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ABSTRACT:

Tracking-by-detection is a widely used practice in recent tracking systems. These usually rely on independent single frame detections
that are handled as observations in a recursive estimation framework. If these observations are imprecise the generated trajectory is
prone to be updated towards a wrong position. In contrary to existing methods our novel approach uses a Dynamic Bayes Network in
which the state vector of a recursive Bayes filter, as well as the location of the tracked object in the image are modelled as unknowns.
These unknowns are estimated in a probabilistic framework taking into account a dynamic model, and a state-of-the-art pedestrian
detector and classifier. The classifier is based on the Random Forest-algorithm and is capable of being trained incrementally so that
new training samples can be incorporated at runtime. This allows the classifier to adapt to the changing appearance of a target and to
unlearn outdated features. The approach is evaluated on a publicly available benchmark. The results confirm that our approach is well
suited for tracking pedestrians over long distances while at the same time achieving comparatively good geometric accuracy.

1. INTRODUCTION

Pedestrian detection and tracking is one of the most active re-
search topics in the fields of image sequence analysis and com-
puter vision. The aim of tracking is to establish correspondences
between target locations over time and hence it is widely used for
the semantic interpretation of an image sequence. Many avail-
able systems apply object detection in single frames, an associa-
tion step (linking detections to trajectories) and recursive filtering
to find a compromise between image based measurements (i.e.,
automatic pedestrian detections) and a motion model. If the as-
sociation step is solved, the position of an object, detected in the
image, is integrated into the recursive filter as a measurement. If a
measurement is imprecise, the generated trajectory is prone to be
updated towards a wrong position. While most methods for track-
ing are concerned with a correct assignment of objects, where an
assignment counts as correct if an intersection-over-union score
(Everingham et al., 2010) threshold of 50% is exceeded, only
few papers address the geometric accuracy of a detection. How-
ever, geometric accuracy is essential for many realistic applica-
tions like motion analysis in sports sciences, the analysis of in-
teractions of humans in video surveillance and driver assistance
systems, where one has to decide whether a pedestrian does actu-
ally enter a vehicle path or not.

Detection-based approaches to tracking typically use classifiers
to discriminate the considered object classes. Existing approaches
differ by the number of classes (binary versus multi-class) and
in the way the training is carried out (online vs. offline). Bi-
nary classifiers trained offline typically deliver positive detec-
tions represented by surrounding rectangles in several nearby po-
sitions and scales in the vicinity of the true position of an object.
Usually, adjacent rectangles are grouped and non-maximum sup-
pression is applied after the classification step (Dalal and Triggs,
2005), (Felzenszwalb et al., 2010), (Dollár et al., 2010). The
actual task of tracking is then to associate the single-frame de-
tections between consecutive time steps, for which a data asso-
ciation problem must be solved. In contrast to these methods,
classifiers that are trained online specialise in the appearance of
individual targets at runtime. For this purpose classifiers based
on variants of Random Forests (Breiman, 2001), (Saffari et al.,
2009), (Kalal et al., 2010), Hough Forests (Gall and Lempit-

sky, 2013) and boosting (Breitenstein et al., 2011), (Godec et al.,
2011) are used. These approaches adapt well to gradual changes
in a target’s appearance, but depend on additional information
about novel pedestrians entering a scene, and they are quickly
distracted from the actual target if the training data was derived
from mis-aligned samples. Also, the bounding rectangles used in
detection-based approaches may easily be misaligned due to par-
tial occlusions, non-rigid body motion, illumination effects and
other disturbing effects. In a comprehensive study, Dollár et al.
(2011) show that the recall rates of 16 different pedestrian detec-
tors decrease rapidly if the intersection-over-union score thresh-
old is increased. A better alignment of the detection result to the
real object boundaries is for instance achieved by finer segmenta-
tion, based on pixels (Dai and Hoiem, 2012), superpixels (Shu et
al., 2013), interest points (Ommer et al., 2009), (Gall and Lempit-
sky, 2013), object parts (Felzenszwalb et al., 2010), (Benfold and
Reid, 2011) or contour models (Leibe et al., 2005), (Gavrila and
Munder, 2007). Such models have the advantage of being more
robust against partial occlusions compared to a holistic model. If
the relative position of an object part from the reference point of
the object is known, a correct localisation of the object is possi-
ble, even if only a subset of the parts is visible.

Although the geometric accuracy of single-frame detections is
rather low, these methods enable high recall rates, at least if some
false positive detections are also taken into account. In this way,
object detection is widely used in state-of-the-art papers using the
results as evidence for the presence of pedestrians (Schindler et
al., 2010), (Milan et al., 2014). The integration of several differ-
ent observations including single-frame detections is used in An-
driluka et al. (2008), Hoiem et al. (2008), Schindler et al. (2010)
and Ess et al. (2010). In these papers, the integration of the dif-
ferent observations is carried out using the framework of proba-
bilistic graphical models (Bishop, 2006), (Förstner, 2013). More
specifically, the papers mentioned above make use of directed
graphical models, i.e. Bayes networks, for the joint inference
of unknown parameters that are related, e.g., to the object iden-
tity and pose, to the parameters of the camera orientation and the
scene. The benefit of using these methods is that different sources
of input jointly contribute to the determination of the unknown
parameters while taking uncertainties into account.
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Most trackers use variants of the recursive Bayes Filter such as
the Kalman- or the Particle Filter to find a compromise between
image-based measurements and a motion model. Generally, the
motion model is a realisation of a first-order Markov chain which
considers the expected dynamical behaviour (e.g. constant veloc-
ity and smooth motion). In case of an occlusion, i.e. if no mea-
surement can be obtained, the trajectory is continued only by the
motion model, and spatio-temporal consistency of the generated
trajectory can be preserved. For longer intervals of occlusion,
however, a first-order Markov chain is prone to drift away from
the actual target position. In this context, (Pellegrini et al., 2009)
involve higher order motion models for each object to keep track
of the intended destination of the target. To account for physical
exclusions of the 3D position of two or more objects, the predic-
tion is based on the current position and velocity estimates of all
targets. Leal-Taixé et al. (2011) also consider groups of people
walking together and try to model the social avoidance and at-
traction forces between the involved objects. This paper applies
global optimisation of the trajectories, which makes the approach
unsuitable for real-time applications.

Our main insight is that state-of-the art results can be obtained
by methods that use variants of Bayes networks in one of two
possible approaches: Either they apply single-frame inference of
several variables, or they use multi-temporal models, i.e. a re-
cursive Bayes Filter, over different time steps with single state
variables. Our contribution is the proposal and investigation of an
approach based on Dynamic Bayes Networks (DBN), see Russell
et al. (1995), which unifies the abilities of modelling sequences
of variables and state variables in a factorised form. Our method
is dedicated to online multi-person tracking in monoscopic im-
age sequences. The DBN combines results of classifiers trained
online, category-specific object detectors and recursive filtering.
We show that the geometric accuracy can be improved by treating
both the state variables in object space and the position of pedes-
trians in the images as unknown variables. The method is eval-
uated on a Multiple Object Tracking benchmark dataset, which
allows us to compare to other state of the art methods.

2. METHOD

The proposed method consists of a Dynamic Bayes Network
which combines the results of a pedestrian detector, recursive
filtering and an instance-specific classifier with online training
capability in a single probabilistic tracking-by-detection frame-
work. The hidden variables of the system are the state parameters
related to the position and velocity of each pedestrian in world
coordinates as well as the pedestrian’s position in the image. By
modelling the parameters related to the pedestrian’s position in
the image by hidden variables, our method allows the detection
to be corrected before it is incorporated into the recursive filter.
In this way, the proposed method carries out the update step of
the recursive filter with an improved detection result, leading to
a more precise posterior position, which in turn leads to a more
precise prediction in the next iteration and decreases the search
radius for new trajectory associations and training samples for
the online classifier. One such graphical model is constructed
for each pedestrian independently of other pedestrians. The ap-
proach is made applicable to multi-object tracking by solving an
association problem prior to the actual trajectory continuation. To
account for static scene elements and to achieve viewpoint inde-
pendent results, the image-based observations are transferred to a
common 3D coordinate system, where the actual filter is applied.
The coordinate system is centred at the projection center of the
camera (at time k0 in case of a moving platform) with the X and
Z axes pointing in horizontal directions and Y in the vertical di-
rection (right-handed system). To enable monocular tracking in
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Figure 1. Dynamic Bayes Network for pedestrian tracking. The
nodes represent random variables, the edges model dependencies
between them. The meaning of the variables is briefly explained
on the right and in detail in the text.

3D, we presume a ground plane at a constant height below the
camera and expect that pedestrians only move along that plane.

2.1 Dynamic Bayes Network

Following the standard notation for graphical models (Bishop,
2006), the network structure of the proposed DBN is depicted in
Figure 1. The DBN represents a first-order Markov process, so
that each variable has parents only in the same or in the preceding
time step. The small solid circles represent deterministic parame-
ters and the larger circles random variables, where the grey nodes
correspond to observed and the white ones to unknown parame-
ters. One such graphical model is constructed for each tracked
pedestrian. The system state wk,i, the unknown image position
zk,i,F of the feet, the image position of the feet cdetk,i,F (observed
by the person detector) and cRFk,i (observed by the classifier) and
the image position of the head cdetk,i,H are modelled individually
for each person i. All other variables are either defined for an
entire image frame (if denoted by a subscript k indicating the
time step), or for the entire sequence. The joint probability den-
sity function (pdf) of the variables involved can be factorised in
accordance with the network structure:

P (zk,i,F ,wk,i,wk−1,i, c
det
k,i,H , c

det
k,i,F , c

RF
k,i , Ck, π)

∝ P (zk,i,F |wk,i, Ck)P (wk,i|wk−1,i, π)

P (cRFk,i |zk,i,F )P (cdetk,i,F |zk,i,F )P (cdetk,i,H |wk,i, Ck).

(1)

In the following the variables considered in our approach are ex-
plained in detail. The subscript k is omitted in the remainder of
the paper where it is obvious.

Fixed variables. For tracking in 3D world coordinates a ground
plane π is defined as the (X ,Z) plane at a known distance Yπ
below the camera. The pedestrian positions are restricted to the
ground plane, which enables monocular tracking in 3D (i.e., the
unique conversion from 2D image coordinates to 3D world coor-
dinates using the inverse collinearity equations with constant Y ).
Moreover, the parameters Ck of the interior and exterior camera
orientation are considered to be given for every time step k.

Unknown variables. The state vector wi = [X,Y, Z,H, Ẋ, Ż]T

consists of the three-dimensional coordinates X , Y and Z, the
height H of the pedestrian and the velocity of the position co-
ordinates X and Z on the ground plane. As the position of a
pedestrian in world coordinates cannot be observed directly, the
state vector is linked to the position of the feet zi,F = [xF , yF ]
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in the image, which is also modelled as a hidden variable, and
to the position of the head cdeti,H = [xH , yH ], which is observed,
by conditional probability density functions. For the state vector
and for the position of the feet we assume multi-variate normal
distributions, so that we have for the initial step in time:

P (zi,F |wi, C) = N (µz,F ,Σzz,F ),

where µz,F is a mean vector, Σzz,F is a covariance matrix, and
C are the parameters of the interior and exterior orientation of
the camera. The functional relationship between the image and
world coordinates is described by the collinearity equations (Eqs.
2-5), and an additional fictitious observation mF

π (Eq. 6) is in-
troduced to model the assumption that pedestrians stand on the
ground plane.

mF
x = xo − c

r11(X −X0) + r12(Y − Y0) + r13(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)
(2)

mF
y = yo − c

r21(X −X0) + r22(Y − Y0) + r23(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)
(3)

mH
x = xo − c

r11(X −X0) + r12(H − Y0) + r13(Z − Z0)

r31(X −X0) + r32(H − Y0) + r33(Z − Z0)
(4)

mH
y = yo − c

r21(X −X0) + r22(H − Y0) + r23(Z − Z0)

r31(X −X0) + r32(H − Y0) + r33(Z − Z0)
(5)

mF
π = Yπ = Y (6)

In Eqs. 2-5 x0 and y0 are the coordinates of the principal point
and c is the focal length of the camera. rij are the elements
of the rotation matrix between image and reference frame and
X0, Y0, Z0 denote the perspective centre of the camera. mF

x and
mF
y denote the measurement functions for the image coordinates

of the feet and mH
x and mH

y those for the image coordinates of
the head. The position of the feet is further related to observed
variables in the image, see below. cdeti,H and zi,F are the top centre
and bottom centre position of the rectangle surrounding a person,
respectively. The width-to-height ratio of this rectangle is the ra-
tio of the initial detection. We refer to zi,F as the reference point
of a person i in the image in the remainder of the paper.
Furthermore, the state vector is related to the posterior state vec-
tor wk−1,i of the previous time step. For each object a velocity is
estimated using the temporal model of a recursive filter that en-
ables a prediction of the future state to narrow down the search
space for new detections and to keep the state vector consistent
over time. P (wk,i|wk−1,i, π) is given by the temporal model
based on a first-order Markov chain (Eq. 7). Since the state vec-
tor is modelled to follow a multi-variate normal distribution, the
same holds true for the predicted state P (wk,i|wk−1,i, π),

P (wk,i|wk−1,i, π) = N (µ+
w,Σ

+
ww)

= N (Tµw,k−1, TΣww,k−1T
T + Σp),

(7)

where T is the transition matrix and Σp = GΣuuG
T accounts

for changes in Ẋ and Ż and Y and H due to unforseen ac-
celerations (aX ,aZ ) and velocities (vY ,vH ). These effects are
captured by a zero-mean multi-variate normal distribution over
u = [aX , vY , aZ , vH ]T with expectation E(u)=0 and
Σuu=diag(σ2

aX , σ
2
vY , σ

2
aZ , σ

2
vH) (Welch and Bishop, 1995).

These uncertainties are related to the covariance of the predicted
state by the matrix G.

Observed variables. Three different observations are incorpo-
rated in the model: The accumulated votes of a category-specific
classifier trained on persons, voting for the image position of the
head and for that of the feet, and the result of an instance-specific

classifier trained on individual persons at runtime.

Note that any person-detector usually delivers several adjacent
positions around a true position of a person in scale-space. Given
a set of rectangles as the result of the classifier, we associate
these rectangles either to an existing trajectory or to a hypoth-
esis about a new trajectory. A hypothesis is each detection that
does not overlap with an intersection-over-union score larger than
0.5 with any predicted rectangle of a pedestrian that is already
tracked, and that has a height of at least 48 pixels. For the asso-
ciation of the (ungrouped) positive classification results, a simple
nearest neighbour association in scale-space is applied. The con-
fidence about the position of the head, P (cdeti,H |wi, C), and the
feet, P (cdeti,F |zi,F ), both initially set to zero for all pixels, is com-
puted by means of a Kernel Density Estimation (KDE) with a
constant Gaussian kernel (σx=σy= 10 pixels) centred at every
top centre position (to vote for the head) and bottom centre posi-
tion (to vote for the feet) of all rectangles associated to person i,
respectively.
P (cdetk,i,H |wk,i, Ck) denotes the conditional probability density
functions of cdetk,i,H given that person i attains the state wk,i at
time k,

P (cdetk,i,H |wk,i, Ck) = N (µc,H ,Σcc,H)

We determine the Gaussian parameters of the head position
µc,H = [xH , yH ] as the weighted sample mean of the density
estimate given by the KDE with covariance Σcc,H .
For the estimation of the reference point of the feet we introduce
an additional observation based on an instance-specific classifier,
which considers one class for each person and an additional class
for the background. By cRFi we denote the position of the feet
of person i observed by an instance-specific classifier. We apply
an online Random Forest (cf. Saffari et al., 2009). The Random
Forest is trained with samples from an elliptic region with the
target position as its reference point. The regions are normalised
to a constant height of 48 pixels and a width-to-height ratio of
0.5. Because training samples are initially rare, further positive
training samples are taken from positions shifted by one pixel up,
down, left and right from the reference point. Negative samples
(for the background class) are taken from positions translated by
half of the size of the ellipse in the same directions. The feature
vector is composed of the RGB values inside the ellipse. Each
time a trajectory is updated, we take positive training samples
from the elliptic region with the new target position as its refer-
ence point. To guarantee that the number of training samples is
equal for every class, the classifier is trained anew with samples
stored in a queue each time a new trajectory is initialised or ter-
minated (see Sec. 2.3).
Classification delivers P (cRFi |zi,F ) ∝ ni

n0
, where ni and n0 are

the relative frequencies of class i and the background class, re-
spectively, assigned to the leaf nodes of all decision trees in the
Random Forest to which the sample zi,F propagates.
P (cRFi |zi,F ) is evaluated for every reference point zi,F located
within a search region (we take the 99%-confidence ellipse of the
predicted state) around the predicted position of the ith person.
P (cRFi |zi,F ) and P (cdeti,F |zi,F ) are the probabilities to observe
cRFi and cdeti,F , respectively, if zi,F is the reference point of the
ith person in the image.

2.2 Inference

Given the observed and fixed variables and having defined all
probabilities in Sec. 2.1, the aim in this paper is to find the un-
known parameters that maximise the joint pdf (Eq. 1). We apply
an inference scheme similar to that of a recursive Bayes filter,
with the difference that the state vector is linked to another yet
unknown variable of the system. Therefore, we transform the
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Bayes Network into a factor graph representation (Kschischang
et al., 2001), see Fig. 2, and apply message passing according to
Pearl (1988). The most probable state configuration is found in
three steps, which are highlighted in colour in Fig. 2. Each factor
node (square) corresponds to a function of the subset of variables
that are connected to it. The arrows indicate forward (red) and
backward (green) messages sent through the graph.
First, we compute the position of the feet µ′z,F = [xF , yF ] given
the observed variables cRFi and cdeti,F as the weighted sample mean
of the product of the observed pdfsP (cRFi |zi,F ) andP (cdeti,F |zi,F )
with the according sample covariance Σzz,F .

P (z′i,F |cRFi , cdeti,F ) = N (µ′z,F ,Σzz,F )

∼ P (cRFi |zi,F )P (cdeti,F |zi,F )
(8)

Second, the state vector is propagated in time using the tempo-
ral model (Eq. 7) and corrected by incorporating the estimated
position of the feet, the measured position of the head and the fic-
titious observation Yπ . The vector z̄i = [xF , yF , xH , yH , Yπ]T

with covariance

Σzz,k =

Σzz,F 0 0

0 Σcc,H 0

0 0 σ2
π


is applied to the state vector using the update equation of an Ex-
tended Kalman Filter (EKF) model (Eq. 9).

ŵk,i = µ+
w +K(z̄k,i − z+i ), (9)

where z+i =[mF
x (µ+

w),mF
y (µ+

w),mH
x (µ+

w),mH
y (µ+

w),mF
π (µ+

w)]
is the predicted state transformed to the observation space by the
(non-linear) measurement Equations 2-6 and K is the Kalman
Gain matrix (Eq. 10) with M the Jacobian (Eq. 11) of the mea-
surement equations.

K = Σ+
wwM

T (Σzz,k +MΣ+
wwM

T )−1; (10)

M =



∂mF
x

∂X

∂mF
x

∂Y

∂mF
x

∂Z
0 0 0

∂mF
y

∂X

∂mF
y

∂Y

∂mF
y

∂Z
0 0 0

∂mH
x

∂X
0

∂mH
x

∂Z

∂mH
x

∂H
0 0

∂mH
y

∂X
0

∂mH
y

∂Z

∂mH
y

∂H
0 0

0 1 0 0 0 0

 (11)
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Figure 3. Prior knowledge about the scene.

Third, the mean vector and covariance matrix of the corrected
state are transformed back to the image domain using the mea-
surement equations and the corresponding Jacobian, where they
define the posterior image position of the feet and the head:

P (zi|wi, C) = N (µz,MΣwwM
T ),

where µz=[mF
x (ŵi),m

F
y (ŵi),m

H
x (ŵi),m

H
y (ŵi),m

F
π (ŵi)].

Finally, the online Random Forest is updated using new training
samples taken from the ellipse with ẑF = [mF

x (ŵi),m
F
y (ŵi)]

as reference point and a height mF
y (ŵi) −mH

y (ŵi). The EKF
update step is executed only if the person is not occluded (see
Sec. 2.3).

2.3 Intitialisation and termination

At each time step k there exists a set of persons which have al-
ready been tracked and a set of hypotheses about new candidates
for tracking. The criterion for the generation of hypotheses is ex-
plained in Sec. 2.1. In order to validate a hypothesis, we evaluate
the confidence of a pedestrian detector about the presence of a
person, as well as prior knowledge about the scene. We take a set
of over-complete object detections (given by an arbitrary object
detector), many of which usually yield clusters of positive results
around each true position of a person in scale-space. We assume
that each detection is generated either by a person which is al-
ready tracked, by a new hypothesis or by a false positive detec-
tion. In Sec. 2.1 we introduced P (cdetk,i,F |zk,i,F ) as the likelihood
of the observation cdetk,i,F given that zk,i,F is the unknown position
in the image. We further define P (chypk |z

hyp
k ) as the likelihood of

a pedestrian detection chypk given that a new tracking candidate is
present with zhypk as its reference point. Every detection is asso-
ciated either to person i or to a hypothesis, if a nearest neighbour
criterion in scale-space is fulfilled and if the detection lies within
the search space of the person (given by the confidence of the pre-
dicted state) or that of a hypothesis (given by the confidence of
an initial state). If the detection is not assigned to any person or
to a hypothesis, it is considered as a false positive detection and
is discarded. If an assignment is made, either P (cdetk,i,F |zk,i,F ) or
P (chypk |z

hyp
k ) (both initially set to zero for all pixels) is increased

by adding a Gaussian kernel with σx=σy=10 pixels centred at
the reference point of the detection.
After all detections are either assigned or discarded, we validate
each hypothesis h by assigning it a probability
P (h|chyp, zhyp) for being correct:

P (h|chyp, zhyp) ∝ P (chyp, h, zhyp)

= P (chyp|zhyp)P (zhyp|h)P (h) ∝ P (chyp|zhyp)P (h|zhyp).

The probability density P (h=true|zhyp) is given by prior know-
ledge about the scene, which is learned from training sequences.
We train a binary Random Forest classifier with the image coordi-
nates of the reference point as features and class assignments ac-
cording to true and false positive detections obtained by a
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(a) Detector confidence about the feet position of yet unassigned hypotheses

(b) Detector confidence about the head position of tracked pedestrians

(c) Detector confidence about the feet position of tracked pedestrians

(d) Classifier confidence about the feet position of tracked pedestrians

(e) Combined belief about the position of the feet, given the detector and classifier confidence

(f) Predicted (red), measured (yellow) and posterior (blue) position projected to the image and estimated bounding boxes (assigned random colours)

low high 

Figure 4. Frame 1 (left column) to 4 (right column) of the PETS09-S1L2 sequence.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: A. Yilmaz, C. Mallet, M. Ying Yang, and Y. Vizilter 

doi:10.5194/isprsannals-II-3-W5-435-2015

 
439



Det. Method Recall Prec. FAF MT ML FP FN IDs Frag. MOTA MOTP
G

T
(a) Full model 91.5 93.0 0.40 89.5% 0.0% 321 397 20 98 84.1 73.1
(b) without ORF 92.3 92.4 0.44 89.5% 0.0% 351 358 27 95 84.2 73.2
(c) without HOG 61.7 61.2 2.29 26.3% 0.0% 1818 1782 84 175 20.8 67.1

A
ut

. (d) without prior 93.0 40.0 8.17 89.5% 0.0% 6493 325 31 62 -47.3 67.5
(e) Full model 88.3 80.0 1.29 84.2% 0.0% 1029 546 30 58 65.5 67.4

Table 1. Sensitivity study in 2D with ground truth (GT) and automatically generated (Aut.) detections

Det. Method Recall Prec. FAF MT ML FP FN IDs Frag. MOTA MOTP

G
T

(a) Full model 96.5 98.1 0.11 94.7% 0.0% 89 165 21 29 94.1 76.1
(b) without ORF 97.1 97.3 0.16 94.7% 0.0% 126 133 28 21 93.8 75.4
(c) without HOG 56.0 55.5 2.62 15.8% 5.3% 2084 2048 86 96 9.3 50.7

A
ut

. (d) without prior 96.4 41.4 7.97 100.0% 0.0% 6334 166 36 37 -40.6 75.5
(e) Full model 90.8 82.2 1.15 84.2% 0.0% 912 429 29 32 70.5 76.8

Table 2. Sensitivity study in 3D

HOG/SVM detector (Dalal and Triggs, 2005) in a training phase.
The training samples are split into positive and negative sam-
ples by validation with reference data, using an intersection-over-
union score threshold of 50%. Classification then delivers the
probability of a hypothesis to be correct given the position in
the image. The distributions learned from the training sequences
used in the experiments are visualised in Fig. 3.
A hypothesis is accepted if the posterior P (h=true|chyp, zhyp)
is greater than 0.5. If this is the case, a new trajectory is initialised
with the hypothesis-parameters used as starting values. The state
parameters are computed from the reference point of the feet and
the head in the image using the inverse collinearity equations with
the height of the ground plane assigned to Y and the initial height
H is computed from the height (yF − yH ) in the image with a
scale estimate derived from the focal length of the camera and the
3D distance to the person. If no training data are available for a
scene, P (zhyp|h=true) is set to a uniform distribution.
To account for mutual occlusions we evaluate the predicted states
of all pedestrians and decide not to update the filter and the classi-
fier if the predicted bounding rectangle of a person overlaps more
than 50% with any other person and if the image-row coordinate
of the person is lower than that of the occluder (i.e, further behind
in the scene). If a person leaves the image frame or if the trajec-
tory is not updated for more than 5 frames in sequence, tracking
of that person is stopped.

3. EXPERIMENTS

This section reports results using the proposed method on the
3D MOT 2015 Benchmark (Leal-Taixé et al., 2015) which in-
cludes the PETS09-S2L21 and the AVG-TownCentre2 sequences.
The sensitivity of the method to the omission of single variables
is evaluated on the PETS09-S2L1 dataset (available for train-
ing in the 3D MOT 2015 Benchmark). The corresponding re-
sults of an evaluation in 2D image space (correct detection re-
quires at least 50% intersection-over-union score with the refer-
ence) and in 3D world coordinates (correct detection requires at
most 1m offset in position) are reported in Tables 1 and 2, re-
spectively. Furthermore, the average tracking results achieved
on the test sequences are given in Table 3, where they are com-
pared with related work. The reported metrics include the recall
and precision scores, false alarms per frame (FAF), the ratio of
mostly tracked (MT, a person is MT if tracked at least 80% of the
time being present in consecutive images) and mostly lost (ML,
if tracked at most 20%) tracking objects, the numbers of false
positive (FP) and false negative (FN) detections, the number of

1http://www.cvg.reading.ac.uk/PETS2009/a.html
2http://www.robots.ox.ac.uk/ActiveVision/Research/

Projects/2009bbenfold_headpose/project.html

identity switches (IDs), the number of interruptions during the
tracking of a person (Frag.) as well as the Multiple Object Track-
ing Accuracy (MOTA) and Multiple Object Tracking Precision
(MOTP) of the CLEAR metrics defined by Bernardin and Stiefel-
hagen (2008). The MOTA metric takes into account FP and FN
assignments as well as ID switches. The MOTP metric reflects
the geometric accuracy of the tracking results. The initial covari-
ance of the filter state, Σww,k=0, is assigned with σX=σZ=0.3m,
σY =0.01m, σH=0.03m and σẊ=σŻ=0.3ms−1. To account for
the process noise, we set σaX=σaZ=0.5ms−2, σvY =0.1ms−1

and σvH=0.2ms−1. σ2
π is assigned a comparatively small value

of 1mm.
In Figure 4 the different probability densities that are part of the
model are visualised. Each column in the figure depicts results
from a different time step (from frame 1 to 4). Figures 4(a) de-
pict the confidence of the person detector about new hypotheses
that are not yet assigned to any trajectory. These confidences are
used to validate new trajectories along with the prior scene infor-
mation (see Sec. 2.3). Note that the confidence at the location
of the right-most pedestrian in the image is lower than the con-
fidence assigned to the others and does not exceed a threshold,
so there is no trajectory initialised in the first frame. Figures 4(b)
depict the confidences of the person detector about head positions
of tracked persons in the image and Figures 4(c) those of the feet.
Figures 4(d) show the confidence of the online classifier about
the feet position of tracked pedestrians. Note that the distribu-
tion is becoming narrower over time (i.e., from the left subfigure
to the right), because further training samples arrive during run-
time. Figures 4(e) show the combined confidence about the feet
positions given the detection and classification result, and the pre-
dicted state, which is used for gating the search area. Figures 4(f)
depict the 2.5σ ellipses of the predicted state projected into the
image (red), the measurement derived from the densities shown
in Figures 4(e) (yellow) and the posterior state (blue).
For the sensitivity study about the omission of single variables the
full model (a) is compared with modified versions of the model,
in which the observations given by the online Random Forest
(ORF) classifier (b) and those given by the person detector (c) are
omitted. In settings (a)−(c) the initial bounding boxes are given
by manually annotated data. The observed variables of the model
are computed from the outcomes of a HOG/SVM detector (Dalal
and Triggs, 2005) and from an online Random Forest (Saffari et
al., 2009) as described in Sec. 2.1. Furthermore, the full model is
initialised with automatically generated detections (also given by
a HOG/SVM) without (d) and with (e) the usage of prior scene
information. In case of the sensitivity study the prior information
is learned from the PETS09-S1L2 sequence (cf. Fig. 3(a)). The
results reflect the benefit of using the full model as proposed in
this paper. The outcomes from the evaluation in 2D and in 3D
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(a) PETS09-S2L2 frame 436 (b) AVG-TownCenter frame 276

Figure 5. Qualitative results shown for example images from the two test sequences.

Method Avg. Rank MOTA MOTP FAF MT ML FP FN IDs Frag. Hz
DBN (ours) 1.7 51.1 61.0 2.3 28.7% 17.9% 2077 5746 380 418 0.1
LPSFM 2.4 35.9 54.0 2.3 13.8% 21.6% 2031 8206 520 601 8.4
LP3D 2.8 35.9 53.3 4.0 20.9% 16.4% 3588 6593 580 659 83.5
KalmanSFM 3.1 25.0 53.6 3.6 6.7% 14.6% 3161 7599 1838 1686 30.6

Table 3. 3D MOT 2015 results

both lead to the same insights. If the initial position is given, the
evaluation in the object space shows that 96.5% of the pedestrians
that are present in all frames are detected with at most 1m offset
from the true position, while 98.1% of all automatic detections
are correct. Furthermore, 94.7% of the pedestrians are tracked in
at least 80% of the images in which they are present, and none
less than 20%. When not using the ORF to derive an additional
observation of the target’s feet position (variant (b)), the number
of identity switches (IDs) and false assignments (FAF) are higher
than those achieved on the basis of the full model, while the other
metrics do not change significantly. In variant (c), when the result
of the person detector is omitted, the performance becomes worse
in terms of all metrics. In variants (d) and (e) the hypotheses
about new tracking candidates are derived from automatic pedes-
trian detections. If all hypotheses are accepted without applying
the validation step described in Sec. 2.3 (variant (d)), recall rates
similar to those of variant (a) are achieved only at the cost of a
strong decrease (of about 50%) in the precision. If the validation
step is carried out (variant (e)), the precision is superior to that of
variant (d), while both recall and precision are only about 10%
worse than those achieved on the basis of variant (a). Thus we
apply the full model with detections generated automatically for
the comparative study.
In the comparative study the proposed method is evaluated against
other results reported on the website3 of the 3D MOT Benchmark.
In favour of comparability, only detections which are publicly
available along with the data set are used to generate new ob-
ject hypotheses. The observed image positions of the feet com-
puted from the detection results, however, are still computed from
the outcomes of a HOG/SVM. The related work includes that of
Leal-Taixé et al. (2011), referred to as LPSFM, another yet unref-
erenced approach by the same principal author based on network
flow linear programming, referred to as LP3D, and Pellegrini et
al. (2009), referred to as KalmanSFM. The results (Table 3) show
that our method yields, with an average ranking of 1.7, the best
results in 6 of 10 evaluation metrics. We achieve the best re-
sults in the MOTA metric, which takes into account the number
of FP detections (and equivalently the rate of false assignments

3http://motchallenge.net

per frame), where our method yields the second best score, and
the number of FN detections and identity switches, where our
method performs best. Our method also yields comparatively
good results w.r.t. the persistence of tracking, which is reflected
in the percentage of mostly tracked objects (28.7%) and in the
number of fragmentations of the trajectories (418). On the down-
side, 17.9% of the pedestrians are not tracked for more than 20%
of the time being visible in the test sequences. As measured by
the MOTP score of 61.0, our methods also yields the highest ge-
ometric accuracy among the compared methods. In Fig. 5(a) and
5(b) qualitative results are shown for exemplary images of both
test sequences. Note that the rectangles align mostly well to the
contours of the pedestrians.
Tracking is performed on a 3.3GHz PC with 8 cores, where the
runtime of our method performs with 0.1Hz worst compared to
the related work. This is mainly due to the repetitive training of
the online Random Forest classifier every time a person enters or
leaves the scene, to the pixel-wise classification in the vicinity of
potential target positions, and to non-optimised code.

4. CONCLUSIONS

This paper proposes a probabilistic model designed for visual
pedestrian tracking. The pedestrian state (position, height and
velocity) in world coordinates and the position of the feet in the
image are modelled as hidden variables in a Dynamic Bayes Net-
work. Quantitative results show that the tracking performance
w.r.t. the re-identification of a pedestrian as well as the geometric
accuracy are superior to those achieved by competing methods.
The focus of this work is on the trajectory continuation and cor-
rect alignment of single pedestrians. The applicability to multiple
object tracking is realised by an association step which is exe-
cuted prior to processing on the basis of the proposed Bayes net-
work. In crowded scenes, where interactions between pedestrians
and mutual occlusions are inherent, the strategy is currently of-
ten not capable of resolving ambiguities in the detection-to-track
assignment, which is reflected in the MOTA values and in the
number of identity switches. As emphasized by many of the re-
lated papers, better results can be achieved if the trajectory con-
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tinuation is applied jointly for all pedestrians. We will extend our
model to jointly reason about the states of interacting pedestrians
in future work.
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Leal-Taixé, L., Pons-Moll, G. and Rosenhahn, B., 2011. Ev-
erybody needs somebody: Modeling social and grouping be-
havior on a linear programming multiple people tracker. In:
Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference on, IEEE, pp. 120–127.

Leibe, B., Seemann, E. and Schiele, B., 2005. Pedestrian de-
tection in crowded scenes. In: Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer Society Con-
ference on, Vol. 1, IEEE, pp. 878–885.

Milan, A., Roth, S. and Schindler, K., 2014. Continuous energy
minimization for multi-target tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence 36(1), pp. 58–72.

Ommer, B., Mader, T. and Buhmann, J. M., 2009. Seeing the
objects behind the dots: Recognition in videos from a mov-
ing camera. International Journal of Computer Vision 83(1),
pp. 57–71.

Pearl, J., 1988. Probabilistic reasoning and artificial intelligence:
Networks of plausible inference. San Mateo: Morgan Kau-
famn.

Pellegrini, S., Ess, A., Schindler, K. and Van Gool, L., 2009.
You’ll never walk alone: Modeling social behavior for multi-
target tracking. In: Computer Vision, 2009 IEEE 12th Interna-
tional Conference on, IEEE, pp. 261–268.

Russell, S., Norvig, P. and Intelligence, A., 1995. A modern
approach. Artificial Intelligence. Prentice-Hall, Egnlewood
Cliffs.

Saffari, A., Leistner, C., Santner, J., Godec, M. and Bischof, H.,
2009. On-line random forests. In: Computer Vision Work-
shops (ICCV Workshops), 2009 IEEE 12th International Con-
ference on, IEEE, pp. 1393–1400.

Schindler, K., Ess, A., Leibe, B. and Van Gool, L., 2010. Au-
tomatic detection and tracking of pedestrians from a moving
stereo rig. ISPRS Journal of Photogrammetry and Remote
Sensing 65(6), pp. 523–537.

Shu, G., Dehghan, A. and Shah, M., 2013. Improving an ob-
ject detector and extracting regions using superpixels. In:
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, IEEE, pp. 3721–3727.

Welch, G. and Bishop, G., 1995. An introduction to the kalman
filter. Technical Report TR 95-041, University of North Car-
olina, Department of Computer Science.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: A. Yilmaz, C. Mallet, M. Ying Yang, and Y. Vizilter 

doi:10.5194/isprsannals-II-3-W5-435-2015

 
442


	INTRODUCTION
	METHOD
	Dynamic Bayes Network
	Inference
	Intitialisation and termination

	EXPERIMENTS
	CONCLUSIONS



