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Abstract. Network snakes constitute one of the latest advances in the
research of image segmentation techniques: they integrate topology into
active contour models. This concept is applied to the problem of de-
lineating biological cells in confocal images and is compared to results
obtained with a current state-of-the-art segmentation method. Lacking a
representative gold standard for this task, we adjust the well-established
measure of segmentation quality developed by Pratt to our requirements
and discuss the matching result of network snakes on one hand and con-
ventional algorithms on the other. The work concludes with a discussion
of some characteristic features and flaws of the approach.

1 Introduction

The advent of high content screening facilities by means of image acquisition
from confocal laser scanning microscopes has significantly changed the condi-
tions of pharmaceutical target research in recent years. One of the needs that
arose is the task of automatically segmenting cell culture images. Information
relevant to biological research includes cell properties like shape, size, and inten-
sity distribution, which use the exact boundaries of cells.

The general problem of image segmentation still remains largely unsolved
with respect to the sophisticated demands of medical applications. With the
availability of multi-channel fluorescence labelings, image segmentation can often
be split into smaller problems, for example, by detecting cell nuclei in one channel
first, and subsequently using the prior information for the segmentation of cells in
the second channel. However, machine-dependent artifacts like noise and object-
typical characteristics like homogeneous areas in the intensity distribution at cell
boundaries still provide major difficulties.

Enhancing well-known active contour models, which are only defined for
closed object boundaries, a new methodology called network snakes [1] was in-
troduced having the possibility to delineate objects, which form a network and
thus interact during the optimization process. Cells are often adjacent with only
one visible boundary in between. Therefore, network snakes can be used to detect
the cell boundaries without intersection or overlap of the individual cells.



The next section contains some thoughts about the segmentation and model-
ing of cells. In addition, network snakes are shortly summarized to provide a base
for introducing topology to the traditional concept. In section 3 the methodol-
ogy to delineate cells using network snakes is described. In order to evaluate the
proposed method, a conventional method is used to derive a reference. Subse-
quently, both methods are validated with the measure of segmentation quality
introduced by Pratt [2]. Finally, some concluding remarks are given.

2 State of the Art and Advances by the Presented
Contribution

Image analysis for cell segmentation still follows paradigms that have been de-
veloped years ago, the most prominent ones being global and local thresholding
techniques and the watershed transform [3]. A lot of research has been performed
on the topic, but the aspect of modeling the natural properties of the objects
of interest is largely neglected, even though it is obvious that this would im-
prove the segmentation process [4]. In contrary, the presented network snakes
approach follows a modeling scheme in that it does not restrict the detection
of boundaries to a mere analysis of local intensity distributions, but takes en-
ergy minimization considerations into account that correspond more closely to
cytoplasmic membrane morphology of adjacent cells.

The total energy of a traditional snake, to be minimized, is defined as [5]

E∗
snake =

1∫

0

Esnake(v(s))ds =

1∫

0

(
Eimg(v(s)) + Eint(v(s))

)
ds , (1)

where Eimg(v(s)) represents the image energy and Eint(v(s)) the internal energy.
A minimum of the total energy E∗

snake can be derived by solving the respective
Euler equations [5]. The derivatives are approximated with finite differences since
they can not be computed analytically. The Euler equations read

αi(vi − vi−1)− αi+1(vi+1 − vi)
+ βi−1(vi−2 − 2vi−1 + vi)− 2βi(vi−1 − 2vi + vi+1) + βi+1(vi − 2vi+1 + vi+2)(2)
+ fv(v) = 0

and can be rewritten in matrix form as

Av + fv(v) = 0 . (3)

Equation 3 can be solved iteratively by introducing a step size γ. Finally, a
solution can be derived by matrix inversion:

vt = (A + γ I)−1(γvt−1 − κfv(vt−1)) , (4)

where I is the identity matrix and κ is an additional parameter in order to control
the weight between internal and image energy.



The minimization of the internal energy during the optimization process is
only defined for closed object boundaries, i.e. v0 = vn [5]. A new methodology
was presented to overcome this limitation, called network snakes [1]. Integrating
the topology into the energy minimization process causes a problem when solving
equations 2 and 3: the derivatives approximated by finite differences are not
defined for nodes with a degree ρ(v) 6= 2, because the required neighboring
nodes are either not available or exist multiple times. A new definition of the
total energy is proposed, which enables control at the common nodal point vn,
in that case with a degree ρ(v) = 3 with vn = van = vbn = vcn [1]:

β(van
− van−1)− β(van−1 − van−2) + fva

(va) = 0
β(vbn

− vbn−1) − β(vbn−1 − vbn−2) + fvb
(vb) = 0 (5)

β(vcn
− vcn−1) − β(vcn−1 − vcn−2) + fvc

(vc) = 0

va, vb and vc represent three contours, each ending in a common nodal point
vn. The energy definition of equation 5 allows for a minimization process to
control the shape of each contour segment separately even though they end in
one common point. The new definition is straightforward for nodes with a degree
ρ(v) = 1 and ρ(v) > 3, which are not used in this work. Of course, the proposed
method requires a given topology, which is assumed to be correct.

3 Methods

Two different segmentation methods are compared for delineating biological cells
in confocal images. A method using network snakes is proposed on one hand and
a conventional method is presented on the other. The strategy of both methods
is divided into two parts: at first, the image representing the cell nuclei is used
to derive a coarse initialization. In a second step, both techniques are applied to
the cytoplasm image to obtain the cell boundaries.

Concerning the use of network snakes, the required initialization is accom-
plished by means of a segmentation of the relative homogeneous background in
the cell nuclei image utilizing a region growing algorithm. Subsequently, a skele-
ton is computed to yield a coarse initial network representing the boundaries
between adjacent cells. Since each cell nucleus is located within the associated
cell membrane, the skeleton can be used to derive the topology of the network.
At that time a somewhat inaccurate geometrical position is tolerated. In the
second step of the strategy the initial boundaries between the cells are used to
initialize the network snakes approach and to optimize the preliminary bound-
aries deriving the final results.

For reasons of comparison, we also apply a conventional segmentation algo-
rithm1 to the same data as follows [6]: The nuclei image is transformed into a
binary image using a sliding window to compute local thresholds for the inten-
sity distribution. The resulting binary image is assumed to contain all nuclei

1 Acapella data analysis software, Evotec Technologies GmbH



to be detected. A connected-component-labeling of this data yields a stencil of
separate objects. Objects with low contrast are eliminated in order to remove
artifacts erroneously detected as nuclei. The final step is carried out on the cy-
toplasm image exploiting the nuclei locations as seed objects for a watershed
transform that delivers the final borders of the cytoplasm.

For the validation of the results a measure introduced by Pratt [2, pp. 497]
is utilized, originally intended to evaluate the automatic detection of lines. The
measure

R =
1

IN

IA∑

i=1

1
1 + δ (xi, I)

(6)

compares the distances δ (xi, I) of claimed boundary pixels xi ∈ A to assumed
ideal boundary pixels I with IN = max (II , IA). Equation 6 yields a range of
]0..1] where values close to 0 correspond to high discrepancies and a value of 1
corresponds to an ideal matching of a pair of boundaries.

4 Results

Results of the proposed method using network snakes and using the conventional
method are presented in figure 1. 17 cells are detected applying the network
snakes approach (Fig. 1a), and 25 cells are segmented with the conventional
watershed-based algorithm (Fig. 1b). Figure 1c illustrates the Pratt values for
all pairs of cell boundaries from the two segmentation techniques. The 25 rows
and 17 columns of the table correspond to the objects from the conventional
and from the network snake approach, respectively. The Pratt values are given
in circles, where larger circles correspond to a better match of the pair. To
enhance the result, circle radii have been computed as (1 + R)2 − 1. In order to
provide a scale, the black circle at the bottom right is given, which represents

a) b) c)

Fig. 1. Validation of the segmentation: a) cell boundaries as calculated with network
snakes, b) corresponding result with conventional segmentation method, c) Pratt val-
ues for all pairs of cell boundaries from both results.



an ideal match R = 1. Those circles that actually denote pairs of objects that
belong to an identical cell are depicted with a white filling.

Three important observations can be made from the analysis. First, those
circles that denote correct correspondences are by far the largest; this means
segmentation with network snakes performs well enough to identify cells. Of
course, the underlying assumption is based on correct reference data contributed
by the conventional method. Second, the matching scores are smaller than the
ideal value of 1. This distortion is due to the nature of both techniques: While
conventional treatment of local intensities is bound to have a frayed border,
the modeled shape behavior of snakes let boundaries appear smoother. How-
ever, it is this difference in the borders that decreases the interpretability of the
Pratt value. Third, the proposed method using network snakes does not con-
sider incomplete cells at the image boundary and, thus, less cells are segmented.
Independently of image border effects any cells have been extracted successfully.

5 Discussion

This contribution compares a new segmentation technique of delineating adja-
cent cells in confocal images – the analysis with network snakes – to a typical
conventional algorithm. It is known that the construction of a gold standard
for segmentation evaluation is problematic. The used Pratt method is mean-
ingful, even though it can not cover an overall set of assessment criteria. The
comparison cannot conclude whether the candidate algorithm performs better
than the standard but it can give an impression of its quality in terms of the
state-of-the-art. Considering the vast differences that human testers produce in
manually segmented images, we claim that the proposed method is justifiable. An
important conclusion relates to the shape behavior of the cell boundaries: within
the network snakes approach the modeled shape is represented in a smoother
and more natural way compared to the watershed-based conventional approach,
which could not be reflected in the evaluation in a positive manner.

References

1. Butenuth M. Segmentation of Imagery Using Network Snakes. In: International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences.
vol. XXXVI(3); 2006. p. 1–6.

2. Pratt WK. Digital Image Processing. Wiley-Interscience, New York; 1978.
3. Roerdink JBTM, Meijster A. The Watershed Transform: Definitions, Algorithms

and Parallelization Strategies. Fundamenta Informaticae 2001;41:187–228.
4. Jetzek F, Rahn CD, Dreschler-Fischer L. Ein geometrisches Modell für die Zellseg-

mentierung. In: Bildverarbeitung für die Medizin; 2006. p. 121–125.
5. Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models. International

Journal of Computer Vision 1988;1(4):321–331.
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