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ABSTRACT: 
 
Three-dimensional information from dense image matching is a valuable input for a broad range of vision applications. While 
reliable approaches exist for dedicated stereo setups they do not easily generalize to more challenging camera configurations. In the 
context of video surveillance the typically large spatial extent of the region of interest and repetitive structures in the scene render the 
application of dense image matching a challenging task. In this paper we present an approach that derives strong prior knowledge 
from a planar approximation of the scene. This information is integrated into a graph-cut based image matching framework that 
treats the assignment of optimal disparity values as a labelling task. Introducing the planar prior heavily reduces ambiguities together 
with the search space and increases computational efficiency. The results provide a proof of concept of the proposed approach. It 
allows the reconstruction of dense point clouds in more general surveillance camera setups with wider stereo baselines. 
 
 

1. INTRODUCTION 

The automated analysis of surveillance videos is an important 
tool to support human operators. Given the enormous amount of 
data collected by omnipresent surveillance cameras manual on-
line inspection of the images is impossible and even manual 
reconfiguration of pan-tilt-zoom cameras (PTZ-cameras) is very 
challenging. Often, human operators cannot prevent camera 
networks recording empty scenes while missing crucial events, 
a fact that obviously limits the efficiency of such systems. Pre-
filtering of interesting scenes, automatic reconfiguration of 
cameras to focus relevant contents and the extraction of 
geometric information about people, actions and scene layout 
can help to make the task of manual inspection of video 
surveillance footage more tractable. Spatial information from 
stereoscopic analysis is very valuable in this context. However, 
low image resolution and wide baselines render the application 
of dense image matching for surveillance videos a challenging 
task. In common surveillance scenarios repetitive patterns and a 
significant spatial extent of the scene of interest demonstrate the 
limits of most general image matching approaches. 
 
In this paper, we show how to derive strong prior knowledge for 
image matching assuming a realistic video surveillance setup 
and we describe the integration of this prior knowledge into a 
graph-cut based image matching framework. The method is 
proposed as a building-block for more comprehensive 
surveillance applications. While it tackles typical challenges to 
dense image matching and aims at reliable depth estimation, it 
does not address further tasks like people detection and 
tracking. 
 
A brief overview of related work and the details of our method 
are given in section 2. Section 3 describes our experimental 
evaluation of the approach. The results provide a proof of 
concept and show the improved quality of the derived point 
clouds. 
 

2. METHOD 

2.1 Related work 

Stereo image matching on dedicated short-baseline image pairs 
has been a major topic of research throughout the last decades. 
The taxonomy by (Scharstein et al. 2002) gives an insight into 
common dense matching methods. Among the best performing 
approaches are those enforcing global smoothness assumptions. 
Graph-cut based optimization strategies (Boykov et al. 2001) 
are employed for efficient inference of optimal disparities and 
are widely applied to diverse optimization tasks in 
photogrammetry and computer vision. 
 
Because in related work on video surveillance stereoscopic 
image matching is often regarded as the central component in 
the respective systems, the used sensors or sensor networks are 
mostly designed to fulfil the specific requirements of stereo 
approaches. The pairwise installation of PTZ cameras (Zhou et 
al. 2010) provides image pairs with short baselines. Dedicated 
stereo devices, as used in Darrel et al. (2000), Haritaoglu et al. 
(1998) and many other publications, capture synchronised 
image pairs that are processed on specialised hardware. 
Although the advantages of high-frequency depth maps for 
people detection and tracking are shown (Schindler et al. 2010), 
a dedicated system design leads to additional costs that, from 
our point of view, are not necessary, when applying 
stereoscopic analysis to camera networks. In contrast, we 
propose to integrate strong prior knowledge into the process of 
dense image matching so that it becomes applicable for more 
general camera setups with wider stereo baselines. 
 
2.2 Setup 

The goal of the presented work is to provide a dense image 
matching approach that can be applied in realistic surveillance 
camera networks without dedicated stereo sensors. Camera 
calibration and absolute orientation are assumed to be known so 
that for camera pairs with sufficiently overlapping fields of 
view the images can be transformed to the normal case of 
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stereophotogrammetry. In addition, the exterior 
assumed to refer to an object coordinate system that depends on 
a predominantly horizontal ground plane 
knowledge can be derived for objects moving on this plane
 
2.3 Derivation of prior knowledge 

To extract moving objects we make use of a common pre
processing step and remove static background from the image 
sequences by subtracting an adaptive background model
(Kaewtrakulpong et al. 2001). The resulting foreground blobs 
are enhanced by morphologic closing. 
instantiate planes that give a first approximation of the desired 
result in object space. To exclude small blobs induced by noise 
an area-threshold is applied. The handling of merging situations 
between multiple foreground objects is outside the scope of this 
paper. Certainly, depth cues from image matching would be 
valuable for tackling this kind of challenge. 
 
In the context of video surveillance applications it is reasonable 
to assume that objects of interest predominantly ex
perpendicular to the ground. Thus, we represent prior 
knowledge for the image matching approach as upright planes
with 3D normals pointing parallel to the ground and 
perpendicular to the cameras’ x axis. Given the exterior and 
interior camera orientation a first estimation of the position of 
the object on the ground plane can be derived from 
monoplotting, i.e. intersection of the viewing ray through the 
bottom-most point of the foreground blob with a plane in object 
space. Our straight-forward implementation directly uses the 
ground plane for this purpose. Shadows and occlusions may 
cause errors in this simple reconstruction
planes still give reasonable priors on the 3D positions of the 
observed objects. To support image matching t
be projected to disparity space, which is the 
field of view in image coordinates and dispar
applications the cameras are usually mounted above the volume 
of interest and tilted towards the ground so that upright planes 
in the object coordinate frame project to slanted planes in 
disparity space. Figure 1 depicts a typical input image rectified 
to epipolar geometry (on the left) and colour information from 
the image projected to the approximate 3D planes.
there is no plane instantiated for one person in the background 
since the size of the corresponding foreground blob is smaller 
than the respective threshold. 
 

Figure 1. Rectified input image
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2.4 Disparity estimation 

In order to derive a detailed disparity map of the observed 
object given the approximate plane
respect to this plane has to be computed
respective foreground blob. This 
multi-class labelling problem. 
 
A row-wise disparity seed point is directly specified by the 
plane in disparity space. The set of
disparity offsets in the range of feasible deviations from the 
planar prior. Admissible offsets are individually computed for 
each foreground object. Since they are defined in disparity 
space they depend on the absolute viewing distance. We found 
that for our application a metric search range of 1.5
the planar prior yields good results
initial plane localization and transf
runtime. Note that this range is much smaller than the 
admissible range of disparities for the complete scene which 
leads to a massive reduction of ambiguities and 
computational burden. This also reduces the risk of the 
optimization getting stuck in local minima. 
slope of the plane in disparity space would lead to varying 
search intervals along the vertical extent of
when working with absolute disparity values. The use of 
disparity offsets with respect to the 
issue. 
 
The task of finding optimal disparity offsets now corresponds to 
finding an optimal labelling of all fore
relative quality of a labelling � is commonly evaluated by an 
appropriate energy functional of the form 
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 �
 
where ���� = energy induced by a labelling 
 ��, �� = data, smoothness term
 
Equation 1 represents a Markov Random Field evaluating 
labelling � by a weighted sum of 
smoothness term �� with �� controlling the influence of the 
smoothness term.  
 
The data term measures the dissimilarity of 
right stereo frame that are associated 

ified input image (left) and visualization of planar prior (right)
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slope of the plane in disparity space would lead to varying 
search intervals along the vertical extent of the foreground blob 
when working with absolute disparity values. The use of 
disparity offsets with respect to the seed point circumvents this 

The task of finding optimal disparity offsets now corresponds to 
finding an optimal labelling of all foreground pixels. The 
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 (1) 

= energy induced by a labelling L 
= data, smoothness term 

Equation 1 represents a Markov Random Field evaluating the 
sum of a data term �� and a 
controlling the influence of the 

the dissimilarity of pixels in the left and 
associated by the currently assigned 

(right). 
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label or the corresponding absolute disparity
implementation the data term (2) is computed as the Hamming 
distance between the local binary pattern 
�
around pixel � in the left image and the same descriptor from 
the right image at a horizontal offset induced by the label
pixel �. By truncating the data cost term at �
against outliers. The choice of labels assigned to such pixels 
dominated by the smoothness term (3). 
 

 ������ � min	��
�	 � 

���	
 
The smoothness term �� favours smooth transitions of disparity 
by penalizing the absolute difference of labels assigned to 
adjacent pixels. To allow for discontinuities, e.g. around the 
limbs, we use a robust energy function that
truncated absolute difference of the discrete labels 
connected neighbourhood. 
 

 �����, ��� � min	���� � ���,
 
Like the search range, the smoothness term is adjusted to the 
viewing distance. Obviously, discretization of the disparity 
space leads to significantly different ranges of plausible smooth 
transitions on object surfaces in different distances. In equation 
(3) this results in distance-dependent values of 
the truncation threshold from a quadratic function of the 
viewing distance. 
 
Finding a globally optimum solution to such a 
labelling problem is in general NP-hard 
complexity of the solution space. For appropriately defined 
energy terms graph-cut based approaches (Boykov et al. 2001)
can be used to find approximate solutions.
initial labelling individual labels are iteratively expanded so that 
the total energy of equation (1) successively decreases.
 

3. RESULTS 

The experiments are conducted on videos we collected for the 
joint research project CamInSens (CamInSens, 2013)
cameras are mounted 4.5 m above the ground plane with a 
stereo base of 4 m. Defining a region of interest of 10
in the scene the total range of plausible disparities for this setup 
spans approximately 250 pixels. Given the wide baseline and 
ambiguous image content standard matching algorithms fail to 
produce reliable dense results on these stereo pairs.
 
Because there is no densely labelled reference data we
qualitative results in figure 2 and validate the results on sparse, 
manually annotated control points on people in the scene.
this end, we annotated 10 equally spaced frames of our test 
sequence. Although a more extensive evaluation would be 
helpful, this validation ensures that there are no systematic 
errors in the approach and provides a proof of concept.
 
For the experiments we set the truncation threshold of the data 
term �� to 12, the truncation threshold for the smoothness term 
is individually set at runtime to enforce smooth disparity 
transitions corresponding to a 3D range of 0.8
weight of data and smoothness term is set to 3
given in equation (1) is minimized using graph
α−expansion (Boykov et al. 2001). 

Table 1 gives the results of the quantitative evaluation at sparse 
control points. Resulting disparities are compared to 
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 Prior 
% in   5.6 
% out 94.4 

Table 1. Percentage of disparity inliers 
control points. 

 
offsets from manual annotation. To evaluate the results an 
inlier-threshold of 3 pixels is applied to the absolute difference 
of the disparity values. While the planar prior alone fails to 
predict accurate disparities, a standard winner
evaluation of the data term increases performance but still gives 
wrong results for more than half
complete approach gives correct results for more than 
the points providing a proof of concept and indicating 
remaining challenges. Figure 3 depicts one of the annotated 
frames with green crosses marking successfully matche
points and red crosses indicating outliers. The reconstructions 
on the right hand side of figure 3 show that outliers occur on the 
endpoints of limbs which are hard to match correctly due to the 
limited resolution of the input images
perspective for the rightmost person
 

Figure 2. Planar prior (left), result of WTA (centre) and result of 
the proposed approach (right).

 
Figure 2 depicts an exemplary result
disparity maps are projected to point clouds in object space. The 
left part shows the planar prior, the centre depicts results of a 
simple winner-takes-all evaluation of 
the challenging task. On the right the improved 
are depicted yielding a consistent surface
reconstruction of the limbs. Such results can directly be used for
robust localization and estimation
input to automated scene understanding
 

4. CONCLUSIONS

We propose an approach addressing typical challenges to dense 
image matching in surveillance
dedicated stereo sensors. The integration of planar prior 
knowledge reduces ambiguities together with the search space
and thus increases computational efficiency. While significantly 
improved results can be shown for isolated foreground blobs 
merging situations between multiple objects
resolved. Future work will implement a feedback loop between 
matching and tracking to address this issu
depth information. In a further step, a more detailed object 
model will be integrated to couple 3D reconstruction and 
semantic interpretation. 
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