data-set 

and that point correspondences c1 and c2 can be detected in 

these images by means of a matching operator (e.g. Lowe 

2004). We now compute, by tracking points c2 in other images 

of the second workspace as well as camera matrices P2,1, P2,2, ... 

several 3D points Y in the second coordinate system. By 

backward tracking points c1 in other images of the first 

workspace and Y, we obtain the set of camera matrices Q1,K,  

Q1,K-1,... via camera resection algorithm (Hartley and Zisserman 

2002). For more than one correspondent camera Q1,K-n to P1,K-n, 

the initial value of the spatial homography H as a solution of the 

over-determined up-to-scale system of equations  

 

1, 1,

1, 1 1, 1

... ...

K K

K K

P H Q

P H Q− −

   
   ≅   
      

 

is obtained via Direct Linear Transformation method and 

refined by means of an geometric error minimization algorithm.  

 

Geo-referencing of workspaces: Here we consider again the 

case where the internal navigation of an UAV is not available 

and strive for an image-based matching of the video stream and 

a (geo-referenced) orthophoto I. Because of the 3D character of 

the scene, we cannot provide, contrary to (Solbrig et al. 2008), 

an accurate registration by means of a planar transformation 

(i.e. a 2D homography); also, because of large differences in 

scale of a video frame and the orthophoto, we cannot rely on a 

SIFT operator as a matching cost function any longer.  

To overcome both problems, we decided to use the synthetic 

image J of the previous section instead of video frames. 

Considered from the nadir perspective and downsampled to the 

resolution of the orthophoto, J can be matched to I by means of 

a homography. Optionally, elevated regions can be identified by 

means of B and excluded from the matching procedure. We 

found that application of the Local Self Similarity-algorithm 

due to (Shechtman and Irani 2007) produced stabler corres-

pondences (and, as a consequence, significantly better results) 

than comparable algorithms, such as SIFT (Lowe 2004) or 

SURF (Bay et al. 2006), if the radiometric differences between I 

and J are large. Similarly to (Solbrig et al. 2008), using of 

robust methods for outlier rejection, such as RANSAC (Fischler 

and Bolles 1981) accelerated by a T1,1-test (Matas and Chum 

2002), is indispensable for a reliable registration.  

 

3. RESULTS 

The input data set of this section is an UAV-based video record-

ed over the village Bonnland, in Germany. We used a FX 35 

Lumix digital camera onboard of a quadro-copter md4-200, 

built by Microdrones RC UAV. The video frames contain 

720×1280 pixels and are of resolution 25-40 pixel/m. After a 

structure-from-motion algorithm (Bulatov 2008) the depth maps 

supported by triangular meshes were obtained from 18 reference 

frames. We depict some of reference frames and the correspon-

ding depth map in Figure 3, top. The complete camera 

trajectory and a point cloud from a union of three workspaces 

(as described at the beginning of Sec. 2.4) is presented in Figure 

3, bottom. Five images were used for depth computation. 

 

 
Figure 3: Top: three reference frames and corresponding depth 

maps obtained as described in Sec. 2.2 and the (intrasensorial) 

registration procedure of Sec. 2.4. Bottom: the complete camera 

trajectory and a sparse point cloud obtained as a union of three 

workspaces (coloured in blue, black and red). From the kink in 

the camera trajectory, it becomes evident that we are dealing 

with two different UAV-flights. 

 

Since after the Euclidean reconstruction (not supported by in-

ternal navigation), the physical vertical direction does not coin-

cide with the direction of the z-axis, the plane π through the 

camera positions is robustly calculated, and, since we know that 

the sensor altitude remained relatively constant, we rotated the 

point cloud to make the xy-plane parallel to π. By rasterization 

of the point cloud, as discussed at the beginning of Sec. 2.3, a 

synthetic image J with 903×652 cells is created. We show J and 

the difference image B of DSM and DTM in Figure 4, top. The 

labeled elevated regions are illustrated together with Burns-

lines and lineness measures in Figure 4, bottom. The results of 

building reconstruction are illustrated by screenshots from 

different positions in Figure 5. For the building walls, a synthe-

tic texture which is typical for the region of interest is taken. 

The synthetic image J of Figure 4 has been geo-referenced as 

described in Sec. 2.4. The orthophoto, a fragment of which is 

shown in Figure 6, bottom right, is a product of TopoSys. Due 

to the low operating altitude of the UAV in our experiments 

(see Figure 6, top), the difference in scale between the video-

frames and the orthophoto exceeds the tolerance of SIFT. On 

the other hand, the synthetic image J has a desired (lower) 

resolution and is ortho-rectified like the orthophoto itself. To 

cope with the scattered RGB-values, application of the very 

robust Local Self Similarity-algorithm can be recommended for 

successful registration, as illustrated in Figure 6, bottom. 
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Figure 4: Top left: the synthetic image J illustrating the rasteri-

zation of the RGB-values from video frames into the xy-domain; 

top right the corresponding difference of DSM (fused rasterized 

depth maps) and DTM. Bottom left: regions found in B together 

with line segments depicted in magenta; bottom right: Lineness 

measure of the regions; those corresponding to areas of vege-

tation are marked in green and those to buildings in red.  

 

 
Figure 5: Three views of the textured model. Top left: oblique 

view. Top right: a nadir view from one of the reference camera 

perspective. The reference cameras are illustrated by red pyra-

mids with corresponding reference images. Bottom: another 

view of the scene.  

 

 
Figure 6: Top: the differences in resolution and appearance of the 

orthophoto (left) and a video frame (right) are enormous if the 

altitude of the sensor platform is low. Bottom: the workspace has 

been geo-referenced by registration of the synthetic image to an 

orthophoto. 

 

4. CONCLUSIONS AND OUTLOOK 

We presented a straight-forward algorithm from creating close 

range urban terrain models from (M)UAV-videos showing ur-

ban terrain. Two first substantial steps of the algorithm – image 

orientation and depth maps extraction – are fully automatic and 

do not require any additional knowledge. The extraction of 

depth maps from a short subsequence with an arbitrary number 

of not necessarily rectified images is widely supported by trian-

gular networks from already available points. These meshes are 

very convenient to extract depth values in those regions, where 

the surface given by the triangular network nearly coincides 

with the real surface, especially in regions of homogeneous 

texture, while the computing time is extremely low. In order to 

complete dense reconstruction in regions inconsistent with the 

surface, an optimal trade-off between good results and com-

puting time was made with the semi-global approach (Hirsch-

müller 2008). The most important work for the future is a better 

superposition of depth maps in order to improve – by means of 

visibility information and radiometric confidence values – the 

rasterized DSM. 

The third step concerns building modeling and here it becomes 

clear that the modification of the three-step procedure of (Gross 

et al. 2005) can also automatically process dense point clouds 

obtained by passive sensors from the nadir perspective. The 

output is, in the majority of cases, the correct segregation of 

urban structures – building and vegetation – and building 

outlines. A separation of buildings and vegetation is performed 

by computing a lineness measure λ of every elevated region and 

specifying treelike pixels by means of their colors. This 

approach can be improved in two ways: first, we strive in the 

future for automatic selection of a threshold for λ and second, 

especially for spring and winter, it will be extremely important 

to give more weight to the lineness measure than to distribution 

of colors within treelike pixels.  

While the height of trees is given by depth maps, the important 

parameter of diameter is not considered yet, in other words, all 

trees appear equally broad in our model. With respect to 

visualization, it is possible to adapt the appearance of trees for 

different seasons and times of day, and since, in addition, the 

geo-referencing procedure described in Section 2.4 allows re-
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placing the orthophoto by some other geo-referenced view, the 

representation of the whole terrain can be easily instantiated for 

a broad spectrum of situations, which makes it a valuable tool 

for applications in augmented and virtual reality.   

Image coordinates can be converted to geo-coordinates by 

registration to a (georeferenced) orthophoto. Thus, the precision 

of geolocation does not depend on the quality of onboard navi-

gation systems. But then, the use of iconic information is a criti-

cal restriction in certain situations like homogeneous terrain. 

Structural image-matching methods, such as (Michaelsen and 

Jäger 2009) are put into the focus for future development.  
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