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ABSTRACT:

Three-dimensional information from dense image tiatg is a valuable input for a broad range of visapplications. While
reliable approaches exist for dedicated stereqsehey do not easily generalize to more challejgammera configurations. In the
context of video surveillance the typically largesal extent of the region of interest and repatistructures in the scene render the
application of dense image matching a challengasl.tin this paper we present an approach thatefestrong prior knowledge
from a planar approximation of the scene. Thisrimfation is integrated into a graph-cut based imagéching framework that
treats the assignment of optimal disparity valigea &belling task. Introducing the planar prioavis reduces ambiguities together
with the search space and increases computatifficémrcy. The results provide a proof of concepttee proposed approach. It

allows the reconstruction of dense point cloudsiare general surveillance camera setups with vétiFeo baselines.

1. INTRODUCTION

The automated analysis of surveillance videos isngyortant
tool to support human operators. Given the enornanusunt of
data collected by omnipresent surveillance camerasual on-
line inspection of the images is impossible andner®nual
reconfiguration of pan-tilt-zoom cameras (PTZ-caesgis very
challenging. Often, human operators cannot prewamera
networks recording empty scenes while missing atuevents,
a fact that obviously limits the efficiency of susiistems. Pre-
filtering of interesting scenes, automatic recoufagion of
cameras to focus relevant contents and the exiractif
geometric information about people, actions anchedayout
can help to make the task of manual inspection ideos
surveillance footage more tractable. Spatial infation from
stereoscopic analysis is very valuable in this extntHowever,
low image resolution and wide baselines renderagh@ication
of dense image matching for surveillance videosalenging
task. In common surveillance scenarios repetitaepns and a
significant spatial extent of the scene of intetkshonstrate the
limits of most general image matching approaches.

In this paper, we show how to derive strong prisowledge for
image matching assuming a realistic video survei#asetup
and we describe the integration of this prior krenge into a
graph-cut based image matching framework. The ndetiso
proposed as a building-block for
surveillance applications. While it tackles typicdlallenges to
dense image matching and aims at reliable depimagsin, it
does not address further tasks like people detectiad
tracking.

A brief overview of related work and the detailsoafr method
are given in section 2. Section 3 describes ourmx@ntal
evaluation of the approach. The results provider@ofpof
concept and show the improved quality of the derip®int
clouds.

more comprehensivedur

2. METHOD
2.1 Related work

Stereo image matching on dedicated short-basetiage pairs
has been a major topic of research throughoutastedecades.
The taxonomy by (Scharstein et al. 2002) givesnaight into
common dense matching methods. Among the bestrperfg
approaches are those enforcing global smoothnessnasions.
Graph-cut based optimization strategies (Boykov|e@01)
are employed for efficient inference of optimalpiisties and
are widely applied to diverse optimization tasks
photogrammetry and computer vision.

Because in related work on video surveillance sta@pic
image matching is often regarded as the centralpooent in
the respective systems, the used sensors or seeisaorks are
mostly designed to fulfil the specific requiremems stereo
approaches. The pairwise installation of PTZ camérdou et
al. 2010) provides image pairs with short baselif@=dicated
stereo devices, as used in Darrel et al. (2000)itddalu et al.
(1998) and many other publications, capture symikeal
image pairs that are processed on specialised hagdw
Although the advantages of high-frequency depth smap
people detection and tracking are shown (Schiretiat. 2010),
a dedicated system design leads to additional ¢bats from
point of view, are not necessary,
stereoscopic analysis to camera networks. In csitrae
propose to integrate strong prior knowledge int® phocess of
dense image matching so that it becomes applidablenore
general camera setups with wider stereo baselines.

2.2 Setup

The goal of the presented work is to provide a densage
matching approach that can be applied in realsiiveillance
camera networks without dedicated stereo sensormef@a
calibration and absolute orientation are assumémx onown so
that for camera pairs with sufficiently overlappifiglds of
view the images can be transformed to the normaé aaf
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Figure 1. Redfied input imag (left) and visualization of planar prigright).

stereophotogrammetry. In addition, th&terior orientation is
assumed to refer t;mabbject coordinate system that depend

a predominantlyhorizontal ground planso that strong prior
knowledge can bderived for objects moving on this ple.

2.3 Derivation of prior knowledge

To extract moving objectsve make use of a common -
processing step and remosttic background from the ima
sequenceshy subtracting an adaptive background m
(Kaewtrakulpong et al. 2001Yhe resulting foreground blol
are enhanced by morphologic closinghey are used to
instantiate planes that give a first approximatidrthe desirec
result in object space. To éxde small blobs induced by noi
an area-threshold is appliethe handling of merging situatio
between multiple foreground objects is outsidesitepe of this
paper. Certainly, depth cues from image matching ldvde
valuable for tackling this kind of challenge.

In the context of video surveillance applicationsireasonabl
to assume that objects of interest predominantitend
perpendicular to the groundThus, we represent pri
knowledge for the image matching approach as upptine:
with 3D normals pointing parallel to the ground ¢
perpendicular to the cameras’ x ax@Biven the exterior an
interior camera orientatioa first estimation of the position
the object on the ground plane can be derived
monoplotting, i.e. intersectionf the viewing ray through tr
bottomimost point of the foreground blob with a plane bjeat
space. Our straightrward implementation directly uses t
ground plane for this purpos&hadows and occlusions m
cause errors in this simple reconstruc but the resulting
planes still give reasonable priors on the 3D parsst of the
observed objectslo support image matchinhese planes can
be projected to disparity space, which isdiseretization of the
field of view in image coordinateand dispeity. In surveillance
applications the cameras are usually mounted att@/golume
of interest and tilted towards the grousal that upright plane
in the object coordinate frame project to slantddn@s in
disparity space. Figure 1 depictstypical input image rectifie
to epipolar geometry (on the left) andlour information fron
the imageprojected to the approximate 3D plai Note that
there is no plane instantiated for one person énhiickgroun:
since the size of the corresponding foreground lidosmaller
than the respective threshold.

2.4 Digparity estimation

In order to derive a detailed disparity map of theservec
object given the approximate pla, the disparity offset with
respect to this plane has to be comp for each pixel of the
respective foreground blolThis task can be formulated as a
multi-class labelling problem.

A row-wise disparityseed point is directly specified by t
plane in disparity spac&he set o labels represents discrete
disparity offset in the range of feasible deviations from
planar prior.Admissible offsets are individually computed
each foreground object. Since they are defined igpadity
space they depend on the absolute viewing distaffeefound
that for our application a metric search range .6 m around
the planar prioyields good resul. It can be computed from the
initial planelocalization and tranormed to disparity space at
runtime. Note that this range is much smaller than
admissible range of disparities for the completenscwhict
leads to a massive redumti of ambiguities an@ decreased
computational burdenThis also reduces the risk of t
optimization getting stuck in local minimiFurthermore, the
slope of the plane in disparity space would leadvaoying
search intervals along the vertical exter the foreground blob
when working with absolute disparity values. Thee usf
disparity offsets with respect to tiseed point circumvents this
issue.

The task of finding optimal disparity offsets noaresponds t
finding an optimal labelling of all foground pixels. The
relative quality of a labellind. is commonly evaluated by ¢
appropriate energy functionef the form

E(L) = Z Ep(L,) + ws Z Eg(Lp1y)

pEP p.qEN

1)

where E(L) = energy induced by a labelliiZ

Ep, Es = data, smoothness te

Equation 1 represents a Markov Random Field evalgithe
labelling L by a weightedsum of a data termE, and a
smoothness ternts with ws controlling the influence of th
smoothness term.

The data term measurtie dissimilarity oipixels in the left and
right stereo frame that asssociatety the currently assigned
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label or the corresponding absolute disp. In our
implementation the data term (8) computed as the Hammii
distance between the local binary pattegr(Zabih et al. 1994)
around pixelp in the left image and the same descriptor f
the right image at a horizontal offset induced ty kabe [, of
pixel p. By truncating the data cost termzgtit becomes robust
against outliers. The choice latbels assigned to such pixis
dominated by the smoothness term (3).

Ep(ly) = min (|ch — " (1,)], ) @
The smoothness terRy favourssmooth transitions of dispari
by penalizing the absolute difference of labelsigmesl to
adjacent pixelsTo allow for discontinuities, e.g. around
limbs, we use a robustnergy function th: evaluates the
truncated absolute difference of the cdéte labelsin a 4-
connected neighbourhood.

Es(ly,1g) = min (|l; — 1], 75) ®3)

Like the search range, the smoothness term is tadjus the
viewing distance. Obviously, discretization of tlksparity
space leads to significantly different ranges afigible smoot|
transitions on object surfaces in different diseendn equatiol
(3) this results in distanagependent values «g.We compute
the truncation threshold from a quadratic functioh the
viewing distance.

Finding a globally optimum solution to such multi-class
labelling problem is in general Niard because of the
complexity of the solution space. For appropriatelgfined

energy terms grapbdt based approaches (Boykov et al. 2

can be used to find approximate solutir Starting from an
initial labelling individual labels are iterativeBxpanded so th.
the totl energy of equation (1) successively decre

3. RESULTS

The experiments are conducted on videos we cotiefttethe
joint research project CaminSerf€aminSens, 201. The
cameras are mounted 4rb above the ground plane with
stereo base of 4 m. Definiregregion of interest of :m x 10 m
in the scene the total range of plausible disparitor this setu
spans approximately 25fxels. Given the wide baseline a
ambiguous image content standard matching algositfaih to
produce reliable densestdts on these stereo pe

Because there is no densely labelled referencevek present
qualitative results in figure 2 analidate the results on spar
manually annotated control points on people in sbene To
this end, we annotated 10 equatlyaced frames of our te
sequence.Although a more extensive evaluation would
helpful, this validation ensures that there are no syster
errors in the approach and provides a proof of ept

For the experimentare set the truncation threshold of the ¢
termty to 12, the truncation threshold for the smoothriesn
is individually set at runtime to enforce smoothspirity
transitions corresponding to a 3D range ol m. The relative
weight of data and smdmess term is set to. The energy
given in equation (1)is minimized using graj-cuts and
o—expansion (Boykov et al. 2001).

Table 1 gives the results of the quantitative eatadun at spars
control points. Resulting disparities are compacehorizontal

Prior WTA Graph-cut
% in 5.6 46.5 76.1
% out 94.4 53.5 23.9

Table 1. Percentage of disparity inlieand outliers at sparse
control points.

offsets from manual annotation. To evaluate thalltgsan
inlier-threshold of 3 pixels iapplied to the absolute differen
of the disparity values. While the planar prior redofails to
predict accurate disparities, a standard wi-takes-all
evaluation of the data term increases performantstil gives
wrong results for more than h of the control points. The
complete approach gives correct results for moaa 75 % of
the points providing a proof of concept and indiug
remaining challengegrigure 3 depicts one of the annots
frames with green crosses marking successfullymd control
points and red crosses indicating outliers. Thenmstuctions
on the right hand side of figure 3 show that otslieccur on th
endpoints of limbs which are hard to match coryedtie to the
limited resolution of the input imagc and significant changes in
perspective for the rightmost per.

Figure 2 Planar prior (left), result of WTA (centre) arebult of
the proposed approach (rig

Figure 2 depictsin exemplary rest of the optimization. The
disparity maps are projected to point clouds irecbgpace. Th
left part shows the planar prior, the centre depiesults of :
simple winner-takesdl evaluation ofthe data term illustrating
the challenging task. On the right the impromatching results
are depicted yielding aconsistent surfar and a correct
reconstruction of the limbs. Such results can diydse used fc
robust localization and estiniai of body height and provide
input to automated scene understan.

4. CONCLUSIONS

We proposean approach addressing typical challenges to ¢
image matching in surveillan camera networks without
dedicated stereo sensors. The integration of plgméor
knowledge reduces ambiguitiesgether with the search sp
and thus increases computaial efficiency. While significantl
improved results can be shown for isolated foregdoblobs
merging situationsbetween multiple objec are not yet
resolved. Future work wilimplement a feedback loop betwe
matching and trackingo address this ise with the help of
depth information.In a further step, a more detailed ob
model will be integrated to couple 3D reconstruction
semantic interpretation.
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Figure 3.Sparse control points (left), inliers are depictadgreen, outliers in red
reconstructions.

. The right part depidte ttorrespondir
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