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ABSTRACT: 

 

The increasing availability of multitemporal satellite remote sensing data offers new potential for land cover analysis. By combining 

data acquired at different epochs it is possible both to improve the classification accuracy and to analyse land cover changes at a high 

frequency. A simultaneous classification of images from different epochs that is also capable of detecting changes is achieved by a 

new classification technique based on Conditional Random Fields (CRF). CRF provide a probabilistic classification framework 

including local spatial and temporal context. Although context is known to improve image analysis results, so far only little research 

was carried out on how to model it. Taking into account context is the main benefit of CRF in comparison to many other 

classification methods. Context can be already considered by the choice of features and in the design of the interaction potentials that 

model the dependencies of interacting sites in the CRF. In this paper, these aspects are more thoroughly investigated. The impact of 

the applied features on the classification result as well as different models for the spatial interaction potentials are evaluated and 

compared to the purely label-based Markov Random Field model.  
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1. INTRODUCTION 

An increasing number of optical high resolution (HR) remote 

sensing satellite systems have become available in the last 

decade. It should thus be possible to improve the classification 

accuracy and to analyse land cover changes more frequently 

than this is currently done based on a multitemporal analysis. 

However, the purchase of HR multitemporal data for these 

purposes is often not economically viable, especially for large 

areas. Data having medium resolution do not offer as much 

detail, but cover a larger area and may often be preferable from 

an economical point of view. Combining the advantages of both 

data types requires multiscale and multitemporal analysis. 
 

Up to now most approaches for multitemporal land cover 

analysis do not make use of temporal dependencies, but derive 

results by some kind of difference measure between the 

monotemporal classification results of different epochs (i.e., 

different acquisition times) (Lu et al., 2004). If data from all 

epochs are available, it would seem to be advantageous to use 

the original observations, i.e. the image data, rather than derived 

data. This has for instance been done in (Feitosa et al., 2009), 

where a model of temporal dependencies based on Markov 

chains is applied. As in most techniques for multitemporal 

classification, each pixel is classified individually without 

considering spatial context, which leads to a salt-and-pepper-

like appearance of the change detection results. Bruzzone et al. 

(2004) try to overcome this problem by using a cascade of three 

multitemporal classifiers, one of them considering the k-nearest 

neighbours of each pixel. A statistical model of spatial context 

in image classification is given by Markov Random Fields 

(MRF) (Geman & Geman, 1984), which have also been used for 

change detection (Melgani & Serpico, 2003), (Moser et al., 

2009). In (Melgani & Serpico, 2003), the MRF framework is 

extended by a temporal energy term based on a transition 

probability matrix in order to improve the classification results 

for two consecutive images. Moser et al. (2009) applied the 

MRF framework to detect changes in optical satellite images 

based on multiscale features, but without determining the 

changed object classes.   
 

Using MRF, the interaction between neighbouring image sites 

(pixels or segments) is restricted to the class labels, whereas the 

features extracted from different sites are assumed to be 

conditionally independent. This restriction is overcome by 

Conditional Random Fields (CRF; Kumar & Hebert, 2006). 

CRF provide a discriminative framework that can also model 

dependencies between features from different image sites and 

interactions between the labels and the features. In remote 

sensing CRF have been used for monotemporal classification, 

e.g. of settlement areas in HR optical satellite images (Zhong & 

Wang, 2007) or crop types and other land cover classes in 

Landsat data (Roscher et al., 2010). Multitemporal classification 

based on CRF for improving the overall classification accuracy 

as well as detecting changes has first been applied in (Hoberg et 

al., 2010). This method allows for temporal information passing 

using an extension of the CRF model.  
 

Multiscale analysis is motivated by the fact that the appearance 

of objects in a scene is a function of the image resolution and 

because it is capable of providing a more global view on image 

content and image analysis algorithms (Kato et al., 1993), 

(Wilsky, 2002). The simplest way of considering multiple scales 

in classification is to derive the features at multiple scales, e.g. 

(Kumar & Hebert, 2006), which has been applied for change 

detection in (Moser et al., 2009). There have also been 

approaches to combine a multiscale analysis with CRF. In 

(Schnitzspan et al., 2008), a multiscale CRF is built on an 
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image grid that in addition to the spatial neighbourhood 

relations also considers neighbours in scale based on a regular 

pyramid structure. Different classes are represented at different 

scale levels by a part-based object model: at finer resolutions, 

the classes to be discerned correspond to object parts, whereas 

at coarser resolutions, they correspond to compound objects. In 

(Yang et al., 2010) this method is extended to an irregular 

pyramid based on a multi-scale watershed segmentation of the 

original image. 
 

A combination of multitemporal and multiscale analysis of 

remote sensing data using CRF is presented by Hoberg et al. 

(2011). A set of multispectral images of different resolution is 

classified simultaneously in order to increase the accuracy and 

reliability of the classification results and to detect land cover 

changes between the individual epochs. This approach allows to 

model dependencies between image regions at identical 

positions in the different epochs that may additionally be 

characterized by different scales and, hence, by different 

(though related) class structures. 
 

Unfortunately in publications about CRF there is only little 

information about feature selection and the influence of 

different features on the classification result. Moreover in most 

cases only one model for the interaction potential is applied, 

without justification of the choice of the particular model. These 

issues are investigated in this paper. We compare different 

context models with different subsets of features that are 

extracted at different scales. First, to find the best subset of 

features depending on the maximum scale we apply a feature 

selection process. Next the best feature subset is selected for the 

association potential. Based on the selected association 

potential, we investigate three different context models for the 

spatial interaction potential, again comparing different feature 

subsets. Finally the results of these investigations are applied in 

a multitemporal CRF-based classification approach. Tests are 

performed using two set-ups, one of them using images having 

identical resolution and one with images of different resolution. 
 

The remainder of this paper is structured as follows. In Section 

2, the principles of CRF and the extensions for the classification 

of multitemporal and multiscale data are presented. Section 3 

focuses on the description of the features and on feature 

selection. In Section 4, the test site is described. A qualitative 

analysis of the different ways of modelling context is given in 

Section 5, followed by quantitative results in Section 6. 

Conclusions and an outlook are given in Section 7. 

 

 

2. MULTITEMPORAL AND MULTISCALE CRF 

In many classification algorithms the decision for a class at a 

certain image site is just based on information derived at the 

regarded site (i.e., a pixel, a square block of pixels in a regular 

grid, or a segment). In fact, the class labels and also the data of 

spatially and temporally neighbouring sites are often similar or 

show characteristic patterns, which can be modelled using CRF. 

In monotemporal classification, we want to determine the vector 

of class labels x whose components xi correspond to the classes 

of image sites i  S and S being the set of all sites for given 

image data y by maximizing the posterior probability P(x | y) 

(Kumar & Hebert, 2006):  
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In (1), Ni is the spatial neighbourhood of image site i (thus, j is 

a spatial neighbour of i), and Z is a normalization constant 

called the partition function. The association potential Ai links 

the class label xi of image site i to the data y, whereas the term 

Iij, called interaction potential, models the dependencies 

between the labels xi and xj of neighbouring sites i and j and the 

data y. The model is very general in terms of the definition of 

the functional model for both Ai and Iij.  
 

In the multitemporal case, we have M co-registered images. In 

addition to the interactions of spatial neighbours, the temporal 

neighbourhood is taken into account. Each node is only linked 

to its direct temporal neighbours at its spatial position (Figure 

1). The components of the image data vector y are site-wise data 

vectors yi
t, with i  S and S being the set of sites of all images 

(i.e., i does not refer to a particular spatial position, but it refers 

to one spatial position in one of the images). The index t 

indicates the membership of image site i to the related epoch 

t  T and T = {1,… M}. The components of x are the class 

labels of the image sites i, xi
t, also with epoch index t  T. For 

each image site we want to determine the class xi
t from a set of 

pre-defined classes. The class structure and thus the number of 

classes are dependent on t. In order to model the mutual 

dependency of the class labels at an image site at different 

epochs, the model for P(x | y) in (1) has to be extended:  
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As the different functional models for the potential functions A, 

IS, and ITtk are shift-invariant, the subscripts of the potential 

functions in (1) have been omitted in (2). In (2), A is the 

association potential, IS the spatial interaction potential that 

corresponds to the interaction potential Iij in (1), and ITtk the 

temporal interaction potential. In ITtk, yt and yk are the images 

observed at epochs t and k, respectively. Et is the set of epochs 

in the temporal neighbourhood of the epoch to which image site 

i belongs, thus k is the time index of an epoch in temporal 

neighbourhood of t. The set of image sites at epoch k  Et that 

are temporal neighbours of the image site i is denoted by Li
k, 

thus l  Li
k is an image site that is a temporal neighbour of i in 

epoch k. The temporal interaction potential models the 

dependency between the class labels and the observed data at 

consecutive epochs. The image sites are chosen to be individual 

pixels and thus are arranged in a regular grid for each image. 

Figure 1 shows the spatial and temporal neighbourhood for 

images having identical or different resolutions. 

Figure 1.  Multitemporal graph structure. Left: images having 

the same resolution. Right: images having different 

resolutions. Red nodes: processed primitives; orange / 

green nodes: spatial / temporal neighbours. 
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2.1 Association potential 

The association potential A(xi
t, yt) in (2) is related to the 

probability of label xi
t taking a value c given the image yt at 

epoch t by A(xi
t, yt) = log{P[xi

t =c | fi
t(yt)]}. The image data are 

represented by site-wise feature vectors fi
t(yt) that may depend 

on the entire image at epoch t, e.g. by using features at different 

scales (Kumar & Hebert, 2006). We use a multivariate Gaussian 

model for P[xi
t =c | fi

t(yt)] (Bishop, 2006):  
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In (3), Efc
t and fc

t are the mean and co-variance matrix of the 

features of class c, respectively. It is important to note that both 

the definition of the features and the dimension of the feature 

vectors fi
t(yt) may vary from image to image, because the 

definition of appropriate and expressive features depends on the 

image resolution and also on the spectral information contained 

in the images (see also Section 3).  

 

2.2 Spatial interaction potential 

The spatial interaction potential IS(xi
t, xj

t, yt) in (2) is a measure 

for the influence of the data yt and the neighbouring labels xj
t on 

the class xi
t of image site i at epoch t. In this potential, the data 

are represented by site-wise vectors of interaction features 

ij
t(yt). In this work we compare three different models for the 

spatial interaction potential. The first model only depends on 

the labels. It is commonly used with MRF and has a smoothing 

effect on the labels: 
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The second model is based on (Shotton et al., 2007):  
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The third model is used by Hoberg et al. (2010):  
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In (5) and (6), ||µij
t(yt)|| denotes the Euclidean norm of µij

t(yt) 

and  is a weighting factor for the influence of the spatial 

interaction potential in the classification process. We use the 

component-wise differences of the feature vectors hi
t(yt) for the 

interaction features ij
t(yt) , i.e. ij

t(yt) = [µij1
t, … µijR

t]T, where 

R is the dimension of the vectors hi
t(yt) that may vary with t.  

Note that the feature vector hi
t(yt) used for the interaction 

potential might differ from the feature vector fi
t(yt) used for the 

association potential (Kumar & Hebert, 2006). Denoting the mth 

component of hi
t(yt) by him

t(yt), the mth component of ij
t(yt) is 

µijm
t = |him

t(yt) – hjm
t(yt)|. Division by the number of features R 

in (5) and (6) guarantees an identical influence of the spatial 

interaction potentials for all images. In IS2 a potential of zero is 

assigned in the case of two sites have different labels. Differing 

labels at neighbouring sites are penalized unless the features of 

the sites are also very different. IS3 penalizes both local changes 

of the class labels if the data are similar and also identical class 

labels if the features are different.  

 

2.3 Temporal interaction potential 

The temporal interaction potential ITtk(xi
t, xl

k, yt, yk) models the 

dependencies between the data y and the labels xi
t and xl

k of site 

i at epoch t and site l of epoch k. In principle, ITtk could be 

modelled similarly to IS by penalizing temporal change of 

labels unless it is indicated by differences in the data. However, 

a more sophisticated functional model would be required to 

compensate for atmospheric effects and varying illumination 

conditions, different resolutions, and seasonal effects of the 

vegetation. We use a simple model for the temporal interaction 

potential that neglects the dependency of ITtk of the data: 
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In (7),   is a weight factor. TMs(t)s(k) is a temporal transition 

matrix similar to the transition probability matrix in (Bruzzone 

et al., 2004). The elements of TMs(t)s(k) (xi
t, xl

k) can be seen as 

conditional probabilities P(xi
t =ct | xl

k =ck) of an image site i 

belonging to class ct at epoch t if the image site l that occupies 

the same spatial position as i in epoch k belongs to class ck in 

that epoch. Qi
k is the number of elements in Li

k and acts as a 

normalization factor ensuring an identical influence of the sum 

of all temporal interaction potentials in any epoch, no matter 

how many temporal neighbours exist. The scales s(t) and s(k) of 

the data at epochs t and k may differ; there is one matrix 

TMs(t)s(k)  for each combination of scales available in the data. 

For further information we refer to (Hoberg et al., 2011). 

2.4 Training and Inference 

Exact training and inference is computationally intractable for 

CRF (Kumar & Hebert, 2006). In our application, we only train 

the parameters of the association potentials, i.e. the mean Efc
t 

and the co-variance matrix fc
t of the features of each class c. 

They are determined from the features fi
t(yt) in training sites 

individually for each epoch t and each class c. The other model 

parameters, i.e. the weighting factors  and  of the spatial and 

temporal interaction potentials and the elements of the 

transition matrices TMs(t)s(k), were found empirically. For 

inference, we use Loopy Belief Propagation (LBP) (Nocedal & 

Wright, 2006), a standard technique for probability propagation 

in graphs with cycles that has shown to give good results in the 

comparison reported in (Vishwanathan et al., 2006).  

 

 

3. FEATURES AND FEATURE SELECTION 

In order to apply the CRF framework, the site-wise feature 

vectors fi
t(yt) for the association and hi

t(yt) for the spatial 

interaction potentials for each epoch t must be defined. Both 

must consist of appropriate features that can help to 

discriminate the individual classes. In our application, we used 

several groups of features, namely colour-based, textural and 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

131



 

 

structural features. All features are computed at five different 

scales d, with d indicating the scale. Whereas in 1 only 

individual pixels are taken into account, in 2 to 5 the features 

are extracted in a square window of size 3, 5, 9, and 13 pixels, 

respectively, centred at the centre of image site i. Hence we do 

not only consider information derived at site i for the site-wise 

feature vectors fi(y) and hi(y), but we also model dependencies 

between the image information of neighbouring sites.  
 

The colour-based features are directly derived from the pixel 

values of the spectral channels, four in our case. We used the 

mean and variance of the red (Ed
r, Vd

r), green (Ed
g, Vd

g), blue 

(Ed
b, V

d
b), and near infrared (Ed

nir, V
d
nir) channel, the variance of 

the hue (Vd
hue), and the mean of the difference of red and green 

(Ed
r-g), near infrared and red (Ed

nir-r), and near infrared and green 

(Ed
nir-g). Moreover the mean and variance of the normalized 

difference vegetation index (Ed
ndvi, Vd

ndvi) and the relational 

vegetation index (Ed
rvi, V

d
rvi) were computed. 

 

The textural features consist of contrast (cond), correlation 

(cord), energy (ened), homogeneity (homd), and entropy (entd) as 

defined by Haralick et al. (1973). They are all derived from the 

gray-level co-occurence matrix that represents the distribution 

of co-occurring values at a given offset (1 in our case).  
 

The structural features are derived from a weighted histogram of 

oriented gradients (HOG) (Dalal & Triggs, 2005). Each 

histogram has 30 bins, so that each bin corresponds to an 

orientation interval of 6° width. Each bin contains the sum of 

the magnitudes of all gradients having an orientation that is 

within the interval corresponding to the bin. Summing over the 

magnitudes and not just counting the numbers of gradients 

falling into each bin is done to take into account the impact of 

strong magnitudes. From the histogram we derive five features: 

The mean of all gradient magnitudes (Ed
grad) the variance of the 

histogram entries (Vd
grad), the number of bins with magnitudes 

above the mean magnitude (numd), the value of the maximum 

histogram entry (magd) and the angle between the first two 

maxima (angd). All the features are normalised so that the 

values are in the interval [0, 1]. 
 

We define the feature vectors corresponding to a maximum 

scale λmax to consist not only of the features extracted at λmax, 

but also of all features of lower scales. Hence, for instance the 

feature vector corresponding to max=5 contains 113 elements, 

nine of them extracted at 1 and 26 features extracted at each 

additional scale. Using the large number of features just 

described makes the classification quite time consuming for two 

reasons: All the features have to be extracted and all have to be 

considered for determining the potentials. As many of the 

features are highly correlated or may only marginally support 

the classification, we apply a feature selection procedure to find 

out which features are relevant for our aims and to reduce the 

number of features accordingly. For that purpose we use the 

correlation-based feature selection approach by Hall (1999). 

First, the single feature which best classifies the data set is 

determined. After that, other features are chosen according to 

criteria that ensure the selection of a subset that contains 

features that are highly correlated with the classes, yet 

uncorrelated with each other.  

 

4. TEST SITE AND DATA 

Our test area is situated near Herne, Germany, and covers an 

area of 8.6 x 5.9 km². We used multispectral Ikonos data with 

4 m ground sampling distance (GSD) acquired in 2005 and 

2007, and Landsat data of 30 m GSD acquired in 2010. All 

images were recorded in summer. The area was split into 54 

sections, which were processed separately. Seven sections 

served as training data, the rest as test sites. Ground truth was 

obtained by manually labelling the images at pixel level. The 

classes to be distinguished with Ikonos imagery are residential 

areas (res), industrial areas (ind), forests (for), and cropland 

(crp). Because there is no clear distinction of the classes res and 

ind in the medium resolution Landsat imagery they are fused to 

a new class built-up areas (bui) in that resolution.  
 

 

5. FEATURE AND MODEL SELECTION 

In this section the impact of using features at different scales 

and of different context models on the classification result is 

investigated. We try to find a suitable subset of features for each 

maximum scale max and then analyse the results to find the best 

maximum scale and, thus, the optimal feature subset for the 

association potential. Then we compare different context 

models for the spatial interaction potential, using the optimal 

feature subsets for each maximum scale max. 
 

To investigate how many features should be used for our CRF-

classification we applied a standard maximum likelihood (ML) 

classification in subsets with features derived at an increasing 

number of scales up to a maximum scale λmax, ordering the 

features according to the results of the feature selection process 

described above. The ML-classification was chosen because its 

model is also used for the association potential. For all values of 

λmax we found that using the six best features was sufficient. 

Additional features did not further increase the classification 

accuracy. Hence each of the feature vectors fi
t(yt) and hi

t(yt) was 

reduced to just six features depending on max: 
  

max=1: E
1
r, E

1
g, E

1
b, E

1
nir, E

1
ndvi, E

1
rvi 

max=2: E
2
nir, V

2
nir, V

2
hue, E

2
nir-r, V

2
ndvi, E

2
grad 

max=3: E
3
nir, V

3
nir, V

3
hue, E

3
nir-r, E

3
grad, ent3 

max=4: E
4
g, E

4
nir, V

4
hue, E

4
grad, ent4, V3

hue 

max=5: E
5
nir, V

5
hue, E

5
grad, hom5, E4

g, ent4  
 

It is obvious that in each subset the features extracted in the 

largest scale are dominant. The impact of using features 

extracted at different maximum scales max on the association 

potential was evaluated by comparing the results of ML 

classification obtained for the selected subsets for each value of 

max. Figure 2 shows exemplary results for two of the sections 

using Ikonos imagery; the highest overall accuracy is achieved 

with max=4. Nevertheless, by visual interpretation most users 

would consider the result of max=3 to be best, because many 

finer structures (for instance the road in the upper example of 

figure 2) are much better preserved. Because information that is 

lost at this stage cannot be re-introduced in further processing 

steps, we decided to apply the feature vector fi
t(yt) for max=3 

for the association potential of our further computations. 
 

The three context models for the spatial interaction potential 

(Section 2.2) are evaluated by a monotemporal classification on 

Ikonos imagery. For the two data-dependent models we used 

the feature vectors selected for the association potentials in the 

maximum scales max=2, 3 and 4 (see above) for hi
t(yt). In 

general, the purely label-based model IS1 results in strong 

smoothing, while the data-dependent models preserve finer 

structures better, e.g. the road passing through cropland in 

Figure 3. However, this does not necessarily lead to a higher 

overall accuracy. In all scales IS2 performs slightly better than 

IS3, which favours additional class transitions if the features at 

neighbouring sites are different. The maximum scale of the
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 features in hi
t(yt) only has a minor effect on the results. Using 

max=2, some salt-and-pepper effects remain, whereas the other 

scales lead to stronger smoothing. Overall, using IS2 with hi
t(yt) 

from max=3 delivers the best trade-off of overall accuracy and 

preservation of details assessed by visual impression, which is 

why this combination is applied in our experiments (cf. Section 

6). Hence, in these experiments, fi
t(yt) and hi

t(yt) are identical.   
 

 

6. QUANTITATIVE EVALUTION 

We tested our multitemporal approach for two data set-ups: Set-

up I has only one scale and consists of two Ikonos images. In 

the multiscale set-up II we combined one Ikonos and one 

Landsat scene. For the Ikonos scenes we used the features as 

defined in Section 5, for the Landsat scene they were extracted 

only in the original resolution. 
 

The temporal transition matrix TM between Ikonos and Landsat 

used in our experiments is shown in Table 1. A similar matrix 

was defined for the transition between the two HR images in 

set-up I. The choice of these values is dependent on the land 

cover structure and the assumed changes. We assume that it is 

most likely to have no changes in any region. Nevertheless each 

class transition might happen, but with different probability. 
 

 xi
t+1 = bui xi

t+1 = for xi
t+1 = crp 

xi
t = res 1 0.05 0.05 

xi
t = ind 1 0.05 0.05 

xi
t = for 0.2 1 0.1 

xi
t = crp 0.2 0.1 1 

 

Table 1: Temporal transition matrix; t corresponds to the 

Ikonos image, t+1 corresponds to the Landsat image. 
 

For both set-ups, we compared our method (scenario CRFmulti) 

to a Maximum Likelihood classification using the Gaussian 

model in (3) (scenario ML) and to a multitemporal MRF-

classification (scenario MRF) using the same graph structure as 

for our CRFmulti approach, but applying IS1. For these three 

scenarios, the overall classification accuracy and the kappa 

coefficients are compared for all epochs in Table 2. In both set-

ups we achieved an overall accuracy of over 80% for all images 

with CRF and MRF, which is an increase of about 8% 

compared to the monotemporal ML-classification for the Ikonos 

images and even 15% for the Landsat scene (Figure 4). The 

impact of the multi-temporal approach is highlighted by the 

overall accuracy achieved in the scenario CRFmulti in 

comparison with the results of a monotemporal CRF 

classification (CRFmono) for the Landsat scene. Using CRFmono 

only leads to an accuracy of 72%, which is 12% lower than with 

CRFmulti. The higher information content of the HR images 

clearly propagates to the medium resolution scene and yields a 

significant increase. Nevertheless the accuracy of the HR image 

also increases. There was hardly any difference between 

scenarios MRF and CRFmulti. Only in a few regions finer 

structures are better preserved by the CRF-approach.  
 

S/E ML CRFmulti MRF 

I  / t1 73.7% / 0.57 80.8% / 0.72 81.3% / 0.73 

I / t2 72.8% / 0.61 81.1% / 0.72 80.6% / 0.72 

II  / t1 73.7% / 0.57 81.8% / 0.73 81.9% / 0.73 

II  / t2 69.6% / 0.53 84.3% / 0.74 84.1% / 0.74 
 

Table 2: Overall classification accuracy / kappa coefficients; S/ 

E: Set-up/epoch; set up I: t1: Ikonos, 2005; t2: Ikonos, 

2007; set up II. t1: Ikonos, 2005; t2: Landsat, 2010. 

reference λmax=1 (80.4%) λmax=2 (84.1%) 

λmax=3 (85.0%) 

 

λmax=4 (86.9%) λmax=5 (86.9%) 

Figure 2. Overall accuracy of ML-classification in dependence 

on applied maximum scale λmax for feature extraction. 

Red: res; blue: ind; green: for; yellow: crp.   

reference λmax=1 (67.0%) λmax=2 (72.6%) 

λmax=3 (77.4%) 

 

λmax=4 (81.8%) λmax=5 (81.4%) 

IS2, λmax=2 (88.7%) 

 

IS3, λmax=2 (88.2%) 

 

IS1 (90.7%) 

 

IS2, λmax=3 (88.6%) 

 

IS3, λmax=3 (88.0%) 

 

IS2, λmax=4 (88.4%) 

 

IS3, λmax=4 (87.3%) 

 

reference 

 

Figure 3. Overall accuracy of CRF-classification with different 

context models and varying scale λmax for the spatial 

interaction potential.  
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7. CONCLUSION 

In this work, we evaluated two possibilities for modelling 

spatial context within a CRF-framework. First the impact of 

using features extracted at different scales for the association 

potential was investigated. Neighbourhood dependencies are 

already taken into account in this step. Large scales result in a 

severe smoothing, while tiny structures are lost. Furthermore, 

different context models for the spatial interaction potential 

were compared. It could be shown that data-dependent models 

as used for CRF have a better ability to preserve fine structures. 

The results of these investigations were applied in a CRF-based 

approach for multitemporal and multiscale image classification. 

Besides incorporating spatial context, this method uses a model 

of temporal context by introducing a temporal interaction 

potential. The overall classification accuracy of all images was 

improved by at least 8%. The effect of the multitemporal 

interaction was highlighted in a set-up of an Ikonos and a 

Landsat image. The overall accuracy of CRFmulti in comparison 

to CRFmono for the Landsat scene increased at about 12%. 
 

Further research will concentrate on an improvement of the 

model for the temporal interaction potential, which was kept 

quite simple in this work. Moreover, tests on different data sets 

with a focus on the ability of the method for change detection 

will be carried out. 
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