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ABSTRACT:

Online multi-person tracking in image sequences is commonly guided by recursive filters, whose predictive models define the expected
positions of future states. When a predictive model deviates too much from the true motion of a pedestrian, which is often the case in
crowded scenes due to unpredicted accelerations, the data association is prone to fail. In this paper we propose a novel predictive model
on the basis of Gaussian Process Regression. The model takes into account the motion of every tracked pedestrian in the scene and the
prediction is executed with respect to the velocities of all interrelated persons. As shown by the experiments, the model is capable of
yielding more plausible predictions even in the presence of mutual occlusions or missing measurements. The approach is evaluated on
a publicly available benchmark and outperforms other state-of-the-art trackers.

1. INTRODUCTION

Visual pedestrian tracking is one of the most active research top-
ics in the fields of image sequence analysis and computer vi-
sion. The generated trajectories carry important information for
the semantic analysis of scenes and thus are a crucial input to
many applications in fields such as autonomous driving, field-
robotics and visual surveillance.

Most available systems for tracking use variants of the recursive
Bayes Filter such as the Kalman- or the Particle Filter to find a
compromise between image-based measurements (i.e., automatic
pedestrian detections) and a motion model. Generally, the motion
model is a realisation of a first-order Markov chain which consid-
ers the expected dynamic behaviour such as constant velocity or
smooth motion. In the absence of measurements, e.g. during an
occlusion, the trajectory is continued only by the motion model.
For longer intervals of occlusions, however, a first-order Markov
chain is prone to drift away from the actual target position. This
situation often occurs in crowded environments, where mutual
occlusions cannot be avoided and pedestrian movements often do
not match the assumption of an un-accelerated motion. Some au-
thors explain the deviations from a constant-velocity model as an
effect of social forces caused by interactions with other members
of a scene (Helbing and Molnár, 1995). The information gath-
ered from other scene members with respect to motion is often
referred to as motion context. In the scope of recursive filter-
ing, this motion context carries valuable information for tracking
and allows to generate more plausible predictions in the absence
of measurements. In turn, more realistic predictions lower the
risk of tracking errors such as false negative detections and iden-
tity switches. Available context-aware approaches to pedestrian
tracking often require binary decisions about group membership
of individuals, or they constrain the interactions by a Markovian
assumption. In either way, possible correlations between pedes-
trians that are not related by the model are discarded.

Our approach considers the context between every possible pair
of pedestrians without being explicit about their interactions. To
this end we propose a new model for the predictive function of
a recursive filter that is based on Gaussian Process Regression.
In this context, we formulate a new covariance function taking

Figure 1. Trajectories generated using a stand-alone Kalman Fil-
ter (upper image) and the proposed method (lower image). On
the right side of the images the covariance matrices are shown for
that scene. The covariance matrix has one row and column for
every tracked person in ascending order of their associated iden-
tification number. Brighter values indicate higher covariances of
the trajectories. Using the stand-alone Kalman Filter, an iden-
tity switch occurred after a phase of mutual occlusion (indicated
by the arrow), which can be avoided when using the proposed
method.

into account the spatial distance and angular displacement of two
motion trajectories. The output of the covariance function is used
as a measure for the interactions between pedestrians. The co-
variance matrix stores the covariances of all pairs of pedestrians
and is updated at every time step; cf. Fig. 1 for an example.
Fig. 1 further shows a situation where an identity switch occurs
when using a stand-alone Kalman Filter for the prediction, which
can be avoided when using the proposed method. As we avoid
explicit grouping of pedestrians, we refer to the information cap-
tured by the covariance matrix as implicit motion context.
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The contributions of this paper are the proposal and comprehen-
sive investigation of a new strategy for the incorporation of mo-
tion context into a recursive filter. The proposed method is im-
plemented in the framework of a recursive tracking-by-detection
framework based on (Klinger et al., 2015). A quantitative evalu-
ation of the results is carried out on the basis of the Multi Object
Tracking Benchmark (Leal-Taixé et al., 2015).

The remainder of this paper is structured as follows: First we
review the related work on the topic of visual multi-pedestrian
tracking with a focus on approaches that investigate motion con-
text, and on the topic of Gaussian Process Regression applied in
the context of tracking (Sec. 2). Then, we investigate Gaussian
Process Regression in some more detail. Subsequently, we for-
mulate our novel approach (Sec. 3). In the experiments (Sec. 4)
we analyse the sensitivity of the proposed method to the varia-
tion of the involved parameters and compare the final results with
methods from related work on the basis of a publicly available
benchmark dataset. In Sec. 5 we conclude our work and give an
outlook.

2. RELATED WORK

In this section we briefly review related approaches to context-
aware multi-person tracking. We further refer to papers that deal
with Gaussian Process Regression in the context of recursive fil-
tering approaches.

Motion context. While the main factors for path planning of
a pedestrian are well understood (Helbing and Molnár, 1995),
there are many approaches for embedding this contextual infor-
mation into a tracking framework. In (Scovanner and Tappen,
2009) and (Milan et al., 2014) trajectory estimation is formu-
lated as an energy minimisation problem, where the energy is
the sum of various terms penalising a deviation from an expected
behaviour such as collision avoidance, moving towards a prede-
fined destination in a straight line and constant velocity. Being
aware of other pedestrians’ positions in the scene, such a motion
model considers context to avoid collisions, but possible correla-
tions of the trajectories that indicate mutual patterns of motion are
not further evaluated. Ge et al. (2009), Yamaguchi et al. (2011),
Pellegrini et al. (2010), Leal-Taixé et al. (2011) and Zhang and
van der Maaten (2013) incorporate group models which basically
have a smoothing effect on the motion of pedestrians of the same
group. Although contextual information w.r.t. the motion of in-
teracting pedestrians is considered in this way, the binary group
membership represented by the model neglects potential correla-
tions between subjects from different groups.

Pellegrini et al. (2009), Choi and Savarese (2010), and Yoon et al.
(2015) do not apply grouping explicitly. They predict the position
of each subject based on the history of all pedestrians. Pellegrini
et al. (2009) directly incorporate interactions as well as expected
destinations in the scene into the dynamic model of a recursive
filter. The degree of interaction between two pedestrians is eval-
uated by their current distance and by the angular displacement
of their trajectories, i.e., the cosine of the angle between their
directions of motion. Choi and Savarese (2010) use a Markov
Random Field, where the current state estimate is conditioned on
the previous one and undirected edges are established between
neighbouring subjects, modelling the social forces caused by in-
teractions. However, due to the Markov property interactions of
pedestrians which are not direct neighbours in object space are
suppressed. As a consequence, potential correlations between
subjects that are further apart are neglected. Yoon et al. (2015)
also consider the relative motion between subjects by condition-
ing the current state estimate on the previous state estimate of the

same subject and on the subjects in its vicinity. In this way, the
motion of different interrelated persons is taken into account, but
uncertainties about the previous state estimates are not considered
in the estimation of the current state estimates.

Gaussian Process Regression. Gaussian Process (GP) Regres-
sion models are well studied in the fields of geodesy (where an
equivalent to GP Regression is known as collocation) (Moritz,
1973), geo-statistics (where it is also known as kriging), (Krige,
1951), machine learning (Rasmussen, 2006) and computer vision
(e.g. Urtasun et al., 2006). We stick to the terminology of ’Gaus-
sian Processes’ as our work is set in the context of photogramme-
try and computer vision.

A Gaussian Process is a stochastic process in which any finite
subset of random variables has a Gaussian joint distribution.
Given a set of input points and observed target variables, a pre-
diction of the target variable for a test point is made by condi-
tioning its target variable on the observed target variables. In
this way, the predictive function need not be modelled paramet-
rically; it is merely assumed that the input data are correlated.
Each conditional distribution over a target variable is Gaussian,
which favours their application in the context of recursive Bayes
Filters. Ko and Fox (2009) use GPs for Bayesian filtering (GP-
Bayes Filter), emphasising that in this way parametric prediction
and parametric observation models can be avoided. For the pre-
diction of a robot’s state transition, the authors define a Gaus-
sian Process taking as input previous state and control sequences
of the robot. Ellis et al. (2009) applied GP-Bayes Filters to the
tracking of pedestrians, where the input data are trajectories of
different persons observed in the past. The problem is formulated
as a regression task, where velocities are estimated on the basis
of the previously observed trajectories. For a predictive model
which is representative for a complete scene, a high amount of
training data may be required (depending on the complexity of
the scene). As the trajectories are required a priori, the applica-
tion is restricted to offline processing. Kim et al. (2011) apply
GP based regression for the prediction of motion trajectories of
vehicles. Individual trajectories are assigned to clusters and out-
liers are detected when the trajectories deviate from a so-called
mean flow field. By the explicit association of the trajectories to
clusters, possible correlations between trajectories from different
clusters are not considered. Later the same authors applied GP re-
gression to detect regions of interest for camera orientation, when
acquiring images of a football match, by looking at the means of
the regression model which reflect the expected destinations of
the involved subjects (football players) (Kim et al., 2012). Here,
the motion trajectories are not regarded further and persons are
correlated based on the spatial distance only. In these works, the
input data are the 2D locations of the subjects and the target vari-
ables are their velocities.

Most of the cited papers dealing with motion context are either
explicit about the grouping of pedestrians, so that possible corre-
lations among members of different groups are ignored, or they
limit the range of related objects by a Markov assumption. The
related work on Gaussian Process Regression in the context of
tracking does not include any approach to the tracking of pedes-
trians in which the interactions are estimated together with the
trajectories at runtime. We adapt the work of Pellegrini et al.
(2009) by refining the predictive model of a recursive filter so
that it takes into account all of the other scene members. Differ-
ent from Pellegrini et al. (2009), we apply a predictive function
on the basis of Gaussian Processes, mitigating the need for a para-
metric prediction model. In this respect, our approach is related
to the works of Ellis et al. (2009) and Kim et al. (2012) in the way
of predicting the velocity, with the key difference that we assess
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the similarity between trajectories at runtime. In this way, we di-
rectly incorporate contextual information into the tracking frame-
work and simultaneously estimate the velocities together with the
interactions. This enables more reliable predictions even in the
absence of measurements.

3. METHOD

In this section we explain the principles of Gaussian Process Re-
gression (GPR) and formulate the prediction model of a recursive
filter as a GPR problem. To make the prediction sensitive to inter-
actions, we propose a new covariance function, which takes a pair
of motion trajectories as input and computes a measure of simi-
larity based on the motion direction and the spatial distance of the
trajectories. We assume that pedestrians interact to the degree of
the covariance of their motion trajectories.

3.1 Gaussian Process Regression

In a Gaussian Process Regression model, it is assumed that the
function values of a target variable y are drawn from a noisy pro-
cess:

y = f(x) + n

with Gaussian white noise n with variance σ2
n. The regression

function f(x) = t(x) + s is composed of a deterministic part
t(x), also referred to as the trend, and a stochastic part s ∼
N (0,Σss), which is referred to as the signal and which follows a
zero-mean normal distribution with covariance Σss. It is further
assumed that the signal at close positions is correlated. Given a
set of observed input and target variables
D = {(x1, y1), ..., (xn, yn)}, the aim is to predict the target vari-
able y∗ for a new input point x∗. By definition, any finite subset
of the random variables in a GP has a Gaussian joint distribu-
tion (Rasmussen, 2006). Hence the joint distribution of an un-
known target variable y∗ and the observed data y = {y1, ..., yn}
is Gaussian and can be modelled according to Eq. 1,[

y
y∗

]
∼ N

([
E(y)
E(y∗)

]
,

[
K KT

∗
K∗ K∗∗

])
(1)

where E(y) and E(y∗) are the expected values of the observed
and the unknown target variables that correspond to the trend.
The covariance matrix is a block matrix, whose elements are
specified by a covariance function k(xi, xj). The matrix K is
the covariance matrix of the observed target variables, such that
K(i, j) = k(xi, xj), K∗ is the vector of covariances of the
observed and the unknown target variables, such that K∗(i) =
k(x∗, xi), and K∗∗ = k(x∗, x∗) is the variance of the unknown
target variable. One of the most prominent realisations of the co-
variance function is the squared exponential or Gaussian function
(Rasmussen, 2006).

k(xi, xj) = σ2
f · exp

(
− (xi − xj)2

2l2

)
+ σ2

n · δ(i = j) (2)

Eq. 2 describes a Gaussian covariance function, where the co-
variance of two input points xi and xj is dependent on their pair-
wise distance with decreasing covariance at growing distances.
The signal variance σ2

f basically controls the uncertainty of pre-
dictions at input points far from observed data. The characteristic
length-scale l controls the range of correlations in the input space.
In Eq. 2 σ2

n is the noise variance accounted for in the diagonal
elements of K, and δ(i = j) is the Kronecker delta function,
which is 1 for i = j and 0 otherwise.

The prediction of a new target variable for the input point x∗ is
made by building the conditional distribution of the desired target

variable y∗ based on Eq. 1. Since the distribution in Eq. 1 is
Gaussian, the same holds true for the conditional probability of
the unknown target variable. In a Gaussian Process Regression
model, the distribution over the predicted target variable thus can
be written as Eq. 3,

P (y∗|y) ∼ N (GPµ(x∗,D),GPΣ(x∗,D)) , (3)

with

GPµ(x∗,D) = E(y∗) +K∗K
−1(y − E(y)), (4)

and
GPΣ(x∗,D) = K∗∗ −K∗K

−1KT
∗ . (5)

The estimated value ŷ∗ = GPµ(x∗,D) corresponds to the mean
of Eq. 3, and σ̂2

y∗ = GPΣ(x∗,D) is the variance of the estimated
target variable.

3.2 Implicit Motion Context

For the application in a recursive filter, the aim is to formulate
a predictive model which takes account of the assumption that
pedestrians do not move in a way completely independent from
other scene members. Similar to Ellis et al. (2009) and Kim et
al. (2011) we model the velocity vi as the target variable of a GP
Regression model independently for each input dimension. Dif-
ferent from the related work we take as input the trajectories and
velocities of all currently tracked pedestrians. In accordance with
the GPR model we decompose the velocity of a pedestrian into a
trend and a signal, and argue that the signal of two pedestrians is
correlated in case of interactions. In analogy to Eq. 3 the predic-
tive model for the velocity can be written in probabilistic form as
a Gaussian distribution over the predicted velocity:

P (vi|v) ∼ N (GPµ(Ti,T),GPΣ(Ti,T)) , (6)

where the given set of input and target variables
T = {(T1, v1), ..., (Tn, vn)} consists of the trajectories and cur-
rent velocity estimates of all n currently tracked pedestrians. The
predicted velocity of a person i can be found using Eqs. 4 and
5. We propose a novel covariance function (Eq. 7) that computes
the covariance of two trajectories Ti = [Xi,t−h, ...,Xi,t]

T and
Tj = [Xj,t−h, ...,Xj,t]

T w.r.t. their current and h most recent
positions in object space. We assume that the motion direction
and spatial distance of two pedestrians are representative for their
interactions. This is why the function takes into account the angu-
lar displacement of the motion directions and the spatial distance
between the current positions.

k(Ti, Tj) = w(Ti, Tj)σ2
fexp

(
− (Xi,t −Xj,t)

2

2l2

)
+σ2

n,iδ(i = j)

(7)
The first factor in Eq. 7, w(Ti, Tj), is what we define as the an-
gular function which takes into account the angular displacement
αij of two trajectories (see Eq. 8). The noise variance σ2

n,i re-
flects the uncertainty about the input velocities and is added along
the diagonal ofK. We compute αij as the angle between the con-
necting lines of the first and last points of Ti and Tj , respectively.
The function returns the cosine of the angular displacement if the
angular displacement is smaller than a threshold α0, and other-
wise it is set to zero.

w(Ti, Tj) = cos (αij) · δ (αij ≤ α0) (8)

The signal variance σ2
f , the length-scale l, the history h and α0

are parameters whose optimal values are determined in the experi-
ments. Fig. 2 shows the principle of the angular function. The
velocity vectors of four fictitious trajectories are visualised by ar-
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Figure 2. Angular displacements and weighted average velocities
(see text for details).

rows in different colours, and the shaded regions show the ranges
of possible correlations for the red (left) and the green (right)
instance. These ranges are determined by the angular threshold
α0, and all velocities inside the shaded region contribute to the
estimated velocity. For a tracking in 2D, the weighted average
velocity vector v̄i is drawn by the broken arrow in Fig. 2. We
model v̄i as the trend of the Gaussian Process in accordance with
Eq. 9.

v̄i = E(vi) =
1

n

∑
j=1...n

w(Ti, Tj) · vj (9)

The exponential function on the r.h.s. of Eq. 7 accounts for the
spatial distance between the current position estimates xi,t and
xj,t. Fig. 3 shows velocity estimates computed using the expo-
nential function for all points in a discrete grid of 0.5m× 0.5m,
using the current positions of the persons as input variables and
their velocities as observed target variables. The variances of the
predicted velocities are indicated by the colours of the arrows,
where red indicates high values and green indicates low values.
Note that due to the exponential decrease of the covariances the
predicted velocities for positions with a low density of observed
data have higher variances (depending on σ2

f ), and the estimated
velocities in these areas tend to zero. While in Eq. 7 the ex-
ponential function causes high covariances for all pedestrians at
short pairwise distances (depending on l), the delta function sup-
presses correlations of pedestrians moving in different directions
(depending on the angular displacement threshold α0).

Having defined the covariance function in Eq. 7, the covariance is
computed for every pair of currently tracked pedestrians. Given
the observed input data T, the predicted values of the velocity
components v̂i and their variances σ̂2

vi are found in accordance
with Eqs. 4 and 5, respectively:

v̂i = v̄i +K∗K
−1(v − E(v)), (10)

σ̂2
vi = K∗∗ −K∗K

−1KT
∗ . (11)

3.3 Recursive Bayesian estimation

For the practical application of the proposed model in a recursive
filter we use an Extended Kalman Filter model. Generally, a re-
cursive Bayesian estimation framework consists of a predictive
model for the transition of the state vector w between successive
time steps, and a measurement model, which yields a mapping
from the state space to the observation space (here: the image).
We model a six-dimensional state vector that accounts for the 3D
position (X,Y, Z), the heightH and the velocity components vX
and vZ in the dimensions X and Z parallel to the ground plane,
which is assumed to be a plane at a known and constant height
below the camera.

Figure 3. Motion vector field with covariances as a function of the
distance only. The magnitudes of the velocities are exaggerated
by a factor of two for visualisation.

Prediction. One Gaussian Process is defined independently for
the velocity vX and vZ ,

vXi ∼ N (GPµX
(Ti,T),GPΣX

(Ti,T)) (12)

and
vZi ∼ N (GPµZ

(Ti,T),GPΣZ
(Ti,T)), (13)

so that the prediction of the velocities is accomplished by finding
the means of the univariate Gaussian distributions in accordance
with Eqs. 10 and 11. The predictive model of the recursive filter
is a multivariate Gaussian distribution over the state vector, Eq.
14, conditioned on the previous state vectors wt−1,i=1...n and
trajectories Ti=1...n of all n pedestrians being tracked:

P (w+
t,i|wt−1,i=1...n, Ti=1...n) = N (µ+

w,t,Σ
+
ww,t), (14)

with mean vector µ+
w,t:

µ+
w,t = [X+

t , Y
+
t , Z

+
t , H

+
t , v

+
X,t, v

+
Z,t]

T (15)

and covariance matrix Σ+
ww,t:

Σ+
ww,t = ΨΣww,t−1ΨT + Σp, (16)

where Ψ is the transition matrix that transforms the state vec-
tor from the previous time step to the current time step (Rabiner,
1989). We assume zero acceleration in the directions of X and
Z and zero velocity in vertical direction, i.e., for the parameters
Y and H . Deviation from these assumptions may occur due to
unforeseen accelerations (aX ,aZ ) and velocities (vY ,vH ). These
effects are captured by a zero-mean multivariate normal distri-
bution over the vector u = [aX , vY , aZ , vH ]T with expectation
E(u) = 0 and covariance Σuu = diag(σ2

aX , σ
2
vY , σ

2
aZ , σ

2
vH).

These uncertainties are related to the covariance of the predicted
state vector by the process noise Σp = GΣuuG

T , where the
matrix G is the Jacobian of the transition matrix. In our case
the accelerations are induced by interactions with other pedes-
trians, so that the variances computed by the Gaussian Process
Regression reflect the uncertainties about the process noise, i.e.,
σ2
aX = GPΣX

(Ti,T) ·∆t−2 and σ2
aZ = GPΣZ

(Ti,T) ·∆t−2,
where ∆t is the time difference between two consecutive frames.
Note that the noise variances σ2

n,i, which reflect the uncertainties
about the observed target variables in Eq. 7, are the posterior vari-
ances of the velocities from the previous time step. Incorporating
the estimated velocities into the predicted state vector yields the
following functional model of the prediction:

Position:
X+
t = Xt−1 + v+

X,t∆t

Z+
t = Zt−1 + v+

Z,t∆t

Height:
Y +
t = Yt−1
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Figure 4. Variation of the parameters and difference of the sum of MOTA and MOTP metrics relative to the results from the stand-alone
Kalman Filter.

H+
t = Ht−1

Velocity:
v+
X,t = v̂X∗

v+
Z,t = v̂Z∗

Update. As in Klinger et al. (2015), we apply a Dynamic
Bayesian Network (DBN) which combines the results of a pedes-
trian detector, an instance specific classifier with online training
capability and a Kalman Filter model in a single probabilistic
tracking-by-detection framework. The update step of the recur-
sive filter is guided by the collinearity equations. The results
of the pedestrian detector and the instance specific classifier are
modelled as observations of the positions of the feet and the head
of the pedestrians in the image. We apply a pedestrian detec-
tor on the basis of the HOG/SVM (Dalal and Triggs, 2005) and
an instance specific classifier on the basis of Online Random
Forests (Saffari et al., 2009). We further use a fictitious obser-
vation for the height of the feet, which is identical to the height of
the ground plane. This observation basically enables the conver-
sion of 2D image coordinates to 3D world coordinates and, thus,
tracking in 3D space.

4. EXPERIMENTS

The covariance function we proposed in Sec. 3. depends on four
different parameters: The signal variance σ2

f , the length-scale
l, the angular threshold α0 and the history of recent trajectory
points h. For practical application, α0, h, σf and l are learnt
from the training data of the 3DMOT benchmark dataset (Leal-
Taixé et al., 2015) using the direct search approach (Hooke and
Jeeves, 1961). In a first experiment we demonstrate the sensitiv-
ity of the tracking results w.r.t. the mentioned parameters. We
furthermore evaluate our approach against methods from related
work on the basis of the 3DMOT benchmark.

4.1 Training of the parameters

For the determination of the parameters p = {α0, h, σf , l} that
yield optimal results on the training data, we take the argument
variables p̂ that solve the minimisation problem

p̂ = argmin
p

1− MOTA(p) + MOTP(p)

2
.

We applied the direct search approach and changed one parame-
ter at a time, keeping the others fixed. The parameters yielding
the best results are kept fix during the variation of the next pa-
rameter. We assume independence of the parameters and do not
further iterate this procedure. As all evaluation metrics used in

the experiments, except for the runtime, essentially depend on
p, the notation with p as function argument will be avoided in
the remainder of this paper. MOTA and MOTP are the classifi-
cation of events, activities, and relationships (CLEAR) metrics
Multiple Object Tracking Accuracy and Multiple Object Track-
ing Precision as defined by Bernardin and Stiefelhagen (2008).
The MOTA metric takes into account false positive (FP) and false
negative (FN) assignments as well as identity switches (IDs). The
MOTP metric reflects the geometric accuracy of the tracking re-
sults. A detection is counted as correct if the estimated position
of the feet is not more than one metre apart from the reference.
In Fig. 4 the results of the training procedure are visualised.
The Figure is divided into four parts, each showing the results
achieved by the variation of one parameter. The results are drawn
relative to the results achieved by not using the proposed method,
that is, by using a stand-alone Kalman Filter instead. The curve
shows the average gain or loss of MOTA and MOTP achieved by
using the proposed method (the connecting lines are just drawn
for visual support). The parameters associated to the peaks of the
average curves are taken as optimal values.

We determined values of l = 2m, σf = 2m/s, α0 = 90◦ and
h = 1m to yield optimal results. The length-scale parameter
indicates that interactions take place basically in a radius of 2m
around a person. The signal variance σ2

f controls the maximum
range of velocities and basically limits the velocity estimates far
from the input data. The value achieved by the training thus in-
dicates that 68% of the velocities are expected to lie in a range
of ±2m/s. The angular threshold of 90◦ indicates that consider-
ing all persons moving with an angular displacement of at most
90◦ positively affects the tracking results. The history of 1m in-
dicates that only the last metre of the trajectories contributes to
the tracking; if longer parts of the trajectories are taken into ac-
count, sudden changes in the direction of motion do not reflect
instantaneously in the covariances of the trajectories, and the per-
formance decreases.

4.2 3DMOT challenge

Here, we report results achieved on the 3DMOT benchmark
dataset (Leal-Taixé et al., 2015) using our approach. For the ini-
tialisation of new trajectories we only use the automatic detection
results provided along with the benchmark dataset. Our results
and results from Pellegrini et al. (2009), Leal-Taixé et al. (2011),
Klinger et al. (2015) and from a baseline tracker are available
online1. The test dataset consists of two image sequences, the
PETS09-S2L2 sequence from a campus and the AVG-TownCentre
from a pedestrian zone. The average evaluation metrics achieved
on the test sequences are given in Table 1, where they are com-
pared to the related work (as of Dec. 2015). The reported met-
rics include the false alarms per frame (FAF), the ratio of mostly

1http://motchallenge.net

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-271-2016

 
275

http://motchallenge.net


Method Avg. Rank MOTA MOTP FAF MT ML FP FN IDs Frag. Hz
GPDBN (ours) 2.4 50.2 62.0 2.5 26.5% 18.7% 2252 5842 267 347 0.1
Klinger et al. (2015) 2.0 51.1 61.0 2.3 28.7% 17.9% 2077 5746 380 418 0.1
Leal-Taixé et al. (2011) 3.1 35.9 54.0 2.3 13.8% 21.6% 2031 8206 520 601 8.4
Baseline 3.6 35.9 53.3 4.0 20.9% 16.4% 3588 6593 580 659 83.5
Pellegrini et al. (2009) 3.9 25.0 53.6 3.6 6.7% 14.6% 3161 7599 1838 1686 30.6

Table 1. 3D MOT 2015 results

tracked (MT, a person is MT if tracked for at least 80% of the
time being present in consecutive images) and mostly lost (ML,
if tracked for at most 20%) objects, the numbers of false positive
and false negative detections, the number of identity switches, the
number of interruptions during the tracking of a person (Frag.),
the processing frequency (Hz, in frames per second) as well as
MOTA and MOTP. The average rank shows the mean of the ranks
achieved in the individual metrics.

As shown in Tab. 1, our method yields the best results in terms
of geometric accuracy (MOTP), identity switches and interrup-
tions, and an overall second best average rank of 2.4. Compared
to the method of Klinger et al. (2015), on which our method is
constructed, the results show that we have about 8% more false
positive and 2% more false negative assignments. It is worth
noting that although approximately the same rate of pedestrians
could be tracked throughout their existence in the image sequence
(as measured by the MT score), both the number of ID switches
and interruptions could be reduced clearly about 30% and 16%
compared to the work of Klinger et al. (2015), who do not take
interactions into account. The benefit of using the implicit mo-
tion context as proposed in this paper can be attributed to the
improved predictive model of the underlying recursive filter, in
which the information of every tracked pedestrian is considered.
In this way, even in the absence of observations a trajectory can
be continued by exploiting the information about correlated (in-
teracting) pedestrians. In such a case, a trajectory is only con-
tinued based on the predictions. As in a recursive filter the prior
information (i.e., the previous state estimate) typically defines the
search space for new target positions, an improved motion model
yields fewer interruptions of trajectories. If motion context is not
considered in the motion model, the prediction is prone to drift
away from the target while at the same time being susceptible
to an assignment to another target (causing an identity switch).
Such a situation occurred in the exemplary scene depicted in Fig.
1 at the beginning of the paper.

The MOTP shows the normalised distance of a correct detection
from the reference annotation in metres. According to that met-
ric, the results of our method yield the highest geometric preci-
sion currently reported on the 3DMOT Benchmark (see Tab. 1,
as of Dec. 2015). The MOTP value of 62.0 indicates that the
average positional displacement of the automatically estimated
pedestrian positions is about 38cm. This average offset basically
stems from uncertainties at the conversion of the monocular im-
age coordinates to the ground plane, which is assumed to be hor-
izontal. Although the difference between the best (this) and the
second best method in terms of that metric is only small, it shows
that the covariance structure of pedestrians carries valuable in-
formation for the determination of the pedestrians’ motion, and
thus of the pedestrians’ position. W.r.t. to processing time, this
method, which is based on the same framework as Klinger et al.
(2015), performs worst among the competing methods with only
0.1 frames per second. The prediction using the Gaussian Pro-
cess Regression is as complex as the inversion of a n× n matrix
(i.e., O(n3)), where n is the number of pedestrians and only in
the range of ten to thirty in our application scenario. Thus, the
processing time of the algorithm is very similar to that of Klinger

et al. (2015), where most of the computation time is used for the
training of and classification with the online random forest clas-
sifier.

5. CONCLUSIONS

In this paper, we propose a new predictive model for a recursive
Bayesian filter on the basis of Gaussian Process Regression. Us-
ing the proposed method, the state vector of a pedestrian is pre-
dicted from the states of all pedestrians being tracked. In this con-
text, we propose a new covariance function which computes the
covariance of two motion trajectories in terms of motion direction
and spatial distance. The method is applied to a public benchmark
dataset and the results show that the number of identity switches,
the number of interruptions, and the geometric accuracy could
be improved in comparison to the state-of-the-art. However, our
tracking results also reveal an increase of false positive assign-
ments, which are due to mismatches between the expected and
the true motions. Such cases often occur during an occlusion, so
that the trajectories are continued towards spurious destinations,
causing false positive detections. To remedy such effects, a multi-
modal state representation will be investigated to evaluate both a
prediction with and without using contextual information at the
same time. When new measurements are obtained, the trajectory
will be continued using the prediction that better coincides with
the measurements.
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