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Abstract

In this paper, an algorithm for the extraction of road networks in suburban areas
is presented. The algorithm is region-based and uses high-resolution colour infrared
images as well as, optionally, a digital surface model (DSM). The road extraction
starts with a segmentation using the normalised cuts algorithm; afterwards the
segments are grouped. Road sections are extracted from the grouped segments. Road
sections that are likely to belong to the same road are connected to subgraphs in the
next step. To eliminate false connections in the subgraphs, context objects such as
vehicles, buildings and trees are employed. The remaining road strings, represented
by their centre lines, are connected to a road network. The process employs com-
binations of radiometric and geometric features, derived from knowledge about the
appearance of roads in suburban areas. Results are presented for two test data-sets,
acquired by different sensors. A quantitative analysis is performed for the quality of
the road extraction as well as the topological quality of the extracted network.

Keywords: completeness and correctness, context, network generation, normalised
cuts, road extraction, suburban areas

Introduction

Accurate and up-to-date road databases are very important for many applications. Change
detection and the update of such databases is usually done manually with the help of aerial or
satellite images, but it is desirable to automate this process. For open landscapes, several
methods have been developed that are reliable enough for practical application, at least for
change detection (Zhang, 2004; Gerke and Heipke, 2008). In urban areas, the task is more
difficult because the scene is more complex so that many assumptions about roads are
frequently violated. For instance, in urban and suburban areas roads do not stand out as clear
elongated linear objects due to the occurrence of crossroads or due to occlusion by
neighbouring objects such as buildings.
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There is a great variety of automatic road extraction approaches. Many of them can only
be used in a specific environment or with specific types of images. There are different
approaches for open rural landscapes, for inner city areas and for semi-urban areas. An
important distinguishing mark for road extraction algorithms is the underlying road model,
which is closely related to the resolution of the images used for road extraction: in images
having a ground sampling distance (GSD) of 1 to 2m or larger, roads appear as thin elongated
lines, so that road extraction can be based on line extraction algorithms. In images having a
smaller GSD, roads appear as homogeneous areas, so that different methods have to be applied.

Road extraction algorithms based on a linear road model are frequently used in open
landscapes. Several of them apply the line extraction method developed by Steger (1998); for
instance, in Wiedemann (2002) the extracted lines are connected by searching for shortest
paths in the road network, motivated by a road network model that postulates fast connections
between distant places as the main function of a road network. Bacher and Mayer (2005) use
the results of line extraction to define training areas to classify the image. This is followed by a
second extraction within the road class. Both these methods are developed for rural areas. In
urban areas, line-based approaches are of limited use because of the complexity of the scene.
Therefore, line-based approaches for urban areas usually employ additional constraints or data
sources. For example, Youn et al. (2008) locate the road centre lines in the two dominant
directions at places where a long line intersects with only a few other line pixels. Hu et al.
(2004) search for long straight lines by a Hough transform, supported by a digital surface
model (DSM) from lidar and a vegetation mask to determine regions of interest for road
extraction.

There also exists a great variety of region-based road extraction approaches, where roads
are modelled as elongated regions. Zhang (2004) describes an approach for change detection
in rural or semi-urban areas. Regions of interest are determined by an unsupervised
classification around existing roads from a database, using a DSM as an additional source. In
the region of interest, parallel edges are considered to delimit road segments. Various other
features, such as road markings, are used to assist the extraction. Zhang and Couloigner
(2006) describe a road extraction algorithm for urban areas with 1m multispectral satellite
images. They start with an unsupervised k-means classification, where each observation is
assigned to the cluster whose mean is nearest to the observation. The road class is identified
using a fuzzy classifier based on the assumption that the reflectance for roads in the infrared
band is lower than in the other bands. The pixels belonging to the road class are further
classified using a shape-based descriptor; only pixels that belong to elongated regions are
kept. Hinz and Baumgartner (2003), working in dense urban areas, determine regions of
interest using a DSM. Inside the regions of interest, roads are extracted based on a
combination of lines and edges from high-resolution (0Æ2m) images with ribbons in lower
resolution. The extraction is guided by several rules and internal confidence checks; it relies
quite heavily on road markings and uses vehicles as context objects. Poullis and You (2010)
classify a high-resolution satellite image into road pixels and non-road pixels using pixel
colour and orientation in a graph cut algorithm.

There is not one perfect road extraction method that is valid for all scenes and data-sets.
The method has to be adapted to the scene and the data because roads have different
appearances in different types of scene. In the EuroSDR test on road extraction (Mayer et al.,
2006), the participating approaches performed significantly worse in urban scenes compared to
the rural scenes for which the majority of them were developed. Line-based approaches usually
do not perform well in urban areas because the roads do not stand out clearly and the whole
scene content is more complex. Region-based methods (and, consequently, high-resolution
images) are better suited for road extraction in suburban areas.
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In this paper, a new method for the extraction of roads in a suburban context is presented.
The properties of suburban scenes pose several challenges: objects close to the road or on the
road can partly cover the road (for example, trees and vehicles), or buildings and trees can cast
shadows on the road, all of which disturbs the appearance of the roads in an image.
Additionally, several assumptions about roads and road networks that are frequently employed
do not hold in such areas: road markings, used for the extraction of roadsides and for the
verification of extracted roads in some approaches, are rare; additionally, the main network
function of roads is not to provide fast connections, but to give access to every place.
Therefore, the road network can have an irregular shape; dead ends and culs-de-sac may be
frequent. The present method takes these scene properties into account. It requires very high-
resolution images (approx. 0Æ1m GSD) in order to deal with the complex environment of
suburban areas. In contrast to other approaches, road extraction starts with a region-based
segmentation of the image instead of a search for parallel edges. An unsupervised segmentation
is used that does not rely on assumptions about the road surface colour and can be more easily
transferred to images of different origins. Knowledge about the appearance of roads is already
used in the segmentation. The extraction of roads is based on radiometric and geometric
properties. The method does not rely on the presence of road markings, straight roads or a
particular form of the road grid. Contextual objects such as trees, buildings and vehicles are
used to assist road extraction and to prevent false extractions. A DSM can be used optionally as
additional information. The main focus in this work lies on the extraction of the centre lines of
the network; achieving a high geometric accuracy of these centre lines is not the primary goal.

Method

Overview

The approach described in this paper requires very high-resolution (approximately 0Æ1m
GSD) colour infrared ortho-images and, optionally, a DSM. Table I shows an overview over
the steps and the features used in each step. Several geometric and radiometric features are
used; to start with, the radiometric features are dominant, whereas in later steps the geometric
features gain importance. Contextual objects are also used in later steps. Following a region-
based road model, the road extraction process starts with a segmentation of the image based on
the normalised cuts method (Shi and Malik, 2000), as outlined later. One of the advantages of
this method is that it can consider knowledge about the appearance of roads in the image. This
is followed by a grouping of the segments to compensate for any over-segmentation that has
occurred in the first step. From the grouped segments, hypotheses for road sections are
extracted by classifying the segments as road segments or non-road segments.

Due to the complexity of the scene and expected disruptions by objects such as cars, the
roads are not required to be extracted in one piece from junction to junction: gaps between
extracted road sections are allowed. Collinear road section hypotheses that possibly correspond
to one and the same road are connected to road subgraphs. The term subgraph suggests that
such a road subgraph does not represent a global road network but rather a local part of the
network. Branches can occur in the road subgraph, especially when false extractions are
present (Fig. 1). Therefore, the subgraphs are optimised with the goal of obtaining single road
strings by removing the branches that are least likely to correspond to a road. Road strings are
road subgraphs that do not contain branches. Contextual objects are used to evaluate the
branches for the optimisation. In the last step, the road network is generated. This comprises
the search for junctions and the elimination of falsely positive road strings. The final result is a
road network, comprised of roads represented by their centre lines with associated widths, and
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junctions represented by the points where the lines meet. Each road connects two junctions,
except for dead end roads, which connect to only one junction. The individual stages of the
road extraction process are explained in detail in the subsequent sections.

Table I. Overview of the features used for the steps of road extraction.

Step Radiometric features Geometric features Context objects

Initial segmentation
(similarity between
pixels)

Edges (gradient image)
Colour
Hue
NDVI

Distance

Grouping (similarity
between segments)

Edges (gradient image)
Colour channel
histograms
NDVI

Absolute length of
shared border
Relative length of
shared border
Convexity
Height

Road section extraction
(compliance of
segments with road model)

Intensity
Standard deviation of
intensity
NDVI

Area
Length
Elongation
Convexity
Width
Width constancy
Height

Subgraph generation and
evaluation (connection
of road sections to roads)

Colour difference Distance
Direction difference
Continuation smoothness
Road quality
Width difference

Vehicles
Buildings
Trees
Vegetated areas
Asphalt areas

Network generation
(connection of roads to
network)

Distance
Road quality
Direction difference
Length

Buildings
Trees
Vegetated areas

NDVI is the normalised difference vegetation index.

Fig. 1. Definition of road sections and road subgraphs. Grey rectangles: road section hypotheses; continuous lines:
connections; dashed lines encircle one subgraph. Road strings are subgraphs without branches.
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Segmentation and Grouping

The goal of the initial segmentation is to divide the image into segments in such a way
that all road borders correspond to segment borders: ideally, one segment should only contain
road pixels or non-road pixels, but not both. Several features derived from knowledge about
the appearance of roads are employed because there is not a single feature that sets apart roads
from all other objects. In addition, global characteristics are also used to prevent small
disturbances from distorting the segmentation. Both goals are achieved by employing the
normalised cuts algorithm (Shi and Malik, 2000).

In the normalised cuts framework, the image is represented by a graph whose nodes are
the pixels and whose edges connect any pair of pixels in the image. Each edge between two
pixels xk and xl is assigned a weight wkl that represents the similarity of the pixels. In order to
segment an image, the graph is split into parts by removing edges so that the similarity of
pixels from different segments is minimised whereas, at the same time, the similarity of pixels
within the individual segments is maximised. This corresponds to minimising the normalised
cut criterion; further details can be found in Shi and Malik (2000) and Yu and Shi (2003).

Object knowledge can be inserted into the segmentation process via the definition of the
edge weights wkl. The definition is based on several features designed to make segment
boundaries coincide with road boundaries.

(a) Distance: pixel pairs having a distance larger than a threshold (10 pixels) are as-
signed a weight wdist = 0, whereas wdist = 1 for all other pairs.

(b) Colour difference: if the distance between two pixels in colour space is long, the
pixels are considered dissimilar, which is expressed by a weight function wcol that
decreases with that distance.

(c) Hue difference: if the hue between two pixels is significantly different, the pixels are
considered dissimilar. A weight whue = 1 is assigned to any pair of pixels having a
hue difference smaller than a threshold, and whue = 0 otherwise.

(d) Edges: two pixels are considered dissimilar if there is an edge with a high absolute
value of the gradient between them. This is used to define a weight wedge.

(e) NDVI (normalised difference vegetation index) difference: the image is segmented
into vegetated regions and non-vegetated regions by a threshold operation on the
NDVI image. If one pixel of a pixel pair belongs to a vegetated region and the other
belongs to a non-vegetated region, the pixels are considered dissimilar, which is
expressed by a weight wNDVI = 0. Otherwise, wNDVI = 1.

Each similarity criterion is transformed into a weight that is in the range between 0 (no
similarity) and 1 (identical), and the weights for the five features are combined into a total
weight w for that pixel pair by multiplication:

w ¼ wdist � wcol � whue � wedge � wNDVI : ð1Þ

More details about the calculation of the weights and the application of the normalised
cuts algorithm can be found in Grote (2011). The normalised cuts algorithm is computationally
very intensive, so it cannot be computed completely in one step for the images used in the
experiments. Therefore, the image is divided into rectangular tiles that are segmented
independently. The number n of segments per tile is fixed and has to be specified before
applying the normalised cuts segmentation. In this application, it is selected so that an over-
segmentation is achieved in order to increase the chances of obtaining segment borders for all
road sides. The segmentation results of the individual tiles are merged, and the combined
results are used in all subsequent processes.
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In order to ameliorate the effects of the over-segmentation, in the next step the initial
segments are grouped into larger, more meaningful segments. As a consequence of the tiling
process, some artificial boundaries between segments at the tile boundaries exist. They are
treated as regular segment boundaries, but merging two segments across a boundary caused by
tiling is made more likely than merging other segments. An iterative approach is used for
grouping: in each step, several pairs of segments are merged based on a number of features that
are calculated for each pair of initial segments. The features implicitly encode the following
knowledge about the roads.

(a) Edge strength: two segments should not be merged if the mean absolute gradient
value along the shared border of both segments is high.

(b) Histogram difference: if the grey value histograms of the regions are different, the
regions should not be merged. For the comparison of the histograms, the sum of the
differences between corresponding bins (L1 norm of the Minkowski distance) is
used. This measure gives good results when comparing segments of the same image
(Rubner et al., 2001).

(c) Absolute length of the shared border: two segments should not be merged if the
border they share is very short.

(d) Relative length of the shared border: this is the ratio between the length of the shared
border of two regions and the minimum of the lengths of the two overall borders.
Two segments should not be merged if the relative length of their shared border is
short to prevent the formation of highly irregular segments.

(e) Convexity of the merged region: two segments should not be merged if the convexity
of the merged segment, namely, the ratio between the segment area and the area of
the convex hull of the segment, is low. This prevents irregular segments, such as
segments with long protruding arms.

(f) NDVI difference: the average NDVI for both regions is compared to a threshold.
Two regions must only be merged if the average NDVI is on the same side of that
threshold.

(g) Height difference: two segments must not be merged if the difference of their
average heights is larger than a threshold, so that building segments are not merged
with ground segments (only used if a DSM is available).

The NDVI and the height difference are used as veto features: if a segment pair does not
fulfil the respective criterion, the segments will not be merged. The values of all other
features are evaluated together in order to decide whether the segments can be merged. From
each feature value, membership values for fuzzy sets are calculated, indicating whether the
segments can be merged with respect to the respective feature or not. They are then combined
using a set of rules that assess the features against each other. For example, if at least two of
the colour, edge and convexity criteria are very good and the third is still good, the criterion
for the relative border length can be disregarded. The rules were found empirically by
clustering region pairs that should be merged in the initial segmentation of a test scene into
characteristic groups; the decision as to whether two regions should be merged was based on
visual inspection. A list of the rules, as well as a more comprehensive description of the way
in which they were found, is given in Grote (2011). For all segment pairs that receive a
positive merge decision, a cost function C is used to sort the segment pairs. The cost function
C is determined from the values of the grouping features convexity, histogram difference,
edge strength and relative border length, normalised by the maximum value for each feature
in the current iteration cycle:
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C ¼ 1� convexity
max convexity

þ histogram diff
max histogram diff

þ edge strength
max edge strength

þ rel: border length
max rel: border length

: ð2Þ

In each iteration cycle, 10% of the segments with the lowest costs are merged. The
iteration continues until no more segment pairs receive a positive merge decision. The result of
the segmentation and grouping are segments that are relatively homogeneous in colour, and
most segments belonging to road areas are large enough to be evaluated by shape descriptors in
the next step.

Road Section Extraction

After grouping, the segments are classified according to whether they correspond to a road
segment or not. As it is often not possible to extract a whole road completely because of
disturbances in the appearance of roads, the focus lies on the extraction of reliable road section
hypotheses. The extraction should be reliable enough to generate the network: the number of
false positives should be small enough to allow their elimination in later steps, whereas there
should be a sufficient number of correct road segments so that the gaps between them can be
filled by subsequent processes, when more global knowledge can be exploited. For road
section extraction, the compliance of each segment with several criteria based on shape and
spectral characteristics of roads is checked as follows.

(a) Intensity: the segment’s average intensity must be within a certain (relatively wide)
range to exclude very dark and very bright segments.

(b) Standard deviation of intensity: should be relatively low for road sections.
(c) NDVI: the average NDVI should be low for road sections.
(d) Area and length: road sections should have a minimum length and a minimum area.

The minimum length of a road section should be significantly longer than the average
width of a road, in order to allow a proper evaluation of the other shape criteria.

(e) Elongation and convexity: a road section should have a high elongation. If the
elongation is relatively low, the convexity (defined in the same way as for the
grouping) should be high. If the elongation is sufficiently large, the convexity need
not be as high to allow the extraction of curved roads.

(f) Width and width constancy: the width of a road section should be close to the
average width of suburban roads, and it should be relatively constant.

(g) Height: if a DSM is available, the average height of a road segment should be similar
to the surrounding ground.

These features are calculated for each region and checked against thresholds. Some of
these thresholds can be derived directly from model knowledge about roads, for example, those
for the minimum area, the minimum length and the acceptable width range. Others were found
by manual evaluation of a number of segments comprising both acceptable road segments and
non-road segments. Non-road segments have a considerably larger variation in the values than
road segments; therefore, only regions fulfilling all criteria are selected as reliable road section
hypotheses. The geometric criteria are image invariant and only need to be scaled according to
the image resolution. The radiometric criteria are more dependent on sensor characteristics and
illumination conditions. For the images used in the tests, only the NDVI threshold had to be
adjusted.
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After the extraction of road sections, the main direction of each road segment is
determined. Then, adjacent road sections are checked to determine if they can be merged. This
is beneficial because in the previous grouping step adjacent road segments are not always
merged due to stricter criteria concerning the convexity and relative border length. Two
adjacent road sections are merged if they have a common border of at least 1m and sufficiently
similar main directions, and if the merged road section meets the criteria described above for
extracted road sections.

The features length, elongation, width constancy and the deviation from the average road
width are used to determine a road quality measure of the road section hypothesis. They are
mapped on an interval between 0 and 1 using membership functions for a fuzzy set ‘‘road’’
such that higher values suggest a higher chance for the segment to actually correspond to a
road section. For the road width, the membership function is trapezoidal so that the values
around the average road width are mapped to 1. For the other features, the membership
functions increase linearly between a lower and an upper threshold. All transformed values are
multiplied to obtain a single road quality measure.

Each road section hypothesis is represented by its region and the centre line of the region.
The centre line is determined based on a distance transform of the segment borders. The
boundary of the road section is split into two parts at the points farthest away from each other,
and for each of these two parts a distance transform is computed. The difference of the distance
transform images of both border sections is calculated, and the centre line then corresponds to
the points where the distance difference is 0. The centre line thus determined is very uncertain
near its end points. Hence, a certain percentage of the centre line next to both ends of the line is
replaced by straight line segments having the same directions as the sections of the centre line
next to the removed segments.

Road Subgraphs

After road section extraction, many roads correspond to one road section from one
junction to the next. However, disturbances in the appearance of roads can interfere with the
extraction and cause gaps between extracted road sections. In order to bridge the gaps, road
sections are connected to their neighbours if they potentially belong to the same road, forming
road subgraphs. Two road sections may belong to the same road if their geometric relations
indicate that they follow the same course. The following features are used.

(a) Distance: both the absolute and the relative distance between two connected road
sections should be lower than a threshold. The absolute distance is the distance
between the two nearest end points of the centre lines. The relative distance is the ratio
of the absolute distance and the length of the shorter road section.

(b) Direction difference: the direction of a road section is defined by the vector con-
necting the two end points of its centre line. The direction difference, that is, the angle
between the direction vectors of two road sections, should be lower than a threshold
for the two road sections to be connected.

(c) Continuation smoothness: the lateral offset between two connected road sections
should be lower than a threshold. The lateral offset is related to the angle between the
direction of a road section and the direction of the line connecting it to the other road
section; this angle is determined for both road sections, and both angles should be
lower than a threshold for the two road sections to be connected. If the distance
between the road sections is very short, the continuation smoothness is disregarded
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because at close distances the angles depend too much on the exact positions of the
end points of the centre lines, which are relatively uncertain.

The subgraphs are generated iteratively, starting from the road section that received the
best road quality measure in the road section extraction. Two road sections are connected if the
thresholds for the distance, the direction difference and the continuation smoothness are met.
The search for neighbouring road sections continues until no other road section can be found
that meets the connection criteria to any of the road sections in the current subgraph. Subgraph
generation then continues with the road section having the best road quality measure among
those not yet assigned to any road subgraph. This process is repeated until all road sections
have been assigned to a subgraph. As a result, there may be subgraphs consisting of only one
road section as well as subgraphs composed of several road sections. Subgraphs consisting of
several road sections may have branches that correspond to competing hypotheses for the
course of a road (Fig. 1). These ambiguities must be resolved in order to obtain road subgraphs
consisting of one branch only, because in most cases, branches occur with falsely extracted
road sections. Two aspects of the connection properties are considered to determine weights for
the lines connecting two road sections: the interrelation properties of the two connected road
sections, expressed by an interrelation weight wI, and the properties of the gap between them,
expressed by a context weight wC that depends on extracted context objects.

The interrelation weight wI of a connection between two road sections is a measure of the
plausibility of both road sections belonging to the same road given their geometric
configuration. The following features are used to calculate wI.

(a) Distance: a short distance between the road sections leads to a high weight.
(b) Direction difference: a small angle between the two main road directions as defined

above leads to a high weight.
(c) Continuation smoothness: a smooth continuation between the road sections as de-

fined above leads to a high weight. In this case, the value for the larger smoothness
angle is used to calculate the weight.

(d) Road quality measure: good quality values from road section extraction (as defined
above) for both road sections lead to a high weight, which is defined as the mean
value of both quality values.

(e) Colour difference: a low difference of the mean colour values of the road sections
leads to a high weight. The colour difference between both road sections is calculated
from the mean values of the colour channels. The channel with the largest difference
is used to calculate the weight.

(f) Width difference: a low difference of the widths of both road sections leads to a high
weight.

The values of all features are mapped linearly onto the interval [0, 1] such that a weight of
1 indicates that it is likely for the two road sections to belong to the same road given their
respective features. For example, the value for the distance is mapped linearly onto the interval
[0, 1] such that a distance of 0 corresponds to the weight 1, and the maximum distance from the
subgraph generation corresponds to the weight 0. The individual weights from the six features
are multiplied together to yield the interrelation weight wI 2 [0, 1] for the connecting line:

wI ¼ wdistance � wdirection diff � wsmoothness � wquality � wcolour diff � wwidth diff : ð3Þ

The second aspect of a connection between two road sections concerns context objects
that can be found in the gap between the two road sections. The context objects are extracted
automatically using very simple methods that are not optimised to yield complete and entirely
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correct results: the context objects can support the road extraction without being completely
extracted. For brevity and because the extraction of context objects is not the focus of this
work, only a short overview is given about the extraction methods; more details can be found
in Grote (2011). The following context objects are considered.

(a) Vehicles are extracted as small homogeneous regions fulfilling size and shape criteria
related to compactness, rectangularity, eccentricity and area. They may consist of
several regions representing vehicle parts.

(b) Shadows are extracted as compact regions having low grey values.
(c) Trees are extracted as compact regions with a high NDVI and associated shadows; if

a DSM is available, it is used to assist the tree extraction.
(d) Buildings are extracted as high and compact objects with low NDVI; they are only

used if a DSM is available.
(e) Vegetated areas are areas having a high NDVI but not being trees.
(f) Asphalt areas are areas with the average grey values of asphalt.

After the extraction of the context objects, the context weight wC is computed for each
connection between two road sections. First, a road hypothesis is constructed for the gap
bridged by a connection from the line connecting the two centre lines and the average road
widths of the roads connected at either side. The context objects can contribute to the total
context object weight of the connection in two ways, namely, by their relation to the road
hypothesis in the gap and by the amount of occlusion caused by them. The context relations are
described by the locations and orientations of context objects relative to the road hypothesis.
Depending on the context relations and the type of the context object, a context object can
support or contradict a road hypothesis. For instance, a vehicle on a road hypothesis would
give support to the road hypothesis, while a building on a road hypothesis would contradict it
very strongly. Buildings or trees alongside a road hypothesis, on the other hand, can give a
weak support, as those arrangements are common in suburban areas. A relation value is
assigned to each context object given its relation to the road hypothesis. This relation value
reflects the strength of contradiction (negative values) or support (positive values) for the road
hypothesis by the context object. An overview on all context relations and their values is given
in Table II. The relation values for all objects in the gap are summed to a context relation
weight wCrel. If no relevant context object relation is found, wCrel will be set to 0. If more than
one context object is assigned to the same relation class, the impact of subsequent objects on
the total value is decreased: the first occurrence of such a relation is considered to be more
significant for the evaluation of a connection hypothesis than the subsequent ones.

For the occlusion analysis the context objects vehicle, tree and shadow are considered,
because these are context objects that can occlude parts of the road or at least prevent the

Table II. Overview of context object relations and the corresponding relation values. Positive
values indicate support for a road connection hypothesis, negative values indicate contradiction.

Relation Value Relation Value

Building, parallel, next to road 0Æ4 Vehicle, perpendicular, next to road 0Æ3
Building, perpendicular, next to road 0Æ4 Tree next to road 0Æ4
Building, diagonal, next to road 0Æ1 Tree on road )0Æ5
Building on road )10Æ0 Vegetated area next to road 0Æ2
Vehicle, parallel, on road 0Æ5 Vegetated area on road )10Æ0
Vehicle, perpendicular, on road 0Æ2 Asphalt area on road 0Æ2
Vehicle, parallel, next to road 0Æ3 Asphalt area next to road 0Æ1
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correct classification of a road. For a given gap, a high degree of occlusion by these context
objects supports a road hypothesis more than a low degree of occlusion. The occlusion weight
wCocc is the percentage of the area of the road hypothesis that is covered by the context objects.
The context relation weight wCrel and the occlusion weight wCocc are summed to yield the final
context weight wC of a connection hypothesis:

wC ¼ wCrel þ wCocc: ð4Þ

After the calculation of both the interrelation weight wI and the context weight wC, both
weights are combined to yield a combined weight wConn for the connection. The combination
of weights follows a set of rules that consider the values of the respective weights as well as the
length of the gap. If the gap is short, the context weights will have less impact on the combined
weight than otherwise because, for short gaps, the interrelations are much more important than
context objects (which may not even be present). Therefore, only the interrelation weight is
used for gaps shorter than the average road width. For longer gaps, the mean of the relation
weight and the context object weight is calculated. Additionally, if a building or a vegetated
area was found on the road hypothesis, the hypothesis is rejected no matter how good the
interrelation weight is.

The combined weights wConn of the connecting lines are used for the evaluation of all
connections in a subgraph having branches. This is carried out by maximising the sum of all
weights wConn of the remaining edges in the subgraph subject to the constraints that only one
connecting line should be attached to each end of a road section in the subgraph. This
optimisation problem is formulated as a linear program (see, for example, Dantzig and
Thapa, 1997). Its solution results in a set of road strings that do not contain branches. More
details about the optimisation for road subgraph evaluation can be found in Grote et al.
(2009).

Network Generation

The generation of the road network starts with the determination of a road centre line and
an average road width for each road string. The centre line of a road string is initialised by
concatenating the centre lines of the individual road sections. After that, the centre line is
approximated by a polygon in an iterative way, starting with a straight line between the end
points of the original centre line. If the average distance of the original centre line points is
higher than a threshold, the original centre line is split into two segments of equal length by a
new vertex inserted in the middle of the original centre line. This procedure is recursively
applied to the new polygon segments, until the average distance of the original centre line from
the approximating polygon is below a threshold. Inserting new vertices at equidistant intervals
proved to be a better way of eliminating unwanted bulges in the centre line compared to
methods that put the new vertex at the location of the longest distance between the original and
the approximation (such as in the Ramer–Douglas–Peucker algorithm outlined in Ramer
(1972)). The average width of the road string is determined by calculating the mean of the
average widths of the individual road sections, weighted by their lengths. In the same way, the
road quality measure of the road is derived from the road quality measures of the road sections.

Subsequently, pairs of parallel roads that lie close together are searched for. If the distance
between the parallel roads is shorter than a typical width of a block of houses, only one road is
kept. If one road is significantly longer than the other, the longer road is kept. Otherwise, the
road having the better quality measure is kept. This step is particularly important if no DSM is
available as it very efficiently eliminates false extractions that lie on building roofs parallel to
extracted roads.
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Next, junction connections are searched for among the remaining roads. At the end of
each road, a search region is set up whose radius depends on the quality measure of the road: a
road with a good quality measure receives a large search radius. If another road is found inside
the search region, it is checked whether the two can be connected. Depending on whether both
roads are collinear or not, the connection hypothesis is created in different ways. If the roads
are nearly collinear, which means they have a small directional difference, their end points are
connected if the end point of the second road lies inside the search region of the first
(Fig. 2(a)). Otherwise, the junction connection is constructed from the extension of one road, if
this extension intersects the other road; the junction point is located at the point of intersection
(Fig. 2(b)). If no extension intersects the other road, the junction is constructed from the
extensions of both roads; in this case, the junction point lies at the intersection of both
extensions (Fig. 2(c)). Additionally, intersections between extracted roads are searched for: if
two roads directly intersect, a junction point is created at the point of the intersection
(Fig. 2(d)).

The connection hypotheses are evaluated using context objects: a connection hypothesis is
discarded if buildings, trees or vegetated areas cover the region of the connection to a
significant degree. This region is defined to be a rectangle whose axis is the junction
connection line and whose width is the average width of the road. A connection hypothesis is
discarded if buildings cover more than 10% of the connection area or if a building crosses the
junction connection line. A connection hypothesis is also discarded if at least 80% of the tree
area covers the connection area, if a vegetated area covers more than 20% of the connection
area or if the connection area crosses the vegetated area. All the remaining connections are
maintained. In the cases depicted in Figs. 2(b) and (d), this implies that road strings have to be
split at the junction points.

The final stage is to detect connected components of roads in the road network. These
connected components are checked for significance: in each connected component, the total
length of all roads must be larger than the total length of all junction connections, and the total
length of the connected component (roads and junction hypotheses together) must exceed a
minimum. An exception for the last condition is made if at least two open ends of the
connected component lie near the image border; then it is possible that the connected
component is connected to the road network by road sections beyond the image border. The
final result of the method is a network consisting of the roads, represented by their centre lines,
and the junctions, represented by junction points where the road centre lines meet.

Experiments

The method was tested on two different data-sets comprising high-resolution aerial colour
infrared images and DSMs. The first data-set depicts a scene in Grangemouth, Scotland; it

(a) (b) (c) (d)

Fig. 2. Possible connections between two roads.
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consists of an ortho-image with a GSD of 0Æ1m derived from a scanned aerial image and a
DSM derived from image matching with manual post-processing. The DSM has a GSD of
0Æ2m and a height resolution of 0Æ1 m. The second data-set consists of an ortho-image with a
GSD of 0Æ08m derived from a digital aerial image and a DSM having a GSD of 0Æ5m derived
from lidar data. This second data-set is a part of the Vaihingen (near Stuttgart) test data-set of
the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF)
(Cramer, 2010).

For the quantitative analysis, one image subset showing suburban scene characteristics
was examined for each data-set. The subset from the Grangemouth data-set comprises an area
of 562m · 485m (5617 · 4849 pixels) and contains a road network with a total length of
approximately 3Æ75 km and 20 junctions. The subset from the Vaihingen data-set comprises an
area of 394m · 357m (4929 · 4465 pixels) and contains a road network with a total length of
2Æ41 km and 15 junctions. The road network extraction was carried out twice for each data-set,
namely, with and without the DSM. The parameter settings remained the same for both data-
sets, except for the threshold of the NDVI that is used in the segmentation, in the grouping
phase and in the road section extraction.

Quality Measures

The quality measures as defined in Wiedemann et al. (1998) and Wiedemann and Ebner
(2000) were determined for the extracted road networks, based on a comparison of the
extracted road network to a reference that was generated manually. In this process, both the
extraction results and the reference roads were represented by their centre lines. The first group
of quality measures consists of the completeness and the correctness of the detected road centre
lines. In order to determine the completeness, a buffer is constructed around each extracted
road centre line, and the length lComp of all reference line segments inside the buffer is
determined. The buffer width is set to ±5m according to the typical road width in the test areas.
The completeness is defined as the ratio of the length of reference roads inside the buffer lComp
compared to the overall length lRef of the reference road network. In order to determine the
correctness, the buffer is constructed around the reference roads, and the length lCorr of all
extracted road centre lines inside a buffer is determined. The correctness is the ratio of the
length of extracted roads inside the buffer lCorr compared to the overall length lExtr of the
extracted road network:

completeness ¼ lComp

lRef
ð5Þ

correctness ¼ lCorr

lExtr
: ð6Þ

The root mean square error of the distance RMSD is a measure of the geometrical
accuracy of the extracted roads. It is computed from the shortest distances dre of any point on
the correctly extracted roads from their nearest reference road:

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

d2
re

lComp

s
: ð7Þ

A high geometric accuracy of the road centre lines is not expected as the centre lines are
approximated and the buffer for the completeness and correctness checks is relatively wide.
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Selecting a smaller buffer width would result in better values for RMSD at the cost of lower
completeness and correctness values.

A third group of quality measures is related to the topology of the extracted road network.
The mean detour factor FD is the factor by which a path between two points in the extracted
network is longer on average than in the reference:

FD ¼
1
nP

X
fi;jg2P

DE
i;j

DR
i;j
; ð8Þ

where P is the set of all node pairs i, j that are connected in both the extracted network and the
reference network and nP is the number of these pairs, whereas DE

i;j and DR
i;j are the shortest

paths between the nodes i and j in the extraction results and the reference, respectively.
The topological completeness measures the ratio of connections between node pairs in the

reference network that also exist in the extracted network. Similarly, the topological
correctness is the ratio of connections in the extracted network that also exist in the reference
network. In order to determine these numbers, matching of nodes between the two networks is
required. With nm conn denoting the number of matched connections, nref conn the number of
reference connections and nextr conn the number of extraction connections, the quality measures
are determined from

topological completeness ¼ nm conn

nref conn
ð9Þ

topological correctness ¼ nm conn

nextr conn
: ð10Þ

The last group of quality measures is related to the extracted junctions. The junction
completeness is the ratio of junctions in the reference that could be assigned to extracted
junctions based on a distance criterion defined similarly to the evaluation of road centre lines. It
is calculated in a similar way to the topological completeness (equation (9)), only using the
respective numbers of junctions. The correctness of the junction extraction is the ratio of
extracted junctions that could be assigned to junctions in the reference and is calculated in a
similar manner to the topological correctness (equation (10)). The buffer for the junction
evaluation is larger than for the road evaluation because the extraction of the junction points is
not as accurate; the junctions are not directly extracted from the image, but often reconstructed
from extensions of the ends of the road. Inaccuracies of the road centre lines are usually largest
at the ends of roads, which results in an even higher offset at the ends of the extensions.
Therefore, the buffer radius is set to 15m for the junction evaluation. The geometric accuracy
of the matched junctions is further evaluated by calculating the root mean square difference of
the junctions RMSJ, which is calculated analogously to RMSD (equation (7)).

Results and Evaluation

Fig. 3 shows the extracted networks of both scenes (extraction with the DSM) and the
evaluation results: correctly extracted roads (true positives) are shown in green, missed roads
(false negatives) in blue and erroneously extracted roads (false positives) in red. The extracted
network of the Grangemouth scene consists of two connected components; the extracted
network of the Vaihingen scene is more fragmented. One road near the upper right corner of
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the Grangemouth scene was deleted because it is parallel to another road and lies very close to
it; this case is not supported by the employed road model.

The completeness, the correctness and the RMSD of the extraction results for different
variants are summarised in Table III. In general, the correctness of the extraction results is
high. Using a DSM improves the correctness as well as the completeness of the extraction
considerably. Firstly, it prevents segments at different height levels from being merged, and
secondly it helps to avoid the confusion of buildings with roads. The completeness is
somewhat lower than the correctness. Missed extractions are partly caused by decreasing
geometric accuracy, especially towards the ends of roads. Such road ends are often
geometrically inaccurate, in particular where junction connections are inserted: the orientations
of end sections of extracted centre lines often differ from those of the true centre line, an effect
that is aggravated by the extrapolation required in junction connection. Missed extractions also
occur where no road sections could be found and where the resulting gap was too large to be
bridged during the subgraph and network generation phases. This occurs if a row of trees or
buildings covers the road for a significant stretch, or if the shape of the segment does not
comply with the criteria for the road section extraction, for example, because it was merged
with an adjacent parking area or a driveway in the grouping process. The main cause for the
lower completeness in Vaihingen is the existence of some narrow roads in the reference that
are almost totally covered by trees or building shadows, to an extent that they are difficult to
recognise even for a human operator (note the three false negative roads in the upper right
quadrant of the right image of Fig. 3). The evaluation was repeated using a reference without
the roads that are, for a large part, covered by trees (Fig. 4). When the extracted roads are

Fig. 3. Extracted road networks for the case when a DSM was used. Left: Grangemouth, with DSM.
Right: Vaihingen, with DSM. True positives in green, false positives in red, false negatives in blue.

Table III. Results for road extraction evaluation.

Completeness (%) Correctness (%) RMSD (m)

Grangemouth with DSM 76Æ9 90Æ1 1Æ48
Grangemouth without DSM 72Æ5 83Æ3 1Æ61
Vaihingen with DSM 58Æ1 91Æ0 1Æ66
Vaihingen without DSM 46Æ5 86Æ5 1Æ47
Grangemouth with DSM, reference
without tree-covered roads

82Æ7 89Æ8 1Æ47

Vaihingen with DSM, reference
without tree-covered roads

69Æ1 90Æ1 1Æ66
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evaluated using this reference, the completeness significantly improves, especially for the
Vaihingen data-set. When a DSM is used, most false positives are caused by extracted
driveways or car parks. Otherwise, some building roofs were incorrectly extracted as roads.

The RMSD values in Table III are in the order of 1Æ5m in all examples. At first glance, this
looks relatively poor given the resolution of the data, but geometrical accuracy is not the most
important goal of the application. The most important aspect is the correct representation of the
road network. The root mean square values are caused, to a large extent, by uncertainties in the
region boundaries near crossroads or in the vicinity of driveways (which have a similar colour
to roads). The geometrical accuracy could be improved by a better method for centre line
generation or by a post-processing step for precise road edge detection.

The results for the network quality are summarised in Table IV. In general, these results
also improve with the use of a DSM. The topological correctness is good. The lower
correctness achieved for Grangemouth without the DSM is caused by a false connection
between two components that are not connected in the reference. For the Grangemouth
example with DSM, the lower topological completeness is caused by a gap that separates two
connection components of the extracted network, whereas in the Grangemouth example
without the DSM there are several gaps that separate components of the network. The extracted
networks in both Vaihingen examples are more fragmented, which is caused by failures in the
road section extraction, partly due to trees covering the roads and partly due to segments
having irregular shapes or being too small, such that no roads could be extracted.

Fig. 4. Extracted road networks compared to reference without tree-covered roads. Left: Grangemouth.
Right: Vaihingen. True positives in green, false positives in red, false negatives in blue.

Table IV. Results for network quality evaluation.

Detour
factor

Topological
correctness (%)

Topological
completeness (%)

Grangemouth with DSM 1Æ4 100 75Æ2
Grangemouth without DSM 1Æ2 89Æ6 67Æ4
Vaihingen with DSM 1Æ1 100 37Æ3
Vaihingen without DSM 1Æ0 100 31Æ0
Grangemouth with DSM,
reference without tree-covered
roads

1Æ4 100 76Æ2

Vaihingen with DSM, reference
without tree-covered roads

1Æ1 100 37Æ6
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The results of the junction extraction evaluation are summarised in Table V. Falsely
extracted junctions were most frequently caused by the extraction of driveways or car parks
adjacent to the roads. Missed junctions are often at places where a gap close to a T-junction
could not be bridged because the distance between both roads was too large, or because the
verification of the junctions failed when the connection touched buildings or vegetated areas.
The rather low geometric accuracy of matched junctions is mainly caused by the lower
geometric accuracy of the road centre lines towards the ends of the roads. The reason for this is
that the correct end points of the road centre lines can be difficult to determine from the road
sections when their borders have irregular shapes.

Conclusions

The results show that the algorithm can extract roads in suburban areas with good results.
The correctness is about 90% for extraction with the DSM. A common cause of false results is
the extraction of driveways and car parks which are not contained in the reference but share
some characteristics with roads. About half of these objects present in the scene were extracted.
The completeness is not as good as the correctness; whereas more than 75% completeness was
achieved in the Grangemouth scene, it drops to 58% in the Vaihingen example. Lower
completeness is often caused by trees or building shadows which cover large parts of some
roads, especially in the Vaihingen data-set. As Table III shows, the completeness is
significantly better (69% for the Vaihingen data-set) when roads covered by trees are not
considered.

The quality of the network topology is correlated with the completeness of the network.
Significant decreases in the topological completeness are caused by gaps that separate
components that should be connected in the network. This happens especially in the Vaihingen
data-set where the extracted network consists of four separated components. The gaps between
them were often not bridged because of inaccurate location of the road ends, leading to a
rejection of the connection because of interfering context evidence. The comparison between
the results with and without the DSM shows that the use of the DSM improves the extraction
considerably. Whereas the method can still produce quite reasonable results without a DSM,
the DSM should be used if it is available.

Mayer et al. (2006) claim that a completeness of at least 60% and a correctness of at least
75% are the absolute minimum for road extraction results to be considered useful in practice;
for real practical considerations the completeness should be at least 70% and the correctness at
least 85%. The algorithm presented here achieves these goals for the correctness when a DSM

Table V. Results for junction evaluation.

Junction
completeness (%)

Junction
correctness (%)

Junction
RMS (m)

Grangemouth with DSM 70Æ0 73Æ7 6Æ96
Grangemouth without DSM 75Æ0 68Æ2 8Æ25
Vaihingen with DSM 33Æ3 45Æ5 5Æ37
Vaihingen without DSM 13Æ3 40Æ0 3Æ90
Grangemouth with DSM,
reference without tree-covered
roads

68Æ4 68Æ4 6Æ19

Vaihingen with DSM,
reference without tree-covered
roads

45Æ5 45Æ5 5Æ70
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is used; in terms of completeness the results of the Grangemouth data-set also fulfil these
requirements. The results for Vaihingen are close to the goal for completeness, but significantly
fail to achieve the goal for correctness.

Table VI compares the results of several other approaches for road extraction in urban
areas with the present approach. Of course, such a comparison is not conclusive because the
results were obtained using different data-sets, but it still gives an indication that the approach
operates on a similar (if not better) level compared to other approaches. In the EuroSDR test on
road extraction (Mayer et al., 2006), several algorithms were tested on an IKONOS suburban
scene. The best results in terms of completeness were achieved by Poullis and You (2010). In
terms of correctness, Hinz (2004) achieved the best result with 74%. The approach described in
the current paper gives very good results for the correctness. Only Hinz (2004) (who uses
images of a similar resolution as in this paper) reports better results. The results of the
algorithm used in this paper in terms of completeness are not as good, but it has to be noted that
Hinz (2004) only gives results for two small test sites that are, in addition, from the same scene;
the current results for Grangemouth are comparable to those of Hinz (2004). The RMS value is
also comparable to the other results. Evaluations of the topological quality of the road network
are rarely given for urban approaches. Many approaches do not connect single extracted roads
to a network at all (for example, Youn et al., 2008); others complete the network interactively
(see, for example, Poullis and You, 2010). Hinz (2004) is the only one to give results on the
topological quality. The topological correctness is similar to that of the present approach, for
the topological completeness his results are better. However, the test sites used in Hinz (2004)
have at most four junctions as opposed to, for instance, 20 junctions in the Grangemouth data-
set. In summary, the results of the algorithm presented in this paper are comparable to those of
other approaches; in terms of correctness, the results are better than most of them. The
completeness, however, leaves room for improvement.

There are several areas where the quality of the extraction could be improved. As already
noted, the most important ones are the completeness of the network and the geometric quality,
especially of the junctions. The completeness can be improved by closing further gaps after the
final network check. One possibility is to search for reasonable connections between the
unconnected ends of roads and junction points. However, this must be done with care to
prevent the connection of dead ends to other roads. A similar search could be done with the
isolated roads that are currently deleted during the final network check. Improved modelling of
the context objects could be used to bridge larger gaps in the network generation, for example,
those caused by rows of trees. For improvement of the geometric quality of the junctions,
specific models and extraction methods for junctions are required. The geometric accuracy of
the network could also be improved using a snake-based approach or by using the extracted

Table VI. Comparison of results of different approaches. If several numbers from different data-sets were given,
the average was calculated.

Hinz
(2004)

Mena and
Malpica (2005)

Zhang and
Couloigner (2006)

Youn
et al. (2008)

Poullis and
You (2010)

Current approach
(with DSM)

Completeness 79Æ1% 25Æ0% 56Æ0% 80Æ0% 80Æ6% 67Æ5%
Correctness 96Æ9% 74Æ0% 41Æ0% 79Æ0% 75Æ3% 90Æ6%
RMS 1Æ9m 1Æ13m 1Æ52m 2Æ32m – 1Æ57m
Top. comp. 92Æ0% – – – – 56Æ3%
Top. corr. 98Æ1% – – – – 100Æ0%
GSD <0Æ2m 1Æ0m 1Æ0m 0Æ1m ? 0Æ1m

Top. comp. is topological completeness; top. corr. is topological correctness.
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road centre lines as approximate locations that help to precisely detect the edges delineating the
road.

Other important improvements are automatic parameter learning and sensitivity testing,
since the algorithm uses a rather large number of parameters. The parameters are quite stable,
as shown by the fact that they were tested on images from two different scenes and different
sensors. Only one parameter, the NDVI threshold, had to be changed. However, in future work
the aim will be a systematic training of the parameters using a stochastic model to enhance the
general applicability of the algorithm.
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Résumé

Cet article présente un algorithme d’extraction du réseau routier en zone
suburbaine. L’algorithme fonctionne à l’échelle de la région et utilise des images
infrarouge couleur et éventuellement un modèle numérique de surface. Le processus
d’extraction des routes commence par une segmentation basée sur l’algorithme des
coupures normalisées (normalised cuts algorithm), après quoi les segments sont
regroupés. Les tronçons de routes sont extraits à partir des segments regroupés. Les
tronçons qui semblent appartenir à la route sont connectés en sous-graphes lors de
l’étape suivante. Afin d’éliminer les fausses connexions dans les sous-graphes, des
objets contextuels comme des véhicules, des bâtiments et des arbres sont utilisés. Les
tronçons restants, représentés par leurs axes centraux, sont connectés à un réseau
routier. Le processus s’appuie sur une combinaison de propriétés radiométriques et
géométriques, issues de connaissances sur l’aspect des routes en zone suburbaine.
Des résultats sont présentés pour deux jeux de données expérimentaux, acquis par
des capteurs différents. Une analyse quantitative est réalisée pour la qualité de
l’extraction des routes ainsi que pour la qualité topologique du réseau extrait.

Zusammenfassung

In diesem Beitrag wird ein Algorithmus zur Extraktion von Straßennetzen in
Vorstadtgebieten vorgestellt. Der Algorithmus ist regionenbasiert und nutzt
hochaufgelöste Farbinfrarotbilder sowie, optional, ein DOM. Die Stra-
ßenextraktion beginnt mit einer Segmentierung mit Hilfe des Normalised-Cuts-
Algorithmus; danach werden die Segmente gruppiert. Straßenstücke werden aus den
gruppierten Segmenten extrahiert. Straßenstücke, die wahrscheinlich zu der gleichen
Straße gehören, werden im nächsten Schritt zu Subgraphen verbunden. Um falsche
Verbindungen in den Subgraphen zu entfernen, werden Kontextobjekte wie zum
Beispiel Fahrzeuge, Gebäude und Bäume verwendet. Die verbleibenden Straßen,
repräsentiert durch ihre Mittellinien, werden zu einem Straßennetz verbunden. Der
gesamte Ablauf nutzt Kombinationen aus radiometrischen und geometrischen
Merkmalen, die aus Wissen über das Erscheinungsbild von Straßen in
Vorstadtgebieten abgeleitet wurden. Ergebnisse werden für zwei Testdatensätze
gezeigt, die mit verschiedenen Sensoren erstellt wurden. Eine quantitative Analyse
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bezogen auf die Qualität der Straßenextraktion sowie auf die topologische Qualität
des extrahierten Netzwerks wurde durchgeführt.

Resumen

En este artı́culo se describe un algoritmo utilizado para la extracción de redes
viarias en áreas suburbanas. El algoritmo está basado en regiones y utiliza imágenes
infrarrojas en color de alta resolución ası́ como, de forma opcional, un modelo
digital de superficies. El proceso de extracción comienza con una segmentación
utilizando el algoritmo de corte normalizado, tras el que se agrupan los segmentos.
Las distintas partes de las vı́as se extraen de los segmentos agrupados. Las partes
que probablemente pertenecen a la misma vı́a se conectan en subgrafos en la
siguiente fase. Para eliminar falsas conexiones en los subgrafos se emplean objetos
contextuales tales como vehı́culos, edificaciones y árboles. Los fragmentos de vı́as
residuales, representados por sus centroides, se conectan a una red de vı́as. El
proceso emplea la combinación de elementos radiométricos y geométricos, obtenidos
a partir del conocimiento del aspecto de las vı́as en áreas suburbanas. Los resultados
descritos corresponden a dos conjuntos de datos obtenidos con diferentes sensores.
Finalmente se llevó a cabo un análisis cuantitativo de la calidad de la extracción de
la vı́a ası́ como de la calidad topológica de la red extraı́da.
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