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ABSTRACT

Lidar waveforms are 1D signal consisting of a train of echoes
where each of them correspond to a scattering target of the Earth sur-
face. Modeling these echoes with the appropriate parametric func-
tion is necessary to retrieve physical information about these objects
and characterize their properties. This paper presents a marked point
process based model to reconstruct a lidar signal in terms of a set of
parametric functions. The model takes into account both a data term
which measures the coherence between the models and the wave-
forms, and a regularizing term which introduces physical knowledge
on the reconstructed signal. We search for the best configuration of
functions by performing a Reversible Jump Markov Chain Monte
Carlo sampler coupled with a simulated annealing. Results are fi-
nally presented on different kinds of signals in urban areas.

Index Terms— Signal reconstruction, Lidar, Source modeling,
Marked point process, RJMCMC, 3D point cloud.

1. INTRODUCTION

Airborne laser scanning is an active remote sensing technique pro-
viding range data as georeferenced 3D point clouds. It enables fast,
reliable, accurate, but irregular mapping of both terrain and elevated
features such as the tree canopy and the ground underneath. The
new technology of full-waveform lidar systems permits to record
the backscattered signal for each transmitted laser pulse (i.e., an
intensity histogram). Instead of clouds of individual 3D points,
lidar devices provide connected 1D profiles of the 3D scene, which
contain more detailed information about the structure of the illumi-
nated surfaces [1]. Indeed, each signal consists of series of temporal
modes (called echoes), where each of them corresponds to an indi-
vidual reflection from an object (see Figure 1).

Thus, the decomposition of the waveforms allows first to find the

Fig. 1. Example of consecutive lidar waveforms.

3D location of the targets. Besides, modeling each echo with a
suitable analytical function permits to retrieve its shape, which can
provide relevant features for segmentation/classification algorithms

[2]. Lidar signal reconstruction is then a topic of major interest.
The conventional methods for reconstructing 1D signals such as
wavelets, splines [3] or Gaussian mixture models [4] are not partic-
ularly adapted since they are too general, do not always model each
mode of the waveform and do not take into account the physical
characteristics of lidar waveforms. Some specific lidar algorithms
have been proposed using for instance the non-linear least-square
approach [5]. However, the gradient computation required in such
models limits both the introduction of physical knowledge on the
waveforms and the type of the chosen function.
Stochastic approaches based on marked point processes [6] are very
promising for addressing the issue of reconstructing lidar wave-
forms. These models have shown good potentialities for many
applications in image analysis such as the extraction of road net-
work [7], vascular trees [8] or 3D urban objects [9]. Our method
simulates mixtures of various parametric functions representing the
reconstructed echos. An energy is associated to each configuration
and the global minimum is then found using a Reversible Jump
Markov Chain Monte Carlo (RJMCMC) algorithm [10]. Our model
presents several interesting characteristics compared to conventional
waveform modeling techniques mentionned above:
• Multiple function types - It allows to deal with various types

of parametric functions. By using a library of shapes, more accurate
estimates are performed compared to classical approaches such as
the Gaussian mixture one [11].
• Lidar physical knowledge integration - Complex prior infor-

mation on lidar waveform characteristics can be introduced in the
energy without having problems of convexity or/and continuity re-
strictions in the formulation of these interactions.
• Efficient exploration of configuration spaces - A RJMCMC

sampler with relevant proposition kernels allows to avoid exhautive
explorations of continuous configuration spaces, and is particularly
efficient when the number of functions is unknown. Generally
speaking, the MCMC samplers offer good potentialities in signal
reconstruction [12], and for instance in lidar waveform estimate for
counting and locating the reflected returns from surfaces [13].
The proposed model is formulated in Section 2. Section 3 describes
the optimization procedure. Results are then shown in Section 4
as well as 3D point clouds generated from our approach. Finally,
conclusions and perspectives are drawn.

2. MODEL DEFINITION

2.1. Marked point processes

A marked point process in S = K×M is a point process living in a
continuous bounded set K supporting a 1D-signal where each point
is associated with a mark specifying an object [6]. In our method,
each lidar waveform is modeled by a marked point process withK =



[0,Nmax] , whereNmax is the size of the waveform and M , the mark
space. The objects of the process are parametric functions taken
from a predefined library. They are described by a certain number
of random variables corresponding to their parameters. The marked
point process is specified by a density function f(.) w.r.t a measure
of reference (i.e., the Poisson measure). This density, which allows
to take into account complex interactions between objects, is usually
expressed using a Gibbs energy U(.) (i.e., f ∝ exp−U ). In order to
find the configuration x of functions that better fits the waveforms,
we estimate the global minimum ofU by coupling a MCMC sampler
with a simulated annealing.

2.2. Library of modelling functions

The contents of the library is a key point since the function param-
eters will be used afterwards for classifying 3D point clouds. The
Generalized Gaussian (GG) model has been shown to fit most of the
echoes of lidar waveforms in urban areas [2]. Nevertheless, this as-
sumption is not always sufficient and new functions are introduced
both to fit asymmetric echoes (echoes are slightly distorted by roof
materials and ground surface) and symmetric ones but with other pa-
rameters than those provided by the GG model. For instance, the GG
model gives the amplitude and width for symmetric echoes whereas
the Weibull distribution provides a scale and a shape parameter and
the Burr one simulates asymmetric modes (cf. Table 1).

2.3. Energy formulation

Let x be a configuration of parametric functions (or objects) xi ex-
tracted from the above library. The energy U(x) measuring the qual-
ity of x is composed of both a data term Ud(x) and a regularization
one Up(x) such as:

U(x) = β Ud(x) + (1− β) Up(x) (1)

where β ∈ [0, 1] tunes the trade-off between the prior energy and
the data term.

2.3.1. Data energy

The data energy helps the model to best fit to the lidar waveforms.
The likelihood can then be obtained by computing a distance be-
tween the given signal Sdata and the estimated one Ŝ, which depends
on the current objects on the configuration x.

Ud(x) =

s
1

|K|

Z
K

(Ŝ − Sdata)2 (2)

This term, which measures the quadratic error between both signals,
allows to be sensitive to high variations i.e., to local strong errors in
signal estimate.

2.3.2. Prior energy

Up(x) allows to introduce interactions between objects of x, and to
favor/penalize some configurations. For aerial lidar waveforms, the
prior knowledge is set up by physical limitations in the backscatter
of lidar pulses.

Up(x) = Un(x) + Ue(x) +
X

xi∼xj

Um(xi, xj) (3)

where xi ∼ xj constitutes the set of neighboring objects in the con-
figuration x. This neighborhood relationship ∼ is defined as follow:

xi ∼ xj = {(xi, xj) ∈ x | |µxi − µxj | ≤ r} (4)

µxi (resp. µxj ) represents the mode (i.e., the position of the maxi-
mum amplitude of the echo) of the associated function to object xi

(resp. xj), and r is the lidar sensor range resolution (i.e., the mini-
mum distance between two objects along the laser line of sight that
can be differentiated).

(i) Echo number limitation The two first echoes of a waveform con-
tain in general about 90% of the total reflected signal power. Con-
sequently, even for complex targets like forested areas, a waveform
empirically reaches a maximum of seven echoes and it is quite rare
to find more than four echoes. In urban areas, most of the targets are
rigid, opaque structures like buildings and streets. Thus, more than
two echoes are usually found in non dense trees. We then aim to
favor configurations with a limited number of objets with an energy
given by:

Un(x) = − log Pcard(x) with
∞X

n=0

Pn = 1 (5)

where Pn is the probability for the waveform to have n echoes. The
probabilities are empirically set up by a coarse mode estimate on a
urban test area. Here, we have: P1 = 0.6, P2 = 0.27, P3 = 0.1
and P46n67 = 0.01. For n > 7, Un(x) is set to a positive hardcore
value.

(ii) Backscattered energy limitation As an airborne laser system
cannot physically receive a signal with an higher energy than emit-
ted, it is possible to formulate a backscattered energy based on this
property.

Ue(x) = ωe 1{E(x)>Eref}(E(x)− Eref)
2 (6)

where 1{.} is the characteristic function, E(x) =
R

K
Sx is the en-

ergy of the configuration x, compared to a reference power Eref, set
with the knowledge of the emitted lidar power. Only waveforms with
superior energy are penalized: no assumption can be formulated on
the received energy since it depends on the target properties.

(iii) Sensor range resolution limitation We aim to penalize objects
spatially closer along the line of sight than the sensor range resolu-
tion. Such energy is given by:

Um(xi, xj) = ωm exp

 
r2 − |µxi − µxj |2

σ2

!
(7)

and also permits to favor configurations with a small number of ob-
jects. Indeed, a single pulse can be fitted by an important number of
echoes but such situation does not reflect the reality.

2.3.3. Parameter settings

Physical and weight parameters can be distinguished. Physical pa-
rameters are r and σ. We choose σ = 0.01 ns and r = 5 ns. Data
and regularizing terms are weighted one compared to the other, re-
spectively with a factor β set to 0.5. The two prior weights are tuned
by “trial-and-error” tests.

3. OPTIMIZATION

We aim to find the configuration of objects which minimizes the non
convex energy U in a variable dimension space since the number of
objects is unknown and function types are defined by different num-
ber of parameters. Such a space can be efficiently explored using a
Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampler



Model Generalized Gaussian Weibull Nakagami Burr
Parameters I, s, σ, α I, s, k, λ I, s, µ, ω I, s, a, b, c

Specificity typically used asymmetric, new parameters skewness parameter 2 shape parameters

Shape

I=1, s=3, σ=2, α=3 I=1, s=0, k=2, λ=1 I=1, s=0, µ=2, ω=1 I=1, s=0, a=1, b=2, c=1

Table 1. Library of models. I and s are common parameters to all functions, respectively for amplitude and shift or location.

coupled with a simulated annealing.
The RJMCMC sampler [10] consists in simulating a discrete Markov
Chain (Xt), t ∈ N on the configuration space, having an invariant
measure specified by the energy U . This sampler performs ”jumps”
between spaces of different dimensions respecting the reversibility
assumption of the chain. One of the advantage of this iterative algo-
rithm is that it does not depend on the initial state. The jumps are
realized according to three kinds of move called proposition kernels:
• Perturbation kernel: the parameters of an object belonging

to the current configuration x is modified;
• Birth-and-death kernel: an object is added or removed from

the current configuration x and
• Switching kernel: the type of an object belonging to x is

switched with another type of the library.
The probabilities of choosing each move are equal since no assump-
tion can be made on which move is more relevant at the current state.

A simulated annealing is used to ensure the convergence pro-
cess. A relaxation parameter Tt, defined by a sequence of tempera-
tures decreasing to zero when t→∞, is introduced in the RJMCMC
sampler (i.e., U(.) is substitued by U(.)

Tt
). The simulated annealing

allows to theoretically ensure the convergence to the global optimum
for all initial configuration x0 using a logarithmic temperature de-
crease. In practice, we prefer using a geometrical cooling scheme
which is faster and gives an approximate solution close to the opti-
mal one. During the temperature decrease, the process explores the
configurations of interest and becomes more and more selective. It
corresponds to local adjustments of the object of the configuration.
To sum up the optimization process, if at t, Xt = x

1. Choose randomly one of the proposition kernel Qi;
2. According to Qi, choose a new configuration y from x;
3. Take Xt+1 = y with a probability

min

»
1,

Qi(y → x)

Qi(x→ y)
exp−

„
U(y)− U(x)

Tt

«–
and take Xt+1 = x otherwise.

4. RESULTS

4.1. Experiments on simulated signals

To assess the reliability of the algorithm, it has been first applied on
signals with a higher complexity than real lidar waveforms. Longer
signals with more echoes than physically expected, with distorted
and overlapping modes as well as corrupted with noise have been

fitted with our method. One just has to tune the prior physical pa-
rameters to extend the energetical formulation to other kinds of sig-
nals. To deal respectively with very close echoes and with large
overlapping ones, the interaction between objects can be changed
by decreasing and increasing r and σ. To reconstruct signals with
higher energy, Eref can be tuned. To fit signals with more modes, the
echo number limitation can be modified by accepting more echoes
within the signal and with the same probability.
Figure 2 shows that good fitting results can be achieved on simulated
waveforms, even corrupted with Gaussian noise, by tuning prior pa-
rameters, assessing the reliability of the algorithm on 1D random
signals. The nine echo locations are accurately found. However,
small differences between the reference and the estimated signals
can be locally noticed, especially with noisy signals where the algo-
rithm has more difficulties to find the exact maxima and fit the upper
parts of the modes (e.g., 2nd and 4th echoes in Figure 2b).

Fig. 2. Results of complex waveform fitting on a simulated signal
with nine echoes (left) and on the same signal with Gaussian noise
(right). The dotted black line and the continuous grey one are re-
spectively the raw and the reconstructed signals.

4.2. Airborne lidar waveforms

Waveforms acquired from an airborne lidar system over different
kinds of landscapes have been analysed using the marked point pro-
cess approach. Figure 4 shows results both on urban (buildings) and
natural (trees, hedges) items. The right number of echoes is found
as well as the correct shape of the waveform: single and multiple
overlapping echoes are retrieved, even in vegetated areas where the
noise level is significant w.r.t. the echo amplitudes (Figures 4c and
d).
The Generalized Gaussian, Weibull and Nakagami functions have
been introduced to model the same kind of echoes. Thus, there is no
concluding whether the minimal configurations obtained are com-
posed of the right modeling functions. As expected, the Burr model
allows to fit slightly asymmetric echoes, especially the second echo
of two overlapping ones (Figures 4b, d and f).
Approximatively 80000 waveforms have been fitted over a urban



Fig. 3. Results of waveform decomposition on a urban area with dense trees and complex buildings. Left: orthoimage of the test area c© IGN.
Middle: resulting 3D point cloud (Blue: low elevation→ brown: high elevation) over the whole area. Right: results over two trees showing
that points inside tree canopy are retrieved.

Fig. 4. Example of decomposed and modeled waveforms on (a-d)
trees, (e) a building roof and (f) a hedge.

area to assess the reliability of the method in a complex and hetero-
geneous landscape. A waveform-by-waveform evaluation of the fit-
ting process to estimate the correctness of the echo detection would
be highly time-consuming. Thus, the algorithm has been rather eval-
uated by computing the relative amplitude error ε on each signal
with the L∞ norm to detect missing echoes. For that purpose, the
noise within raw signals is first removed. Finally, the mean error
computed on 80000 signals is ε=4.1%: the ground and buildings
waveforms are fitted with lower amplitude error (εa=3.4%) than veg-
etation ones (εv=7.9%). The weak difference between εa and εv can
be explained by the fact that waveforms over vegetated areas have
much more complex shapes than over anthropic surfaces but have
much lower amplitudes (see Figure 4).
The waveform decomposition allows to retrieve the mode of each
echo which corresponds to the range between the sensor and a target.
The 3D cartographic coordinates of each echo can then be computed
from the range values using georeferencing formulas. Figure 3 dis-
plays the resulting 3D point cloud of this process over the test area,
which can be now classified using the estimated parameters of mod-
eling functions as performed in [2].

5. CONCLUSION AND FUTURE WORKS

We have proposed an original method for modeling airborne lidar
waveform by complex parametric functions. The obtained results
are satisfactory. The proposed marked point process approach is
well adapted both to locate echoes in signals and accurately describe
them with parametric functions. 3D points can therefore be gen-
erated over large areas with echo shape descriptors taken from the

extensible model library and offer the possibility to improve classi-
cal lidar point cloud classification algorithm. Moreover the physical
parameters of the proposed energy are tunable and offer the possibil-
ity to extend the method to other kinds of signals and lidar sensors
(terrestrial and spatial).
Finally, in future works, it would be interesting to estimate automat-
ically the weighting parameters using for instance the Expectation-
Maximization algorithm. Moreover, we should introduce in the en-
ergy formulation specific interactions between parametric functions
of different types in order to improve local signal adjustments.
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