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ABSTRACT:

For driver assistance and autonomous driving systems, it is essential to predict the behaviour of other traffic participants. Usually,
standard filter approaches are used to this end, however, in many cases, these are not sufficient. For example, pedestrians are able to
change their speed or direction instantly. Also, there may be not enough observation data to determine the state of an object reliably,
e.g. in case of occlusions. In those cases, it is very useful if a prior model exists, which suggests certain outcomes. For example, it is
useful to know that pedestrians are usually crossing the road at a certain location and at certain times. This information can then be
stored in a map which then can be used as a prior in scene analysis, or in practical terms to reduce the speed of a vehicle in advance in
order to minimize critical situations. In this paper, we present an approach to derive such a spatio-temporal map automatically from the
observed behaviour of traffic participants in everyday traffic situations. In our experiments, we use one stationary camera to observe
a complex junction, where cars, public transportation and pedestrians interact. We concentrate on the pedestrians trajectories to map
traffic patterns. In the first step, we extract trajectory segments from the video data. These segments are then clustered in order to derive
a spatial model of the scene, in terms of a spatially embedded graph. In the second step, we analyse the temporal patterns of pedestrian
movement on this graph. We are able to derive traffic light sequences as well as the timetables of nearby public transportation. To
evaluate our approach, we used a 4 hour video sequence. We show that we are able to derive traffic light sequences as well as time
tables of nearby public transportation

1. INTRODUCTION

1.1 General Problem Description

The general issue with human locomotion is that we move faster
than we can react. Traffic speed makes it impossible for vehi-
cle drivers to break in time if an unexpected cross traffic appears
all of a sudden. The speed limit in which emergency break as-
sistants operate, shows how difficult a reliable situation estima-
tion based on instant observation is. Equally, it is an impossible
task for a human driver. Thus, a certain speed makes a priori
knowledge necessary. Any human driver adapts his behaviour
to different traffic situations, which sometimes do not obey the
law, wherefore these situations are particularly difficult to inter-
pret by drivers unfamiliar with the area or by algorithms. Un-
fortunately, those traffic participants, where the most wrongdo-
ings occur, are also the group with the most dynamic behaviour,
namely the pedestrians. They can quickly change the direction
of their movement and are very vulnerable traffic participants,
which deserve special care. We will present an approach to gen-
erate knowledge about pedestrians and to record it in a dynamic
map. In our opinion such a map can lower the risk for all traffic
participants, raise the speed and comfort of autonomous driving
as well as optimise the path planing of navigation systems. The
daily traffic of high-tech vehicles equipped with range sensors
are a usable data source to generate comprehensive and high fre-
quency data for an a priori map. The highly dynamic behaviour of
pedestrians and the wide spread use of cameras in vehicles leads
us to the decisions to gain information about pedestrians from
images, even if it does not matter where the trajectories are com-
ing from. For the use of a priori knowledge from a map.T The

data must be up to data. We followed approaches from road net-
work reconstruction to generate a walking path network. For that
purpose we used pedestrian tracking (Klinger et al., 2015) and ap-
proaches to generate regions of interest (ROI) (Feuerhake et al.,
2011; Shen and Cheng, 2016). Afterwards we analysed nodes and
edges for periodic events (Fayazi et al., 2015). Although, there
are current effort of analysing events in time and space, like earth-
quakes with twitter(Sakaki et al., 2010; Weng and Lee, 2011), we
still use simple thresholds to separate time point with the count of
people to identify periodic events, because of the small amount
of data. We decided to use an intuitive heat map extended with
schedule tables to present our map instead of spatio-temporal
cubes visualisation for time variant events (Kraak, 2003; Nakaya
and Yano, 2010; Gatalsky et al., 2004), whose clarity does not
scale with the data amount. In Section 2 we give an overview of
related work and concepts which we can us with future work if
the amount of data rises. This conception is followed by the pre-
sentation of our approach in Section 3. We introduce our data set
and specify our actions in Section 4 and thereafter we evaluate
our results in Section 5. Finally we summarize our results and
end with an outlook in Section 6.

2. RELATED WORK

2.1 Graph Derivation

We collected the approaches to derive annotated graphs as navi-
gation map from trajectories. Traditionally, change detection re-
quires manual interpretation of information from field data such



as close-range or airborne imagery. Recent work aims at the
recognition of patterns from trajectory data for the automatic deriva-
tion of road networks from GPS trajectories. These can be or-
ganized, for instance, into three categories (Ahmed et al., 2015):
point clustering (Edelkamp and Schrödl, 2003), incremental track
insertion (Brüntrup et al., 2005) and intersection linking (Kara-
giorgou and Pfoser, 2012). Moreover, a fourth strategy can be
distinguished; the generative modelling (e.g. Chai et al., 2013;
Kuntzsch et al., 2015). The approach presented in this paper is
inspired by the point clustering approach.

Alternatively to GPS, trajectories can be derived from image se-
quences of surveillance cameras using visual object tracking al-
gorithms. In online applications, detection-based approaches for
tracking are widely used to generate trajectories (Ess et al., 2008;
Schindler et al., 2010; Klinger et al., 2015). Such approaches ap-
ply object detection in the individual frames and by solving a data
association problem. The detections are used to update a recur-
sive filter that represents the dynamic system state of the tracked
object. The algorithms make use of probabilistic graphical mod-
els to incorporate different sources of information, e.g. pedestrian
detections, motion and depth, to reason about a pedestrian’s po-
sition. Since the graphic modelling inherently provides a way to
incorporate further information such as a path network, we stick
to the work of Klinger et al. (2015) and use dynamic Bayesian
networks to generate the trajectories. There are some works to
derive pedestrian path networks from trajectories. One option to
generate nodes of walking path graphs is working with junction
and entrance points (Makris and Ellis, 2005). Another option is
the use of Gaussian processes to generate movement models with
a mean predicted instantaneous velocity grid (Ellis et al., 2009)
and derive nodes at the grid point with the lowest uncertainty.
Both approaches, Makris and Ellis (2005) and Ellis et al. (2009)
work with a static camera. Makris and Ellis (2002) also presented
an approach to detect typical behaviour by pedestrian trajectories
which works without derivation of nodes. Feuerhake et al. (2011)
and Shen and Cheng (2016) calculate regions of interest to anal-
yse pedestrian behaviour, while Feuerhake et al. (2011) form a
walking path graph by connecting the ROIs with trajectories.

2.2 Event Identification

There are several approaches to find time points of interest in a
time series. Some works detect events in time with a priori knowl-
edge or using a model (Guralnik and Srivastava, 1999; Sakaki
et al., 2010), others use time varying Poisson processes (Ihler et
al., 2006) or clusters of wavelet-based signals (Weng and Lee,
2011). Each of them find events in time with a procedure which
derived satisfactory responses for their data. Furthermore, there
are some approaches, which analyse the traffic light sequences
and cycles based on GPS trajectories (Fayazi et al., 2015; Ker-
per et al., 2012). Both approaches determine the period with
the smallest error for observed starting events by minimization.
While Kerper et al. (2012) minimize the mean square error for
each starting point by searching between the minimum and maxi-
mum gap of their data, Fayazi et al. (2015) minimize the variance
of differences in order to determine the period before they calcu-
late the sequence’s starting point via a cyclic mean of different
starting points.

2.3 Visualisation

For the presentation of time and space variant trajectories, the
use of a space-time cube is introduced as a useful tool for man-
ual exploration of spatio-temporal events (Kraak, 2003; Nakaya
and Yano, 2010; Gatalsky et al., 2004). The clarity of this visual-
ization tool decreases with the amount of simultaneously shown

events, as well as the bar chart, which Nakaya and Yano (2010)
use during their exploration.

3. OUR APPROACH

We enhance a map of a junction with information about pedes-
trian behaviour, for which we use the nodes of a walking path
graph as starting points to determine the frequency of pedestrian
traffic along the edges of our graph. These periodic events are
mapped in schedules at nodes and as mean periods at edges. Our
approach is split up into two parts. First, we generate a walking
path network from pedestrian trajectories tracked by a static cam-
era. Even though the approaches of Makris and Ellis (2005) and
Ellis et al. (2009) work with static cameras, we do not pursue ei-
ther way because our work is aiming to gather information using
dynamic cameras from vehicles in daily traffic. Hence, we do not
work with entrance points in a static scene but used ROIs (Feuer-
hake et al., 2011; Shen and Cheng, 2016) as nodes for a walking
path graph. Secondly, we analyse the nodes and edges of that
graph for periodic events to gain some prior information about
the movements and intentions of pedestrians. Therefore, we sep-
arate event points with a static threshold and classify these events
as either starting points of green phases (Fayazi et al., 2015) or
subway arrivals. Finally, we map the frequencies of such periodic
events and present a visualisation approach. We use a heat map to
clearly show increasing pedestrian traffic at nodes over time. On
the other hand, time tables of events are added. For the prediction
of periodic events the combination of both is exemplary shown in
figure 1.

Figure 1: Snapshot of dynamic map visualisation

3.1 Graph of Walking Path

We use a probabilistic multi-person tracker (Klinger et al., 2015)
to generate pedestrian trajectories following the assumption that
pedestrians walk slower or even stop at ROIs (Feuerhake et al.,
2011; Shen and Cheng, 2016). First we derive the walking speed
for each sample point of trajectories and subsequently cluster
them with a spatio-temporal density based clustering (ST-DBSCAN)
following Shen and Cheng (2016) and Birant and Kut (2007). For
the ST-DBSCAN we only use points with a low speed according
to determined ROIs. Therefore, a ROI is identified by a set of
points with a specified density in time and space. These derived
ROIs are assigned to a position in space and scope in time by the



underlying cluster points. These time variant ROIs present the
nodes of our walking path network and defined edges between
this graph following Feuerhake et al. (2011). For the determina-
tion of edges we take a look at the trajectories again. If a trajec-
tory passes through several ROIs, these ROIs become connected
with a directed edge or if already present in the graph, the edge
weight is incremented. Passing through a ROI means getting into
a specified radius and scope of a ROI, which are defined by the
underlying cluster. The weight of the edges will be used in fu-
ture work for the prediction of pedestrian movements. We use
the scope of ROIs to adapt the graph structure over time. For fur-
ther event analysis we focus on a snapshot of the spacial and time
variant graph, as shown in figure 6.

3.2 Event Analysis

As an example for useful additional map information, derived
from pedestrian trajectories, we determine traffic light sequences
and subway schedules from pedestrian movements. This periodic
events can be used for prediction of future traffic behaviour.

3.2.1 Traffic Light Sequence (TLS): The determination of
traffic light sequences from vehicle trajectories barley varies from
the pedestrian trajectories. However, pedestrians do not queue
and their acceleration phase is negligible. Thus, assumption 1
applies.

Assumption 1: A node flushes instantly at the start of a green
phase.

We successively check every observed time point ti for being
a potential starting point of a green phase, which is the case if
the current count of pedestrians is zero and the previous one was
greater than zero.

tSG = {ti| ci−1 > 0 & ci = 0} (1)

were ci is the count of pedestrians at the time i at a ROI. We
minimize the variance of all tSG ∈ TSG over discrete periods
between 1 and 120 in 1 second interval steps.Therefore, we calcu-
late the mean traffic light sequence following Fayazi et al. (2015).

modP (δj) = δj − round(δj/P )P (2)

were δj = tSGj − tSGj−1 .
modP (δj) represents the difference from δ to the assumed period
P , it holds: −(P/2) < modP (.) < P/2. Then the mean traffic
light sequence is determined by the period with the smallest sum
of deviations solving:

Pmin = argmin
P

n∑
j=1

(
modP (δj)

P/2

)2

(3)

were the division of P/2 normalize the variances from different
periods for a relative comparability. A determination of the start-
ing point for the TLS is not useful in our case because of the
variation of data, as we will show in section 4.1.

3.2.2 Subway Schedule: The identification of subway sched-
ules could be solved with an approach identical to TLS determi-
nation if there were only one route. Commonly there is more than
one route at a platform or arrival times of the opposed directions
differ. These different periods in the signal exclude the presented

TLS approaches for solving the problem of period determination.
Even though Fayazi et al. (2015) detect the change of signal off-
set by Gaussian mixture models, their approach is not useful for
determining several periods. For the detection of subway arrivals
we presume assumption 2.

Assumption 2: At subway arrival the ROI will fill over-average.

We successively check every observable time point if it is a pos-
sible subway arrival point. The time point which have a count
over average while the previous count is below-average form the
set SA of possible subway arrivals.

SA = {ti| ci−1 > cavg & ci < cavg} (4)

were ci again is the count of pedestrians at a ROI. We use linear
regression models sa′

x = p∗x+s to find several frequencies with
fixed periods. The problem is solved through a multi periodic
event sample consensus (MPE-SAC) algorithm. This algorithm
looks for possible periods (P ) and in addition starting points (S)
to determine the best fitting periods, analogue to the TLS algo-
rithm previously introduced. Therefore, we rate the regression
models SA′ in a convoluted manner. Each subway arrival is as-
signed to a period if the difference to regression model is less
then the threshold θ.The problem of ambiguous sub-sequences is
solved by using a quadratic score function for the matches and
the punishment of theoretically observable points with no obser-
vation by 0.5, see equation 5. The quadratic score function weight
the matches between 1 and 0 depending on their distance. Thus,
we avoid running into a wrong maximum at compound periods.
Hence, we derive the following score function and use negative
value as termination condition for the MPE-SAC regression:

Score =

i=n∑
i=1

max
P,S

θ2 −modP (MSApi,si)
2

θ2
−obepi,si − |MSApi,si |

2

(5)

with

obepi,si =
max(SApi,si)−min(SApi,si)

p
(6)

were n is the number of periods being searched and SApi,si is
the subset of subway arrival time points which do not match for
the best matching period p with starting point s calculated for
frequency i-1.

MSAp,s = {t ∈ SAp,s|modp(t− s)) < θ} (7)

where the number of frequency i describes the level of the subset,
it is:

SApi+1,si+1 = SApi,si \MSApi,si (8)

where SAp0, s0=SA the set of all subway arrivals.

4. EXPERIMENT

4.1 Database

We used a static camera to track pedestrians at a T-junction where
cars, public transportation and pedestrians interacted over a time



period of 4 hours. We analysed the video manually for ground
truth and automatically to compare the results in section 5. During

Figure 2: Snapshot of trajectories within the observed scene

the manual analysis we tracked both the times a subway train
stopped and the time at which traffic lights switched. In addi-
tion we counted the number of people exiting a subway train and
waiting at a traffic light aggregated over a 10 second interval.
For the automatic analysis a probabilistic multi-person tracker us-
ing dynamic Bayes networks from Klinger et al. (2015) supplied
trajectories exemplarily shown in figure 2. We obtained 2766
trajectories with a mean length of about 14 meters consisting of
352225 data points, which corresponds to a mean density of 10
cm between trajectory points. In the captured scene the main road

∆t = 10
∆t = 10

∆t = 4
∆t = 6L1 L2 L1 L2

Figure 3: Schematic schedule of two subway lines L1 and L2

separates the subway platform. Pedestrians as well as vehicles on
the side road have the possibility to trigger the traffic light. The
length of the traffic light’s green phases for the side road varies
between 8 and 20 seconds depending on whether a pedestrian,
car or both trigger the traffic light. The red phase of the side road
lasts at least 28 seconds because of the different triggering pos-
sibilities. Furthermore, two subway routes stop on the platform,
according to the timetable the opposite directions meet at the plat-
form. Both routes have the same period. Thus, by schedule a 4
minute and a 6 minute gap arises, see figure 3. Unfortunately, the
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Figure 4: Sub-section of manually collected aggregated number
of pedestrians for ROI #1 with automatic and manually detected
subway arrivals and schedule.

opposite directions do not always meet due to delay, see figure 4,
which shows the number of pedestrian at ROI #1 (see figure 1)
with the subway arrivals. It becomes obvious that people exiting
an arriving subway need a few seconds to come up to ROI #1
and trigger the automatic detection. Furthermore, the subway ar-
rivals indicate a common delay in accordance with the schedule.
Additionally people at the platform cannot be tracked until they
reach the junction so that different walking speeds and delay from
schedule generate deviations. Furthermore, assumption 2 fails to
detect the subway arrivals with only few people exiting, as well
as too many people who chose another way or the crowd arriving
successively. The problem of a second exit could be weakened by
a comprehensive walking path network. The problem of too few
people exiting a subway could not be solved with the individual
pedestrian detection and the clustering of successive arrivals will
shift the problem to false detection. Figure 5 shows the tracked
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Figure 5: Sub-section of automatically detected number of pedes-
trians for ROI #1 with automatically and manually detected sub-
way arrivals.

persons at ROI#1 with subway information. Consequently, we
have additional corruption mismatches, particularly bad at large
crowds. We show that the use of the mean allows a reliable sched-
ule detection, despite noise and corruption. Assumption 1 is not
corrupted by the number of waiting pedestrians.

4.2 Graph Determination

The graph determination is inspired by point clustering, because
our pedestrian trajectories have a higher resolution in space and
time as well as shorter segments in contrast to GPS tracks, shown
in figure 2. For the identification of slow walking or waiting peo-

Figure 6: Snapshot of the dynamic graph derived from pedestrian
trajectories

ple we use a threshold of 0m
s

for walking speed. We perform



ST-DBSCAN clustering following Shen and Cheng (2016) with
a threshold of 50 data points which have to be closer together
than one meter in space and lay within a one hour interval. We
present the result in part as a snapshot, shown in figure 6. For our
data set the ROI number 0 and 1 are significant because they are
so frequently visited that they stay over the 4 hour period. Our
further analysis focus on these two regions ROI#0 and ROI#1.

4.3 Periodic Time Events

With the assumption 1 and 2 automatically detected subway ar-
rivals and starting point of green phases exemplary shown in fig-
ure 7 and figure 5 were identified. With the algorithm to deter-
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Figure 7: Sub-section of automatically tracked pedestrians at
ROI#1 and ROI#2 with starting points of green phase considering
one second reaction time.

mine the TLS declared in section 3.2.1 a mean traffic light se-
quence of 44 seconds with a minimum sum of variance was cal-
culated over a four hour period. Figure 8 shows the histogram of
minimal variance for the automatically detected 44 second TLS .
The high mean, in contrast to an explicit peak, maps the variation
of sequences due to the switching capacity of the traffic lights.
The trend over all analysed periods shown in figure 10 points to
the best fitting mean TLS of 44 seconds.
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Figure 8: Histogram of normalized deviation automati-
callymanually determined mean TLS of 44/49 seconds follow
Fayazi et al. (2015).

Despite the corrupted data the MPE-SAC was clearly able to de-
termine the schedule of the subways with a threshold of 120 sec-
onds as tolerance for delays to ensure detection of subway arrivals
as shown in figure 9. Figure 9 shows the score for the best peri-
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Figure 9: Score of MPE-SAC over first periods of best (periods,
starting points) tuple.

ods and step pairs. These pairs are identified by the first value for
the periods on the x-axis and the composed score, see equation 5,
on the y-axis. The highest peak at 600 seconds shows the clarity
of our score function. The other peaks at multiples of the period
point out the need of an adapted score function. We analysed pe-
riods from 1 to 3000 seconds and starting points between 1 and
3000 seconds. The upper borders for the periods are caused by
the amount of data, which also applies for useful starting points.
MPE-SAC found two frequencies, both with a period of 600 sec-
onds and with starting points at 0 seconds and 240 seconds. The
period and the gap between the starting points matches the sched-
ule of the subway as shown in the next section 5.

5. EVALUATION

We evaluated the presented algorithm by comparing the output to
ground truth. Analogous to the sections before we split the eval-
uation into two parts. First, we take a closer look at the generated
graph network and secondly we evaluate the automatically de-
rived parameter for periodic events with the given circumstances.

5.1 Graph Generation

Pedestrians do not follow such strict conditions regarding their
movement as vehicles. Also there are no walking path network
graphs which map real pedestrian behaviour and could be used as
ground truth. We found ROIs next to traffic lights and the deter-
mined edges follow the pavement and the traffic light crossings.
Thus, even if the edges of the graph do not perfectly match the
edges of a map like OSM, (compare figure 1) we assume the de-
rived graph to be valid.

5.2 Periodic Events

During the evaluation of periodic events we compare the algo-
rithm result of the automatically detected events to the ground
truth.

5.2.1 Evaluation of TLS The match and the false detection
of starting points of green phases are exemplarily shown in figure
7. The automatically detected mean TLS over the 4 hour period



Period (seconds)
20 30 40 50 60 70 80 90 100 110 120

S
um

 o
f v

ar
ia

nc
e

20

40

60

80

100

120

Automatically detcted
Manually detected

Figure 10: Trend of the minimal sum of variance for TLS.

is compared to the ground truth in figure 10. The minimum of
automatic detection is 44 seconds whereas the ground truth is
49 seconds, the automatic false detections are the reason for the
higher sum of variance. The more evenly spread of variance and
the 5 seconds shorter TLS is explainable through the pedestrian
behaviour. As shown in figure 7 sometimes pedestrians crossed
the road at a red light, consequently the automatically detected
interval of 30 to 59 seconds determined by the mean derivation
and TSL has is lower as the ground truth interval of 40 to 59
seconds. Additionally, we analyse the mean deviation of TLS for
different time windows instead of one mean for the entire 4 hour
period. With a time window of 50 minutes we were able to reduce
the mean difference compare to the ground truth to two seconds
shown in figure 11. This smaller variance and the perfect match
to ground truth for single time windows show that a more precise
estimation for TLS with defined time windows by more data is
possible.
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Figure 11: Mean difference between automatically and manually
detected mean TLS for different time windows for the automatic
detection

5.2.2 Evaluation of Subway Schedule We evaluate the auto-
matically derived subway schedule by comparing the differences
between subway arrival as well as detected events to the calcu-
lated and the original schedule, see figures 12 and 13. Both fig-
ures show subway delays to automatically detected and original
schedule, each subway arrival is assigned to a absolute delay bin

with 10 seconds width. The smaller maximum difference of the
detected schedule to the detected events, shown in figure 12, as
well as to the manually detected subway arrival, shown in figure
13 indicate a higher reliability of the detected subway schedule
in contrast to the actual schedule. Moreover, the automatically
detected schedule shows less delay to the ground truth subway
arrivals in contrast to the detected ones, this shows the robustness
of the MPE-SAC against false detection. Furthermore, the mean
squared error of the automatically detected schedule is only half
the one of the predefined schedule. This is reflected by standard
deviations of 60 seconds compared to 90 seconds and shows the
greater consistence of the automatically generated schedule.
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Figure 12: Differences of schedules to the automatically detected
subway arrival events
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Figure 13: Differences of schedules to the manually detected sub-
way arrival events

We observe a shift of our schedule of about two minutes to the
given one. A certain delay is inevitable because of the observa-
tion of pedestrians only starting at the exit. We manually deter-
mined a mean offset of about 30 seconds due to the time neces-
sary to exit the subway. The other offset seems to be a condition
of the subway average delay, which we determined to 90 seconds.

6. SUMMARY AND OUTLOOK

In this paper, we showed that the ST-DBSCAN can be used to
determine ROIs of pedestrians. In addition, we used these re-
gions to generate a time variant graph of walking paths. Further-
more, we analysed the stable subset of this graph for periodic



events for which we used an algorithm to derive traffic light se-
quences to analyse the edges. The nodes were analysed for peri-
odic events with a MPE-SAC algorithm to determine periods and
starting points. We showed that the automatically derived sched-
ule is a better match to the current traffic situation than the given
schedule. Thus, we were able to enhance the graph with this in-
formation to build a time variant prediction map. With the gained
information we were able to enhance a map shown in figure 1
with additional information for pedestrian behaviour and infor-
mation about frequent behaviours, which manifested e.g. subway
arrivals or traffic light phases. This information can be used for
more efficient path planning and to warn drivers to focus their
attention in dangerous situations. Furthermore, automatically de-
rived path networks and schedules from videos have the potential
to correct given maps and produce more realistic schedules. In
The future, we plan to develop and evaluate a prediction model of
pedestrian behaviour based on the presented dynamic map. Next
we will collect further data to verify our algorithms to general va-
lidity. Thus, we will analyse the improvement by using more data
from the prediction model of periodic events. Furthermore, with
a bigger walking path network we will expand the graph analysis
beyond edges and nodes to more complex time and space depen-
dencies of several nodes. With the larger amount of data, new
event identification is necessary. Therefore, we will utilise big
data methods to distinguish different kinds of nodes in the walk-
ing path network. Moreover we will analyse different detectors
for periodic events, e.g.complexer latent mixed models.
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